
HAL Id: hal-01538600
https://inria.hal.science/hal-01538600

Submitted on 14 Jun 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - ShareAlike 4.0 International
License

Comparison of initial partitioning methods for multilevel
direct k-way graph partitioning with fixed vertices

Maria Predari, Aurélien Esnard, Jean Roman

To cite this version:
Maria Predari, Aurélien Esnard, Jean Roman. Comparison of initial partitioning methods
for multilevel direct k-way graph partitioning with fixed vertices. Parallel Computing, 2017,
�10.1016/j.parco.2017.05.002�. �hal-01538600�

https://inria.hal.science/hal-01538600
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
https://hal.archives-ouvertes.fr

Comparison of Initial Partitioning Methods for
Multilevel Direct k-way Graph Partitioning with Fixed

Vertices I

Maria Predaria,∗, Aurélien Esnarda, Jean Romanb

aUniv. of Bordeaux, Inria, CNRS (LaBRI UMR 5800) F33400 Talence, France
bInria, Bordeaux INP, CNRS (LaBRI UMR 5800), F33400 Talence, France

Abstract

In scientific computing, load balancing is a crucial step conditioning the per-

formance of large-scale applications. In this case, an efficient decomposition of

the workload to a number of processors is highly necessary. A common approach

to solve this problem is to use graph representation and perform a graph par-

titioning in k-parts using the multilevel framework and the recursive bisection

(RB) paradigm. However, in graph instances where fixed vertices are used to

model additional constraints, RB often produces partitions of poor quality.

In this paper, we investigate the difficulties of RB to handle fixed vertices

and we compare its results with two different alternatives. The first one, cal-

led kgggp is a direct k-way greedy graph growing partitioning that properly

handles fixed vertices while the second one, introduced in kPaToH, uses RB

and a post-processing technique to correct the obtained partition. Finally, ex-

perimental results on graphs that represent real-life numerical simulations show

that both alternative methods provide improved partitions compared to RB.

Keywords: high-performance computing ; graph partitioning ; fixed vertex ;

multilevel framework ; parallel simulations.

I. This is an extended version of a previous work presented in PDP’16 [1]
∗. Corresponding author
Email addresses: maria.predari@inria.fr (Maria Predari), aurelien.esnard@labri.fr

(Aurélien Esnard), jean.roman@inria.fr (Jean Roman)

Preprint submitted to Journal of LATEX Templates 3 février 2017

1. Introduction

The increasing complexity of modern applications often dictates a decompo-

sition of the computational load in order to ensure high performance. In other

words, when parallel simulations are executed on large-scale systems, a distribu-

tion of their workload to a number of available processors is essential. Finding5

such a decomposition corresponds to the load balancing of a parallel application

and results in a substantial minimization of the overall execution time.

In literature, many combinatorial problems such as the one described above

can be solved in terms of graph modeling [2, 3, 4]. More precisely a vertex

of a graph represents a basic computation while an edge represents a depen-10

dency between two computations. Besides, each vertex has a weight proportio-

nal to the computation’s cost, while each edge has a weight representing the

communication costs between computations. Therefore, to balance the load of

an application among k processors, one may perform a graph partitioning in

k parts of roughly equal size such that a minimal number of edges connects15

vertices in different parts. Nowadays, the most common approach to solve the

graph partitioning problem is based on the multilevel approach to compress the

problem and on the recursive-bisection heuristic to solve it on a smaller ins-

tance. Consequently, graph partitioning appears as a fundamental technique for

parallel computing.20

However, in many applications the classic graph partitioning often fails to

capture the true essence of the problem. In such settings, the model can be

improved by including the “desire” of each vertex to be present in a certain

part at the final solution. This idea has already been expressed in the form

of two problems. The first one is the skew graph partitioning that introduces25

a penalty function in the classic objective formula to represent the notion of

2

desire [5]. During partitioning the desire function should be satisfied as an ad-

ditional constraint to the classic ones.

In this paper, we focus on the second formulation which is a variant of the

classic graph partitioning problem, the graph partitioning problem with initially30

fixed vertices. This modified instance of graph partitioning typically appears

when the underlying application imposes strict constraints on the assignment of

computations to specific processors. For instance, an application may have an

a priori knowledge on data locality for certain computations. This information

can be modeled with the presence of fixed vertices in the initial graph, and35

may guide the partitioning procedure into reaching solutions of better quality.

In particular, a fixed vertex is a vertex whose part assignment is pre-defined as

part of the input description and shall not move throughout the partitioning.

On the other hand, vertices that have no particular reason to be in a certain

part are referred to as free and may move to any part during partitioning.40

In scientific computing, a well-known example where the fixed vertex para-

digm occurs is the load balancing of adaptive scientific computations [5]. In such

applications, the discretisation of the computational domain changes irregularly

at run-time, leading to imbalanced load even for initially well-balanced simula-

tions. The above feature gives rise to the repartitioning problem that addresses45

the difficulties of maintaining a dynamically changing workload. The additional

requirement of repartitioning is to minimize the migration volume of moving

data among processors from a former partition to a new one. In this case, the

graph is enriched with one fixed vertex per part, along with migration edges

connecting each fixed vertex to all free vertices of its respective part. Thus, a50

good approach to solve the repartitioning problem is to use fixed vertices to

model the additional constraint and perform a biased partitioning of the enri-

ched graph, which minimizes migration costs, along with regular communication

3

costs [6, 7].

Following, we consider the problem of load balancing for multi-physics, multi-55

scales or multi-phase simulations that emerge in various areas such as computa-

tional physics, or hydrology and material science. Multi-physics simulations use

coupled models in order to solve complex phenomena. Such an example is a hy-

brid particle/mesh transient dynamics simulation used to model car crashes and

underwater explosions [8]. In such settings, acquiring a load decomposition that60

simultaneously balance both mesh and particle portions of the computation is

challenging. Additionally, multi-phase simulations contain different computatio-

nal phases separated with global synchronization points. In general, the amount

of computations performed by each element of the mesh is different for different

phases, leading to complex load balancing.65

Note that the traditional graph partitioning model is not effective in such

computations, and other strategies have been developed to address this pro-

blem. One approach is to distribute the overall computations of a multi-physics

simulation by performing two different partitionings (a two-step partitioning)

and then combine them together during a communication step [8, 9]. Obviously70

this approach has a major disadvantage, that is, data must be redistributed

between the two partitions at every time-step of the simulation.

A solution to this problem is to introduce fixed vertices in order to use the

results of the first phase/partitioning as an influence for the result of the second

phase/partitioning. Therefore, fixed vertices may guide the partitioning to bet-75

ter solutions while the data re-distribution among different phases/partitionings

may be avoided. Similar solutions have been proposed in [10, 11] in the context

of multi-phase and coupled simulations respectively.

Note that another common approach for the load balancing of such simula-

tions is based on the multi-constraint graph partitioning where multiple weights80

4

associated with the computational domain are simultaneously balanced [12, 13].

However we believe that this approach has an important limitation. More preci-

sely, respecting multiple constraints is not straightforward especially when the

number of parts increases and often results in highly imbalanced solutions [?].

Under this context, the graph partitioning with fixed vertices may be an impor-85

tant venue for the load balancing of large-scale multi-physics simulations.

Finally, graph partitioning with initial fixed vertices may be also used for

non-numerical applications, such as the top-down placement technique [14] used

in the integrated circuit design. In this case related studies [14, 15] suggest that

the presence of fixed vertices represents more accurately additional positioning90

information, such as the locations of external pin connections, or the probable

locations of certain cells in the final placement. As a result fixed vertices can

direct the development of parts towards a better solution.

1.1. Issues of Recursive Bisection in Partitioning with Fixed Vertices

The motivation behind our study comes from the observation that RB based95

algorithms produce partitions of lower quality when the fixed vertex paradigm

is involved, a remark initially shared in [16]. Here, we illustrate a simple but

compelling example that exhibits the partitioning issues of RB while in Section 3

we attempt to further explain this behavior.

For this example, we use a grid graph with an initial part numbering of fixed100

vertices such that vertices near the corners are assigned to four different parts

following the scheme in Figure 1a. We consider the rest of the vertices as free

(part −1) and we partition the graph in four parts. For the partitioning we use

two different methods implemented within the same multilevel framework and

tuned with the same parameters. To make the comparison of the partitioning105

phase easier, the refinement algorithms have been disabled for both methods.

