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Design of O(ε) dwell-time graph for stability of singularly perturbed hybrid
linear systems

Jihene Ben Rejeb, Irinel-Constantin Morărescu, Antoine Girard and Jamal Daafouz

Abstract— The paper deals with singularly perturbed hybrid
systems. It proposes a methodology for building a graph
defining all the rules that ensure the origin is a stable equi-
librium in presence of a dwell-time of order of the parameter
defining the ratio between the two time-scales of the system. In
this framework one can also treat the corresponding problem
for interesting particular cases such as: singularly perturbed
switched linear systems without impulses, one scale hybrid
systems or one scale switched systems. A numerical example
illustrates the theoretical results completing the paper.

Index Terms— Singular Perturbation, Switched systems, Reset
systems, Dwell-time.

I. INTRODUCTION

Stability and stabilizability of switched linear systems have
been well studied since the nineties and one may find many
contributions in the literature on this topic (see [1], [2]
and references therein). Recently, an improvement of these
contributions has been proposed by several researchers that
included in the analysis a reasoning borrowed from graph
theory [3], [4], [5]. The switching sequences are constrained
by an automaton and the main objective is to take into
account these constraints to obtain less conservative stability
conditions. In other words, the switching rules are formulated
as a path in some given graph: each mode is seen as a vertex
of a graph and a switch from one mode to another is possible
only if a link between the corresponding vertices exists in
the graph.
In this context we consider that a question of interest is the
following: given a set of linear subsystems, is it possible to
build an automaton such that stability is guaranteed for of
all the switching sequences constrained by this automaton?
To the best of our knowledge, there is no contribution in the
literature that answers this question.
The design result proposed in [6] allows to exhibit a switch-
ing sequence that stabilizes a switched system under dwell
time constraints. The proposed algorithm uses graph theory
but it does not allow to build the automaton of all constrained
stabilizing switching sequences. In the present work, we
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consider a more general class of switched linear systems
that includes impulses and different time-scales dynamics.
In other words, we analyze the class of singularly perturbed
switched impulsive linear systems. This class of hybrid
singularly perturbed systems appear in various domains of
science [7], [8] and engineering [9], [10]. Results on stability
analysis of hybrid singularly perturbed systems emphasizing
the necessity of dwell-time constraints were obtained in [11],
[10], [12].
In this paper we develop a methodology for building a
graph defining all the rules that ensure that the origin is
a stable equilibrium in presence of a dwell-time of order
of the parameter defining the ratio between the two time-
scales of the singularly perturbed switched impulsive linear
system. Our result contains as particular cases several in-
teresting problems. When the singularly perturbed switched
linear systems are without impulses, the aforementioned
graph contains only dynamical modes whose slow dynamics
share a common Lyapunov function. When we deal with
switched impulsive systems evolving on one time-scale the
methodology can be used to build the graph defining all the
rules that do not require a dwell-time to ensure the origin
is a stable equilibrium of the overall system. In the case of
switched linear systems without jumps, the graph contains
all the modes that share a common Lyapunov function.
The proposed methodology is based on the work in [12]
where we have presented dwell-time conditions ensuring
stability for a class of singularly perturbed switched im-
pulsive linear systems in which the nature of the variable
is switch-dependent. Precisely, these conditions are the sum
of two-terms: the first one is present also in the case of
linear switched systems evolving on one time-scale while the
second is of order of the parameter defining the ratio between
the two time-scales of the singularly perturbed system at
hand.
The paper is organized as follows. Section II introduces the
main concepts and formulates the problem under consider-
ation. Some preliminary results concerning the dwell-time
condition ensuring stability for singularly perturbed hybrid
systems are recalled in Section III. In Section IV we present
our main results on the design of the graph defining all the
rules that ensure that the origin is a stable equilibrium in
presence of a dwell-time of order of the parameter defining
the ratio between the two time-scales of the singularly
perturbed hybrid linear system. The reformulation of the
main results in some particular cases is done in Section V.
Finally, we provide a numerical illustration of the proposed
results in Section VI before some concluding remarks.



