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Jean-Marie Mirebeau∗
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Abstract

We introduce numerical schemes for computing distances and shortest paths with respect
to several planar paths models, featuring curvature penalization and data-driven velocity:
the Dubins car, the Euler/Mumford elastica, and a two variants of the Reeds-Shepp car.
For that purpose, we design monotone and causal discretizations of the associated Hamilton-
Jacobi-Bellman PDEs, posed on the three dimensional domain R2 × S1. Our discretizations
involves sparse, adaptive and anisotropic stencils on a cartesian grid, built using techniques
from lattice geometry. A convergence proof is provided, in the setting of discontinuous
viscosity solutions. The discretized problems are solvable in a single pass using a variant of
the Fast-Marching algorithm. Numerical experiments illustrate applications of our schemes
in motion planning and image segmentation.

1 Introduction

In this paper, we develop numerical schemes for computing distance maps and globally minimal
paths with respect to data driven costs depending on the local path position, orientation, and
curvature. We address a variety of models including two variants of the Reeds-Shepp car [RS90,
DMMP16], the Euler-Mumford elastica [Eul44, CMC16], and the Dubins car [Dub57]. Their
qualitative features differ widely: depending on the model, minimal paths may or may not be
smooth, and the associated distance may or may not be continuous. For that purpose, we
discretize generalized eikonal equations, also called first order static Hamilton-Jacobi-Bellman
PDEs, with a unified approach relying on a common tool from lattice geometry, also considered
in [Mir17]. Our discretizations are monotone and causal, hence can be solved using the fast
marching algorithm/dynamic programming principle, with complexity O(N lnN) complexity
where N is the number of points in the discrete domain. Applications to motion planning
control problems and medical image segmentation tasks are in the works, see §5 and [MD17].

In the models of interest to us, the cost of a smooth path x : [0, T ] → R2, parametrized at
unit speed, takes the form ∫ T

0
α(x(s), ẋ(s)) C(|ẍ(s)|) ds. (1)

Our objective is to numerically compute globally minimal paths, given a source and target
point and orientation, and regarding the control time T as a free parameter. We denoted by
α : R2×S1 →]0,∞] a continuous cost function, depending on the path position and orientation,
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usually data driven in applications. The path curvature |ẍ(s)| is penalized using a second cost
function C : R→ R+, for which we consider the three following instantiations

CRS(κ) :=
√

1 + |ξκ|2, CEM(κ) := 1 + |ξκ|2, CD(κ) :=

{
1 if |ξκ| ≤ 1,

+∞ otherwise.
(2)

The costs CRS, CEM and CD correspond respectively to the Reeds-Shepp car, the Euler-Mumford
elastica, and the Dubins car models. The parameter ξ > 0 has the dimension of a length and
should be interpreted as a typical radius of curvature. Our approach easily extends to models
where ξ : R2×S1 →]0,∞[ is a continuous positive function of the path position and orientation,
similarly to the cost α. The Reeds-Shepp car (with or without reverse gear), the Euler-Mumford
elastica and the Dubins car are classical path models involving increasingly strong penalizations
of curvature. Their qualitative properties are strikingly distinct, as illustrated on Figure 1 and
discussed below.

• The Reeds-Shepp cost CRS(κ) =
√

1 + |ξκ|2 is used to model slow vehicles, typically
wheelchairs. Following [DMMP16] we consider the two models based on this cost, referred
to as the Reeds-Shepp reversible (RS±, as originally considered in [RS90]) and Reeds-Shepp
forward (RS+) models, and where the vehicle respectively may, or may not, shift into re-
verse gear. Minimal paths for the reversible and forward models distinguish themselves by
the presence of cusps and of in place rotations of the path orientation, respectively, see Fig-
ure 1. The latter happen at the path endpoints and sometimes at the corners of obstacles,
and are admissible since the curvature cost CRS only grows linearly asymptotically. See
[DMMP16] for a discussion and the description of a semi-lagrangian PDE discretization
of the Reeds-Shepp models, which is different from the one considered in this paper1.

• The Euler-Mumford cost CEM = 1 + |ξκ|2 has the physical interpretation, when the data
driven cost is identically constant α ≡ 1 and the final time T is fixed, of the bending
energy of an elastic bar [Eul44]. The relevance of this model for image processing and
segmentation was first outlined in [Mum94]. Contrary to earlier works of the author
[CMC15], the PDE discretization introduced in this paper for this model obeys a causality
property which makes the Fast-Marching algorithm applicable.

• The Dubins cost CD penalizes euclidean path length, unless curvature exceeds the threshold
ξ−1, in which case the path is rejected, see (2). Minimal (relaxed) paths for this cost are
known, when α ≡ 1, to be concatenations of straight lines and of circular segments of
radius ξ−1. This description is used in [BCL94] to design exact polynomial time solvers
for the minimal Dubins path problem, in the presence of smooth obstacles. In contrast,
our PDE approach is approximate by nature, but it can accommodate non-constant costs
α, and can easily be extended to variants of the model involving e.g. position dependent
bounds on the radius of curvature or additional state variables.

In order to describe our numerical methods, we need to introduce some notations. Our
implementation of curvature penalization requires to lift paths into the configuration space
M := R2 × S1 of positions and orientations. Other strategies were previously proposed in the
literature, see Remark 1.2. In the following, we use the identification S1 ∼= R/(2πZ), and denote

1The Reeds-Shepp models are in this paper mostly discussed for comparison with the Euler-Mumford and
Dubins models, since our numerical results in the Reeds-Shepp case are actually quite similar to [DMMP16],
despite the distinct discretization.
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Figure 1: Globally minimal paths for the Reeds-Shepp reversible model (ξ = 0.3), Reeds-
Shepp forward model (ξ = 0.3), Euler-Mumford elastica model (ξ = 0.2), and Dubins model
(ξ = 0.2), with uniform cost α ≡ 1. Seed point (1/2, 1/2, 0) ∈ R2×S1, tip points (k/3, l/3, π/4),
k, l ∈ {0, · · · , 3}. (Discretization parameters: ε = 0.1, angular resolution 2π/60.)

points of the configuration space by p = (x, θ) ∈ M. The tangent space to M := R2 × S1 is
independent of the base point, and denoted E := R2×R. Vectors are denoted ṗ = (ẋ, θ̇) ∈ E, and
co-vectors p̂ = (x̂, θ̂) ∈ E∗. The unit vector of orientation θ ∈ S1 is denoted n(θ) := (cos θ, sin θ).

A (local) metric on M is a function F : M×E→ [0,∞], which is convex and 1-homogeneous
in its second argument. The cost functions C = CRS, CEM, CD define three metrics F = FRS+,
FEM, FD by homogenization as follows: for all p = (x, θ) ∈M and all ṗ = (ẋ, θ̇) ∈ E

Fp(ṗ) =

{
‖ẋ‖C(|θ̇|/‖ẋ‖) if ẋ = ‖ẋ‖n(θ),

+∞ otherwise.
(3)

with the additional convention that Fp(0) = 0. A fourth metric FRS±, corresponding to the
Reeds-Shepp model with reverse gear, is defined like FRS+ up to the constraint which is replaced
with the unsigned collinearity requirement ẋ = 〈ẋ,n(θ)〉n(θ). We prove in §B that (3) does
indeed define a convex lower semi-continuous function w.r.t. ṗ, as this it is not entirely obvious
from the definition.

The length of a Lispchitz path γ : [0, 1]→ R2 × S1, w.r.t. a metric F , is defined as

lengthF (γ) :=

∫ 1

0
α(γ(t))Fγ(t)(γ̇(t)) dt, (4)

where α : M→]0,∞[ is a continuous cost function, previously mentioned and fixed throughout
this paper. A bounded domain Ω ⊆M is fixed throughout the paper, and to each (local) metric
F is associated a pseudo-distance dF defined for all p,q ∈ Ω by

dF (p,q) := inf{lengthF (γ); γ ∈ Lip([0, 1],Ω), γ(0) = p, γ(1) = q}. (5)

Note that one may have dF (p,q) 6= dF (q,p), or dF (p,q) = ∞. For the metrics FRS+, FRS±,
FEM and FD considered in this paper, the infimum (5) is attained whenever dF (p,q) < ∞,
see Appendix A of [CMC15] or Appendix A of [DMMP16]. The objective of this paper is to
numerically solve the following optimal control problem: find the shortest path from the domain
boundary ∂Ω to any point in Ω. The value function u : Ω → [0,∞] for this problem reads for
all q ∈ Ω

u(q) := inf
p∈∂Ω

dF (p,q). (6)
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The function u associated to the Reeds-Shepp reversible metric is continuous, thanks to the sub-
Riemannian nature of this model, which is thus locally controllable by Chow’s theorem [Mon06].
In contrast, the function u can be discontinuous along ∂Ω for non locally controllable models,
such as the Reeds-Shepp forward, Euler-Elastica and Dubins models. In fact, u may even be
discontinuous in the interior of Ω, in the Dubins case, as well as in the Reeds-Shepp for some
domain shapes, see Proposition 3.3. See Figure 14 page 42 for the level lines of u.

Despite its potential discontinuities, the function u : Ω → R is a (discontinuous) viscosity
solution to a generalized eikonal equation: for all p ∈ Ω

Hp(du(p)) =
1

2
α(p)2, (7)

and u(p) = 0 for all p ∈ ∂Ω. See [BCD97] and §3.2 for details, including the appropriate
relaxation of the boundary conditions. This PDE involves the Hamiltonian H : M×E∗ → [0,∞[
of the model, which is defined as the Legendre-Fenchel conjugate of the Lagrangian L : M×E→
[0,∞]. For all p ∈M and p̂ ∈ E∗

Hp(p̂) := sup
ṗ∈E
〈p̂, ṗ〉 − Lp(ṗ), where Lp(ṗ) :=

1

2
Fp(ṗ)2. (8)

The explicit expressions of the hamiltonians HRS±, HRS+, HEM and HD associated to the
models of interest are provided in §2, where we also provide monotone and causal discretiza-
tions of the Hamilton-Jacobi-Bellman PDE (7). Our PDE discretizations rely on small, sparse
and strongly anisotropic stencils, see Figure 3. They are designed using the following result,
which proof relies on Voronoi’s first reduction, a tool from discrete geometry characterizing the
interaction of a positive quadratic form with an additive lattice [Sch09]. Similar techniques are
used for anisotropic diffusion PDEs in [FM13], for Monge-Ampere equations in [Mir16], and for
eikonal PDEs associated to Riemannian, sub-Riemannian and Rander metrics in [Mir17].

The next proposition, proved in §4, shows how the positive part of a linear form p̂ 7→
〈p̂, ṅ〉+ can be approximated using positive parts of linear forms p̂ 7→ 〈p̂, ė〉+ associated to
integral vectors ė ∈ Zd. Here and in the rest of this paper, we denote a+ := max{a, 0} and
a− := max{−a, 0}, for any a ∈ R. This result allows in our numerical schemes to approximate
the directional derivative 〈du(p), ṅ〉+ at a point p ∈ M using finite differences of the form
1
h(u(p)− u(p− hė))+, where h > 0 is the discretization grid scale.

Proposition 1.1. Let d ∈ {2, 3}, let ṅ ∈ Rd, and let ε ∈]0, 1]. Then there exists non-negative
weights ρεė(ṅ), ė ∈ Zd, such that for all p̂ ∈ Rd

〈p̂, ṅ〉2+ ≤
∑
ė∈Zd

ρεė(ṅ)〈p̂, ė〉2+ ≤ 〈p̂, ṅ〉2+ + ε2‖ṅ‖2‖p̂‖2.

Furthermore the support {ė ∈ Zd; ρεė(ṅ) > 0} has at most 3 elements in dimension d = 2 (resp.
6 elements in dimension d = 3), and is contained in a ball of radius CWS/ε, where CWS is an
absolute constant. In addition

∑
ė∈Zd ρεė(ṅ)‖ė‖2 = ‖ṅ‖2(1 + (d− 1)ε2).

In practice, we usually choose the relaxation parameter ε = 1/10 and obtain a support which
is 5 or 6 pixels wide, see Figure 3. Our numerical method thus belongs to the category of Wide-
Stencil schemes (hence the subscript to the constant CWS). Further details on the discretization
of (7) using Proposition 1.1 are presented in §2.

Once the solution u to (7) is computed, minimal paths from ∂Ω to any given q ∈ Ω, are
extracted as solutions to the following ODE (solved backwards in time)

γ̇(t) = dHγ(t)(du(γ(t)), (9)
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Figure 2: Control sets of The Reeds-Shepp reversible, Reeds-Shepp forward, Euler-Mumford
and Dubins models. All have empty interior, reflecting the non-holonomy of the models.

where H is differentiated w.r.t. the second variable p̂, see e.g. Appendix B of [DMMP16]. We
end this introduction with the definition of an important geometrical object: the “unit balls”
in each tangent space w.r.t. to the local metric, referred to as the control sets, see Figure 2.
These sets, denoted B(p) ⊆ E where p ∈ M, provide geometric intuition as well as an elegant
expression of the Hamiltonian (8)

B(p) := {ṗ ∈ E; Fp(ṗ) ≤ 1}, Hp(p̂) =
1

2
sup

ṗ∈B(p)
〈p̂, ṗ〉2+. (10)

Contributions and outline. In section §2 we introduce new discretizations of the generalized
eikonal PDEs (7) associated to the hamiltonians of interestHRS±, HRS+, HEM andHD. For that
purpose, we use an original reformulation of the Euler-Mumford hamiltonian. Our discretizations
are monotone and causal, enabling the use of the single pass Fast-Marching algorithm, and rely
on sparse and anisotropic stencils.

Section §3 is devoted to the convergence analysis, and our main results are stated in its
introduction. We prove in §3.1 the discretized PDEs admit uniformly bounded solutions. We
establish in §3.2 the convergence of the discrete solutions towards the value function u, defined
by (6), at its points of continuity. We discuss in §3.3 the continuity properties of u, depending
on the model and on the domain geometry.

Section §4 is devoted to the proof of Proposition 1.1, which is a key ingredient of our PDE
discretization schemes. It is based on tools from lattice geometry such as Voronoi’s first reduction
of quadratic forms, obtuse superbases of lattices, and Selling’s algorithm.

