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Abstract: This paper deals with the monitoring of a serpentine belt tensioner performance,
a critical automotive engine component guaranteeing the cooling system efficiency. A belt
tensioner fault will affect the transmission, deteriorate the water pump efficiency, and eventually,
lead the engine to stall. Monitoring this component is thus a key to design predictive or
corrective maintenance. In this paper, we propose to estimate a parameter which is shown
to be characteristic of this component’s health by using an Adaptive Observer or an Extended
Kalman Filter. Respective merits of these solutions are compared using simulations performed
with GT-SUITE on a high-fidelity model.
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1. INTRODUCTION

In trucks, multiple peripheral devices such as alternator,
water pump or air conditioning compressor are driven by
a common belt. This belt, connected to the engine shaft,
transmits the necessary mechanical power to all compo-
nents in line. During the installation, the adjustment of a
belt tensioner permits to hold a predetermined amount of
tension on the belt, which enables it to fulfill its role.

In case of under-tension, the belt will slip, causing noise
and premature wear. More importantly, it will also degrade
the operation of all driven components to a subnominal
state. Among others, the water pump located in the
cooling system will not provide the proper coolant flow
rate to the engine. This could lead the engine to overheat
and, eventually, stall.

To overcome such problems, this paper proposes to esti-
mate a parameter which is shown to be characteristic of
the belt tensioner’s health, via an analysis of the cooling
system. The first contribution of the paper is to develop
a simplified model of the cooling system for diagnosis. As
common in the vehicle industry, a model-based approach
has been chosen. To estimate the belt tensioner charac-
teristic parameter, two observers have been designed and
compared: an Adaptive Observer (AO) and an Extended
Kalman Filter (EKF).

Among fault detection strategies (Hwang et al., 2010), the
observer-based approach is a popular approach (Chen and
Patton, 1999; Ding, 2008) since it introduces analytical
redundancy, by estimating unknown parameters or unmea-
sured state variables from measurements.

The first designed observer is an AO, (Zhang and Clavel,
2001; Besançon et al., 2006) which both estimates an
unknown vector parameters and the system states. It has

been shown to be effective in several applicative contexts,
such as for a permanent magnet synchronous motor in
(Tami et al., 2014) or for the degradation of a heat
exchanger in (Astorga-Zaragoza et al., 2008). The second
one, the EKF, is one of the most used nonlinear observers
(see (Chui and Chen, 2009) where theoretical and practical
case studies are detailed). Comparison of these two well-
known observer-based methods using simulation on a high-
fidelity model of the cooling system are then performed.
This is the second contribution of this paper.

The paper is organized as follow. In Section 2, a simplified
model of the cooling system is presented. In Section 3,
based on this model, an Adaptive Observer and an Ex-
tended Kalman Filter are designed to monitor the perfor-
mance of the belt tensioner. Then in Section 4 we analyze
the performance of the developed solutions. Finally, con-
clusions are stated in Section 5.

2. COOLING SYSTEM MODELING

A schematic representation of the heat exchanges involving
the engine block is depicted in Fig. 1(a). To protect the
different components from overheating and to ensure a
good lubrication, the water pump provides the coolant
flow rate necessary to remove the heat produced by the
combustion.

The next section presents a simplified thermal model that
will be used to design observers.

2.1 Thermal modeling of the engine block

To design a control-oriented model, a lumped-parameter
approach is followed in the sequel, neglecting the dis-
tributed nature of the temperature of the coolant when
flowing through the engine block. In details, we follow
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Fig. 1. (a) Flows and temperatures of the engine block (b) Heat flow from the gas to the engine block