NOTATION

Throughout this paper, R+ , Rn and Rn×m denote respec-
tively, the set of nonnegative real numbers, the n dimensional
Euclidean space and the set of all n×m real matrices. The
identity matrix of dimension n is denoted by In. We also
denote by 0n,m ∈ Rn×m the matrix whose components are
all 0. For a matrix A ∈ Rn×n, ‖A‖ denotes the spectral
norm i.e. induced 2 norm. A > 0 (A < 0) means that A is
positive definite (negative definite). We write A> and A−1

to respectively denote the transpose and the inverse of A.
The matrix A is said to be Hurwitz if all its eigenvalues
have negative real parts. A is said to be Schur if all its
eigenvalues have modulus smaller than one. We also use
x(t+k ) = lim

δ→0, δ>0
x(tk + δ).

II. PROBLEM FORMULATION

A. Graph representation of switched impulsive systems

Let us consider a switched system of the form:(
ẋ(t)
εż(t)

)
= Aσk

(
x(t)
z(t)

)
, ∀t ∈ (tk, tk+1], k ∈ N (1)

with impulsive dynamics:(
x(t+k )
z(t+k )

)
= Jνk

(
x(tk)
z(tk)

)
, ∀k ≥ 1 (2)

where x(t) ∈ Rnx , z(t) ∈ Rnz , 0 = t0 < t1 < . . . are
the instants of discrete events (switches, impulses or both),
σk ∈ I and νk ∈ J with I and J finite sets of indices, Ai

and Jj are matrices of appropriate dimensions for all i ∈ I,
j ∈ J , and ε > 0 is a small parameter characterizing the
time scale separation between the slow dynamics of x and
the fast dynamics of z.

In the following we call transition the discrete event that
takes place at any time tk. Therefore a switch from the mode
i ∈ I to mode i′ ∈ I accompanied by a jump j ∈ J is called
transition. In order to represent all the possible sequences
of transitions we can construct a graph with |I| vertices
representing the dynamical modes of the system. For any
i, j ∈ I we consider |J | directed links (i, j) corresponding
to the event defined by a switch from mode i to mode j
accompanied by an impulse represented by one of the jump
matrices Jν , ν ∈ J . We assume that J1 = I meaning that
one of the previously introduced arcs defines a non-impulsive
switch from mode i to mode j. Moreover, ∀i ∈ I the graph
contains |J | − 1 self-loop (i, i) each of them corresponding
to an event defined by an impulse represented by one of the
jump matrices Jν , ν ∈ J \ {1}.

Example 1: To illustrate the graph introduced before let us
consider I = {1, 2, 3} and J = {1, 2}. When a switch
without state’s jump occurs we use the jump matrix J1 = I.
The arcs associated with this events are represented in blue in
Figure 1. When a switch is accompanied by state’s jumps we
are using the jump matrix J2 6= I and the corresponding arcs

are represented in red in Figure 1. The arcs having the same
source and sink are associated with state’s jumps without
change of dynamics (switch).
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Fig. 1. Illustration of all the transitions associated with a switched
impulsive system having 3 modes and 2 jump matrices. Blue arcs are
associated with the jump matrix J1 = I and red arcs are associated with
the jump matrix J2 6= I.

In [12] we have characterized the dwell time guaranteeing
that zero is globally asymptotically stable equilibrium of (1)-
(2) for any event sequence satisfying it.

This paper addresses the reverse problem which consists of
finding the subgraph of all transitions guaranteeing that zero
is globally asymptotically stable equilibrium of (1)-(2) when
the event-rule only satisfies a O(ε)-dwell-time constraint

tk+1 − tk ≥ O(ε), ∀k ∈ N.

This subgraph is referred in the sequel as the O(ε)-
subgraph. For the system in Example 1 a possible repre-
sentation of this subgraph may be the one in Fig. 2.
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Fig. 2. Illustration of a possible O(ε)-subgraph associated with a switched
impulsive system having 3 modes and 2 jump matrices. Blue arcs are
associated with the jump matrix J1 = I and red arcs are associated with
the jump matrix J2 6= I.