Numerical experiments presented in §5 illustrate the potential of our approach in motion
planning and image segmentation tasks. We also compare, for validation, our minimal geodesics
with those obtained with a shooting approach.

Remark 1.2 (Alternative approaches to curvature penalized shortest paths). To the knowledge
of the author, two alternative methods have been proposed to compute curvature penalized short-
est paths via dynamic programming. Paths are approximated in [SUKG13] with collections of
non-superposable short splines, each determined by three or four control points with integer co-
ordinates, and the cost assigned to a path is the sum of the costs of the spline approximants. No
convergence analysis is presented, and the numerical results do not address the models consid-
ered in this paper. The author remains doubtful that this method is appropriate for models which
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minimal paths feature singularities such as cusps (Reeds-Shepp reversible) or in place rotations
(Reeds-Shepp forward), or are subject to a hard constraint on the radius of curvature (Dubins).

Another approach [LRr13] consists in using the original fast-marching scheme designed for
euclidean distance computations [Tsi95], but with the following addition: each time a point is
added to the propagated front, a local backtracing is performed to estimate the curvature of the
geodesic reaching this point, and the front propagation cost is locally adjusted as a result. The
method uses a two dimensional value map u : R2 → R, instead of the genuine three dimensional
one u : R2 × S1 → R, hence the physical projections of the paths extracted with this method
never cross each other. This contradicts the observed behavior, see Figure 1, hence this approach
cannot compute all curvature penalized minimal paths.

2 Discretization

In this section, we construct finite differences discretizations of the HJB PDEs (7) associated to
the different models, which are monotone and causal, see Definition 2.1 below. For that purpose
we derive the expression of the relevant hamiltonian, and construct an approximation of a specific
form. The Reeds-Shepp, Euler-Mumford, and Dubins models are respectively addressed in §2.1,
§2.2 and §2.3.

For that purpose, let us fix a grid scale h > 0 of the form 2π/k for some positive integer k,
and introduce the grid Mh ⊆ M := R2 × S1, discrete domain Ωh, and formal discrete boundary
∂Ωh defined by

Mh := hZ2 × (hZ/2πZ), Ωh := Ω ∩Mh, ∂Ωh := Mh \ Ωh. (11)

The properties of monotony and causality of a finite differences scheme are recalled in the
next definition, in the sense of [Obe06] and [RT92] respectively. Monotony implies comparison
principles, which are used in the convergence analysis §3. Causality allows to solve the discretized
PDE in a single pass, which guarantees short computation times see §5.

Definition 2.1. A (finite differences) scheme on a finite set X is a continuous map F : X ×
R× RX → R. The scheme is said:

• Monotone, iff F is non-decreasing w.r.t. the second and (each of the) third variables.

• Causal, iff F only depends on the positive part of the third variable.

To the scheme is associated a function RX → RX still (abusively) denoted by F, and defined by

(FU)(x) := F(x, U(x), (U(x)− U(y))y∈X),

for all x ∈ X, U ∈ RX .

2.1 The Reeds-Shepp car models

In the following, we describe the discretization of the Reeds-Shepp forward model, and postpone
the discussion of the reversible model to Remark 2.6. The metric FRS+ of the Reeds-Shepp
forward model is obtained by inserting the curvature cost expression CRS(κ) :=

√
1 + κ2 in the

generic expression (3). Thus for all p = (x, θ) ∈M and all ṗ = (ẋ, θ̇) ∈ E

FRS+
p (ṗ) =

√
‖ẋ‖2 + |ξθ̇|2 if ẋ = ‖ẋ‖n(θ), (12)
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Figure 3: Discretization stencil of the Reeds-Shepp reversible, Reeds-Shepp forward, Euler-
Mumford, and Dubins models. Note the sparseness and anisotropy of the stencils. Model
parameters: θ = π/3, ξ = 0.2. Discretization parameters: ε = 0.1, K = 5 for Euler-Mumford.

and FRS+
p (ṗ) = +∞ otherwise. The control set BRS+(p) is defined as the unit ball of the metric

FRS+
p , for any p = (x, θ) ∈ M, see (10). Hence it is an half ellipse, or a half disk if ξ = 1, as

illustrated on Figure 2.

BRS+(p) = {(ẋ, θ̇) ∈ E; ‖ẋ‖2 + |ξθ̇|2 ≤ 1, ẋ = ‖ẋ‖n(θ)}.

The Lagrangian of the Reeds-Shepp model is defined as the half square of the metric (12). Hence
denoting by Pn(ẋ) := ẋ− 〈n, ẋ〉x the component of a vector x orthogonal to a direction n, one
has

2LRS+
p (ṗ) = (〈n(θ), ẋ〉2+ +∞〈n(θ), ẋ〉2−) +∞‖Pn(θ)(ẋ)‖2 + |ξθ̇|2,

where, slightly abusively, we use infinite coefficients with the convention 0 × ∞ = 0. The
hamiltonian, also presented in [DMMP16], reads for all p = (x, θ) ∈ Ω, and all p̂ = (x̂, θ̂) ∈ E∗

2HRS+
p (p̂) = 〈x̂,n(θ)〉2+ + |θ̂/ξ|2. (13)

This expression follows from the piecewise quadratic and separable structure of the Lagrangian,
and from two basic lemmas on the Legendre-Fenchel dual f∗ of a function f , which are recalled
below without proof.

Lemma 2.2 (Legendre-Fenchel dual of a separable sum). Let (e1, · · · , ed) be an orthogonal basis
of Rd, and let f1, · · · , fd : R→ R be proper, convex and lower semi-continuous. Then

∀x ∈ Rd, f(x) :=
∑

1≤i≤d
fi(〈ei,x〉) ⇒ ∀x ∈ Rd, f∗(x) =

∑
1≤i≤d

f∗i (〈ei,x〉).

Lemma 2.3 (Legendre-Fenchel dual of a quadratic function). Let a, b ∈ [0,∞]. Then

∀x ∈ R, f(x) =
1

2
(a2x2

− + b2x2
+) ⇒ ∀x ∈ R, f∗(x) =

1

2
(a−2x2

− + b−2x2
+).

We propose the following discretization scheme HRS+
ε,h for the Hamitonian HRS+, which de-

pends on a relaxation parameter ε ∈]0, 1] and on the grid scale h. Proposition 1.1 is instantiated
in dimension two to provide the weights ρεė(n(θ)). The offsets appearing in this expression are
illustrated on Figure 3. For any discrete map U : Mh → R and any p = (x, θ) ∈ Ωh

2HRS+
ε,h U(p) := h−2

∑
ė∈Z2

ρεė(n(θ))(U(x, θ)− U(x− hė, θ))2
+ (14)

+ (ξh)−2 max{0, U(x, θ)− U(x, θ − h), U(x, θ)− U(x, θ + h)}2.
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Proposition 2.4. The discretization scheme HRS+
ε,h is monotone and causal, for any ε ∈]0, 1]

and h > 0. It is supported on 6 points at most, at distance at most CWSh/ε from p. Furthermore
if U coincides with a linear function on these points, then

HRS+
p (dU(p)) ≤ HRS+

ε,h U(p) ≤ HRS+
p (dU(p)) +

ε2

2
‖dU(p)‖2.

Proof. The monotony and causality properties are clearly satisfied, see also Proposition 3.6 for
a general class of schemes which obey these properties. The support cardinality and radius
estimates follow from Proposition 1.1. If U is locally linear around p = (x, θ) ∈ Mh, then
denoting dU(p) = (x̂, θ̂) and observing that U(x, θ) − U(x − hė, θ) = 〈x̂, ė〉 and U(x, θ) −
U(x, θ − h) = θ̂h, one obtains

HRS+
ε,h U(p) =

∑
ė∈Z2

ρεė(n(θ))〈x̂, ė〉2+ + ξ−2 max{0, θ̂,−θ̂}2,

and the announced estimate follows by (13) and Proposition 1.1.

Proposition 2.4 easily extends to three dimensional Reeds-Shepp forward model, posed on
R3 × S2. We refer to [DMMP16] for more discussion on this extension and numerical ex-
periments2, and focus our attention on two dimensional path models in this paper. Never-
theless we describe our discretization strategy in the following lines, since it is only briefly
evoked in [DMMP16]. For that purpose, the two dimensional unit sphere is parametrized as
n(θ, ϕ) := (cos θ, sin θ cosϕ, sin θ sinϕ), where (θ, ϕ) ∈ A2 := [0, π]× [0, 2π] are the similar to the
Euler angles. The Reeds-Shepp forward metric reads in this context:

F̃RS+
p (ṗ) :=

√
‖ẋ‖2 + |ξθ̇|2 + |ϕ̇ξ sin θ|2 if ẋ = ‖ẋ‖n(θ, ϕ)

and F̃RS+
p (ṗ) = +∞ otherwise, for all p = (x, θ, ϕ) ∈ R3 × A2 and ṗ = (ẋ, θ̇, ϕ̇) ∈ R3 × R2.

Using, as above, the separable and piecewise quadratic structure of the Lagrangian, we obtain

2H̃RS+
p (p̂) = 〈x̂,n(θ, ϕ)〉2+ + |θ̂/ξ|2 + |ϕ̂/(ξ sin θ)|2

for all p̂ = (x̂, θ̂, ϕ̂) ∈ (R3)∗ × (R2)∗. The rectangle A2 is equipped with the adequate boundary
conditions (θ, 0) ∼ (θ, 2π), (0, ϕ) ∼ (0, ψ), (π, ϕ) ∼ (π, ψ), for all θ ∈ [0, π], ϕ,ψ ∈ [0, 2π], and
discretized using a cartesian grid of scale h = π/k for some positive integer k. Proposition 1.1
is instantiated in dimension three to provide the weights ρεė(n(θ, ϕ)).

2H̃RS+
ε,h U(p) := h−2

∑
ė∈Z3

ρεė(n(θ, ϕ))(U(p)− U(x− hė, θ, ϕ))2
+

+ (ξh)−2 max{0, U(p)− U(x, θ − h, ϕ), U(p)− U(x, θ + h, ϕ)}2

+ (ξh sin θ)−2 max{0, U(p)− U(x, θ, ϕ− h), U(p)− U(x, θ, ϕ+ h)}2.

Proposition 2.5. The discretization scheme H̃RS+
ε,h is monotone and causal. It is supported on

11 points at most, at distance at most CWSh/ε from p. Furthermore if U coincides with a linear
function on these points, then

H̃RS+
p (dU(p)) ≤ H̃RS+

ε,h U(p) ≤ H̃RS+
p (dU(p)) +

ε2

2
‖dU(p)‖2.

2Using a semi-lagrangian discretization for three dimensional the Reeds-Shepp reversible model, and the present
discretization for the forward model
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We do not state the proofs Proposition 2.5 and of the following remark, since they are entirely
similar to that of Proposition 2.4.

Remark 2.6 (The reversible Reeds-Shepp model). The metric of the Reeds-Shepp reversible
model has the same expression as (12), except for the modified constraint: ẋ = 〈n(θ), ẋ〉n(θ).
As a result, the Lagrangian and Hamiltonian read

2LRS±
p (ṗ) = 〈n(θ), ẋ〉2 +∞‖Pn(θ)(ẋ)‖2 + |ξθ̇|2, 2HRS±

p (p̂) = 〈x̂,n(θ)〉2 + |θ̂/ξ|2.

The discretization scheme (14) can be adapted by appropriately modifying its first line:

2HRS±
ε,h U(p) := h−2

∑
ė∈Z2

ρεė(n(θ)) max{0, U(x, θ)− U(x− hė, θ), U(x, θ)− U(x + hė, θ)}2 + · · · .

This scheme supported on 9 points, and for a linear U on these points one has the identity

HRS±
ε,h U(p) = HRS±

p (dU(p)) +
ε2

2
‖dU(p)‖2.

A similar remark applies to the three dimensional Reeds-Shepp reversible model.

2.2 The Euler-Mumford elastica model

The metric FEM of the Euler-Mumford elastica model is obtained by inserting the curvature cost
CEM(κ) := 1+κ2 in the generic expression (3). Thus for all p = (x, θ) ∈M and all ṗ = (ẋ, θ̇) ∈ E

FEM
p (ṗ) = ‖ẋ‖+

|ξθ̇|2

‖ẋ‖
if ẋ = ‖ẋ‖n(θ),

and FEM
p (ṗ) = +∞ otherwise. Observing that

‖ẋ‖+
|ξθ̇|2

‖ẋ‖
≤ 1 ⇔ ‖ẋ‖2 + |ξθ̇|2 ≤ ‖ẋ‖ ⇔ (‖ẋ‖ − 1/2)2 + |ξθ|2 ≤ 1/4

we obtain that the control sets BEM are ellipses, or disks if ξ = 1. Note, however, that the origin
0 of the tangent space E is not in their center but on their boundary, see Figure 2.

BEM(p) = {(ẋ, θ̇) ∈ E; (‖ẋ‖ − 1/2)2 + |ξθ̇|2 ≤ 1/4, ẋ = ‖ẋ‖n(θ)},

=

{
1

2
((a+ 1)n(θ), b/ξ) ; a, b ∈ R, a2 + b2 ≤ 1

}
.

Lemma 2.7. The Euler-Mumford elastica hamiltonian reads, for all (p, p̂) ∈ Ω× E∗

2HEM
p (p̂) :=

1

4

(
〈x̂,n(θ)〉+

√
〈x̂,n(θ)〉2 + |θ̂/ξ|2

)2

. (15)

Proof. The announced result follows from (10, right) and from the computation

2 sup
ṗ∈BEM(p)

〈p̂, ṗ〉 = 〈x̂,n(θ)〉+ sup
a2+b2≤1

a〈x̂,n(θ)〉+ bθ̂/ξ = 〈x̂,n(θ)〉+

√
〈x̂,n(θ)〉+ |θ̂/ξ|2.

9



The expression (15) suggests to regard the Euler/Mumford model as a degenerate case of
Rander geometry [Ran41]. This approach is considered numerically in [CMC16]. Unfortunately,
existing numerical schemes for eikonal equations involving Rander metrics are either limited
to two dimensions [Mir13], or lack causality [Mir17] and thus cannot be solved using the Fast-
Marching algorithm, which significantly impacts the numerical cost and the flexibility of their
implementations. In this paper we advocate for a different approach, based on a second expres-
sion of the hamiltonian HEM, in integral form, which to our knowledge is original.