Table 1. Nomenclature

Notation Description Unit

Neng Engine speed rpm
Npump Pump speed rpm

Γ Engine torque N.m
Qg,eb Heat flow from gas in the cylinder to

the engine block
W

Qeb,c Heat flow from the engine block to the
coolant

W

Aeb Heat transfer surface area inside the
engine block

m2

Teb Temperature of the engine block K
Tc,{i,o} Coolant temperature at the inlet and

at the outlet
K

hc Coolant heat transfer coefficient W.m−2.K−1

ceb Heat capacity of the engine block J.kg−1.K−1

cc Heat capacity of the coolant J.kg−1.K−1

ṁc Mass flow rate of the coolant kg.s−1

ṁc,{e,oc} Mass flow rate of the coolant through
the engine and the oil cooler

kg.s−1

m{eb,c} Mass of the engine block and of the
coolant in contact with the engine
block

kg

a procedure similar to (Cortona et al., 2002; Astorga-
Zaragoza et al., 2008; Isermann, 2014) where mean-value
models are obtained from energy balances.

Let us consider the system presented in Fig. 1(a). It
consists in two thermal subsystems: the engine block and
the coolant.

Engine block thermal balance. A heat balance on the
engine block gives the following temperature evolution:

Ṫeb =
Qg,eb −Qeb,c

mebceb
(1)

Note that the heat flow Qg,eb can be considered as an
input of the model. Indeed, this flow depends on the engine
operating point and its value can be obtained from a three-
dimensional map (cf. Fig. 1(b)):

Qg,eb = f(Neng,Γ) (2)

On the other hand, the heat transfer to the coolant
originates mainly from conduction through the area Aeb,
and thus can be expressed as:

Qeb,c = hcAeb

(
Teb −

Tc,i + Tc,o
2

)
, (3)

where an average value between the inlet and outlet flow
temperatures is used to account for the distributed nature
of the flow temperature.

In addition, the heat transfer coefficient hc can be ex-
pressed by phenomenological laws (see for example the
Colburn analogy (Bergman and Incropera, 2011)). In our
case the following relation is used:

hcAeb = (hA)ref

(
ṁc,e

ṁref

)0.75

(4)

Coolant thermal balance. Following similar arguments,
a heat balance equation gives:

Ṫc,o =
Qeb,c −∆Qc

mccc
(5)

where ∆Qc represents the heat flow due to the tempera-
ture difference at the input and the output of the engine.
It can be expressed as:

∆Qc = ccṁc,e(Tc,o − Tc,i) (6)

Final second-order model. By combining these equa-
tions, we finally get the following second order system:

⇔



Ṫeb =
hc(ṁc,e)Aeb
mebceb

(
Tc,o

2
− Teb

)
+

Qg,eb
mwceb

+
hc(ṁc,e)Aeb
mebceb

Tc,i
2

Ṫc,o =

(
−hc(ṁc,e)Aeb

2mccc
− ṁc,e

mc

)
Tc,o

+
hc(ṁc,e)Aeb

mccc
Teb

+

(
ṁc,e

mc
− hc(ṁc,e)Aeb

2mccc

)
Tc,i

(7)



in which hc is defined through (4).

It is worth noting that, in the sequel, it is assumed that
the following variables are known (measured or estimated):
Neng; Γ; Tc,i and Tc,o.

2.2 Flow modeling

Since the water pump is mechanically connected to the
engine, its flow is a function of the engine speed. In order
to simplify the model, we will use a crude approximation
of this relation by assuming that:

ṁc = αNpump, α ∈ R+ (8)

For more detailed pump models see (Isermann, 2014).

As the pump speed is not measured but the engine one is,
the following relation is also considered:

Npump = rNeng, r ∈ R+ (9)

Finally, a part of the coolant recirculated by the water
pump actually flows through the oil cooler instead of the
engine. This is represented by a simplified proportional
relation between the global mass flow rate and the engine
block one:

ṁc,e = βṁc, β ∈ [0; 1] (10)

Plugging together (8)-(10), we have the simple relation:

ṁc,e = σNeng, σ ∈ R+ (11)

in which σ = α× β × r is a constant 1 .