In Figure 1b, we present the result obtained by the RB method (implemented

5

by Scotch), while in 1c, we present the one obtained by kgggp.

One may clearly see that under this fixed vertex scheme the partitioning

quality of RB is considerably worse than that of kgggp. We believe that the110

poor quality of RB is due to the way fixed vertices are pre-assigned to parts.

More precisely, there is a conflict of the additional constraints imposed by fixed

vertices and the inherent constraints of RB. Note that this example is a parti-

cular case of “bad” fixed vertex scheme but it clearly indicates the limitations

of RB. Indeed, RB is not robust when fixed vertices are included in the graph115

and may lead to highly degraded solutions. On the other hand, a method that

is based on k-way direct graph growing techniques (for example the kgggp

method) could be more suitable for such problems.

(a) Initial fixed vertices. (b) RB. (c) kgggp.

Figure 1: Given initial fixed vertices, comparison of two different partitioning methods (RB
and kgggp). Results of a 4-way partition of a 1000 × 1000 grid graph : the RB method fails
to extend an initial partition while the kgggp method succeeds.

The above example is just an illustration of the problematic behavior of

RB methods with initial fixed vertices. Further experiments that confirm our120

observations follow in Section 6.

1.2. Contributions

The main contribution of this paper is a extensive study of the graph par-

titioning problem with initially fixed vertices and a systematic comparison of

different partitioning algorithms that find such solutions. This problem has not125

6

been thoroughly studied, even though it can be found in many scientific areas,

as shown earlier in Section 1. Under this context, we compare the kgggp me-

thod, presented by the authors in [1], with the state-of-the-art RB method and

the rbbgm algorithm previously introduced in kPaToH [16]. The comparison

focuses on the edgecut quality and runtime efficiency when initially fixed ver-130

tices occur in the partitioning. Note that, as kPaToH is not publicly available,

we provide a new implementation of the rbbgm method for graph structures.

This allows a fair comparison of all methods since the overhead introduced by

feeding edges to a hypergraph tool (kPaToH) is avoided. Additionally, using

our own implementation for both approaches removes the dissimilarities that135

arise because of different coding practices. Finally, we enrich the experimental

section of our preliminary work in [1] with a larger, highly diverse collection

of graphs that show that both alternative methods provide improved partitions

compared to RB.

The rest of the paper is organized as follows. In Section 2, we start by giving140

some background definitions and we present the state-of-the-art partitioning

techniques as well as existing work for partitioning with fixed vertices. Then, in

Section 3, we explain how RB works with fixed vertices and why it sometimes

fails to properly solve such problems. In Section 4, we review in details the

rbbgm method and in Section 5 we present the kgggp algorithm. We confirm145

our observations in Section 6 presenting experiments performed on graphs that

represent real numerical applications. Finally, we conclude our results in Sec-

tion 7.

2. Background Definitions & Related Work

In this section, we first present useful definitions and formal statements150

concerning the partitioning problem in general and then we review existing

7

studies about the graph partitioning problem with fixed vertices.

2.1. Graph Definitions

Consider a graph G = (V,E) where V is the set of vertices and E is the set

of edges. Each vertex u ∈ V has a weight w(u) representing its computational155

load, while each edge e ∈ E has a weight n(e) representing communication costs

between different computations. A partition of a graph G is an ensemble of k

vertex subsets, P = (V1, V2, . . . , Vk), where : i) each part Vi, 1 ≤ i ≤ k is a non

empty subset of V , ii) parts are pairwise disjoint (Vi∩Vj = ∅ for all 1 ≤ i, j ≤ k)

and iii) the union of all k parts is equal to V . Given a vertex v mapped to part160

Vi, we note P [v] = i as its part number. The initial part numbering of free

vertices is -1 while that of fixed vertices corresponds to their predefined part

assignment.

Hence, the graph partitioning problem with edge separator can be defined as

the optimization problem of dividing a graph into k parts, P = (V1, V2, . . . , Vk),165

such that P minimizes the total edgecut : min
∑

e∈F (n(e)), where F = {(a, b) ∈

E, a ∈ Vi ∧ b ∈ Vj ∧ i 6= j} subject to the balance constraint Wi ≤ Wavg(1 +

ε) for i = 1, . . . , k. In the above formula, Wi is the sum of the weights of all

vertices in part Vi and Wavg =
∑

u∈V n(u)/k represents the weight of each

part in G under the perfect load balance. Moreover ε denotes the maximum170

imbalance tolerance as a percentage of the ideal weight where typical values

are between 2%, 5%, or 10%. The total edgecut is a classic metric, known to

approximate the total communication volume of a parallel application [17] and

is used here as a representative of the partitioning quality.

2.2. Multilevel Framework175

Despite the computational complexity of the graph partitioning problem

(NP-complete [18]), many heuristic algorithms have been proposed in the past

8

that find reasonably good partitions. Such examples are combinatorial methods

that explore local or global solutions working on the graph structure or spectral

methods [19] that use algebraic properties to perform the partitioning.180

However, nowadays the most common approaches to solve the graph parti-

tioning problem are based on a multilevel framework, where the initial graph

is approximated by a sequence of smaller graphs [20]. The main idea of the

multilevel framework is to reduce the size of the graph, find a partition for the

coarsest graph and project it back to the original one. The most prominent ad-185

vantage of the multilevel framework is that the size of the graph can be reduced

without losing its topological properties and thus the partitioning problem can

be solved much faster. The algorithm is divided in three phases : the coarse-

ning, the initial partitioning and the uncoarsening phase. Here, we give a brief

description of the multilevel framework, also called V-cycle.190

During the coarsening phase, a sequence of smaller graphs G1, G2, . . . , Gt is

constructed at each level, starting from the original graph G0 = (V0, E0).The

goal is to contract edges, merging the adjacent vertices into new super-vertices

and update the weights in the coarser graph. The time complexity of a coarse-

ning step is O(|E|) for the mainly used heavy edge matching heuristic [21].195

During the initial partitioning phase, the coarsest graph is partitioned in the

desired number of parts. The algorithm that is used here can be any partitioning

algorithm, including bisection methods, spectral methods, greedy methods or

geometric ones. The time complexity of this phase is often considered negligible

compared to the other phases, since the size of the coarsest graph is smaller200

(O(k)). Nevertheless the result of the initial partitioning phase can be crucial

for the final quality of the projected solution back to G0.

Finally, during the uncoarsening phase each vertex of the finer graph is as-

signed to the same part as its counterpart vertex in the coarser graph. However

9

(a) MLRB (W cycle) (b) MLKW (V-cycle)

Figure 2: Illustration of a 4-way partitioning with MLRB and MLKW algorithms : (1) coar-
sening, (2) initial partitioning and (3) uncoarsening phases of the multilevel frameworks.

since finer graphs in the sequence have a higher degree of freedom, allowing205

further edge cut minimization, we usually apply local refinement algorithms.

A class of local refinements that are widely used in partitioning tools is ba-

sed on the bipartitioning algorithm of Kernighan-Lin (KL) [22] and Fidducia-

Mattheyses (FM) [23], known to have a time complexity of O(|E|) for the best

implementations.210

One of the first methods that used the multilevel scheme is the MLRB al-

gorithm [20] which combines the above idea with the classic recursive bisection.

MLRB follows the W cycle paradigm seen in figure 2a where k − 1 calls to the

multilevel framework are performed. Starting from the original graph a call to

the multilevel framework is made that divides the graph into two subgraphs.215

Consecutively, for each resulting subgraph a new multilevel framework is perfor-

med and this procedure continues recursively. Note that is required (assuming

k is a power of 2) and the time complexity of MLRB is O(log(k)|E|).

More recently, another class of algorithms, called multilevel k-way (MLKW),

proposes the use of the multilevel paradigm in order to directly construct a k-220

way partitioning of a graph, following the V-cycle paradigm shown in figure 2b.

10

In a V-cycle, the multilevel framework is called just once. and the coarsest graph

is now directly partitioned into k parts. Note that refining a k-way partitioning

is considerably more complicated than refining a bisection, so the uncoarsening

phase of a MLKW algorithm may be more time consuming [21]. Indeed, the time225

complexity of MLKW is dominated by the complexity of the uncoarsening step

which is O(k|E|) in the general case. However clever algorithms that achieve a

complexity of O(|E|) exist, such as the one proposed in [21].