Proposition 2.8. For all (p, p̂) ∈M× E∗, one has

2HEM
p (p̂) =

3

4

∫ π/2

−π/2
〈p̂, (n(θ) cosϕ, ξ−1 sinϕ)〉2+ cos(ϕ) dϕ.

Proof. The first step of the proof, left as an exercise to the reader, is to show that∫ π/2

−π/2
(cos(ϕ− ψ))2

+ cosϕdϕ =
1

3
(1 + cosψ)2, (16)

for any ψ ∈ R. The second step is the claim that for any ė0, ė1 ∈ E one has∫ π/2

−π/2
〈p̂, cos(ϕ)ė0 + sin(ϕ)ė1〉2+ cosϕdϕ =

1

3

(√
〈p̂, ė0〉2 + 〈p̂, ė1〉2 + 〈p̂, ė0〉

)2
. (17)

Indeed, if 〈p̂, ė0〉 = 〈p̂, ė1〉 = 0 then there is nothing to prove. Otherwise, up to rescaling p̂, we
may assume that 〈p̂, ė0〉2 +〈p̂, ė1〉2 = 1, thus 〈p̂, ė0〉 = cosψ and 〈p̂, ė1〉 = sinψ for some ψ ∈ R.
Therefore 〈p̂, cos(ϕ)ė0 + sin(ϕ)ė1〉 = cosϕ cosψ + sinϕ sinψ = cos(ϕ− ψ) for any ϕ ∈ R, hence
(17) follows from (16). Choosing e0 := (n(θ), 0) and e1 := (0R2 , ξ−1) we conclude the proof.

In order to discretize the Euler-Mumford hamiltonian, we consider a second order consistent
quadrature rule on the interval [−π/2, π/2] with cosine weight. Quadrature rules on the interval
[−1, 1] for the uniform cost, such as the Clenshaw-Curtis or Fejer rules [Féj33], are for instance
easily adapted to our needs thanks to the identity∫ 1

−1
f(t)dt =

∫ π/2

−π/2
f(sinϕ) cosϕdϕ.

More precisely, let K be a positive integer, and let (αk, ϕk) ∈ (R+× [−π/2, π/2])K be such that
for any twice continuously differentiable f : [−π/2, π/2]→ R∣∣∣∣∣∣

∑
1≤k≤K

αkf(ϕk)−
∫ π/2

−π/2
f(ϕ) cos(ϕ) dϕ

∣∣∣∣∣∣ ≤ C

K2
sup

{
|f ′′(t)|; t ∈ [−π/2, π/2]

}
, (18)

where C is independent of f and K. Note that choosing f ≡ 1 on [−π/2, π/2], one obtains∑
1≤k≤K

αk =

∫ π/2

−π/2
cosϕdϕ = 2. (19)

We propose the following discretization of the Euler-Mumford hamiltonian

2HEM
ε,K,hU(p) :=

3

4
h−2

∑
0≤k≤K

αk
∑
ė∈Z3

ρεė(n(θ) cosϕk, ξ
−1 sinϕk) (U(p)− U(p− hė))2

+.

It is based on the three dimensional instantiation of Proposition 1.1, applied to the vectors
(n(θ) cosϕk, ξ

−1 sinϕk), 0 ≤ k ≤ K with the relaxation parameter ε ∈]0, 1].

10



Proposition 2.9. The discretization scheme HEM
ε,K,h is monotone and causal, for any ε ∈]0, 1],

K ≥ 1, h > 0. It is supported on at most 6K + 1 points, at distance at most CWSh/ε from p.
Furthermore if U coincides with a linear function on these points, then with C = C0 max{1, ξ−2}
for some absolute constant C0

HEM
p (dU(p))− CK−2‖dU(p)‖2 ≤ HEM

ε,K,hU(p) ≤ HEM
p (dU(p)) + C(ε2 +K−2)‖dU(p)‖2.

Proof. Monotony, causality, and the stencil cardinality and radius estimates are proved as in
Proposition 2.4. Let p = (x, θ) ∈ Ω be fixed, and let p̂ = dU(p). Let v̇(ϕ) := (n(θ) cosϕ, ξ−1 sinϕ)
for all ϕ ∈ [−π/2, π/2]. Using Proposition 1.1 and observing that ‖v̇(ϕ)‖ ≤ max{1, ξ−1} one
obtains

0 ≤ 8

3
HEM
ε,h U(p)−

∑
1≤k≤K

αk〈p̂, v̇(ϕk)〉2+ ≤
∑

1≤k≤K
αkε

2 max{1, ξ−2}‖p̂‖2,

where we used the non-negativity of the weights (αk)
K
k=0. Therefore using (19)

− C1‖p̂‖2K−2 ≤ 8

3
HEM
ε,h U(p)−

∫ π/2

−π/2
〈p̂, v̇(ϕ)〉2+ sinϕdϕ ≤ C1‖p̂‖2K−2 + C2ε

2‖p̂‖2, (20)

where C2 = 2 max{1, ξ−2}, and where we applied (18) to the function ϕ 7→ 〈p̂, v̇(ϕ)〉2+, which
second derivative makes sense as an L∞ function and is bounded by C1‖p̂‖2. Here C1 = C1(ξ)
denotes an upper bound for the partial second derivative ∂2/∂ϕ2 of the trigonometric polynomial

〈q̂, v̇(ϕ)〉2 = 〈q̂, (n(θ) cosϕ, ξ−1 sinϕ)〉2 = a(q̂, θ, ξ) cos(2ϕ) + b(q̂, θ, ξ) sin(2ϕ), (21)

uniformly w.r.t. θ ∈ S1 and q̂ ∈ E∗ such that ‖q̂‖ = 1. Note that the coefficients a, b, hence
also C1, are O(ξ−2). The positive part appearing in the expression 〈p̂, v̇(ϕ)〉2+ of (20) and not
in (21) is not an issue, thanks to a minor technical argument presented in Lemma 2.10 below.
The announced result follows from (20) and Proposition 2.8.

Lemma 2.10. Let f ∈ C2(R,R), and let g(x) := f(x)2
+ for all x ∈ R. Then g′′ ∈ L∞loc(R) and

for almost every x ∈ R one has g′′(x) = d
dx(f(x)2) if f(x) > 0, otherwise g′′(x) = 0.

Proof. Clearly g is locally Lipschitz, with derivative g′(x) = 2f ′(x)f(x)+. This expression shows
that g′ is also locally Lipschitz, hence almost everywhere differentiable with a locally bounded
derivative, which concludes the proof.

2.3 The Dubins car model

The metric of FD of the Dubins car model is obtained by inserting the cost function CD(κ) := 1
if |ξκ| ≤ 1, CD(κ) = +∞ otherwise, in the generic expression (3). Hence for all p = (x, θ) ∈ M
and all ṗ = (ẋ, θ̇) ∈ E

Fp(ṗ) = ‖ẋ‖ if ẋ = ‖ẋ‖n(θ) and |ξθ| ≤ ‖ẋ‖, (22)

and Fp(ṗ) = +∞ otherwise. The control set BD(p) is an isosceles triangle, or a half square if
ξ = 1, which apex is the origin of E.

BD(p) = {(ẋ, θ̇) ∈ E; ξ|θ̇| ≤ ‖ẋ‖ ≤ 1, ẋ = ‖ẋ‖n(θ)} = {(an(θ), bξ−1); 0 ≤ |b| ≤ a ≤ 1}.

The Dubins hamiltonian is the square of a piecewise linear function.
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Lemma 2.11. For all p = (x, θ) ∈M and all p̂ = (x̂, θ̂) ∈ E∗, one has

2HD
p (p̂) = max{0, 〈p̂, (n(θ), ξ−1)〉, 〈p̂, (n(θ),−ξ−1)〉}2 = (〈x̂,n(θ)〉+ ξ−1|θ̂|)2

+

Proof. The result therefore follows from the expression (10, right) of the hamiltonian, and from
the observation that the linear function 〈p̂, ·〉 always attains its maximum at an extreme point
of the convex set BD(p), hence at one the three vertices 0, (n(θ), ξ−1) and (n(θ),−ξ−1) of this
triangle.

We propose the following discretization scheme HD
ε,h, with gridscale h > 0 and relaxation

parameter ε ∈]0, 1]. It relies on the three dimensional instantiation of Proposition 1.1 applied to
the two vectors (n(θ),±ξ−1). For any U : Mh → R and any p = (x, θ) ∈ Ωh, define HD

ε,hU(p) :=

h−2 max
{ ∑

ė∈Z3

ρεė(n(θ), ξ−1)(U(p)− U(p− hė))2
+,

∑
ė∈Z3

ρεė(n(θ),−ξ−1)(U(p)− U(p− hė))2
+

}
.

Proposition 2.12. The discretization scheme HD
ε,hU(p) is monotone and causal. It is supported

on 13 points at most, within distance CWSh/ε from p. Furthermore if U coincides with a linear
function on these points then

HD
p (dU(p)) ≤ HD

ε,h(p) ≤ HD
p (dU(p)) +

ε2

2
‖dU(p)‖2.

The proof, entirely similar to Proposition 2.4, is left to the reader.

3 Convergence analysis

This section is devoted to the convergence analysis of the discretization schemes introduced in
§2, and applied to the optimal control problem (6). We prove in Theorems 3.1 and 3.2 that
the resulting discrete systems of equations are solvable using the fast-marching algorithm, and
that the obtained discrete solutions converge to the continuous ones at the points where they are
continuous, as the grid scale h and relaxation parameter ε tend to 0 suitably. We also establish in
Proposition 3.3 some continuity properties of the value function to our optimal control problem
(6).

For that purpose, following the notations of [BCD97], we introduce a close relative û : Ω→ R
to the value function u defined by (6). For any q ∈ Ω, denoting by F the metric of the model

û(q) := inf
p∈R2\Ω

dF (p,q).

Theorem 3.1. Let Ω ⊆ M be an open and bounded domain, and let α : M →]0,∞[ have
Lipschitz regularity. Then for any h > 0 and ε ∈]0, 1] the system

HRS+
ε,h U(p) =

1

2
α(p)2 for all p ∈ Ωh, U(p) = 0 for all p ∈ ∂Ωh, (23)

admits a unique solution denoted Uε,h : Mh → R. This solution can be computed using the fast
marching algorithm with complexity O(Nh lnNh), where Nh := #(Ωh).

Let Un := Uεn,hn, where εn → 0 and hn/εn → 0 as n→∞. Define for all p ∈ Ω

u(p) := lim
r→0

lim inf
n→∞

inf
Mh∩B(p,r)

Un, u(p) := lim
r→0

lim sup
n→∞

sup
Mh∩B(p,r)

Un.

Then u ≤ u ≤ u ≤ û on Ω.
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The first part of this result, on the discretized systems, is established in §3.1. The second
part, on the comparison with the exact solutions u and û, is addressed in §3.2. These results
are of course not limited to the forward Reeds-Shepp model.

Theorem 3.2. Theorem 3.1 applies to the Reeds-Shepp reversible, Euler-Mumford elastica, and
Dubins models as well. Obviously, the discretization schemes are HRS±

ε,h , HEM
ε,K,h and HD

ε,h, and

the metrics are FRS±, FEM and FD in problem (6). In the Euler-Mumford case, the additional
discretization parameter K must be taken into account as follows: the fast-marching complexity
is O(KNh lnNh), and convergence holds for Un = Uεn,Kn,hn provided εn → 0, hn/εn → 0 and
Kn →∞ as n→∞.

The convergence result presented in Theorem 3.1 is incomplete until one proves that u = û
on a large subset of the domain Ω. Our knowledge on this topic is gathered in the following
proposition, proved in §3.3. As a side product, this result establishes some continuity properties
of the value function to the optimal control problem (6), which are interesting from a qualitative
point of view. The interior of a set A is denoted by int(A).

Proposition 3.3. Under the assumptions of Theorem 3.1, and in addition int(Ω) = Ω. The
value functions u, û : Ω→ R are equal in the following cases:

• (Reeds-Shepp reversible model) u = û on Ω.

• (Reeds-Shepp forward model) u = û on Ω, if this domain has the form Ω = Ω0 × S1.

• (Euler-Mumford model) u = û on Ω.

• (Dubins model) u = û on a dense subset of Ω.

Furthermore, in each case, u and û are continuous at each point p ∈ Ω where u(p) = û(p).

The most interesting aspect of Proposition 3.3 is what it does not prove. In particular,
uRS+ and uEM need not be continuous at the boundary of Ω, and uD may be discontinuous
in the interior of Ω, as well as uRS+ if Ω has not the shape specified in Proposition 3.3. The
assumption int(Ω) = Ω is formulated as int T = T in [BCD97], where T := M \ Ω is the
target set. It forbids the presence of isolated points in the target, which are inconvenient from
a theoretical perspective, although they are common in applications.

In order to simplify the proofs, we introduce the dual F∗ of any metric F , defined for any
point p ∈M and co-vector p̂ ∈ E∗ by

F∗p(p̂) := sup
ṗ6=0

〈p̂, ṗ〉
Fp(ṗ)

= sup
ṗ∈B(p)

〈p̂, ṗ〉 =
√

2Hp(p̂). (24)

where the control set B and hamiltonian H are defined by (10). The dual norm F∗p is positively
1-homogeneous and obeys the triangular inequality:

F∗p(λp̂) = λF∗p(p̂) F∗p(p̂1 + p̂2) ≤ F∗p(p̂1) + F∗p(p̂2) (25)

for any λ ≥ 0, p ∈M, p̂, p̂1, p̂2 ∈ E.

13



3.1 Existence, uniqueness and boundedness of a discrete solution

We establish the existence and uniqueness of a solution to the discretized problem (23) for the
models of interest. We also prove upper bounds on this solution which are independent of the
gridscale h, assuming that the relaxation parameter satisfies ε ≤ h. (The property remains valid
if ε ≤ Ch, where C is an absolute constant.)

Definition 3.4. Let F be a PDE discretization scheme on a finite set X, in the sense of Def-
inition 2.1. A discrete map U ∈ RX is called a sub- (resp. strict sub-, resp. super-, resp. strict
super-) solution of the scheme F iff FU ≤ 0 (resp. FU < 0, resp. FU ≥ 0, resp. FU > 0)
pointwise on X. If FU = 0, then U is a solution to the scheme.