Definition 1: A directed path of length p in a given digraph
(i.e. directed graph) G = (V, E) is a union of directed edges⋃p
k=1(ik, jk) such that ik+1 = jk, ∀k ∈ {1, . . . , p− 1}. The

node j is connected with node i in a digraph G = (V, E)
if there exists at least a directed path in G from i to j (i.e.
i1 = i and jp = j). A strongly connected digraph is such
that any two distinct elements are connected. A strongly
connected component of a digraph is a maximal subset of
V such that any of its two distinct nodes are connected. For
a given graph G = (V, E), the subgraph induced by a subset
of nodes U ⊆ V is the graph

(
U , E ∩

(
U × U

))
.



Remark 1: In Fig. 2 we have drawn a strongly connected
induced spanning subgraph (i.e. a subgraph containing all
the vertices of the original graph) but in general the O(ε)-
subgraph is a induced spanning subgraph which is not
necessarily strongly connected. This means that, when we
require stability with an O(ε) time between consecutive
events and the system starts in a given mode i ∈ I, some
dynamical modes j 6= i, j ∈ I of the system are forbidden.

III. PRELIMINARIES

A. Change of variable

For i ∈ I, j ∈ J , let

Ai =

(
Ai11 Ai12

Ai21 Ai22

)
, Jj =

(
Jj11 Jj12

Jj21 Jj22

)
,

where Ai11, J
j
11 ∈ Rnx×nx , and Ai22, Ai12, Ai21, Jj22, Jj12, Jj21

are of appropriate dimensions.

Let us impose the following standard assumption [13] in the
singular perturbation theory framework:

Assumption 1: Ai22 is non-singular for all i ∈ I.

Then, we perform the following time dependent change of
variable:(

x(t)
y(t)

)
= Pσk

(
x(t)
z(t)

)
, ∀t ∈ [tk, tk+1), k ∈ N (3)

where, for all i ∈ I

Pi =

(
Inx 0nx,nz

(Ai22)−1Ai21 Inz

)
.

Using (3), the continuous dynamics (1) in the variables x, y
becomes:(

ẋ(t)
εẏ(t)

)
=

(
Aσk0 Bσk1

εBσk2 Aσk22 + εBσk3

)(
x(t)
y(t)

)
,

∀t ∈ [tk, tk+1), k ∈ N
(4)

where for all i ∈ I one has
Ai0 = Ai11 −Ai12(Ai22)−1Ai21, B

i
1 = Ai12,

Bi2 = (Ai22)−1Ai21A
i
0, B

i
3 = (Ai22)−1Ai21A

i
12.

Similarly, the jump map (2) is rewritten in the x, y variables
as: (

x(tk)
y(tk)

)
= Rσk−1

νk→σk
(
x(t−k )
y(t−k )

)
, ∀k ≥ 1 (5)

where for all i, i′ ∈ I, j ∈ J ,

Ri
j→i′ = Pi′J

jP−1
i =

(
Ri

j→i′
11 Ri

j→i′
12

Ri
j→i′

21 Ri
j→i′

22

)
with

Ri
j→i′

11 = Jj11 − J
j
12(Ai22)−1Ai21, R

i
j→i′

12 = Jj12,

Ri
j→i′

21 = (Ai
′

22)−1Ai
′

21(Jj11 − J
j
12(Ai22)−1Ai21)

+ Jj21 − J
j
22(Ai22)−1Ai21,

Ri
j→i′

22 = (Ai
′

22)−1Ai
′

21J
j
12 + Jj22.

Assumption 2: Ai0 and Ai22 are Hurwitz for all i ∈ I.

This assumption implies that there exist symmetric positive
definite matrices Qis ≥ Inx , Qif ≥ Inz , i ∈ I, and positive
numbers λs and λf such that for all i ∈ I:

Ai
>

0 Qis +QisA
i
0 ≤ −2λsQ

i
s

Ai
>

22Q
i
f +QifA

i
22 ≤ −2λfQ

i
f

IV. THE SUBGRAPH OF O(ε) DWELL-TIME RULES

A. Main results

For each i ∈ I, let bi1 =
∥∥(Qis)

1
2B1(Qif )−

1
2

∥∥, bi2 =∥∥(Qif )
1
2B2(Qis)