2.3 Model validation

To validate this model, it is compared with one built
with GT-SUITE 2 . This software, developed by Gamma
Technology, consists in a set of simulation libraries for
analyzing the engine behavior and is largely used in the
automotive industry. As it enables to obtain a high-fidelity
simulation, this model will be the reference one in the
sequel.

For comparison purposes, the same scenario is used for
the simplified model and the GT-SUITE one. It consists
of the engine speed and load torque profiles presented in
Fig. 2(a).

Under these conditions, the results obtained from GT-
SUITE and from the developed model are given in
Fig. 2(b).

It can be observed that the temperatures recovered from
the simplified model match almost perfectly the reference
ones. This justifies the use of the simplified model to design
observers.

2.4 Fault diagnosis problem statement

The belt tensioner ensures power transmission between
the engine and all the other components connected to the
belt. A malfunction on the belt tensioner will affect the
1 This approximation is verified if the resistance coefficient of the
cooling system is constant, that is, when the thermostat position is
fixed (after engine start-up).
2 www.gtisoft.com

transmission ratio r in (9) which, in turn, will affect the
mass flow rate in (8). Thus, from the cooling system (4),
(7), (11) point of view, this malfunction will affect the
nominal mass flow rate through a change of the parameter
σ in (11). Note that this change will thus also affect the
heat transfer coefficient hc which depends on ṁc,e through
(4).

The paper objective is then to estimate the parameter σ
to provide an indication of the belt tensioner’s health.

3. OBSERVER-BASED FAULT ESTIMATION

To evaluate in real time the degradation of the transmis-
sion, observers have been designed and implemented to es-
timate the parameter σ which is considered to be constant
(or slow-varying). Two types of observer are considered in
the sequel. The first one is an adaptive observer and then
an extended Kalman filter.

3.1 Adaptive observer

The adaptive observer design follows the method devel-
oped in (Besançon et al., 2006) and (Zhang and Clavel,
2001). Such an observer both estimates the state and
unknown constant parameters involved in the dynamical
equation. The system must be affine in the state and
parameter vector as:

ẋ = A(u, y)x+ ϕ(u, y) + Φ(u, y)θ

y = Cx
(12)

where x, u, y classically denote the state, the input and
the measured output vectors respectively and θ a vector
of unknown constant parameters. The elements of the
matrices A(u, y) and Φ(u, y) and of the vector ϕ(u, y)
are assumed to be continuous and uniformly bounded
functions.

If a persistent exciting condition is verified, i.e, if there
exist positive constants α1,2, β1,2, T1,2 and some bounded
symmetric positive definite matrix Σ such that, for all t,
the following inequalities hold:

α1I ≤
∫ t+T1

t

ΛT (τ)CTΣ(τ)CΛ(τ).dτ ≤ β1I (13)

and

α2I ≤
∫ t+T2

t

ΨT (t, τ)CTΣ(τ)CΨ(t, τ).dτ ≤ β2I (14)

where Ψ is the transition matrix of the system ẋ =
A(u, y)x, y = Cx, then, according to (Besançon et al.,
2006) and (Zhang and Clavel, 2001), the following system
is an exponential adaptive observer for the nonlinear
system (12),

˙̂x = A(u, y)x̂+ ϕ(u, y) + Φ(u, y)θ̂

+ {ΛS−1
θ ΛTCT + S−1

x CT }Σ(y − Cx̂)

˙̂
θ = S−1

θ ΛTCTΣ(y − Cx̂)

Λ̇ = {A(u, y)− S−1
x CTΣC}Λ + Φ(u, y)

Ṡx = −ρxSx −A(y, u)TSx − SxA(u, y) + CTΣC

Ṡθ = −ρθSθ + ΛTCTΣCΛ, Sx(0), Sθ(0) > 0

(15)



(a) (b)

Fig. 2. (a) Torque and engine speed profiles (b) Comparison between the reference and the simplified model

where ρx and ρθ are tunable parameters. It is worth noting
that Λ, Sx and Sθ are time-varying observer gains.