2.3. Tools for Partitioning with Fixed Vertices

In Table 1, we present some useful information about common graph and230

hypergraph partitioning tools, such as Scotch, Metis or PaToH. As one may

see, more than half of the given tools do not handle at all problems with ini-

tially fixed vertices despite the research interest on this problem. Note that this

is especially true for graph partitioning tools. Moreover, among the partitioning

tools that solve this problem, the majority uses the RB method combined with235

the multilevel framework (MLRB or MLKW with RB). As we mentioned in

Section 1, even though RB is very efficient for the classic graph partitioning

problem, it has limitations when fixed vertices incur in the partitioning. Ho-

wever, some tools propose alternative solutions for the above problem and we

review them here in detail. We also review RB.240

An algorithm that addresses graph problems which involve initially fixed

vertices is the one proposed in RM-Metis [6]. RM-Metis is used to solve

the k-way repartitioning problem and thus assumes an existing partition that

has become imbalanced. As mentioned before, in such re-balancing problems at

least one fixed vertex per part is included in the graph in order to model more245

efficiently the load re-distribution. The main idea of the algorithm is to apply

greedy growing techniques, selecting k − 1 growing parts and a shrinking one,

until the load of every part drops below the maximum allowed part size. As a

11

Table 1: Graph and hypergraph partitioning tools.
Tools Type Fixed Parallel Scheme Initial Part. Available
Metis [24] graph no no MLRB – source
kMetis [21] graph no no MLKW RB source
ParMetis [24] graph no yes MLKW RB source
Scotch [25] graph yes no MLKW RB source
PT-Scotch [25] graph no yes MLRB – source
RM-Metis [6] graph only k no MLKW greedy no
KaHIP [26] graph no yes MLKW RB source
Chaco [20] graph no no MLRB spectral source
kgggp [1] graph yes no MLKW greedy source
HMetis [24] hypergraph yes no MLRB – binary
KHMetis [24] hypergraph no no MLKW RB binary
PaToH [27] hypergraph yes no MLRB – binary
kPaToH [16] hypergraph yes no MLKW rbbgm no∗

Zoltan (PHG) [28] hypergraph yes yes MLRB – source
Mondriaan [29] hypergraph no no MLRB – source

result the problem resumes in selecting a good shrinking part. A limitation of

RM-Metis is that it is designed only for repartitioning and that it may results in250

a shrinking part of inferior quality (not smooth frontiers). Finally this algorithm

is implemented inside the multilevel framework of Metis, but unfortunately its

implementation is not publicly available. For the above reasons we choose not

to focus on RM-Metis in this study.

Following, we describe in detail the three methods that are part of our expe-255

rimental study. More precisely we first discuss the RB methodology particularly

for problems with fixed vertices (Section 3), then we review the rbbgm algo-

rithm that was first introduced in kPaToH (Section 4) and finally, we present

the kgggp method (Section 5).

3. Recursive Bisection for Fixed Vertices (RB)260

Classic RB based methods follow a simple divide & conquer strategy : the

original graph is first split in two parts (bisection) and this procedure is recur-

sively repeated independently on the two resulting subgraphs, until the desired

number of parts is obtained. Thus, it is possible to represent this procedure with

a bisection tree (Figure 3) which illustrates the implicit part numbering scheme265

used by RB.

12

Let us now assume that the number of desired parts at the end of the par-

titioning is k. Note that at each bisection step, RB selects half of the available

part numbers and assigns them to one of the two resulting subgraphs. If this

step were to be performed in an exhaustive way, RB would have to try k!270

combinations before choosing the best solution. In other words, there are com-

binatorially many part numbering selections for each bisection step. Therefore,

to avoid choosing among k! combinations, RB decides to blindly group together

parts with consecutive part indices, following an inherent rule. For instance in

the first bisection, RB will try to assign the first half of all the part indices,275

[1, k/2], to one subgraph and the second half, [k/2 + 1, k], to the other. At each

level of the bisection tree, the same methodology is applied.

Figure 3: Illustration of the RB method : bisection tree and its implicit part numbering (in
red) for a 8-way partition.

Moreover, RB can be extended in a straightforward way to include problems

with initially fixed vertices. Again, during the first bisection, fixed vertices that

are originally pre-assigned to part indices [1, k/2] are fixed to part 1 while fixed280

vertices that are assigned to parts [k/2 + 1, k] are considered as fixed to part 2.

This idea is applied recursively in every bisection.

Now let us reconsider the example presented in Section 1 (cf 1.1) where

a graph with a “bad” fixed vertex scheme is partitioned in four parts. If we

13

examine the result of RB, we clearly see that the algorithm cannot select a285

good bisection between parts [1, 2] and [3, 4] that simultaneously respects the

constraint of initial fixed vertices during the first bisection. As a result, the final

partitioning quality is considerably poor for the RB based method.

To better understand what goes wrong in this case, let us consider the Fi-

gure 4 that reproduces the same experiment on a smaller 10 × 10 grid graph.290

Here, we realize the same 4-way partitioning under the constraint of fixed ver-

tices depicted in Figure 4a. Following a similar methodology as Simon and

Teng [30], one may clearly see that RB does not succeed in finding the opti-

mal solution under the constraint of fixed vertices. This is because RB tries at

each step to find the optimal local solution, and in this case the first optimal295

bisection involves disconnected components as shown in Figure 4b (i.e. vertices

fixed to part three are disconnected from the part containing vertices fixed to

part four and the same happens for vertices fixed to parts two and one). Note

that RB cannot find a better bisection that puts fixed vertices of parts one and

two in a single connected component. Another possible solution for the first300

bisection would give edgecut of higher cost (not optimal). Therefore, the first

“bad” bisection of RB is maintained in the final solution, which is clearly not

optimal : the best solution of RB is presented in Figure 4c compared to the op-

timal solution shown in Figure 4d. The above examples are just an illustration

of the problematic behavior of RB methods with initial fixed vertices. Further305

experiments that confirm our observations follow in Section 6.

4. Recursive Bisection with Bipartite Graph Matching (rbbgm)

An algorithm for hypergraph partitioning is introduced in [16] that success-

fully handles problems with initially fixed vertices. In this work, the authors

identify the inferior performance of RB when fixed vertices are involved in the310

14

(a) Initial fixed vertices. (b) Optimal first bisection.

(c) Best solution for RB. (d) Optimal solution.

Figure 4: Issues of the RB method under the constraint of initial fixed vertices. While finding
the optimal first bisection, the best solution of RB to the 4-way partitioning problem will not
be optimal, showing an additional cost of 8 edges cut.

process, mentioning its inability to explore the combinatorially many part labe-

lings that correspond to a given fixed vertex configuration. To correct the above

deficiency, they propose a new multilevel direct k-way hypergraph partitioning

that uses a RB-based algorithm and an additional post-processing technique to

relabel the resulting parts such that the edgecut remains minimized. They refer315

to the above algorithm as rbbgm and they provide an implementation called

kPaToH based on modifications of the multilevel framework of PaToH.

For the coarsening phase of kPaToH, a modified Heavy Connectivity Mat-

15

ching 1 is proposed such that no two fixed vertices are matched together at any

coarsening level. However, a fixed vertex can be matched with any free vertex,320

forming a fixed super-vertex for the next level. Therefore, the number of fixed

super-vertices in the coarsest level is equal to the number of initially fixed ver-

tices of the hypergraph. As always, free vertices are matched together according

to the chosen heuristic.

During the initial partitioning phase of kPaToH, fixed vertices are tempo-325

rarily removed from the coarsest hypergraph and a partitioning of the resulting

hypergraph is performed with a classic RB-based algorithm. Once the partition

is computed, fixed vertices are re-introduced in the hypergraph according to a

relabeling strategy. Note that if no relabeling is used, fixed vertices are simply

re-assigned to the parts based on their initial part numbering. In this case, the330

final partition may not be optimized in terms of net cost minimization, since

nets incident to fixed vertices are not considered during RB. In other words,

a relabeling strategy that minimizes the net cost contribution of re-introduced

fixed vertices is necessary to obtain an optimized partition for the coarsest hy-

pergraph.335

The problem of relabeling fixed vertices is formulated in kPaToH as a maxi-

mum weighted bipartite graph matching problem, that represents the minimum

increase of edgecut. In the proposed formulation, sets of fixed vertices and re-

sulting parts form the two node sets of the bipartite graph B = (X,Y). More

precisely, each vertex Xi in B represents fixed vertices, initially assigned to part340

i, while each vertex Yi represents vertices that belong to part i after the par-

titioning. Additionally, the bipartite graph contains all possible edges (Xi, Yj)

between fixed vertices and ordinary ones with a weight that corresponds to the

sum of weights for edges with incident vertices in both Xi and Yj .