− 1
2

∥∥ and bi3 =
∥∥(Qif )

1
2QfB3(Qif )−

1
2

∥∥. Let
εi1 be defined as

εi1 =
λf

(bi1+bi2)2

4λs
+ bi3

(6)

then it follows from [12, Proposition 1] that the i-th linear
dynamics of (4) is Lyapunov stable, for ε ∈ (0, εi1]. Let ε2 ∈
(0,min(εi1,

λf
λs

)) and introduce βi1 =

√
(bi2)2+(bi3)2

λf
, βi2 =

bi1
λf−ε2λs and βi3 =

bi1β
i
1

λs
. The stability analysis of system

(4)-(5) is carried out using the following functions{
Ws(t) =

√
x(t)>Qσks x(t)

Wf (t) =
√
y(t)>Qσkf y(t)

, ∀t ∈ [tk, tk+1), k ∈ N.

The next result characterizes the variation of Ws and Wf

during the continuous dynamics between two events:

Lemma 1: Under Assumption 2, let ε ∈ (0, ε2), and let τk =
tk+1 − tk for a sequence (tk)k≥0 of event times. Then for
all k ∈ N,

Ws(t
−
k+1) ≤Ws(tk)(e−λsτk + εβσk3 ) +Wf (tk)ε(βσk2 + βσk3 )

Wf (t−k+1) ≤Ws(tk)εβσk1 +Wf (tk)
(
e−

λf
ε τk + εβσk1

)
.

Proof: This is a refined version of Lemma 4 in [12].

In the following we characterize the behavior of Ws and Wf

when the event i
j→ i′ (i.e. switch from mode i to mode i′

joined by a state jump defined by the matrix Jj) occurs.

For all i, i′ ∈ I and j ∈ J we introduce the following
supplementary notation:

γi
j→i′

11 =
∥∥(Qi

′

s )
1
2Ri

j→i′
11 (Qis)

− 1
2

∥∥,
γi

j→i′
12 =

∥∥(Qi
′

s )
1
2Ri

j→i′
12 (Qif )−

1
2

∥∥,
γi

j→i′
21 =

∥∥(Qi
′

f )
1
2Ri

j→i′
21 (Qis)

− 1
2

∥∥,
γi

j→i′
22 =

∥∥(Qi
′

f )
1
2Ri

j→i′
22 (Qif )−

1
2

∥∥.
(7)

Then, we have the following result:



Lemma 2: Let a sequence (tk)k≥0 of event times, then for
all k ≥ 1,

Ws(tk) ≤ γσk−1

νk→σk
11 Ws(t

−
k ) + γ

σk−1

νk→σk
12 Wf (t−k )

Wf (tk) ≤ γσk−1

νk→σk
21 Ws(t

−
k ) + γ

σk−1

νk→σk
22 Wf (t−k ).

Proof: A similar result can be found in [12].

In order to keep the notation simple, we introduce the
positive matrix parameterized by τ > 0 and i ∈ I:

M i
τ =

(
e−λsτ + εβi3 ε(βi2 + βi3)

εβi1 e−
λf
ε τ + εβi1

)
.

Let us also consider the positive matrix parameterized by
i, i′ ∈ I and j ∈ J :

Γi
j→i′ =

(
γi

j→i′
11 γi

j→i′
12

γi
j→i′

21 γi
j→i′

22

)
.

Lemma 3: Under Assumption 2, let ε ∈ (0, ε2), and let τk =
tk+1 − tk for a sequence (tk)k≥0 of event times. Then for
all k ∈ N,(

Ws(tk)
Wf (tk)

)
≤ Γσk−1

νk→σkM
σk−1
τk

(
Ws(tk−1)
Wf (tk−1)

)
.

Proof: Straightforward from Lemma 1 and 2.

Remark 2: It is noteworthy that the matrix Γi
j→i′M i

τ char-
acterize the behavior of the system (1)-(2) when the event
i

j→ i′ occurs after an evolution of τ seconds in mode i.
Consequently we want to find all the events i

j→ i′ ensuring
that Γi

j→i′M i
τ is Schur for τ = O(ε).