In order to apply this observer to the cooling system (4),
(7), (11) let us note:

θ1 = hcAeb θ2 = ṁcecc
a1 = mebceb a2 = mccc

(16)

Introducing intuitively z = [Teb Tc,o]
T

; u = [Qg,eb Tc,i]
T ,

one obtains the following equivalent state-space represen-
tation:

ż =

−
θ1
a1

θ1
2a1

θ1
a2
−θ1 + 2θ2

2a2

 z +


1

a1

θ1
2a1

0
θ2
a2
− θ1

2a2

u
y = [0 1] z

(17)

which unfortunately does not fit the formalism of (12) as it
introduces bilinear terms θ1z1 in which z1 is not measured.
To solve this problem, (17) is turned into its companion
form. With this aim in view, the following coordinate
transformation is used:

x =

 θ1a2 θ1
a1

0 1

 z (18)

This leads to:

ẋ =

[
0 0

1 0

]
x

+


u2 − x2
a1a2

u1
a1a2

0

0 −x2
a1
− x2 + u2

2a2

u2 − x2
a2

 θ
y = [0 1]x

(19)

where θ = [θ1θ2 θ1 θ2]
T

. Therefore (19) satisfies the
required form (12).

To estimate the parameter σ, it is important to note that,
by using (4) and (11):

θ1 = (hA)ref

(
Neng
ṁref

)0.75

σ0.75 , f(Neng)σ
0.75

θ2 = ccNengσ , g(Neng)σ

(20)

Thus, if the vector θ is divided term by term by:

[f(Neng)g(Neng) f(Neng) g(Neng)]
T
,

the AO can provide an estimation of
[
σ1.75 σ0.75 σ

]T
.

3.2 Extended Kalman filter

For the ease of comparison, a classical EKF is also de-
signed. Since σ is constant, the dynamic σ̇ = 0 is added
to the system (7) to obtain a third order system described
by:

ẋ(t) = f(x(t), u(t))

y = Cx(t)
(21)

with x = [σ Teb Tc,o]
T

; u = [Qg,eb Tc,i]
T

and C =
[0 0 1].

Note that assuming σ constant is not restrictive since it
corresponds to the needed assumption in adaptive observer
design for parameter estimation.

Without entering into well-known details (see for instance
Chui and Chen (2009) for the theory and Boussak (2005);
Janiszewski (2006) for EKF applications), the following
algorithm is used to estimate the states of (21):

˙̂x(t) = f(x̂(t), u(t)) +K(t)(y(t)− Cx̂(t)) (22)

where the optimum gain K(t) satisfies the following equa-
tions:



K(t) = P (t)CTR−1

Ṗ (t) = F (t)P (t) + P (t)F (t)T −K(t)CP (t) +Q

P (0) = P0 = PT0

F (t) =
∂f

∂x
(x̂(t), u(t))

(23)

where Q and R are the covariance matrices of the system
and measurement respectively.

4. SIMULATION RESULTS

To compare the merits of the two methods previously
presented, we set them in various contexts on the reference
model developed with GT-SUITE. The following initial
conditions and tuning parameters (chosen to get a trade-
off between convergence speed and noise attenuation) have
been used in all cases.

Concerning the adaptive observer (15), (19):

• ρx = ρθ = 75× 10−3

• θ̂(0) = [f(Neng(0))g(Neng(0))0.0021.75

f(Neng(0))0.0020.75 g(Neng(0))0.002]T , Sx(0) = I2,

Sθ(0) = I3, Λ(0) = O2,3, x̂(0) = [29 353.15]
T

Concerning the EKF (22), (23):

• Q = 100× I3, R = 108

• x̂(0) = [0.002 353.15 353.15]
T

, P (0) = I3

It is worth noting that the initial conditions provided to
the two observers are consistent with each other.