When the scheme F is obvious from context, we simply speak of sub- and super-solution. The
existence, uniqueness, and computability of the solutions to PDE schemes are discussed in the
next result, using the notions of monotony and causality introduced in Definition 2.1. Theorem
3.5 is not an original contribution, but gathers classical results from [Tsi95, RT92, Obe06], see
also [Mir17] for a proof.

Theorem 3.5 (Solving monotone schemes). Let F be a monotone scheme on a finite set X s.t.

(i) There exists a sub-solution U− and a super-solution U+ to the scheme F.

(ii) Any super-solution to F is the pointwise limit of a sequence of strict super-solutions.

Then there exists a unique solution U ∈ RX to FU = 0, and it satisfies U− ≤ U ≤ U+. If in
addition the scheme is causal, then this solution can be obtained via the Dynamic-Programming
algorithm, also called Dijkstra or Fast-Marching, with complexity O(M lnN) where

N = #(X), M = #({(x, y) ∈ X ×X; FU(x) depends on U(y)}). (26)

The logarithmic factor lnN in the complexity comes from the cost of maintaining a priority
queue. We counted as elementary, complexity-wise, a scheme dependent local update which in
the case of our schemes amounts to solving a univariate quadratic equation. We refer to [RT92]
for more details on the Fast-Marching algorithm.

General properties of our PDE schemes. In this paragraph, we prove that the PDE
discretization schemes introduced in §2 are monotone, causal, admit a sub-solution, and satisfy
Property (ii) of Theorem 3.5. For that purpose we express them as specializations of a generic
design, described in the next proposition.

Proposition 3.6. Let X be a finite set, and let F : RX → RX be defined by

(FU(x))2 := max
i∈I

∑
y∈X∪∂X

b(i,x,y)(U(x)− U(y))2
+, (27)

for all U : X → R and all x ∈ X. We denoted by I and ∂X some arbitrary finite sets, and by
b : I ×X × (X ∪ ∂X) → [0,∞[ some non-negative weights. By convention, U is extended by 0
on ∂X.

Then F (λU) = λF (U) and F (U + V ) ≤ F (U) + F (V ), pointwise on X, for any λ ≥ 0 and
any U, V : RX → R. Let also

HU(x) :=
1

2
(FU(x))2 FU(x) := −a(x) +HU(x), (28)

where a : X →]0,∞[. Then F is a monotone and causal scheme, admits U ≡ 0 a as sub-solution,
and (1 + ε)U is a strict super-solution for any super-solution U and any ε > 0.
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Proof. The 1-Homogeneity of F is obvious. The triangular inequality follows from the expression

FU(x) = max
i∈I

∥∥∥∥(√b(i,x,y)(U(x)− U(y))+

)
y∈X∪∂X

∥∥∥∥ ,
and from the basic inequality (a+ b)+ ≤ a+ + b+ applied to a = U(x)−U(y), b = V (x)−V (y).

The scheme F is monotone since F is non-decreasing w.r.t. the differences (U(x)−U(y))y∈X ,
and it is causal since F only depends on their positive part. The null map U ≡ 0 satisfies
FU(x) = −a(x) < 0 hence is a (strict) sub-solution. Finally, if U is a super-solution and ε > 0,
then F((1 + ε)U) = (1 + ε)2FU + ((1 + ε)2 − 1)a ≥ 2εa > 0 pointwise, by homogeneity of F ,
hence (1 + ε)U is a strict super-solution.

Each of the schemes introduced in §2 can be written in the form H of Proposition 3.6. A
slight reformulation is nevertheless required for the Reeds-Shepp models HRS+

ε,h U(p), HRS±
ε,h U(p),

which involve symmetric finite differences, hence expressions of the form∑
1≤i≤N

max {0, U(p)− U(qi), U(x)− U(ri)}2 =
∑

1≤i≤N
max

{
(U(p)− U(qi))

2
+, (U(p)− U(ri))

2
+

}
.

This expression can be put in the form (27) using the distributivity of the “+” operator over
the “max” operator, namely a + max{b, c} = max{a + b, a + c}. For consistency of (28, right)
with (23), one must choose a(x) = 1

2α(x)2.

Construction of a continuous super-solution. In this paragraph, we construct a super-
solution to the generalized eikonal PDE (7), which is discretized in the next paragraph so as
to yield a gridscale independent discrete super-solution. See §3.2 for more discussion on super-
solutions to the PDE (7). In the rest of this subsection, we let for all p = (x, θ) ∈M

u(p) := α0 + 〈n(θ0),x〉+
ξ

2
dS1(θ, θ0)2, (29)

where α0 = CWS + max{‖p‖; p ∈ Ω}. (In other sections of this paper, the symbol u still stands
for the value function defined by (6).) The angle θ0 ∈ S1 in (29) is arbitrary but fixed, and dS1
denotes the distance function on S1 := R/(2πZ). For all p = (x, θ) ∈M such that dS1(θ, θ0) 6= π,
one has

du(p) = (n(θ0), ξϕ) ∈ E∗, (30)

where ϕ ∈]−π, π[ is the unique element congruent with θ−θ0 modulo 2π. The function u is not
differentiable where dS1(θ, θ0) = π, but by convention we still define du(p) as (30) with ϕ := π.
As shown in the following lemma, this expression defines a super-gradient of u.

Lemma 3.7. Let u : M→ R be defined by (29). Then for all p = (x, θ) ∈M and ṗ = (ẋ, θ̇) ∈ E
one has

u(p + ṗ) ≤ u(p) + 〈du(p), ṗ〉+
ξ

2
θ̇2.

Proof. Let ϕ ∈]− π, π] be congruent with θ − θ0 modulo 2π. Then dS1(θ + θ̇, θ0)2 ≤ |ϕ+ θ̇|2 =
ϕ2 + 2ϕθ̇ + θ̇2 = dS1(θ, θ0)2 + 2〈ϕ, θ̇〉+ θ̇2, which implies the announced result.

The next proposition lower bounds the dual metric applied to the differential of (29).

Proposition 3.8. Let F be FRS+, FRS±, FEM, or FD. Then the dual metric (24) obeys
F∗p(du(p)) ≥ c0 for any p ∈M, where c0 > 0 is an absolute constant.
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Proof. Let p = (x, θ) ∈ Ω and let ϕ ∈]− π, π] be congruent with θ − θ0 modulo 2π. Then

FRS+∗
p (du(p))2 = 〈n(θ),n(θ0)〉2+ + |θ − θ0|2 = (cosϕ)2

+ + ϕ2,

FRS±∗
p (du(p))2 = 〈n(θ),n(θ0)〉2 + |θ − θ0|2 = (cosϕ)2 + ϕ2,

2FEM∗
p (du(p)) = 〈n(θ),n(θ0)〉+

√
〈n(θ),n(θ0)〉2 + |θ − θ0|2 = cosϕ+

√
cos2 ϕ+ ϕ2,

FD∗
p (du(p)) = (〈n(θ),n(θ0)〉+ |θ − θ0|)+ = (cosϕ+ |ϕ|)+.

The right-hand sides are continuous and non-vanishing functions of ϕ ∈ [−π, π]. More precisely,
one easily finds the following lower bounds: for the two Reeds-Shepp models and the Dubins
model c0 = 1, attained for ϕ = 0; for the Euler-Mumford elastica model c0 = π/4, attained for
ϕ = π/2.

Proposition 3.8 implies that λu is a super-solution of the HJB PDE (7), in the sense of
Definition 3.14 below, where λ = ‖α‖∞/c0. Indeed, this follows from the positive 1-homogeneity
of F∗, and the non-negativity of u on ∂Ω. We do not directly use this fact in this subsection,
since we aim at constructing a discrete super-solution, but it explains the particular role played
by u.

Discretization of the super-solution. We construct a discrete super-solution to the prob-
lem (23) by sampling the continuous one constructed in Proposition 3.8. This implies the
existence of a bounded solution to our PDE discretization, see Corollary 3.11. For that purpose,
a preliminary estimate on the discrete hamiltonian regularity is required.

Lemma 3.9. Let F :=
√

2H where H is HRS+
ε,h , HRS±

ε,h , HEM
ε,K,h or HD

ε,h, and where ε ≤ 1. Let
p0 ∈ Ωh, and let V,W : Mh → R obey for all ṗ ∈Mh

V (p0 + ṗ) ≥ V (p0)− ‖ṗ‖2, W (p0 + ṗ) ≥W (p0)− ‖ṗ‖.

Then for some C = C0(1 + ξ−1), where C0 is an absolute constant, one has

FV (p0) ≤ Ch/ε, FW (p0) ≤ C.

Proof. For any ṅ ∈ Rd one obtains using Proposition 1.1

h−2
∑
ė∈Zd

ρεė(ṅ)(W (p0)−W (p0 − hė))2
+ ≤ h−2

∑
ė∈Zd

ρεė(ṅ)‖hė‖2 = ‖ṅ‖2(1 + (d− 1)ε2) (31)

In the case of V , observing that V (p0) − V (p0 − hė) ≤ ‖hė‖2 ≤ (CWSh/ε)‖hė‖ and reasoning
similarly, we obtain the upper bound (31, right) multiplied by (CWSh/ε)

2.
The announced result is equivalent to HV (p0) ≤ 1

2(Ch/ε)2 (resp. HW (p0) ≤ 1
2C

2). It
follows from the previous estimates since the discretized hamiltonians of interest are sums of
expressions like (31, left), with ‖ṅ‖ = O(1 + ξ−1). In the case of HEM

ε,K,h one must additionally

observe that
∑K

k=1 αk = 2 is bounded independently of K, see (19).

In the following two results, the notation C . 1 + ξα, where α ∈ R, means that C depends
only on the parameter ξ and satisfies C ≤ C ′(1 + ξα) for all ξ ∈]0,∞[, where C ′ is an absolute
constant.
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Proposition 3.10. Let F :=
√

2H where H is HRS+
ε,h , HRS±

ε,h or HD
ε,h, and where 0 < h ≤ ε ≤ 1.

Define U : Zh → R by U(p) = u(p) for all p ∈ Ωh, and U(p) = 0 for all p ∈ ∂Ωh, where u is
defined in (29). Then

FU(p) ≥ c0 − C0h/ε (32)

for all p ∈ Ωh, where C0 . 1+ξ and c0 is from Proposition 3.8. In the Euler-Mumford case, the
constant c0 in (32) must be replaced with

√
c2

0 − 2C1K−2, where C1 . 1 + ξ−2 is the constant
from Proposition 2.9.

Proof. In this proof we let p0 = (x0, θ0) ∈ Ωh be fixed, p = (x, θ) ∈ Ωh be an arbitrary point,
and denote by θ̇ ∈] − π, π] the unique angle congruent to θ − θ0. Let U : Mh → R be defined
by U(p) := u(p0) + 〈du(p0), (x− x0, θ̇)〉. By consistency of the discretization, see Propositions
2.4, 2.9, 2.12, and by Proposition 3.8 we obtain, denoting by H the hamiltonian of the model

HU(p0) ≥ Hp0(du(p0)) ≥ 1

2
c2

0, (33)

except in the Euler-Mumford case, where HU(p0) ≥ 1
2c

2
0 − C1K

−2, with C1 . 1 + ξ−2. Thus
FU(p0) ≥ c0, or FU(p0) ≥

√
c0 − 2C1K−2 in the Euler-Mumford case.

For any p ∈ Ωh one has U(p) + ξ
2 θ̇

2 ≥ U(p), by Lemma 3.7, with the above notation for

θ̇ ∈] − π, π]. On the other hand, if p ∈ ∂Ωh is within distance CWS of Ωh, then U(p) ≥ 0 =
U(p), by choice of α0 in the definition of u, see (29). Hence denoting V := U − U we obtain
V (p0 + ṗ) = U(p0 + ṗ)−U(p0 + ṗ) ≥ − ξ

2‖ṗ‖
2 for any ṗ ∈ hZ3 such that ‖ṗ‖ ≤ CWS. Therefore

FV (p0) ≤ ξC2(1 + ξ−1)h/ε = C2(1 + ξ)h/ε, by Lemma 3.9 and the 1-homogeneity of F , where
C2 is independent of ξ. We used the fact that the expression of FV (p0) only involves points
within distance CWSh/ε ≤ CWS of p0, see Propositions 2.4, 2.9, 2.12. Using the triangular
inequality FU = F (U + V ) ≤ FU + FV , pointwise on Ωh, see Proposition 3.6, we thus obtain

FU(p0) ≥ FU(p0)− FV (p0) ≥ c0 − C2(1 + ξ)h/ε.

In the Euler-Mumford case the constant c0 in the above expression must be replaced with√
c0 − 2C1K−2, see (33). The result follows.

Corollary 3.11. Assume that 0 < h ≤ ε ≤ 1 and ε ≤ K0h, where K0 . 1 + ξ. Let H be the
discretized Hamiltonian HRS+

ε,h , HRS±
ε,h or HD

ε,h. Then the system of equations HU(p) = α(p)2/2
for all p ∈ Ωh, and U(p) = 0 for all p ∈ Mh, admits an unique solution U : Mh → R, which is
bounded independently of h and ε.

The same holds for the Hamiltonian HEM
ε,K,h, provided K ≥ K1 & 1 + ξ−1.

Proof. Assume that the parameters ε, h and K obey the above constraints, with the constants
K0 = 2C0 and K1 = 4

√
C1, where C0 and C1 are from Proposition 3.10. Then the considered

system of equations admits the super-solution λU , where U is defined in Proposition 3.10 and
λ = 2‖α‖L∞/c0. Applying Theorem 3.5, which assumptions were established in Proposition 3.6
for the models of interest, except for the existence of a super-solution which we just proved, we
conclude the proof.

3.2 Discontinuous viscosity solutions of eikonal PDEs

In this subsection, we establish Theorem 3.1 using the theory of discontinuous solutions to static
first order Hamilton-Jacobi-Bellman PDEs. We rely on the framework of section V of [BCD97],
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intended for optimal control problems without controllability, either local or global. Let F be
FRS+, FRS±, FEM or FD, and consider the PDE.