For our main results let us introduce the following set of
events:

Ē =
{
i
j→ i′ | (γi

j→i′
11 < 1)∨

(
(γi

j→i′
11 = 1)∧ (γi

j→i′
12 = 0)

)}
Proposition 1: Let Assumption 2 holds. There exists ε3 > 0
such that for all ε ∈ (0, ε3) we can choose τ = η(ε) = O(ε)

such that Γi
j→i′M i

τ is Schur ∀ i j→ i′ ∈ Ē .

Proof: Let us remark that

Γi
j→i′M i

τ =

(
γi

j→i′
11 e−λsτ + εδi

j→i′
1 γi

j→i′
12 e−

λf
ε τ + εδi

j→i′
2

γi
j→i′

21 e−λsτ + εδi
j→i′

3 γi
j→i′

22 e−
λf
ε τ + εδi

j→i′
4

)
where

δi
j→i′

1 = γi
j→i′

11 βi3 + γi
j→i′

12 βi1,

δi
j→i′

2 = γi
j→i′

11 (βi2 + βi3) + γi
j→i′

12 βi1,

δi
j→i′

3 = γi
j→i′

21 βi3 + γi
j→i′

22 βi1,

δi
j→i′

4 = γi
j→i′

21 (βi2 + βi3) + γi
j→i′

22 βi1.

(8)

The positive matrix Γi
j→i′M i

τ is Schur if and only if there
exists p ∈ R2

+, such that component-wise
(
Γi

j→i′M i
τ

)>
p < p

(see e.g. [14]). Let us look for p under the form (1, a)> with
a > 0. Then,

(
Γi

j→i′M i
τ

)>
p < p is equivalent to{

γi
j→i′

11 e−λsτ + εδi
j→i′

1 + aγi
j→i′

21 e−λsτ + aεδi
j→i′

3 < 1

γi
j→i′

12 e−
λf
ε τ + εδi

j→i′
2 + aγi

j→i′
22 e−

λf
ε τ + aεδi

j→i′
4 < a

which is also equivalent to
τ > 1

λs
ln
(

γi
j
→i′

11 +aγi
j
→i′

21

1−εδi
j
→i′

1 −aεδi
j
→i′

3

)
τ > ε

λf
ln
(

γi
j
→i′

12 +aγi
j
→i′

22

a−εδi
j
→i′

2 −aεδi
j
→i′

4

) . (9)

We emphasize that the right hand side of the inequalities in
(9) makes sense only for the values of ε ensuring that

1− εδi
j→i′

1 − aεδi
j→i′

3 > 0 and a− εδi
j→i′

2 − aεδi
j→i′

4 > 0.

This inequalities hold for all i, i′ ∈ I, j ∈ J if

1− εδ1 − aεδ3 > 0 and a− εδ2 − aεδ4 > 0 (10)

where

δ1 = max
i,i′∈I,j∈J

δi
j→i′

1 , δ2 = max
i,i′∈I,j∈J

δi
j→i′

2 ,

δ3 = max
i,i′∈I,j∈J

δi
j→i′

3 , δ4 = max
i,i′∈I,j∈J

δi
j→i′

4 .

We point out that (10) is used to define the value of ε3 and
for all ε ∈ (0, ε3) the matrix Γi

j→i′M i
τ is Schur for τ = η(ε)

where

η(ε) = max
i
j→i′∈Ē

{ 1

λs
ln
( γi

j→i′
11 + aγi

j→i′
21

1− εδi
j→i′

1 − aεδi
j→i′

3

)
,

ε

λf
ln
( γi

j→i′
12 + aγi

j→i′
22

a− εδi
j→i′

2 − aεδi
j→i′

4

)}. (11)

It remains to show that η(ε) = O(ε).
It is noteworthy that γi

j→i′
11 < 1 implies that there

exists a > 0 such that γi
j→i′

11 + aγi
j→i′

21 < 1 as

well. In this case 1
λs

ln
(

γi
j
→i′

11 +aγi
j
→i′

21

1−aεδi
j
→i′

3 −εδi
j
→i′

1

)
= O(ε) and

ε
λf

ln
(

γi
j
→i′

12 +aγi
j
→i′

22

a−εδi
j
→i′

2 −aεδi
j
→i′

4

)
= O(ε) yielding η(ε) = O(ε).