1. HCM is the equivalent algorithm of HEM for hypergraph partitioning

16

Figure 5: Example of coarsest graph where each color corresponds to a different part. Fixed
vertices are represented as squares and free ones as circles.

Following, we give an example of the initial partition phase of kPaToH345

on a graph structure rather than on a hypergraph for reasons of consistency

with the focus of this work. Figure 5 shows the partitioning result of a graph

with fixed vertices using kPaToH and no relabeling strategy is used to reassign

fixed vertices. That is, the modified graph which contains only free vertices has

been partitioned in four parts with RB while fixed vertices have been simply350

re-introduced in the graph after the partitioning, maintaining their initial part

assignment. Note that fixed vertices are represented in the figure as squares

while free vertices as circles. Additionally, for ease of presentation, unit edge

weights are assumed and only edges connecting fixed vertices and free ones are

displayed, since any additional edgecut contribution may be due to such edges.355

In this partitioning example, the upper bound of edgecut contribution after

fixed vertices are re-introduced in the graph is 14 (edges). In Figure 6, we

present two instances of the bipartite graph that models the re-assignment of

fixed vertices for this example, one (6a) that corresponds to no relabeling and

a second one (6b) which follows a relabeling strategy. Finally, note that sets of360

17

fixed and (previously) free vertices that are assigned to the same part are drawn

in both figures with the same color. Therefore, in the case of no relabeling, the

edgecut increase is 10 and implies an edgecut saving of four (colored edges).

However, it is easy to see that there is an assignment of fixed vertices that leads

to higher egdecut saving and is the solution of the maximum-weight bipartite365

graph, illustrated in 6b. This relabeling obtains the highest saving of edgecut

which leads to the minimum cost increase of 14-7 = 7, instead of 10.

(a) No relabeling. (b) Relabeling strategy of mi-
nimized cost contribution.

Figure 6: The bipartite graph used for the reassignment of fixed vertices in the example
shown in Figure 5. A square vertex represents a set of fixed vertices Xi, while a circle vertex
represents a part i

For the uncoarsening phase, a modified version of the k-FM refinement al-

gorithm is used where fixed vertices are locked to their respective parts and are

not allowed to move between parts.370

Experiments on hypergraphs with fixed vertices performed by kPaToH

show a net cost improvement of overall average between 17% and 21% com-

pared to the multilevel RB-based method used in PaToH. Finally note that

rbbgm has an important limitation as it does not handle the imbalance issues

that may incur if fixed vertices are not evenly distributed to parts.375

Below we discuss our implementation of rbbgm for graphs.

18

Discussion on Graph Implementation of rbbgm

We choose to implement rbbgm inside the multilevel framework of Scotch

for two main reasons. First, Scotch is one of the most widely used graph par-

titioning tools, with a fast implementation of the multilevel framework and an380

easy programming interface. But more importantly, Scotch already includes

a RB-based method that addresses the problem of graph partitioning with ini-

tially fixed vertices that can be used as a reference method. Remember that

the multilevel framework consists of multiple heuristics and each partitioning

tool has different parameters for the coarsening, initial partitioning and unco-385

arsening phase, that may heavily influence the quality or execution time of the

final solution. Therefore, in order to conduct a reliable comparison of different

methods used for the initial partitioning phase (such as rbbgm and kgggp),

one should implement them all inside the same multilevel framework. Finally,

note that in order to solve the maximum weighted bipartite graph matching390

problem that appears in rbbgm, we use an implementation of the Hungurian

algorithm [31] which finds an exact solution and has a complexity of O(k3).

5. The kgggp Algorithm

In this section, we describe a direct k-way graph partitioning algorithm,

called kgggp (k-way greedy graph growing partitioning), which can be easily395

integrated in a multilevel framework and successfully handles any number of

initially fixed vertices. The algorithm has been initially proposed in [1] where

a detailed description is provided. However in order to keep this work self-

contained we dedicate here a substantial discuss on kgggp.

The kgggp algorithm is an extension of the standard greedy bipartitio-400

ning [32, 33] where vertices are iteratively added into two growing parts accor-

ding to a minimization criterion. kgggp uses the same idea for a direct k-way

19

partitioning where k parts (instead of just two) are growing simultaneously, in

a concurrent procedure. In a certain way, kgggp can be seen as a variation of

the FM algorithm [23] with k growing parts and a free part, denoted as −1,405

which initially contains all free vertices and becomes empty at the end of the

procedure.

5.1. Algorithmic description

Let us consider a graph G = (V,E) and an initial partition P , such that a

fixed vertex f to part p is noted as P [f] = p while a free vertex u is noted as410

P [u] = −1. To facilitate our description, we introduce the notion of displacement

(v, p) where a free vertex v is candidate for moving to a target part p. Each

displacement is associated with a gain value, calculated according to a given

formula (see Section 5.4) and representing the improvement in terms of edgecut

minimization.415

In Algorithm 1, we present a brief overview of kgggp. As one may see,

the main steps consist of initializing displacements, selecting displacements and

updating the gain for other displacements after a vertex is moved to a part.

More precisely, the algorithm starts by computing the gain for all displacements,

among all free vertices and all possible parts. Then, at each step of the main420

loop, the kgggp algorithm selects the best global displacement (v, p), that is, the

one having the maximum gain, subject first to the balance constraint (B) and

secondly to the connectivity constraint (C). While the first constraint enforces

the development of balanced parts, the second constraint ensures that each part

remains connected into a single component. In other words, one prefers to select425

a vertex v in the neighborhood of the growing part p, as far as possible. Once a

valid displacement (v, p) is chosen, v moves to the target part p (i.e, P [v]← p)

and all displacements (v, ?) to other parts are removed from consideration. At

this point, we need to update the gain of all displacements (v′, ?), that involves

20

vertices v′ in the neighborhood of v. The algorithm terminates when there are430

no more free vertices in P .

Besides, kgggp uses a similar data structure as in FM adapted here for

k parts. This structure is called gain bucket and allows a quick locate of the

best global displacement. In practice, we use three instances of the gain bucket

structure to store and select displacements efficiently : one regular bucket and435

two additional buckets to manage the displacements that do not respect the

connectivity or the balance constraint. In Figure 7, we illustrate a diagram

of all possible moves of a displacement between the three buckets during the

selection phase. Each transition may happen exactly once for each displacement.

SELECTION

Figure 7: Diagram of all possible moves of a displacement during the selection phase. HREG

corresponds to the regular gain bucket, while HREG and HREG correspond to the connectivity
and balance gain buckets respectively.

(a) Step 100. (b) Step 3000. (c) Step 6000. (d) Step 10000.

Figure 8: Steps of kgggp while partitioning a 100×100 grid graph in 4 parts. The free part is
colored in blue. This part becomes empty at the final step (10000) showing a 4-way partition.

In Figure 8, we illustrate the evolution of the part growing when a simple440

100 × 100 grid graph is partitioned into 4 parts using the kgggp algorithm

without a multilevel framework. As one may see, the algorithm aims to respect

21

both the balance and the connectivity constraints leading to a rather balanced

and connected partition even with no refinements.

Algorithm 1 The kgggp algorithm.
Inputs : graph G = (V,E)
Inputs/Outputs : partition array P (initialized with fixed and free vertices)
Notations : B = balance constraint ; C = connectivity constraint
compute gain for all possible displacements (v, p) of any free vertex v to any part p
while there are free vertices in P do

repeat
consider the displacement d = (v, p) with maximum gain
if d respects both B and C then

choose d
else if d respects B and C cannot be respected anymore then

choose d
else if both B and C cannot be respected anymore then

choose d
end if

until a displacement d is chosen
P [v]← p
remove displacements (v, ?)
for all vertex v′ adjacent to v do

update gain of displacements (v′, ?)
end for

end while

5.2. Fixed Vertex Management445

Note that it is very straightforward to handle initial fixed vertices within

kgggp. More precisely, fixed vertices are directly placed in their respective

parts before the algorithm starts and are simply not considered as candidates

for any displacement. Obviously, these vertices are not ignored : they influence

the balance among parts and are taken into account in the gain calculation of450

free vertices in the neighborhood.