4.1 Fault scenario

In Section 2.4, it has been established that σ is a function
of the ratio r defined in (9). To simulate a fault on σ let
us consider the following evolution of r:

r(t) =

{
1.4 for t < 500 s

0.7 for t ≥ 500 s
(24)

The fault is implemented in GT-SUITE through the oper-
ating point Npump provided to the water pump. Data are
then collected to feed the developed observers. Then, fol-
lowing (11), the real σ is computed as: σreal = ṁc,e/Neng.
It is depicted with the dashed plot in the Fig. 3, 5 and 6.
Note also that the AO estimates a vector of three coherent
parameters but only the third term will be ploted in the
sequel.

4.2 First simulation case: constant engine speed and
torque

First, let us consider the simple case of a given constant
operating point:

Neng = 1600 rpm, Γ = 816 N.m

The results corresponding to this case are given in Fig. 3.
One can observe that the EKF estimates the value of
the parameter σ with a short settling time. On the other
hand, the estimation of σ provided by the AO introduces
a bias. This can be explained from the fact that the
condition of persistent excitation (13) is not fulfilled.
Indeed, if the speed and the torque are constant, it means
that the heat flow Qg,eb described by (2) is constant.

Fig. 3. Estimation results obtained in the first case

Fig. 4. Torque profile in the second case

Thus the variable u1 in (19) is not excited and so the
observer cannot converge. Consequently, for this scenario,
the adaptive observer is not suitable as it suffers from
significant limitations.

4.3 Second simulation case: constant engine speed and
time-varying torque

To guarantee the persistent excitation condition, the
torque profile is changed into the one depicted in the Fig. 4.
The engine speed is still equal to 1600 rpm.

The obtained results are presented in Fig. 5. The persistent
excitation is now fulfilled, and one can observe that both
observers converge and correctly estimate the value of the
parameter σ. However, the AO has a significant overshoot
which may be unsuitable for fault detection.

4.4 Third simulation case: realistic profiles

Until now, the engine speed was kept constant in order
to respect the assumption that the vector θ is constant.
Indeed, if Neng is varying, so are the parameters θ1 and
θ2 in (20). To evaluate the performance of the EKF in
a more practically meaningful context, let us consider
a third case where torque and speed engine profiles are
time-varying. Besides, a white Gaussian noise with a
variance of 0.05 is added to the measures Tc,o and Tc,i.
The considered profiles are the ones given in Fig. 2(a).
Corresponding simulations results are depicted in Fig. 6.
One can observe that, even in a noisy realistic case, the
estimation capabilities remain similar to the ones obtained
in the previous case.



Fig. 5. Estimation results obtained in the second case

Fig. 6. Estimation results obtained in the third case

5. CONCLUSION

In this paper we have proposed a method to estimate
the performance degradation of a belt tensioner from the
cooling system point of view. A simplified control-oriented
model has been developed and validated with a more
complex model developed in GT-SUITE. The model was
then used to design an adaptive observer and an Extended
Kalman Filter.

It has been established in Section 5 that the EKF has
better transient performance than the AO to estimate the
parameter σ. Besides, the EKF estimation requires fewer
assumptions but it is well known that its convergence is
just local and may have numerical instability (Verhaegen
and Van Dooren, 1986). On the other hand, the AO only
converges if the engine speed is constant, with sufficient
excitation on Qg,eb. This condition is, in practice, difficult
to obtain, as it implies that the rotation must be constant
while providing a variable torque (Fig. 4). However it is
less conservative than the EKF, in the sense that, it does
not estimate only σ but also the coolant heat transfer
coefficient hc and the coolant mass flow rate ṁc,e via θ1

and θ2 in the representation (19) where faults can occur.
Indeed, in (Astorga-Zaragoza et al., 2008) the authors
estimate the heat transfer coefficient in order to prevent a
degradation.

We may also conclude that a single observer is not enough
to detect and isolate the fault on the belt tensioner. In fact,
as said before, a fault may also occur in other components
of the cooling system. For example, a fault on the coolant
mass flow rate, as a leak, will affect σ. To overcome this
problem, the monitoring of all the other systems driven by
the belt. This is a direction of ongoing work.
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