If γi
j→i′

11 = 1 we have to choose a = aε = O(ε) with

a > 0 in order to have 1
λs

ln
(

γi
j
→i′

11 +aγi
j
→i′

21

1−εδi
j
→i′

1 −aεδi
j
→i′

3

)
= O(ε).

If a = aε = O(ε) with a > 0, it can be easily checked

that if γi
j→i′

12 6= 0 one obtains ε
λf

ln
(

γi
j
→i′

12 +aγi
j
→i′

22

a−εδi
j
→i′

2 −aεδi
j
→i′

4

)
=

O(ε ln(ε)).
When γi

j→i′
12 = 0 and a = aε = O(ε) with a > 0 yields

ε
λf

ln
(

γi
j
→i′

12 +aγi
j
→i′

22

a−εδi
j
→i′

2 −aεδi
j
→i′

4

)
= O(ε) since one has that

ln
( γi

j→i′
12 + aγi

j→i′
22

a− εδi
j→i′

2 − aεδi
j→i′

4

)
= ln

( aγi
j→i′

22

a− δi
j→i′

2 − aεδi
j→i′

4

)
.



Theorem 1: Let Assumption 2 holds. It exists ε3 > 0 such
that, for all ε ∈ (0, ε3) the graph (I, Ē) is an O(ε)- subgraph
for the system (1)-(2).

Remark 3: It is noteworthy that under Assumption 2, 0 is
a stable equilibrium point of the switched impulsive system
(1)-(2) if a dwell-time tk+1−tk = O(1) is imposed. Theorem
1 says that when we can only impose tk+1 − tk = O(ε) the
stability is guaranteed if the events/transitions are defined by
the O(ε)-subgraph (I, Ē).

It is worth pointing out that for all i the transition i
1→

i belongs the O(ε)-subgraph. However, we disregard them
because neither a switch nor a jump occurs at this transition
time.

V. PARTICULAR CASES

In this section we look how the main results of the previous
section change in the particular situations of switched singu-
larly perturbed systems or hybrid/switched systems evolving
on one time-scale.

A. Switched singularly perturbed systems

Let us consider here the class of switched singularly per-
turbed systems described by(

ẋ(t)
εż(t)

)
= Aσk

(
x(t)
z(t)

)
, ∀t ∈ [tk, tk+1), k ∈ N

(12)
where x(t) ∈ Rnx , z(t) ∈ Rnz , 0 = t0 < t1 < . . . are the
switching instants and σk ∈ I. In this case J = {1} and
J1 = I. Consequently, the matrix Ri→i

′
in (5) is defined

as
(

Inx 0nx,nz
Ri→i

′

21 Inz

)
yielding γi→i

′

11 =
∥∥(Qi

′

s )
1
2 (Qis)

− 1
2

∥∥
and γi→i

′

12 = 0,∀i, i′ ∈ I.

Corollary 1: Under Assumption 2, the strongly connected
components of the O(ε)-subgraph (I, Ē) associated with
system (12) are given by the nodes characterized by reduced
(slow) systems sharing common Lyapunov functions.

B. Switched systems

When the processes involved in (12). evolves on a single
time scale the dynamics is described by

ẋ(t) = Aσkx(t), ∀t ∈ [tk, tk+1), k ∈ N (13)

where 0 = t0 < t1 < . . . are the switching instants and
σk ∈ I. In this case, instead of O(ε)-subgraph we may be
interested in O(0)-subgraph (i.e. the subgraph defining the
switching rules that do not require any dwell-time). In this
case the matrix Ri→i

′
= I and Corollary 1 rewrites as:

Corollary 2: The strongly connected components of the
O(0)-subgraph (I, E0) associated with system (13) are given
by the nodes characterized by systems sharing common
Lyapunov functions.