5.3. kgggp in a Multilevel Framework

The kgggp algorithm can be easily integrated in any multilevel framework

with some simple adjustments regarding the initial fixed vertices. Firstly, du-

ring the coarsening phase, an extra constraint is added, so that fixed vertices455

which belong to different parts can not be matched together, while they may

22

be matched with free vertices. Following, we partition the coarsest graph with

kgggp as it is described above and we continue with the uncoarsening phase,

where refinements for k-way partitioning are performed to further improve the

final result. Note that during this phase, we maintain all fixed vertices locked,460

forcing them to remain in place.

5.4. Gain Formulas for Minimization Criterion

As we mentioned above, there exist multiple minimization criteria to de-

termine displacement selection. Here, we present three of them : the classic

gain minimization as it is presented in FM algorithm, the diff gain proposed by465

Battiti and Bertossi [33] and finally a hybrid minimization criterion.

Assuming that a vertex v moves into part p, we divide its incident edges

(v, v′) in three categories : the internal edges such that part[v′] = p, the external

edges such that part[v′] 6= p, and the free edges such that part[v′] = −1. Let

Nint(v) be the number of internal edges, Next(v) the number of external edges470

and Nfree(v) the number of free edges, for v. Clearly, Nint(v) measures how

strongly v is connected to the part p, while Next(v) measures how strongly it

is attracted to other parts (except −1). The parameter α is an integer constant

that is used to enforce the part connectivity once again ; more precisely, it favors

internal edges compared to other edges. Typical values of α are in the range 1475

to 10.

Table 2: Description of minimization criteria.

Criterion Gain Formula

classic G = α.Nint(v)−Nfree(v)
diff G = α.Nint(v)−Next(v)
hybrid G = α.Nint(v)−Next(v)−Nfree(v)

Based on the above definitions, the Table 2 presents the gain formulas of the

different criteria. The main difference between those formulas is due to the free

edges, depending on whether they are considered as external or not.

23

5.5. Time and Space Complexities480

The main steps of the kgggp algorithm consist of initializing displacements,

selecting displacements and updating the bucket structures after a displacement

is performed. The initialization step computes the gain for k × |V | possible

displacements in O(k|E|), as the gain calculation depends on the neighborhood

of each vertex. Then, kgggp selects iteratively |V | displacements and updates485

the buckets for each displacement in O(k|E|), since it visits the neighborhood of

each selected vertex for all parts. Therefore, the total time complexity of kgggp

is O(k|E|). As a reminder, the time complexity of RB is O(log(k)|E|). Finally,

the memory complexity is mainly due to saving all possible displacements in the

gain bucket data structure, which is O(k|V |).490

5.6. Optimization : Local Greedy Approach

In order to reduce the total time complexity of kgggp, we implement a

second version of the method, where we enforce local selection of displacements

instead of the global selection described above. The key idea here is to search

for upcoming displacements only in the neighborhood of vertices that belong495

already to a part. This approach is similar to the one used in kMetis to optimize

the k-way FM refinement heuristic [21].

As a result, we do not need in the initialization step to compute a priori

the gain value for all possible displacements. Instead, after a displacement (v, p)

is chosen, we dynamically insert in buckets new displacements (v′, p) for all500

remaining free vertices v′ in the neighborhood of v. If there are no more dis-

placements available in buckets while the partition is not complete, the method

switches back to the global approach for the remaining free vertices, giving a

time complexity of O(k|E|) in the worst case and O(|E|) in the best case.

24

6. Experiments505

In this section, we present the experimental results on the partitioning qua-

lity and time performance of different algorithms. For our experiments, we

implement two versions of the kgggp algorithm, one that follows the global

greedy approach (kgggp g) and one that follows the local approach (kgggp l)

as described in Section 5. Following, we compare the above methods with510

our rbbgm implementation of kPaToH (explained in Section 4) and the de-

fault RB-based method of Scotch (explained in Section 3. Both codes of

kgggp and the one of rbbgm are publicly available in the MetaPart library

at http://metapart.gforge.inria.fr.

All algorithms are implemented inside the same multilevel framework (that515

of Scotch v6.0), as part of the initial partitioning phase of a MLKW method.

Moreover, they are tuned with exactly the same partitioning parameters : imba-

lance tolerance of 5%, HEM for coarsening, maximum coarsest graph size equal

to 30 × k, FM refinement with 10 passes, and a maximum number of negative

moves allowed set to 100 for each refinement pass. As a result, the above confi-520

guration allows us to fairly compare the impact of different algorithms on the

final partitioning solution. In the remainder of this section, we will refer to the

default RB method of Scotch as “Scotch”, and it will serve as a reference

for the relative comparisons.

In this study, we perform three different experiments. First, we present a525

preliminary experiment that evaluates the best internal parameters for kgggp g

and kgggp l and then we perform two experiments that test our methods on

graph instances with initially fixed vertices. Note that a previous study including

hypergraph partitioning tools (Zoltan and PaToH) has been presented in [1]

and provides an insight on the general performance of those tools under the fixed530

vertex paradigm. Here, we extend the above comparison on a larger collection of

25

http://metapart.gforge.inria.fr

graphs but we restrict our experiments only on partitioning methods for graph

structures. Finally, experiments were conducted on a machine with two four-

core Intel Xeon CPUs, running at 2.6GHz with 24GB memory. All algorithms

are implemented in C and are compiled in GCC with -O3 optimization flag.535

The dataset used in this study represent real-life applications from different

scientific domains (numerical simulations, clustering problems and road networ-

king) available in the public DIMACS’10 collection [34]. One may find in Table 5

the different graph categories that are used here along with some useful infor-

mation, such as the total number of vertices or edges, for each graph. Besides,540

each experiment is performed 5 times for every graph using randomly generated

seeds each time.

To thoroughly analyse our results, we include here two different types of

figure. In Figures 11 and 13, for each graph category, we present normalized re-

sults relative to Scotch on the average values over all included graphs (within545

that category). In these figures, the x-axis represents the edgecut and the y-axis

represents the execution time, while the number of desired parts increases from

10 to 500. Moreover, to analyze our experiments in a global perspective, we in-

clude figures that demonstrate average values of the obtained results (either the

edgecut or the execution time) over the entire graph collection as the number of550

parts increases (Figures 9,10,12). Note that the error bars in those latter figures

indicate the standard deviation for each method. Finally, whenever a method

fails to respect the balance constraint, its results are not taken into account in

the average calculations. Obviously by doing so, we may favor methods that fail

to compute a valid partition. To address this problem, we carefully examine the555

success rate of each partitioning tool in addition to the main metrics.

26

6.1. Tuning of kgggp without Multilevel Framework

The goal of this preliminary experiment is to tune some important para-

meters of the kgggp method. More precisely, we want to evaluate the best

gain formula (classic, diff or hybrid) and the impact of the local optimization560

(kgggp l) vs the global approach (kgggp g) on both quality and performance.

Those parameters have been previously described in Sections 5.4 and 5.6.

To enable an easier analysis, we disable the multilevel framework for every

method, and we perform the experiment only on the Walshaw collection that

contains graphs of smaller size. The results are presented in Figure 9 relative565

to Scotch. Here we see that the local approach, tuned with the classic or

hybrid gain formulas and α = 1, provides the best results for both edgecut

and execution time. More precisely, for kgggp l the classic formula gives a

slightly better edgecut than the hybrid, while the hybrid one slightly improves

the runtime performance.570

Besides as concerns the performance results, one may see that the local ap-

proach kgggp l is around two times faster than the global one for almost the

same edgecut, while the memory footprint (not presented here) is considerably

reduced. As a conclusion, in the following experiments, we will use the classic

gain formula with α = 1 for both global and local methods, and we expect that575

kgggp l outperforms kgggp g for runtime performance.

6.2. Experiments with Fixed Vertices

We present results with fixed vertices from two experimental cases, each one

representing a different way to distribute initially fixed vertices to the input

graph. We believe that the two proposed experiments represent configurations580

of fixed vertices that may appear in real life problems in areas such as circuit

design or dynamic load balancing. We denote these schemes bubble and repart.

Moreover, in these experiments, we decide to include only the local version of

27

0.0

0.5

1.0

1.5

2.0

10 20 50 100
nb parts

ed
ge

cu
t

Methods
GLOBAL_CLASSIC_1

GLOBAL_CLASSIC_10

GLOBAL_DIFF_1

GLOBAL_DIFF_10

GLOBAL_HYBRID_1

GLOBAL_HYBRID_10

LOCAL_CLASSIC_1

LOCAL_HYBRID_1

(a) Edgecut.