∀p ∈ Ω, F∗(p,du(p)) = α(p), ∀p ∈ ∂Ω, u(p) = 0 or F∗(p,du(p)) = α(p), (34)

where F∗ refers to the dual metric, defined on the co-tangent space M × E∗, see (24). In
comparison with our initial formulation (7), two remarks are in order: (I) we used the relation
H = 1

2(F∗)2 relating the hamiltonian H with the dual metric F∗ (24) to reformulate the HJB
PDE in Ω, and (II) we emphasized that boundary conditions must be interpreted in a relaxed
sense, following the notations of [BCD97], due to the possible discontinuity of the solution. The
study of solutions to this system relies on one sided notions of continuity.

Definition 3.12. Let (X, d) be metric space, and let u : X → R. The function u is said Lower-
Semi-Continuous (resp. Upper-Semi-Continuous) iff for any converging sequence pn → p ∈ X

lim inf
n→∞

u(pn) ≥ u(p) (resp. lim sup
n→∞

u(pn) ≤ u(p).)

The acronyms USC and LSC refer to these properties, and B stands for Bounded in BUSC
and BLSC. Recall that the cartesian grid of scale h is denoted Mh ⊆M, see (35).

Lemma 3.13. For each n ≥ 0 let hn > 0 and Un : Mhn → R. Assume that hn → 0 as n→∞,
and that Un is uniformly bounded independently of n. Then u, u : M→ R defined as follows are
respectively BUSC and BLSC

u(p) := lim
r→0

lim inf
n→∞

inf
q∈Mhn
‖q−p‖<r

Un(q), u(p) := lim
r→0

lim sup
n→∞

sup
q∈Mhn
‖q−p‖<r

Un(q). (35)

Proof. We focus on the case of u, since the case of u is similar. First note that u(p) is well
defined and uniformly bounded w.r.t. p ∈M. Indeed (i) for any fixed r > 0, and for sufficiently
large n, the set Mhn ∩ B(p, r) is non-empty since hn → 0 as n → ∞, (ii) Un is uniformly
bounded, and (iii) the leftmost limit as r → 0 is monotone, namely increasing as r decreases to
0, hence well defined.

In order to establish the Lower Semi-Continuity of u, let us consider an arbitrary sequence
(pn)n≥0 converging to p ∈ M. Let also rn → 0 and εn → 0 be vanishing sequences of positive
reals. By construction, for any n ≥ 0 there exists ϕ(n) ≥ n and qn ∈ B(pn, rn) such that
Uϕ(n)(qn) ≤ u(pn) + εn. Then, as announced, since qn → p and ϕ(n)→∞ as n→∞,

lim inf
n→∞

u(pn) ≥ lim inf
n→∞

Uϕ(n)(qn) ≥ u(p).

Following [BE84], we introduce the concept of sub- and super-solutions to the system (34).

Definition 3.14. • A sub-solution of (34) is a BUSC u : Ω → R such that for any p ∈ Ω
and any ϕ ∈ C1(Ω,R) for which u− ϕ attains a local maximum at p, one has:

p ∈ Ω⇒ F∗(p,dϕ(p)) ≤ α(p), p ∈ ∂Ω⇒ min{u(p), F∗(p, dϕ(p))− α(p)} ≤ 0.

• A super-solution is a BLSC u : Ω→ R such that for any p ∈ Ω and any ϕ ∈ C1(Ω,R) for
which u− ϕ attains a local minimum at p, one has:

p ∈ Ω⇒ F∗(p,dϕ(p)) ≥ α(p), p ∈ ∂Ω⇒ max{u(p), F∗(p, dϕ(p))− α(p)} ≥ 0.
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It known that replacing “local maximum” with “strict global maximum” (resp. “local min-
imum” with “strict global minimum”) in Definition 3.14 yields an equivalent definition, see
[BE84].

Following a classical strategy [BR06], we estimate in the next lemma the discretization error
of our numerical scheme when applied to continuously differentiable functions, and conclude in
the next proposition that suitable limits of solutions to our discrete numerical schemes are sub-
and super-solutions to the HJB PDE (34).

Lemma 3.15. Let Fε,h :=
√

2Hε,h where Hε,h is HRS+
ε,h , HRS±

ε,h or HD
ε,h and 0 < h ≤ ε ≤ 1. Let

ϕ ∈ C1(M,R), and let ω be the modulus of continuity of dϕ. Then

|Fε,hϕ(p)−F∗(p,dϕ(p))| ≤ C(ω(CWSh/ε) + ε‖dϕ(p)‖). (36)

In the Euler-Mumford case, |Fε,K,hϕ(p)−F∗(p, dϕ(p))| ≤ C(ω(CWSh/ε) + (ε+K−1
n )‖dϕ(p)‖).

Proof. In this proof, if p = (x, θ),q = (x′, θ′) ∈ M = R2 × S1, then q − p (abusively) stands
for (x′ − x, ϕ) ∈ E := R2 × R where ϕ ∈] − π, π] is congruent with θ′ − θ. Fix the point
p ∈M, and define the tangent map Φ : q ∈M 7→ ϕ(p) + 〈dϕ(p),q− p〉. Then |ϕ(q)−Φ(q)| ≤
‖p− q‖ω(‖p− q‖) for any q ∈ M. This implies F (ϕ− Φ)(p) ≤ Cω(CWSh/ε) where F := Fε,h
and C . 1 + ξ−1, by Lemma 3.9, the 1-homogeneity of F , and since any point q appearing in
the expression of FU(p) satisfies ‖p− q‖ ≤ CWSh/ε. Proceeding likewise for F (Φ− ϕ)(p) and
using the triangular inequality, proved for F in Proposition 3.6, we obtain

|Fϕ(p)− FΦ(p)| ≤ max{F (Φ− ϕ)(p), F (ϕ− Φ)(p)} ≤ C ω(CWSh/ε).

The second contribution to (36) comes from the estimate

|FΦ(p)−F∗(p, dϕ(p))| =
√

2|
√
HΦ(p)−

√
H(p, dϕ(p))| ≤

√
2
√
|HΦ(p)−H(p,dϕ(p))|,

where we used the classical inequality |
√
a −
√
b| ≤

√
|a− b| for any a, b ≥ 0. Inserting the

discretization error of the Hamiltonian, see Propositions 2.4, 2.9 and 2.12, we conclude the
proof.

Proposition 3.16. Let u, u : M→ R be defined as in Theorem 3.1 (resp. Theorem 3.2). Then
u is a super-solution, and u is a sub-solution, in the sense of Definition 3.14.

Proof. We focus on the case of u, since the case of u is similar. By lemma 3.13, u is BUSC as
required. Let p ∈ Ω and ϕ ∈ C1(Ω,R) be such that u attains a strict global maximum at p.

For each n ≥ 0, define Xn := {q ∈ Mhn ; d(q,Ω) ≤ CWShn}, and let pn ∈ Xn be a
point where Un − ϕ attains its global maximum. Then Un(pn) − ϕ(pn) → u(p) − ϕ(p) as
n→∞, up to extracting a sub-sequence (because of the lim inf operator in (35)). This implies
pn → p as n → ∞, by strictness of the maximum of u − ϕ at p. In addition Un(pn) =
(Un(pn)−ϕ(pn)) +ϕ(pn)→ (u(p)−ϕ(p)) +ϕ(p) = u(p) as n→∞, by choice of the sequence
(pn)n≥0 and by continuity of ϕ. In order to conclude the proof, we distinguish wether the test
point p ∈ Ω lies in the interior or on the boundary of the domain.

Case where p ∈ Ω. By construction of pn, one has Un(pn) − Un(q) ≥ ϕ(pn) − ϕ(q) for all
q ∈ Xn. Hence

α(pn) = FU(pn) ≥ Fϕ(qn) ≥ F∗(pn,dϕ(pn))− C(ω(CWShn/εn) + εn‖dϕ(pn)‖),

where the first inequality is by monotony of the discretized operator F := Fε,h, and the second
one is by Lemma 3.15. Thus α(p) = limα(pn) ≥ limF∗(pn,dϕ(pn)) = F∗(p, dϕ(p)) as n→∞.
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Case where p ∈ ∂Ω. We distinguish two sub-cases: if pn ∈ Ω for infinitely many integers
n ≥ 0, then F∗(p, dϕ(p)) ≤ α(p) as before, thus the (relaxed) boundary condition is satisfied
as desired. Otherwise, up to extracting a subsequence, one has 0 = Un(pn)→ u(p) as n→∞,
thus u(p) = 0 and the boundary condition is satisfied.

The following result concludes the proof of Theorems 3.1 and 3.2.

Proposition 3.17 (Adapted from [BCD97]). The value function u is the smallest super-solution
to the HJB PDE (34), and û is the largest sub-solution.

The fact that u is the smallest super-solution follows from Theorem 3.7 in chapter V [BCD97],
and the fact that û is the largest super-solution from Theorem 4.29 in the same chapter. To
be complete, we describe below the slight reformulation of the optimal control problem (6)
required to match the notations of [BCD97], and check that the assumptions used in [BCD97]
are satisfied. For that purpose, we introduce a compact and convex set A ⊆ R × R and regard
its elements a = (ẋ, θ̇) ∈ A as a (scalar) physical velocity, and an angular velocity. The following
instantiations of A are considered

ARS+ := {(ẋ, θ̇) ∈ R2; ẋ2 + θ̇2 ≤ 1, ẋ ≥ 0}, ARS± := {(ẋ, θ̇) ∈ R2; ẋ2 + θ̇2 ≤ 1}, (37)

AEM := {(ẋ, θ̇) ∈ R2; (ẋ− 1/2)2 + θ̇2 ≤ (1/2)2}, AD := {(ẋ, θ̇) ∈ R2; 0 ≤ |θ̇| ≤ ẋ}.

Define f : M× A→ E and l : M× A→ R as

f((x, θ), (ẋ, θ̇)) := −(ẋn(θ), θ̇)/α(x, θ), l((x, θ), a) := 1, (38)

where α : M →]0,∞[ is the local cost function. Let also T := M \ Ω be the target region.
Consider, following [BCD97], the optimal control problem

v(p) := inf
(a,T )∈A

∫ T

0
l(qp,a(t), a(t))e−tdt, subject to

{
q′p,a(t) = f(qp,a(t), a(t)), ∀t ∈ [0, T ],

qp,a(0) = p and qp,a(T ) ∈ T ,
(39)

where elements of A are pairs of all (free) control times T ≥ 0 and measurable function a : [0, T ]
to A. We claim that, with the choices (37), one has

v(p) =

∫ u(p)

0
e−tdt = 1− exp(−u(p)), (40)

for any p ∈ Ω. Indeed, consider a Lipschitz path γ : [0, 1]→ Ω from ∂Ω to p ∈ Ω and such that
u(p) = lengthF (γ) < ∞. Introduce a time reparametrization η : [0, T ] → Ω of γ, from ∂Ω to
p, at unit speed w.r.t. the reversed metric in the sense that Fη(t)(−η̇(t)) = 1 for all t ∈ [0, T ].
Then clearly T = lengthF (γ) = u(p), and one can uniquely define controls a : [0, T ] → A by
f(η(t), a(t)) = −η̇(t) for all t ∈ [0, T ]. Introducing an additional time-reversal reparametrization,
t ∈ [0, T ] 7→ T − t, required since (39) considers contrary to us paths from p to ∂Ω, we obtain

v(p) ≤
∫ T

0 e−tdt = 1−exp(−u(p)). Conversely, admissible paths for (39) can be reparametrized
into admissible paths for (6), and the identity (40) follows. Similarly, one can define v̂ by
replacing T with its interior in (39), and obtain that v̂ = 1− exp(−û) in Ω.

The following PDEs are thus equivalent, the rightmost being the one considered in [BCD97]

Hp(du(p)) =
1

2
α(p)2, F∗p(du(p)) = α(p), v(p) + Fp(dv(p))− α(p) = 0,
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where p ∈ Ω is arbitrary. The main reason why [BCD97] considers v = 1− exp(−u) instead of
u is that v remains bounded whereas even for problems lacking global controllability, whereas u
may take infinite values. This technicality is however irrelevant for the problems considered in
this paper, since global controllability does hold as shown in §3.1.

Finally, we need to check the specific assumptions of Theorem 3.7 and 4.29 in chapter V
of [BCD97]. These are (I) the compactness of the set A of controls (37), (II) the Lipschitz
continuity of f and l, see (38), which follows from the Lipschitz continuity of the cost α, and its
boundedness below on the compact domain Ω, and (III) the closedness of T , following from the
openness of Ω.

3.3 Continuity properties of the value function

This subsection is devoted to the proof of Proposition 3.3. Two points of this result follow from
general arguments. Point (I) indeed follows from the locally controllability of the Reeds-Shepp
reversible model, which is due to its sub-riemannian structure and Chow’s theorem, see [Mon06]
and the discussion in [DMMP16]. In fact, the value function u is 1/2-Holder continuous in
this case. Point (IV) on the Dubins model follows from another general argument of [BCD97],
involving Baire’s theorem, see Lemma 3.25. In contrast the proof of points (II) and (III) on the
Reeds-Shepp forward and Euler-Mumford models requires a geometrical pertubation argument,
which involves lifting diffeomorphisms from R2 to M := R2 × S1, as presented below.

The argument arg(ẋ) of a non-zero vector ẋ ∈ R2 is defined as the unique angle θ ∈ S1 such
that ẋ = ‖ẋ‖n(θ). Matrix vector product is denoted by “ · ”.

Lemma 3.18. Let ψ be a Cn diffeomorphism of R2, where n ≥ 2. Define Ψ(x, θ) = (y, ϕ) by

y := ψ(x), ϕ := arg(dψ(x) · n(θ)), (41)

for all (x, θ) ∈ R2 × S1. Then Ψ is a Cn−1 diffeomorphism of R2 × S1. Furthermore, let
(ẋ, θ̇) ∈ R2 × R and let (ẏ, ϕ̇) := dΨ(x, θ) · (ẋ, θ̇). Then

K‖ẋ‖ ≤ ‖ẏ‖ ≤ K‖ẋ‖, |ϕ̇| ≤ (K|θ̇|+K2‖ẋ‖)/K, (42)

where K = ‖(dψ(x))−1‖−1, K := ‖dψ(x)‖, and K2 := ‖d2ψ(x)‖.