C. Hybrid systems

Let us consider now the following hybrid dynamics:{
ẋ(t) = Aσkx(t)

x(tk) = Jνkx(t−k )
, ∀t ∈ [tk, tk+1), k ∈ N (14)

where 0 = t0 < t1 < . . . are the times of discrete events
(switches and/or impulses), σk ∈ I and νk ∈ J with I and
J finite sets of indices. In this case one has Ri

j→i′ = Jj and
Proposition 1 writes as follows:

Corollary 3: The O(0)-subgraph associated with (14) con-
tains all the links i

j→ i′ satisfying ‖(Qi′) 1
2 Jj(Qi)−

1
2

∥∥ ≤ 1
with Qi the matrix defining the Lyapunov function associated
with the mode i ∈ I.

VI. ILLUSTRATIVE EXAMPLE

Let us consider I = {1, 2, 3, 4}, J = {1, 2}. For all k ∈ N
we define the following dynamics:(

ẋ(t)
εż(t)

)
= Ai

(
x(t)
z(t)

)
,∀t ∈ [tk, tk+1), i ∈ I(

x(tk)
z(tk)

)
= Jj

(
x(t−k )
z(t−k )

)
, ∀k ≥ 1, j ∈ J

(15)

where

A1 =

(
−2 0.5
−0.5 −1

)
, A2 =

(
−1 0.5
−3 −1

)
,

A3 =

(
1 −2
1 −0.5

)
, A4 =

(
−2.5 −1

2 −2

)
,

J1 = I2, J2 =

(
0.4 0.5
0.4 0.3

)
The following table summarizes the system’s data:

Mode 1 Mode 2 Mode 3 Mode 4
A0 −2.25 −2.5 −3 −3.5
A22 −1 −1 −0.5 −2
B1 0.5 0.5 −2 −1
B2 −1.125 −7.5 6 3.5
B3 0.25 1.5 4 1
Qs 1 1 1 1.2
Qf 1 1.1 1 1.05
b1 0.5 0.47 2 1.06
b2 1.125 7.86 6 3.27
b3 0.25 1.65 4 1.05
β1 1.152 8.03 7.21 3.43
β2 0.52 0.5031 2.1 1.12
β3 0.5762 3.83 14.4 3.67
ε1 1.098 0.052 0.05 0.17

We fix λs = λf = 1 , ε2 = 0.05, ε = 10−3 and we search
the associated (I, Ē) graph. Applying Theorem 1 one obtains
that

Ē = {1 2→ 1, 1
1→ 2, 1

2→ 2, 1
1→ 3, 1

2→ 3, 1
2→ 4,

2
1→ 1, 2

1→ 3, 3
1→ 1, 3

1→ 2,

4
1→ 1, 4

2→ 1, 4
1→ 2, 4

2→ 2, 4
1→ 3, 4

2→ 3, 4
2→ 4}.



A graphical representation of this O(ε)-subgraph is given in
Fig. 3 below.

1

2

3

4

Fig. 3. Illustration of all the transitions associated with the switched
impulsive system (15) having 4 modes and 2 jump matrices. Blue arcs
are associated with the jump matrix J1 and red arcs are associated with the
jump matrix J2.

Fig. 4 illustrates the behavior of system (15) with a dwell-
time τ = 0.0145 and events belonging to Ē . Basically one
observes that 0 is asymptotically stable equilibrium point.
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Fig. 4. The event sequence is obtained by repeating the following finite
string of transitions: 2

1→ 1
2→ 3

1→ 2
1→ 1

2→ 4
2→ 2

It is important to note that when the event-sequence contains
also elements outside Ē the stability can be lost (see Fig. 5
for an illustration).
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Fig. 5. The event sequence is obtained by repeating the following finite
string of transitions: 3

2→ 2
1→ 1

1→ 3
1→ 2

1→ 3. Note that only the first
transition (3 2→ 2) does not belong to Ē in the finite string that is repeated.

VII. CONCLUSION

In this paper we proposed a methodology to build a graph
defining all the rules that ensure that the origin is a stable
equilibrium in presence of a dwell-time of order of the pa-
rameter defining the ratio between the two time-scales of the
singularly perturbed switched impulsive linear system under
consideration. We also treated the corresponding problem
for interesting particular cases such as: singularly perturbed
switched linear systems without impulses, one scale hybrid
systems or one scale switched systems. A numerical example
illustrates the theoretical results completing the paper.
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