0.0

2.5

5.0

7.5

10.0

12.5

10 20 50 100
nb parts

ru
nt

im
e

Methods
GLOBAL_CLASSIC_1

GLOBAL_CLASSIC_10

GLOBAL_DIFF_1

GLOBAL_DIFF_10

GLOBAL_HYBRID_1

GLOBAL_HYBRID_10

LOCAL_CLASSIC_1

LOCAL_HYBRID_1

(b) Runtime.

Figure 9: kgggp evaluation on the Walshaw collection relatively to Scotch, without multile-
vel framework. Comparison of the three gain formulas (classic, diff and hybrid) for a parameter
α equal to 1 or 10, and comparison of the global and local version of kgggp.

kgggp (kgggp l) and not the global one. Indeed, based on the results of the

previous experiment, kgggp l is clearly faster than kgggp g while it produces585

partitions with similar quality.

6.2.1. Bubble Scheme

The idea behind the bubble scheme is to create an initial graph structure

that already has a number of fixed vertex subsets (bubbles). To make the scheme

more generic, we assume that these subsets do not have the same size. We believe590

that this scheme may represent configurations that come from two-step parti-

tioning methods as explained in Section 1 under the context of multi-physics

simulations. To create the bubbles, we compute k seeds that are as distant as

possible from each other (based on a BFS [35] technique) and we fix one seed

per part randomly. Each seed is later used as the center of a fixed vertex bubble.595

In particular, each bubble grows using BFS such that neighboring vertices are

assigned to the same part as the center of the bubble. The procedure continues

28

until each bubble reaches a certain percentage of ideal size (assuming vertex

weights of 1). In this scheme, we allow different size among the bubbles that

vary linearly from 5% to 30% of the ideal part size.600

In Figure 10, we depict average results over the entire DIMACS’10 collection

for each method, as the number of parts increases. Figure 10a corresponds to

the edgecut while Figure 10b to the partitioning time. In Figure 10a one may

see that both kgggp l and rbbgm minimize the edgecut compared to Scotch

with an average gain of 19% and 16% respectively. Concerning the performance605

results of this experiment, in Figure 10b we see that both kgggp l and rbbgm

perform, on average, better than Scotch until the number of parts reaches 200

(7% faster for kgggp l and 2% for rbbgm), but become (21%) slower than

Scotch when the number of parts is 500.

These results imply a lower scalability for kgggp l and rbbgm compared610

to Scotch. For kgggp l, this is not a surprise considering its theoretical com-

plexity that depends on the number of parts. Additionally, it is important to

note that if a heuristic solution were used instead of the Hungarian algorithm,

the time performance of rbbgm might have been optimized. However, in this

study we favor an exact solution to the maximum weighted bipartite graph615

problem, since the performance of this step is not of critical importance.

Moreover in Figure 11, we present the same results but we depict each graph

category separately. This representation allow us to evaluate each method upon

different graph structures. Additionally, to facilitate the experimental descrip-

tion we group the graph collections in two different categories, namely group1620

and group2. More precisely, group1 includes either graphs that derive from nu-

merical simulations (Matrix, Numerical and Dynframe) or graphs that are deli-

berately chosen for partitioning (Walshaw). On the other hand group2 includes

graphs from the Clustering and Streets collections that appear to be more dif-

29

ficult to partition [36]. Note that these graphs have a particular structure with625

vertices of highly varying degrees (Clustering) or many vertices that are connec-

ted to only one vertex (Streets). In Figure 11 we observe that kgggp l and

rbbgm equally minimize the edgecut for group1 (with an average gain of 19%)

but exhibit different results for group2. More precisely we may see that kgggp l

provides better results compared to rbbgm for group2 with an average gain of630

20% compared to Scotch against a 10% gain for rbbgm.

0.8

1.0

1.1

10 20 50 100 200 500
nb parts

re
la

tiv
e

ed
ge

cu
t

Methods KGGGP_L RBBGM SCOTCH

(a) Edgecut.

0.00

0.25

0.50

0.75

1.00

1.25

10 20 50 100 200 500
nb parts

re
la

tiv
e

ru
nt

im
e

Methods KGGGP_L RBBGM SCOTCH

(b) Runtime.

Figure 10: Average results over the entire DIMACS’10 collection (bubble scheme).

Additionally, if we focus on the performance results of group2, we see that

kgggp l is on average 27% faster that Scotch and 24% than rbbgm. This

leads us to believe that a k-way graph partitioning may be more suitable for

such graph structures. On the other hand, if we examine the performance results635

of group1 we confirm the scalability issues of kgggp l but we also remark that

the poor performance of the global results (in Figure 10b) comes mainly from

the Walshaw collection when the number of parts is 500. Indeed in this case

kgggp l is 2.5 times slower than Scotch.

Finally, note that both Scotch and rbbgm have difficulties finding a parti-640

30

10 20 50 100 200 500

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.6

0.8

1.0

0.98

1.00

1.02

1.04

1.0

1.1

1.2

1.00

1.05

1.10

1.15

1.20

0.6

0.7

0.8

0.9

1.0

1.1

1.0

1.5

2.0

2.5

clustering
dyn−

fram
e

m
atrix

num
erical

streets
w

alshaw

0.
6

0.
7

0.
8

0.
9

1.
0

0.
6

0.
7

0.
8

0.
9

1.
0

0.
6

0.
7

0.
8

0.
9

1.
0

0.
6

0.
7

0.
8

0.
9

1.
0

0.
6

0.
7

0.
8

0.
9

1.
0

0.
6

0.
7

0.
8

0.
9

1.
0

relative edgecut

re
la

tiv
e

ru
nt

im
e

METHOD ● KGGGP_L RBBGM SCOTCH

Figure 11: Average results on the edgecut quality and time execution for each group in the
DIMACS’10 collection (bubble scheme).

tioning solution that respects the imbalance tolerance and often exhibit a large

number of failures. In Table 3, we demonstrate the average percentage of fai-

lures for each method over all number of parts, depicted for each collection. In

this context, we may say that kgggp l is more robust since it fails only for the

Walshaw collection when the number of parts is 500.645

31

Table 3: Average failure percentages for each method per graph collection over all number of
parts (bubble scheme).

method streets matrix numerical clustering dynframe walshaw
Scotch 42% 1% 10% 13% 3% 10%
rbbgm 48% 3% 15% 12% 1% 10%

kgggp l 0% 0% 0% 0% 0% 1%

6.2.2. Repart Scheme

For the repart scheme, we follow the repartitioning method proposed by

Zoltan in [7] where an initially balanced partition becomes deliberately im-

balanced. Here, the initial partition is obtained with a RB-based method and

the size of each part is linearly increased from 0% to 50%, by changing the650

weight of random vertices in each part. It is important to mention that the part

numbering of the initial partition is respected in the imbalanced result. Follo-

wing, we build an enriched graph of the resulting partition, adding a single fixed

vertex per part along with migration edges that connect the fixed vertex with

its respective part. In order to enforce the connectivity of fixed vertices with655

their respective parts, we add a relatively important weight to the migration

edges. Note that the enriched graphs are larger in size compared to the original

ones, thus we test our algorithms on a sub-collection of the graph set in Table 5

omitting the large collections Dynframe and Streets.

For this experiment, global results on the edgecut and partitioning time are660

presented in Figure 12 while the same results are also depicted separately for

each group of graphs in Figure 13. In Figure 12a, we see that kgggp l ob-

tains minimized edgecut results for the entire collection with an average gain

of 11% compared to Scotch and 18% compared to rbbgm. Moreover, as seen

in Figure 13, kgggp l may reach an edgecut minimization of up to 30% com-665

pared to Scotch and up to 36% compared to rbbgm for some collections (for

instance, the Numerical one). Additionally, we observe that rbbgm does not

globally produce partitions of high quality for this experiment and thus may

32

not be a suitable solution for a scheme such as repart. A possible explanation is

that the maximum-weight graph matching problem that should be solved here670

is more complicated due to the large number of migration edges. As a result

the additional edgecut of re-introducing fixed vertices to the graph is rather

significant. A second explanation is that rbbgm removes the fixed vertices be-

fore repartitioning and thus loses the ability to minimizing the data migration

between the initially imbalanced input and the final balanced partition.675

0.8

1.0

1.1

10 20 50 100 200 500
nb parts

re
la

tiv
e

ed
ge

cu
t

Methods KGGGP_L RBBGM SCOTCH

(a) Edgecut.