Proof. The bijectivity of θ ∈ S1 7→ ϕ := arg(dψ(x) · n(θ)), for any fixed x, follows from the
invertibility of dψ(x). The estimate (42, left) follows from the definition of the operator norm
‖A‖ := supẋ 6=0 ‖Aẋ‖/‖ẋ‖ of a matrix A. The upper bound on |ϕ̇| is obtained by composing the
following two Taylor expansions: the first one

arg(x + ẋ) = arg(x) + ‖x‖−2〈x⊥, ẋ〉+ o(‖ẋ‖),

is obtained by basic geometric reasoning, and the second one

dψ(x + ẋ) · n(θ + θ̇) = dψ(x) · n(θ) + (d2ψ(x) · ẋ) · n(θ) + θ̇dψ(x) · n(θ)⊥ + o(‖ẋ‖+ |θ̇|),

by bi-linearity of the matrix-vector product.

The next lemma upper bounds the composition of the metric, of the models RS+, RS± and
EM, with the tangent map to a diffeomorphism of the form (41). No similar estimate can be
established for the Dubins metric, due to the hard constraint |ξθ| ≤ ‖ẋ‖ appearing in (22).
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Lemma 3.19. Under the assumptions of Lemma 3.18, denoting p := (x, θ), ṗ := (ẋ, θ̇), q :=
(y, ϕ) and q̇ := (ẏ, ϕ̇), one has

FRS+
q (q̇) ≤ KRSFRS+

p (ṗ), FRS±
q (q̇) ≤ KRSFRS±

p (ṗ), FEM
q (q̇) ≤ KEMFEM

p (ṗ),

with K2
RS := max{K2

+ξ2ε(1+ε), (1+ε)K} and KEM := max{K+ξ2ε(1+ε)/K, (1+ε)K
2
/K},

where ε := K2/K and K := K/K.

Proof. By construction of the diffeomorphism Ψ, the colinearity constraint involved in the def-
inition (3) of the metrics is preserved: ẋ = ‖ẋ‖n(θ) ⇒ ẏ = ‖ẏ‖n(ϕ), and likewise for the
unsigned colinearity constraint ẋ = 〈ẋ,n(θ)〉n(θ) ⇒ ẏ = 〈ẏ,n(ϕ)〉n(ϕ). Using the inequality
(a+ εb)2 ≤ (1 + ε)(a2 + εb2), valid for any a, b ∈ R, ε > 0, we obtain as announced

‖ẏ‖2 + ξ2ϕ̇2 ≤ (K‖ẋ‖)2 + ξ2(Kθ̇ + ε‖ẋ‖)2 ≤
(
K

2
+ ξ2ε(1 + ε)

)
‖ẋ‖2 + (1 + ε)K

2
ξ2θ̇2

‖ẏ‖+ ξ2 ϕ̇
2

‖ẏ‖
≤ K‖ẋ‖+ ξ2 (Kθ̇2 + ε‖ẋ‖)2

K‖ẋ‖
≤ (K + ξ2ε(1 + ε)/K)‖ẋ‖+ (1 + ε)

K
2

K
ξ2 θ̇2

‖ẋ‖
.

The previous lemma is next specialized to diffeomorphisms defined by the flow of a vector
field.

Corollary 3.20. Let ν : R2 → R2 be a vector field with continuous and uniformly bounded first
and second derivatives. Let (ψt)t≥0 be the family of C2 diffeomorphisms of R2 defined by

ψ0(x) = x,
d

dt
ψt(x) = ν(ψ(x)). (43)

Then for any path γ ∈ Lip([0, 1],R2 × S1) one has lengthF (ψt ◦ γ) ≤ (1 + Ct) lengthF (γ) where
C = C(ν, ξ), and where the metric F is FRS+, FRS± or FEM.

Proof. Define for any t ≥ 0 the constants

K(t) := inf
x∈R2

‖(dψt(x))−1‖−1, K(t) := sup
x∈R2

‖dψt(x)‖, K2(t) := sup
x∈R2

‖d2ψt(x)‖.

The Taylor expansion ψt(x) = x+ tν(x)+o(t) can be differentiated twice w.r.t. x ∈ R2 since the
two sides are C2 smooth. This yields dψt(x) = Id +tdν(x) + o(t) and d2ψt(x) = td2ν(x) + o(t).
Hence K(t) = 1 + O(t), K(t) = 1 + O(t) and K2(t) = O(t). Therefore the corresponding
constants of Lemma 3.19 obey KRS(t) = 1 + O(t) and KEM(t) = 1 + O(t). Inserting these
estimates into the path length expression (4), and using the Lipschitz regularity of the cost
function α, we obtain the announced result.

The following lemma further specializes the diffeomorphisms considered, which are designed
so as to offset one endpoint of a given path, and leave the other endpoint unaffected.

Lemma 3.21. Let γ : [0, 1] → R2 × S1 be a Lipschitz path. Denote γ(0) = (x0, θ0), γ(1) :=
(x1, θ1), and assume that x0 6= x1. Let F be FRS+,FRS± or FEM and let us assume that
lengthF (γ) <∞. Then there exists a family of diffeomorphisms ψṗ, ṗ ∈ R2 × R such that: for
any sufficiently small ṗ

lengthF (ψṗ ◦ γ) ≤ (1 +O(‖ṗ‖)) lengthF (γ), ψṗ(γ(0)) = γ(0) + ṗ, ψṗ(γ(1)) = γ(1).
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Proof. Denote r := ‖x0−x1‖ > 0. Let ν1, ν2, ν3 : R2 → R2 be smooth vector fields supported on
B(x0, r/2), and defined by ν1(x) = (1, 0), ν2(x) = (0, 1), and ν3(x) = x0 +(x−x0)⊥ respectively
for all x ∈ B(x0, r/4). Let ψνt denote the diffeomorphism generated by the flow at time t of a
vector field ν, as defined in (43).

By construction, one has ψν1t1 (x, θ) = (x+(t1, 0), θ), ψν2t2 (x, θ) = (x+(0, t2), θ), and ψν3t3 (x, θ) =
(x0 +Rt3(x−x0), θ+ t3) for any sufficiently small t1, t2, t3 ∈ R, for any x ∈ R2 sufficiently close
to x0, and for any θ ∈ R. Also ψν1t1 = ψν2t2 = ψν3t3 = Id on a neighborhood of x1, for any suffi-
ciently small t1, t2, t3. Defining ψṗ := ψν1t1 ◦ ψ

ν2
t2
◦ ψν3t3 , where ṗ = (t1, t2, t3) ∈ R2 ×R, and using

Corollary 3.20 one obtains the announced result.

Points (II) and (III) of Proposition 3.3 are established in the next proposition and corollary.
For that purpose, we need to distinguish a particular class of degenerate paths: we say that
γ : [0, 1]→ R2×S1 is a purely angular motion iff it has the form γ(t) = (x, θ(t)), for all t ∈ [0, 1],
where x ∈ R2 is a constant and θ : [0, 1]→ S1 is an arbitrary function.

Proposition 3.22. Let p ∈ Ω and let be such that the minimal path γ : [0, 1] → Ω for u(p) is
not a purely angular motion. Assume also that int(Ω) = Ω. Then u(p) = û(p).

Proof. As noted in the introduction, a minimal path γ exists by Appendix A of [CMC16] (it
may be non-unique). Since γ is not a purely angular motion, there exists t∗ ∈]0, 1] such that
denoting p0 = (x0, θ0) = γ(0) and p1 = (x1, θ1) = γ(t∗) one has x0 6= x1. Denote γ0 := γ|[0,t∗]
and γ1 := γ|[t∗,1]. For any sufficiently small ṗ ∈ R2 × R we may construct an admissible path
from p0 + ṗ to p1, by concatenation of ψṗ ◦ γ0 with γ1, where ψṗ is as defined in Lemma 3.21.
If p0 + ṗ ∈M \ Ω this implies

û(p) ≤ lengthF (ψṗ ◦ γ0) + lengthF (γ1) ≤ (1 +O(‖ṗ‖)) lengthF (γ) = (1 +O(‖ṗ‖))u(p).

The assumption int(Ω) = Ω implies that one can find arbitrarily small ṗ ∈ E such that p0 + ṗ ∈
M \ Ω, hence û(p) ≤ u(p). Finally û(p) = u(p) since by construction û(p) ≥ u(p).

Corollary 3.23. Under the assumptions of Proposition 3.3. The Reeds-Shepp forward model
satisfies u = û on Ω if this domain has the shape Ω = U × S1. The Euler-Mumford model
satisfies u = û on Ω.

Proof. We only need to show that purely angular motions cannot be minimizing for the optimal
control problem (6) under these assumptions, and apply Lemma 3.21. In the case where Ω =
U × S1, the domain shape forbids that a purely angular motion has one endpoint in ∂Ω and the
other in Ω, hence it is not even an admissible candidate path. In the Euler-Mumford case, any
non-constant purely angular motion has infinite length, hence it cannot be minimizing.

The continuity of the value function(s) u and û at the points where u = û, announced in
Proposition 3.3, follows from a simple and general argument, presented in the next lemma.
Recall that u and û are respectively BLSC and BUSC, since they are sub and super-solutions
of (34), see Proposition 3.17.

Lemma 3.24. Let (X, d) be a metric space, and let u, û : X → R be respectively LSC and USC,
and obey u ≤ û on X. If p ∈ X is such that u(p) = û(p), then u and û are continuous at p.

Proof. Let (pn)n≥0 be an arbitrary sequence converging to p ∈ X. Using that u is LSC, u ≤ û,
and û is USC, one obtains

u(p) ≤ lim inf
n→∞

u(pn) ≤ lim sup
n→∞

û(pn) ≤ û(p).
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If u(p) = û(p) then the sequences u(pn) and û(pn) must be converging to this common limit,
which implies the announced continuity of u and û at p.

Finally, we discuss the case of the Dubins model. By Corollary 4.30 section V in [BCD97], one
has û∗ = u ≤ û, hence u = û at each point of continuity of û. The next elementary lemma, based
on Baire’s theorem, shows that these points are dense, which concludes the proof of Proposition
3.3. Recall that a residual set is an intersection of open dense sets, i.e. the complement of a
meager set. By Baire’s theorem any residual subset of a complete metric space is dense.

Lemma 3.25. Let (X, d) be a metric space, and let u : X → R be BLSC or BUSC. Then u is
continuous on a residual set.

Proof. We focus on the BLSC case, and note that the BUSC case follows by considering −u. Let
u∗ be the upper semi-continuous envelope of u, and for each n ≥ 1 let Cn := {x ∈ X; u∗(x) −
u(x) < 1/n}. For any x ∈ X, one has the equivalences:

u is continuous at x ⇔ u∗(x) = u(x) ⇔ x ∈ ∩n≥1Cn.

In the following, we fix n ≥ 1 and establish that Cn is open and dense, hence ∩n≥1Cn is a residual
set which concludes the proof. The openness of Cn follows from the upper semi-continuity of
u∗ − u. Assume for contradiction that Cn is not dense, hence that there exists an open ball
B(x0, r) on which u∗ − u ≥ 1/n identically. Let also M := sup{u(x) − u(y); x,y ∈ X}, which
is finite by assumption.

Let K > 2nM be an integer. We construct inductively a sequence (xn)0≤k≤K by choos-
ing xk+1 such that d(xk,xk+1) < r/K and u(xk+1) > u(xk) + 1/(2n). This is possible since
d(xk,x0) < kr/K ≤ r, hence xk /∈ Cn, thus u(xk) + 1/(2n) < u∗(xk) = lim supy→xk

u(y).

Eventually we obtain u(xK)−u(x0) =
∑K−1

i=0 u(xi+1)−u(xi) > K/(2n) ≥M , which contradicts
the definition of M . Hence Cn must be dense, and the proof is complete.

4 Basis reduction techniques

This section is devoted to the proof of Proposition 1.1, using techniques from lattice geometry.
For that purpose, we study an optimization problem referred to as Voronoi’s first reduction
of quadratic forms [Sch09], using special coordinate systems known as obtuse superbases of
lattices [CS92]. Similar techniques are used for the discretization on cartesian grids of anisotropic
diffusion in [BOZ04, FM13], of Monge-Ampere equations in [BCM15], and of anisotropic eikonal
equations in [Mir17].

For that purpose, we need to introduce some notation. Let d ≥ 1 be the ambient dimension,
d ∈ {2, 3} for the applications intended in this paper. The canonical d-dimensional euclidean
space, and d-dimensional integer lattice are denoted

Ed := Rd, Ld := Zd.

The dual space and dual lattice are denoted E∗d and L∗d. Thanks to the euclidean structure, there
is a canonical identification Ed ∼= E∗d and Ld ∼= L∗d, but the distinction is kept for clarity. Let
S(Ed) ⊆ L(Ed,E∗d) denote the set of symmetric linear maps, and let S++(Ed) ⊆ S+(Ed) ⊆ S(Ed)
be the subsets of positive definite and semi-definite ones. To each M ∈ S++(Ed) is associated a
scalar product 〈·, ·〉M and a norm ‖ · ‖M , defined for all ė, ḟ ∈ Ed by

〈ė, ḟ〉M := 〈M ė, ḟ〉, ‖ė‖M :=
√
〈ė, ė〉M .
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Let us point out that it is equivalent, up to a linear change of coordinates, to study the geometry
of an arbitrary lattice of Ed w.r.t. the canonical euclidean norm, or to study the geometry of
the canonical lattice Ld w.r.t. the norm ‖ · ‖M induced by an arbitrary M ∈ S++(Ed).

Voronoi’s first reduction [Sch09] consists of a convex set P ⊆ S++(E∗d), and for each M ∈
S++(Ed) of a linear programming problem L(M):

P := {D ∈ S++(E∗d); ∀v̂ ∈ L∗d \ {0}, ‖v̂‖D ≥ 1}, L(M) := inf
D∈P

Tr(MD). (44)

Denote by 〈〈M,D〉〉 := Tr(MD) the duality bracket between S(E) and S(E∗), and observe that
‖v̂‖2D = 〈〈D, v̂ ⊗ v̂〉〉, where v̂ ⊗ v̂ ∈ S+(Ed) denotes the outer product of a co-vector v̂ ∈ E∗d
with itself. One can therefore rephrase Voronoi’s optimization problem L(M) to make its linear
structure more apparent:

minimize 〈〈M,D〉〉 subject to 〈〈D, v̂ ⊗ v̂〉〉 ≥ 1 for all v̂ ∈ L∗d \ {0}. (45)

The linear program (45) was shown by Voronoi to be feasible in arbitrary dimension d ≥ 1, in
the sense that L(M) has a non-empty and compact set of minimizers for any M ∈ S++(Ed).
The Karush-Kuhn-Tucker optimality conditions for this problem read as follows: there exists
non-negative weights and integral co-vectors (λk, v̂k)

K
k=1, where K = dim S(Ed) = d(d + 1)/2,

such that

M =
K∑
k=1

λkv̂k ⊗ v̂k. (46)

This formula is reminiscent of the eigenvector-eigenvalue decomposition, but the number of
terms is larger: d(d + 1)/2 instead of d. It is used, presented perhaps slightly differently, to
design monotone finite differences PDE schemes [BOZ04, FM13, Mir17]. We describe Selling’s
algorithm in §4.1, a constructive, simple and efficient method for solving (45). We estimate in
§4.2 the largest norm of the co-vectors appearing in (46). We finally conclude in §4.3 the proof
of Proposition 1.1.