0.0

0.3

0.6

0.9

1.2

10 20 50 100 200 500
nb parts

re
la

tiv
e

ru
nt

im
e

Methods KGGGP_L RBBGM SCOTCH

(b) Runtime.

Figure 12: Average results over the entire DIMACS’10 collection (repart scheme).

Regarding the runtime performance of this experiment, in Figure 12b one

may see that Scotch is on average the fastest method followed by kgggp l

with an average performance overhead of 2% while rbbgm is the slowest method

with 9% overhead compared to Scotch. Even though kgggp is not much slower

than Scotch, these results confirm again the poor scalability of kgggp l as680

the number of parts increases. However as one may see in Figure 13 for certain

group of graphs (Numerical and Matrix), kgggp l is faster than Scotch even

when the number of parts increases. Finally, the average percentage of failures

over the number of parts for this experiment can be found in Table 4.

33

Table 4: Average failure percentages for each method per graph collection over all number of
parts (repart scheme).

method matrix numerical clustering walshaw
Scotch 13% 4% 7% 15%
rbbgm 0% 0% 0% 4%

kgggp l 0% 0% 0% 0%

10 20 50 100 200 500

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1.0

1.1

1.2

1.3

0.9

1.0

1.1

1.2

0.8

0.9

1.0

1.1

1.2

1.3

0.9

1.0

1.1

clustering
m

atrix
num

erical
w

alshaw

0.
8

1.
0

1.
2

0.
8

1.
0

1.
2

0.
8

1.
0

1.
2

0.
8

1.
0

1.
2

0.
8

1.
0

1.
2

0.
8

1.
0

1.
2

relative edgecut

re
la

tiv
e

ru
nt

im
e

METHOD ● KGGGP_L RBBGM SCOTCH

Figure 13: Average results on the edgecut quality and time execution for each group in the
DIMACS’10 collection (repart scheme).

7. Conclusion685

This work is driven from our interest in graph partitioning with initially

fixed vertices that appear in many scientific problems, such as the dynamic load

34

balancing of large-scale applications. Under this model, additional constraints

of the underlying problem are represented in the graph with initially fixed ver-

tices. Unfortunately, in such settings the state-of-the-art algorithm (RB), often690

does not produce partitions of good quality. Here, we investigate the behavior

of RB under this constraint and we present a comparison between RB and

the two main alternatives for such problems. More precisely, we compare the

kgggp method that have been previously proposed by the authors and a new

implementation of the algorithm used in kPaToH (named rbbgm). This im-695

plementation is necessary for a systematic comparison of the algorithms that

handle fixed vertices since kPaToH is not publicly available.

In this study, kgggp and rbbgm are tested on two different configurations

of fixed vertices and their results in terms of edgecut minimization and runtime

performance indicate that RB is not the optimal solution for such problems.700

More precisely, in the first experiment kgggp and rbbgm exhibit a maximum

edgecut gain of 40% and 30%, respectively, compared to Scotch. In the second

experiment kgggp has a maximum gain of 26% and 35% compared to Scotch

and rbbgm, respectively. Finally note that kgggp remains robust to different

graph structures which is not the case for Scotch or rbbgm, but is susceptible705

to an increasing number of parts in terms of runtime performance.

Among the perspectives of this work is to apply the kgggp algorithm

for load-balancing of complex multi-physics simulations. In such configurations

fixed vertices may influence the partitioning results between different physical

components improving the overall partitioning quality of the solution.710

Acknowledgment

The authors would like to thank Bora Uçar for his valuable advice for the

implementation of the rbbgm method used in this study.

35

References

[1] M. Predari, A. Esnard, A k-way greedy graph partitioning with initial715

fixed vertices for parallel applications, in : 24th Euromicro International

Conference on Parallel, Distributed, and Network-Based Processing, PDP

2016, Heraklion, Crete, Greece, February 17-19, 2016, 2016, pp. 280–287.

[2] J. D. Teresco, K. D. Devine, J. E. Flaherty, Partitioning and dynamic load

balancing for the numerical solution of partial differential equations, in :720

Numerical Solution of Partial Differential Equations on Parallel Computers,

Vol. 51, 2006, pp. 55–88.

[3] N. J. Dingle, P. G. Harrison, W. J. Knottenbelt, Uniformization and hyper-

graph partitioning for the distributed computation of response time densi-

ties in very large markov models, J. Parallel Distrib. Comput. 64 (8) (2004)725

908–920.

[4] B. Hendrickson, R. W. Leland, R. V. Driessche, Enhancing data locality

by using terminal propagation., in : HICSS (1), 1996, pp. 565–574.

[5] B. Hendrickson, R. W. Leland, R. V. Driessche, Skewed graph partitioning,

in : Eighth SIAM Conference on Parallel Processing for Scientific Compu-730

ting, 1997.

[6] C. Aykanat, B. B. Cambazoglu, F. Findik, T. Kurc, Adaptive decomposi-

tion and remapping algorithms for object-space-parallel direct volume ren-

dering of unstructured grids, J. Parallel Distrib. Comput. 67 (2007) 77–99.

[7] U. V. Catalyurek, E. G. Boman, K. D. Devine, D. Bozdağ, R. T. Hea-735

phy, L. A. Riesen, A repartitioning hypergraph model for dynamic load

balancing, J. Parallel Distrib. Comput. 69 (8) (2009) 711–724.

36

[8] S. Plimpton, S. Attaway, B. Hendrickson, J. Swegle, C. Vaughan, D. Gard-

ner, Parallel transient dynamics simulations, J. Parallel Distrib. Comput.

50 (1) (1998) 104–122.740

[9] K. Brown, S. Attaway, S. Plimpton, B. Hendrickson, Parallel strategies for

crash and impact simulations, Computer Methods in Applied Mechanics

and Engineering 184 (2–4) (2000) 375–390.

[10] C. Walshaw, M. Cross, K. McManus, Multiphase mesh partitioning, Ap-

plied Mathematical Modelling 25 (2) (2000) 123 – 140, dynamic load ba-745

lancing of mesh-based applications on parallel.

[11] M. Predari, A. Esnard, Coupling-aware graph partitioning algorithms :

Preliminary study, in : 21st International Conference on High Performance

Computing, HiPC 2014, Goa, India, December 17-20, 2014, 1–10, 2014.

[12] G. Karypis, V. Kumar, Multilevel algorithms for multi-constraint graph750

partitioning, in : Proceedings of the 1998 ACM/IEEE Conference on Su-

percomputing, SC ’98, IEEE Computer Society, Washington, DC, USA,

1998, pp. 1–13.

[13] G. Karypis, Multi-constraint mesh partitioning for contact/impact compu-

tations, in : Proceedings of the 2003 ACM/IEEE Conference on Supercom-755

puting, SC ’03, ACM, New York, NY, USA, 2003, pp. 56–.

[14] P. Maria, Load balancing for parallel coupled simulations, Ph.D. thesis,

University of Bordeaux (2016).

[15] A. E. Caldwell, A. B. Kahng, A. A. Kennings, I. L. Markov, Hypergraph

partitioning for VLSI CAD : Methodology for heuristic development, expe-760

rimentation and reporting, in : Proceedings of the 36th Annual ACM/IEEE

Design Automation Conference, DAC ’99, 1999, pp. 349–354.

37

[16] A. E. Dunlop, B. W. Kernighan, A procedure for placement of standard-cell

VLSI circuits., IEEE Trans. on CAD of Integrated Circuits and Systems

4 (1) (1985) 92–98.765

[17] C. Aykanat, B. B. Cambazoglu, B. Uçar, Multi-level direct k-way hyper-

graph partitioning with multiple constraints and fixed vertices, J. Parallel

Distrib. Comput. 68 (2008) 609–625.

[18] B. Hendrickson, T. G. Kolda, Graph partitioning models for parallel com-

puting, Parallel Comput. 26 (12) (2000) 1519–1534.770

[19] M. R. Garey, D. S. Johnson, Computers and Intractibility : A Guide to the

Theory of NP-Completeness, W. H. Freeman, 1979.

[20] B. Hendrickson, R. Leland, An improved spectral graph partitioning algo-

rithm for mapping parallel computations, SIAM J. Sci. Comput. 16 (2).

[21] R. Leland, B. Hendrickson, A multilevel algorithm for partitioning graphs,775

in : 1995 ACM/IEEE conference on Supercomputing, 1995.

[22] G. Karypis, V. Kumar, Multilevel k-way partitioning scheme for irregular

graphs, Journal of Parallel and Distributed Computing 48 (1998) 96–129.

[23] B. W. Kernighan, S. Lin, An efficient heuristic procedure for partitioning

graphs, Bell System Technical Journal 49 (1970) 291–307.780

[24] C. M. Fiduccia, R. M. Mattheyses, A linear-time heuristic for improving

network partitions, 19th Design Automation Conference (1982) 175–181.

[25] G. Karypis, METIS, HMETIS, PARMETIS, http://glaros.dtc.umn.

edu/gkhome/metis.

[26] F. Pellegrini, SCOTCH, http://www.labri.fr/perso/pelegrin/785

scotch/.

38

http://glaros.dtc.umn.edu/gkhome/metis
http://glaros.dtc.umn.edu/gkhome/metis
http://glaros.dtc.umn.edu/gkhome/metis
http://www.labri.fr/perso/pelegrin/scotch/
http://www.labri.fr/perso/pelegrin/scotch/
http://www.labri.fr/perso/pelegrin/scotch/

[27] P. Sanders, C. Schulz, Think Locally, Act Globally : Highly Balanced Graph

Partitioning, in : Proceedings of the 12th International Symposium on Ex-

perimental Algorithms (SEA’13), Vol. 7933 of LNCS, Springer, 2013, pp.

164–175.790

[28] U. V. Catalyurek, C. Aykanat, PaToH : A Multilevel Hypergraph Partitio-

ning Tool, http://bmi.osu.edu/~umit/software.html (1999).

[29] Zoltan : Parallel partitioning, load balancing and data-management ser-

vices, http://www.cs.sandia.gov/Zoltan/Zoltan.html.

[30] B. Vastenhouw, R. H. Bisseling, A two-dimensional data distribution me-795

thod for parallel sparse matrix-vector multiplication, SIAM Rev. 47 (1)

(2005) 67–95.

[31] H. D. Simon, S.-H. Teng, How good is recursive bisection ?, SIAM J. Sci.

Comput 18 (1995) 1436–1445.

[32] H. W. Kuhn, The hungarian method for the assignment problem, Naval800

Research Logistics Quarterly 2 (1-2) (1955) 83–97.

[33] J. Ciarlet, P., F. Lamour, On the validity of a front-oriented approach to

partitioning large sparse graphs with a connectivity constraint, Numerical

Algorithms 12 (1) (1996) 193–214.

[34] R. Battiti, A. Bertossi, Differential greedy for the 0-1 equicut problem, in :805

in Proceedings of the DIMACS Workshop on Network Design : Connectivity

and Facilities Location, American Mathematical Society, 1997, pp. 3–21.

[35] D. Bader, H. Meyerhenke, P. Sanders, C. Schulz, A. Kappes, D. Wagner,

Benchmarking for graph clustering and partitioning, in : R. Alhajj, J. Rokne

(Eds.), Encyclopedia of Social Network Analysis and Mining, Springer New810

39

http://bmi.osu.edu/~umit/software.html
http://www.cs.sandia.gov/Zoltan/Zoltan.html
http://www.cc.gatech.edu/dimacs10

York, 2014, pp. 73–82.

URL http://www.cc.gatech.edu/dimacs10

[36] R. Diekmann, R. Preis, F. Schlimbach, C. Walshaw, Shape-optimized mesh

partitioning and load balancing for parallel adaptive FEM, Parallel Com-

puting 26 (12) (2000) 1555–1581.815

[37] S. Rajamanickam, E. G. Boman, Parallel partitioning with zoltan : Is hyper-

graph partitioning worth it ?, in : Graph Partitioning and Graph Clustering,

10th DIMACS Implementation Challenge Workshop, Georgia Institute of

Technology, Atlanta, GA, USA, February 13-14, 2012. Proceedings, 2012,

pp. 37–52.820

40

http://www.cc.gatech.edu/dimacs10

Table 5: List of graphs used for experiments from the popular DIMACS’10 collection.
degree

group collection graph # vtx # edges avg min max
1 walshaw 144 144,649 1,074,393 14.86 4 26
1 walshaw 4elt 15,606 45,878 5.88 3 10
1 walshaw cs4 22,499 43,858 3.90 2 4
1 walshaw cti 16,840 48,232 5.73 3 6
1 walshaw fe 4elt2 11,143 32,818 5.89 3 12
1 walshaw fe ocean 143,437 409,593 5.71 1 6
1 walshaw fe sphere 16,386 49,152 6.00 4 6
1 walshaw whitaker3 9,800 28,989 5.92 3 8
1 walshaw wing 62,032 121,544 3.92 2 4
1 walshaw auto 448,695 3,314,611 14.77 4 37
1 matrix audikw1 943,695 38,354,076 81.28 20 344
1 matrix ecology1 1,000,000 1,998,000 4.00 2 4
1 matrix thermal2 1,227,087 3,676,134 5.99 2 10
1 matrix af shell10 1,508,065 25,582,130 33.93 14 34
1 matrix G3 circuit 1,585,478 3,037,674 3.83 1 5
1 matrix nlpkkt120 3,542,400 46,651,696 26.34 4 27
1 matrix ldoor 952,203 22,785,136 47.86 27 76
1 matrix cage15 5,154,859 47,022,346 18.24 2 46
1 numerical NACA0015 1,039,183 3,114,818 5.99 3 10
1 numerical 333SP 3,712,815 11,108,633 5.98 2 28
1 numerical NLR 4,163,763 12,487,976 6.00 3 20
1 numerical adaptive 6,815,744 13,624,320 4.00 2 4
1 numerical AS365 3,799,275 11,368,076 5.98 2 14
1 numerical M6 3,501,776 10,501,936 6.00 3 10
1 numerical channel-b050 4,802,000 42,681,372 17.78 6 18
1 numerical venturiLevel3 4,026,819 8,054,237 4.00 2 6
1 dynframe hugebubbles-00000 18,318,143 27,470,081 3.00 2 3
1 dynframe hugebubbles-00010 19,458,087 29,179,764 3.00 2 3
1 dynframe hugebubbles-00020 21,198,119 31,790,179 3.00 2 3
1 dymframe hugetrace-00000 4,588,484 6,879,133 3.00 2 3
1 dymframe hugetrace-00010 12,057,441 18,082,179 3.00 2 3
1 dynframe hugetrace-00020 16,002,413 23,998,813 3.00 2 3
1 dynframe hugetric-00000 5,824,554 8,733,523 3.00 2 3
1 dynframe hugetric-00010 6,592,765 9,885,854 3.00 2 3
2 clustering citationCiteseer 268,495 1,156,647 8.62 1 1318
2 clustering coAuthorsCiteseer 227,320 814,134 7.16 1 1372
2 clustering coAuthorsDBLP 299,067 977,676 6.54 1 336
2 clustering coPapersCiteseer 434,102 16,036,720 73.88 1 1188
2 clustering coPapersDBLP 540,486 15,245,729 56.41 1 3299
2 clustering as-22july06 22,963 48,436 4.22 1 2390
2 streets asia 11,950,757 12,711,603 2.13 1 9
2 streets belgium 1,441,295 1,549,970 2.15 1 10
2 streets germany 11,548,845 12,369,181 2.14 1 13
2 streets great-britain 7733822 8156517 2.11 1 8
2 streets italy 6,686,493 7,013,978 2.10 1 9
2 streets netherlands 2,216,688 2,441,238 2.20 1 7
2 streets luxembourg 114,599 119,666 2.09 1 6

41

	Introduction
	Issues of Recursive Bisection in Partitioning with Fixed Vertices
	Contributions

	Background Definitions & Related Work
	Graph Definitions
	Multilevel Framework
	Tools for Partitioning with Fixed Vertices

	Recursive Bisection for Fixed Vertices (RB)
	Recursive Bisection with Bipartite Graph Matching (rbbgm)
	The kgggp Algorithm
	Algorithmic description
	Fixed Vertex Management
	kgggp in a Multilevel Framework
	Gain Formulas for Minimization Criterion
	Time and Space Complexities
	Optimization: Local Greedy Approach

	Experiments
	Tuning of kgggp without Multilevel Framework
	Experiments with Fixed Vertices
	Bubble Scheme
	Repart Scheme

	Conclusion