4.1 Obtuse superbases and Selling’s algorithm

We introduce in this section the concept of obtuse superbase of lattice, a preferred coordinate
system which provides, in particular, a complete solution to Voronoi’s first reduction (44), see
Proposition 4.6. An obtuse superbase exists for all lattices of dimension two and three, and can
be constructed using Selling’s algorithm, see Proposition 4.7. The results of this subsection are
mostly reformulations of [CS92, BK10], but they are prerequisites for the original results of the
next subsections. Proofs are provided for completeness.

Definition 4.1. A superbase of Ld is a (d+1)-plet (ė0, · · · , ėd) ∈ Ld+1
d such that ė0+· · ·+ėd = 0

and |det(ė0, · · · , ėd)| = 1. A superbase is said M -obtuse, where M ∈ S++(Ed), iff 〈ėi, ėj〉M ≤ 0
for all 0 ≤ i < j ≤ d.

We attach to each superbase a family of d(d+ 1) co-vectors.

Definition 4.2. Let (ė0, · · · , ėd) be a superbase of of Ld. For all distinct i, j ∈ J0, dK, we define
a co-vector v̂ij ∈ L∗d by the linear equalities

〈v̂ij , ėk〉 = δik − δjk, for all 0 ≤ k ≤ d, (47)
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Note that v̂ij = −v̂ji, and that the definition (47) of the d-dimensional co-vector v̂ij using
d+ 1 linear constraints makes sense thanks to the compatibility relation

〈v̂ij , ė0 + · · ·+ ėd〉 = 〈v̂ij , 0〉 = 0, and (δi0 − δj0) + · · ·+ (δid − δjd) = δii − δjj = 0.

In dimension d ∈ {2, 3} the construction of Definition 4.2 has a simple geometrical interpretation

Case d = 2 : v̂ij = ±ė⊥k , Case d = 3 : v̂ij = ±ėk × ėl, (48)

where (i, j, k) is a permutation of {0, 1, 2}, (resp. (i, j, k, l) of {0, 1, 2, 3}), and the ± sign refers
to its signature.

Proposition 4.3. With the notations of Definition 4.2, (v̂01, v̂12, · · · , v̂d0) is a superbase of L∗d.

Proof. By construction 〈v̂01 + · · ·+ v̂d0, ėk〉 = 0 for any 0 ≤ k ≤ d, hence v̂01 + · · ·+ v̂d0 = 0 as
required. Furthermore using the change of basis formula for determinants one obtains

det(v̂12, · · · , v̂d0) det (ė1, · · · , ėd) = det [v̂i,i+1(ėj)]
d
i,j=1 = det [δi,j − δi+1,j ]

d
i,j=1 = 1.

The next lemma describes the decomposition of a symmetric matrix M using the directions
v̂ij ∈ L∗d attached to a superbase. As one can suspect, it is related to the KKT relations (46),
see Proposition 4.6 below.

Lemma 4.4. Let M ∈ S(Ed), and let (ė0, · · · , ėd) be a superbase of Zd. Then

M =
∑
i<j

λij v̂ij ⊗ v̂ij , where λij := −〈ėi,M ėj〉 (49)

Proof. For any i, j, k, l ∈ J0, dK such that i 6= j and k 6= l, one has 〈v̂ij , ėk〉〈v̂ij , ėl〉 = −1 if
{i, j} = {k, l}, and 0 otherwise. Hence denoting by M ′ the r.h.s. of (49) one has 〈ėk,M ′ėl〉 =
−λkl = 〈ėk,M ėl〉 for all k 6= l. Equality also holds if k = l, using the identity ėk = −

∑
i 6=k ėi.

Since (ė1, · · · , ėd) is a basis of Ed, this implies M = M ′ as announced.

The following lemma attaches to any superbase b of Ld a vertex Db of the polytope P, defined
in (44). Vertices of P are referred to as perfect forms, and play a central role in lattice geometry
[Sch09]. Voronoi proved that the polytope P has only finitely many distinct equivalence classes of
vertices under the action of linear changes of coordinates preserving the lattice Ld, see [Sch09].
The perfect forms {Db; b superbase of Ld} are such a class, and in fact are the only one3 in
dimension d ≤ 3.

Lemma 4.5. Let b = (ė0, · · · , ėd) be a superbase of Ld, and let

Db :=
1

2d

∑
I⊆J0,dK

ėI ⊗ ėI , where ėI :=
∑
i∈I

ėi.

Then ‖v̂ij‖Db
= 1 for all 0 ≤ i < j ≤ d and ‖v̂‖Db

≥ 1 for any v̂ ∈ L∗d \ {0}. In particular
Db is a vertex of the polytope P ⊆ S(Ed), at the intersection of the facets defined by {D ∈
P; 〈〈D, v̂ij ⊗ v̂ij〉〉 = 1}, i, j ∈ J0, dK.

3Indeed, as shown below, the minimum (44) of the linear program L(M) on K is always attained at a matrix
Db attached to a superbase b.
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Proof. Let δIi = 1 if i ∈ I and δIi = 0 otherwise, for any i ∈ J0, dK and I ⊆ J0, dK. Clearly
(δIi )2 = δIi , and for any pairwise distinct i0, · · · , ik ∈ J0, dK one has∑

I⊆J0,dK

δIi0 · · · δ
I
ik

= #{I ⊆ J0, dK; {i0, · · · , ik} ⊆ I} = 2d−k.

Hence for any pairwise distinct i, j, k, l ∈ J0, dK, noting that 〈v̂ij , ėI〉 = δIi −δIj for any I ⊆ J0, dK,

2d〈v̂ij , v̂ik〉Db
=

∑
I⊆J0,dK

(δIi −δIj )(δIi −δIk) =
∑

I⊆J0,dK

(δIi −δIi δIj−δIi δIk+δIj δ
I
k) = 2d−2d−1−2d−1+2d−1.

This establishes 〈v̂ij , v̂ik〉Db
= 1/2. Likewise 〈v̂ij , v̂kl〉Db

= 0, and ‖v̂ij‖2Db
= 〈v̂ij , v̂ij〉Db

= 1 as
announced. Since (v̂12, · · · , v̂d0) is a basis of L∗d, see Proposition 4.3, we obtain by bilinearity
that ‖v̂‖2Db

∈ Z for all v̂ ∈ L∗d. Since Db is positive definite, one has ‖v̂‖Db
> 0 for all v̂ ∈ E∗d\{0},

hence ‖v̂‖Db
≥ 1 for all v̂ ∈ L∗d \ {0} as announced.

By definition Db ∈ P, and Db obeys the d(d+ 1)/2 = dim S(Ed) linear equalities 〈〈Db, v̂ij ⊗
v̂ij〉〉 = 1, for all 0 ≤ i < j ≤ d, which are linearly independent by Lemma 4.4. Thus Db is a
vertex of P.

The two previous lemmas, combined, yield a complete solution to the optimization problem
(44), when an M -obtuse superbase is known.

Proposition 4.6. Let M ∈ S++(Ed), and let us assume that there exists an M -obtuse superbase
b of Ld. Then Db is a minimizer of L(M), and applying Lemma 4.4 to the basis b yields the
explicit value L(M) =

∑
i<j λij, as well as an optimality certificate: the Karush-Kuhn-Tucker

conditions are (49, left).

Proof. Clearly Db ∈ P, and for any D ∈ P one has 〈M,D −Db〉 =
∑

i<j λij(〈〈D, v̂ij ⊗ v̂ij〉〉 −
〈〈Db, v̂ij ⊗ v̂ij〉〉) =

∑
i<j λij(‖v̂ij‖2D − 1) ≥ 0. The result follows.

The previous proposition leaves open the question of existence of an M -obtuse superbase b,
given M ∈ S++(Ed). In dimension d ∈ {2, 3}, such a b always exists, and can be constructed
via Selling’s algorithm [Sel74] which is implemented “as is” in our numerical experiments §5.
Note that this algorithm could in principle be accelerated by a preliminary basis reduction step
[Ngu04], but the advantage is only visible for extremely large condition numbers, which are
irrelevant for applications to anisotropic PDEs.

Proposition 4.7 (Selling’s algorithm). Let M ∈ S++(Ed), where d ∈ {2, 3}, and let b =
(ė0, · · · , ėd) be a superbase of Ld. Define a second superbase b′ of Ld by

Case d = 2 : b′ := (−ė0, ė1, ė0 − ė1), Case d = 3 : b′ := (−ė0, ė1, ė0 + ė2, ė0 + ė3).

Then Tr(MDb) − Tr(MDb′) = 22−d〈ė0, ė1〉M . Selling’s algorithm consists in iteratively, and
until b is an M -obtuse superbase: (a) reordering the superbase b so that 〈ė0, ė1〉M > 0, and (b)
applying the transformation b← b′.

This algorithm terminates, and in particular there exists an M -obtuse superbase of Ld.

Proof. Applying Definition 4.1 we find that b′ is indeed a superbase of Ld. The expression of
Tr(MDb) − Tr(MDb′) follows from a direct computation. Denoting by bn be the superbase
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obtained at the n-th step of Selling’s algorithm, one observes that Tr(MDbn) strictly decreases
as n increases by construction. In view of

2d Tr(MDb) =
∑

I⊆{0,··· ,d}

‖ėI‖2M ≥
∑

0≤i≤d
‖ėi‖2M

we observe that there are only finitely many superbases b = (ė0, · · · , ėd) ∈ Ldd such that Tr(MDb)
is below any given bound, hence Selling’s algorithm must terminate, and the result follows.

A closer inspection shows that Selling’s algorithm is equivalent to the Simplex algorithm
applied to the linear program (45). Selling’s algorithm is also described in Appendix B of [BK10].
In dimension d = 2, Selling’s algorithm is equivalent to exploring the an arithmetic structure
named the Stern-Brocot tree, see [BOZ04] for details on this approach and an application to
HJB PDEs.

4.2 Radius of the decomposition

We bound in this section the norm of the integral co-vectors involved in the matrix decompo-
sition (46). Our estimate is sharper than the one presented in [Mir17], which has significant
consequences on the convergence analysis §3, see the discussion after Theorem 4.11. The results
of this subsection and of the next are new to the author’s knowledge.

Our first step is to upper bound the norm of the elements of an M -obtuse superbase.

Proposition 4.8. Let M ∈ S++
d and let b = (ė0, · · · , ėd) be an M -obtuse superbase (if one

exists). Then ‖ėi‖ ≤ C Cond(M), for each 0 ≤ i ≤ d, where Cd :=
√

2d−1d and Cond(M) :=√
‖M‖‖M−1‖.

Proof. Denote by λ2
min and λ2

max the smallest and largest eigenvalues of M . Observe that
2dDb � ėi ⊗ ėi + (−ėi)⊗ (−ėi) = 2ei ⊗ ėi, where A � B means that A−B ∈ S+(Ed). Observe
also that Id, Db ∈ P, and that Db is optimal for (45). Thus, as announced

λ2
min‖ėi‖2 ≤ ‖ėi‖2M ≤ 2d−1 Tr(MDb) ≤ 2d−1 Tr(M Id) ≤ 2d−1dλ2

max.

In order to proceed, we recall some identities relating the scalar products associated to M
and D := M−1, where M ∈ S++(Ed). For any ė0, ė1, ė2 ∈ Ed

If d = 2 (detM)〈ė⊥0 , ė⊥1 〉D = 〈ė0, ė1〉M , (50)

If d = 3 (detM)〈ė0 × ė1, ė0 × ė2〉D = ‖ė0‖2M 〈ė1, ė2〉M − 〈ė0, ė1〉M 〈ė0, ė2〉M , (51)

where × denotes the cross product of three dimensional vectors. These identities are easily
checked when M = Id, and otherwise follow from a change of variables by M

1
2 .

In the next two propositions, we investigate the geometrical properties relating a superbase
(ė0, · · · , ėd) of Ld with the dual superbase (v̂01, v̂12, · · · , v̂d0) introduced in Proposition 4.3.
Proposition 4.10 is in particular a new and original technical argument.

Proposition 4.9. Let (ė0, ė1, ė2) be an M -obtuse superbase of L2, where M ∈ S++(E2). Then
(v̂01, v̂12, v̂20) is a D-obtuse superbase of L∗2, where D := M−1.

Proof. By (48) the dual superbase is (ė⊥2 , ė
⊥
0 , ė

⊥
1 ), and the result follows from (50).

Proposition 4.10. Let b = (ė0, ė1, ė2, ė3) be an M -obtuse superbase of L3, where M ∈ S++(E3).
Then at least one of b̂0 := (v̂01, v̂12, v̂23, v̂30), b̂1 := (v̂01, v̂13, v̂32, v̂20), and b̂2 := (v̂02, v̂21, v̂13, v̂30)
is a D-obtuse superbase of L∗3, where D := M−1.
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Proof. All three of b̂0, b̂1 and b̂2 are superbases of L∗3, by applying Proposition 4.3 to permutations
of b. One has 〈v̂ij , v̂jk〉D = 〈ėk × ėl, ėi × ėl〉D ≤ 0 by (48) and (51), and by the M -obtuseness
of b, whenever {i, j, k, l} = {0, 1, 2, 3}. The remaining scalar products of interest are

α0 := 〈v̂13, v̂20〉D, α1 := 〈v̂12, v̂03〉D, α2 := 〈v̂01, v̂23〉D.

Recalling that v̂ij = −v̂ji for any i 6= j one observes the following: if α1 ≥ 0 ≥ α2 then b̂0 is

D-obtuse, if α2 ≥ 0 ≥ α0 then b̂1 is D-obtuse, and if α0 ≥ 0 ≥ α1 then b̂2 is D-obtuse. On the
other hand, expressing (αi)

2
i=0 in terms of cross products yields

α0 := 〈ė2 × ė0, ė1 × ė3〉, α1 := 〈ė0 × ė3, ė1 × ė2〉, α2 := 〈ė2 × ė3, ė0 × ė1〉,

and inserting the identity ė0 := −(ė1 + ė2 + ė3) in the above expressions one obtains that
α0 + α1 + α2 = 0. Therefore these three scalars cannot have the same sign strictly. Thus in the
sequence α0, α1, α2, α0 there is at least one non-negative scalar αi followed with a non-positive
scalar αi+1, where indices are understood modulo 3. By the previous argument, b̂i−1 is D-obtuse,
and the announced result follows.

In the rest of this section, we denote by Cd the constant of Proposition 4.8.

Theorem 4.11. Let (ė0, · · · , ėd) be an M -obtuse superbase of Zd, where M ∈ S++(Ed) and
d ∈ {2, 3}. Then ‖v̂ij‖ ≤ 2Cd Cond(M) for all i 6= j.

Proof. Case d = 2. By Propositions 4.8 and 4.9, one has ‖v̂ij‖ ≤ Cd Cond(D) = Cd Cond(M)
as announced (the factor 2 is here useless). Case d = 3. By Propositions 4.8 and 4.10, assum-
ing w.l.o.g. that b̂0 is D-obtuse, the co-vectors v̂01, v̂12, v̂23, v̂30 have their norm bounded by
Cd Cond(D) = Cd Cond(M). The remaining two co-vectors v̂02 and v̂13 can be expressed as:

v̂13 = ė2 × ė0 = ė2 × (−ė1 − ė2 − ė3) = −ė2 × ė1 − ė2 × ė3 = v̂30 + v̂01,

and likewise v̂02 = v̂01 + v̂12. Thus ‖v̂13‖ ≤ ‖v̂30‖ + ‖v̂01‖ ≤ 2Cd Cond(M), and likewise
‖v̂02‖ ≤ 2Cd Cond(M). The announced result follows.

Our next result describes a non-negative, lattice-adapted decomposition of symmetric ten-
sors. It coincides with the one considered in Proposition 1.1 of [Mir17], up to the stencils
radius estimate which is sharper: linear on the condition number of M , instead of quadratic
‖v̂‖ ≤ C Cond(M)2 in dimension 3. This improvement has theoretical consequences, since the
assumption hn/εn → 0 in Theorem 3.1 would otherwise need to be replaced with the stronger
(and unrealistic in applications) assumption hn/ε

2
n → 0. PDE schemes of small stencil size are

appreciated in numerical implementations, for reasons of robustness, accuracy, implementation
of boundary conditions, or parallelization potential.

Corollary 4.12. Let M ∈ S++(Ed), where d ∈ {2, 3}. Then there exists non-negative weights
ρv̂(M), supported on at most d(d+ 1)/2 elements v̂ ∈ L∗d, such that∑

v̂∈L∗d

ρv̂(M)v̂ ⊗ v̂ = M. (52)

Furthermore, ‖v̂‖ ≤ 2Cd Cond(M) whenever ρv̂(M) > 0, and
∑

v̂∈L∗d
ρεv̂(n̂)‖v̂‖2 = Tr(M).

Proof. By Proposition 4.7 there exists an M -obtuse superbase, by Lemma 4.4 it yields a decom-
position of the announced form (53), and by Theorem 4.11 the norms of the support co-vectors
are bounded as announced. The last identity follows by taking the trace of (52).
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Corollary 4.13. Let d ∈ {2, 3}, let 0 < ε ≤ 1, and let n̂ ∈ E∗d such that ‖n̂‖ = 1. Then there
exists non-negative weights ρεv̂(n̂), supported on at most d(d+ 1)/2 elements v̂ ∈ L∗d, such that

∀ṗ ∈ Ed,
∑
v̂∈L∗d

ρεv̂(n̂)〈v̂, ṗ〉2 = 〈n̂, ṗ〉2 + ε2(‖ṗ‖2 − 〈n̂, ṗ〉2). (53)

Furthermore ‖v̂‖ ≤ 2Cdε
−1 whenever ρεv̂(n̂) > 0, and

∑
ρεv̂(n̂)‖v̂‖2 = 1 + ε2(d− 1).

Proof. Apply Corollary 4.12 to M = n̂⊗ n̂ + ε2(Id−n̂⊗ n̂) ∈ S++(Ed), which eigenvalues are 1
with eigenvector n̂, and ε2 with multiplicity d− 1, thus Cond(M) = ε−1.

4.3 Taking positive parts of linear forms

We conclude in this section the proof of Proposition 1.1. Our main technical result, presented
below, shows how to use decompositions of anisotropic symmetric positive definite tensors, as
in Corollary 4.13, to build approximations of positive parts of linear forms.

Proposition 4.14. Let n̂ ∈ E∗d with ‖n̂‖ = 1, and let ε > 0. Let v̂1, · · · , v̂K ∈ E∗d and
ρ1, · · · , ρK ≥ 0 be such that for all ṗ ∈ Ed∑

1≤k≤K
ρk〈v̂k, ṗ〉2 = 〈n̂, ṗ〉2 + ε2(‖ṗ‖2 − 〈n̂, ṗ〉2). (54)

Assume that4 〈v̂k, n̂〉 ≥ 0 for each 1 ≤ k ≤ K. Then for all ṗ ∈ Ed one has

〈n̂, ṗ〉2+ ≤
∑

1≤k≤K
ρk〈v̂k, ṗ〉2+ ≤ 〈n̂, ṗ〉2+ + ε2(‖ṗ‖2 − 〈n̂, ṗ〉2). (55)

Proof. In this proof, we identify Ed with its dual E∗d thanks to the euclidean structure, and thus
drop the “dot” and “hat” superscripts on vectors and co-vectors for clarity. We assume that
ρk = 1, for all 1 ≤ k ≤ K, up to replacing vk with

√
ρkvk.

Denote by v∗k := vk−〈vk,n〉n the orthogonal projection of vk on the hyperplane orthogonal
to n, where 1 ≤ k ≤ K. Then by (54)∑

1≤k≤K
〈n,vk〉2 = 1,

∑
1≤k≤K

v∗k ⊗ v∗k = ε2(Id−n⊗ n).

The proof of (55) is split into two parts, depending on the sign of 〈n,p〉. If 〈n,p〉 ≤ 0, then
〈vk,p〉 = 〈vk,n〉〈n,p〉+ 〈v∗k,p〉 ≤ 〈v∗k,p〉 for all 1 ≤ k ≤ K, thus as announced∑

1≤k≤K
〈vk,p〉2+ ≤

∑
1≤k≤K

〈v∗k,p〉2+ ≤
∑

1≤k≤K
〈v∗k,p〉2 = ε2(‖p‖2 − 〈n,p〉2).

In contrary if 〈n,p〉 ≥ 0, then the second inequality of (55) is immediate. In addition 〈vk,p〉2+ ≥
〈vk,p〉2 − 〈v∗k,p〉2 for any 1 ≤ k ≤ K. (Indeed, if 〈vk,p〉 ≥ 0 then 〈vk,p〉2+ = 〈vk,p〉2 ≥
〈vk,p〉2 − 〈v∗k,p〉2, and in contrary if 〈vk,p〉 ≤ 0 then 0 ≥ 〈vk,p〉 = 〈vk,n〉〈n,p〉 + 〈v∗k,p〉 ≥
〈v∗k,p〉, thus 〈vk,p〉2+ = 0 ≥ 〈vk,p〉2 − 〈v∗k,p〉2.) Hence, we conclude∑

1≤k≤K
〈vk,p〉2+ ≥

∑
1≤k≤K

(
〈vk,p〉2 − 〈v∗k,p〉2

)
=
(
〈n̂, ṗ〉2 + ε2‖p∗‖2

)
− ε2‖p∗‖2 = 〈n,p〉2,

where we denoted p∗ := p− 〈p,n〉n, so that ‖p∗‖2 = ‖ṗ‖2 − 〈n̂, ṗ〉2.

4The scalar product 〈v̂k, n̂〉 makes sense thanks to the euclidean structure on Ed and E∗d.
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Combining Corollary 4.13 with Proposition 4.14 we conclude the proof of Proposition 1.1,
thanks to the following two remarks. (I) The assumption 〈v̂k, n̂〉 ≥ 0 for all 0 ≤ k ≤ K
in Proposition 4.14 is not restrictive, since one can always replace v̂k with its opposite −v̂k
without incidence on (54). (II) The roles of Ed and E∗d are exchanged in Proposition 1.1.

5 Numerical experiments

This section is devoted to a numerical validation of the proposed PDE schemes, and to an
illustration of their potential applications. For validation, compare in §5.1 the geodesics obtained
via direct resolution of the the Hamilton equations against the results of our PDE discretization.
A second validation, discussed in §A, is based on numerical counterparts of the control sets of
Figure 2. We investigate applications to motion planning in §5.2, and to vessel tracking in
medical data in §5.3. The test cases presented in this paper are based on synthetic data.
Experiments closer to applications and involving real data will be the subject of future work.

Free and open source numerical codes for reproducing (most of) the numerical experiments,
as well as additional examples, are available on the author’s webpage5.

5.1 Comparison with geodesic shooting

Consider a model with a smooth Hamiltonian H, such as the reversible Reeds-Shepp model
or the Euler-Mumford model. Minimal paths are known to obey6 the Hamilton equations of
geodesics, which read

dp

dt
= −∂H

∂p̂
,

dp̂

dt
=
∂H
∂p

, (56)

where p(t) and p̂(t) are respectively the state and the co-state of the geodesic at time t ∈ [0, 1].
Given an initial point p0, and a target point p1, one can try to adjust the initial co-state p̂0

so that the solution to (56) starting from (p(0), p̂(0)) = (p0, p̂0) satisfies p(1) = p1. We tried
this procedure, referred to as geodesic shooting, using a fourth order Runge-Kutta method for
solving (56) in our experiments, and a Newton method for adjusting p̂0.

Another approach to the computation of geodesics is to numerically solve the PDE (7), and
then extract the minimal geodesics as streamlines of the geodesic flow (9). We use a second
order Euler scheme for that latter ODE, together with the following upwind estimate of the flow
direction dHp(du(p)), where p ∈M. Assume that the local hamiltonian Hp is approximated in
the following form

H(p̂) =
1

2

∑
1≤k≤K

ρk〈p̂, ėk〉2+. (57)

Differentiating we obtain the first order approximation

dH(p̂) =
∑

1≤k≤K
ρk〈p̂, ėk〉+ ėk, thus dHp(du(p)) ≈

∑
1≤k≤K

ρk

(
u(p)− u(p− hėk)

h

)
+

ėk.

Let us mention that our numerical codes also implement a second backtracing method, inspired
by the diffuse numerical geodesics described in [BCPS10], and which yields similar results.
However we observed that many alternative backtracing methods did (often) fail, in particular
with the Dubins model, due to the discontinuity of value function u.

5github.com/Mirebeau/HamiltonFastMarching
6Except perhaps abnormal geodesics, which we do not discuss here, see [Mon06].
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Figure 4: Comparison of Minimal geodesics obtained by PDE resolution and backtracing (black),
or geodesic shooting (blue), for Euler-Mumford (left) and Reeds-Shepp reversible models in 2D
(center) or 3D (right).

In favorable cases, geodesic shooting is more precise than the PDE and backtracing approach.
However it is also much less general and robust, for the following reasons. (I) Geodesic shooting
cannot address the Reeds-Shepp forward and Dubins models, due to their non twice differentiable
hamiltonians. (II) It is incompatible with the presence of obstacles, and with non-smooth cost
functions α. (III) It lacks guarantees regarding the global optimality of the extracted geodesics,
despite their local optimality.

A comparison of geodesic shooting with the proposed approach is presented on Figure 4. A
similar experiment was presented in [Mir17] for the Reeds-Shepp reversible model, but not for
the Euler-Mumford model.

5.2 Motion planning

Motion planning is a natural field of application for minimal path methods, see for instance
[KBKh94], and the different models considered in this paper may account for the maneuverability
constraints of a number of vehicles. For instance, the reversible Reeds-Shepp model describes
wheelchairs or wheelchair-like robots. The forward only variant is appropriate for vehicles of the
same type, but which cannot see behind themselves. Minimal paths w.r.t. the Euler-Mumford
elastica model have the advantage of being smooth, and their curvature penalization is physically
meaningful. The hard upper bound constraint of the Dubins model on the curvature is relevant
for the numerous vehicles subject to a minimum turning radius. See [MD17] for more applications
to motion planning of the numerical methods presented in this paper, including two player games
where an opponent choses the obstacles.

Our experiments, presented on Figures 7, 8, 9 and 10, show that the numerical schemes
introduced in this paper can be used to solve complex motion planning problems, on domains
involving numerous walls, in CPU time below 1s on a standard laptop7. Within that time, the
PDE (7) is numerically solved on the full domain, here discretized on a 902×60 grid, which yields
a complete strategy to reach the given target. Larger grid scales yield more accurate paths, at
the price of longer computation times (but still quasi-linear in the number of pixels). Memory
usage is dominated by the storage of the value function, namely one floating point number per
grid point. Once the PDE is solved, extracting a minimal path from an arbitrary point in the

7Laptop processor: 2.7GHz Intel R©Core i7 using a single core
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domain has an almost negligible cost.
The chosen domain for this experiment is [0, 1]2 × S1, the relaxation parameter is ε = 0.1,

and various values are considered for ξ, which we recall is homogeneous to a radius of curvature.
The different qualitative properties of the four models appear clearly, in particular the cusps
of the Reeds-Shepp resersible model minimal paths, the in-place rotations of the Reeds-Shepp
forward paths, the smoothness of the Euler-Mumford paths, and the lower-bounded radius of
curvature of the Dubins paths.

On the rightmost sub-figures of Figure 10, illustrating the Dubins model, the author acknowl-
edges that two paths fail, in some places, to obey the prescribed lower-bound on the radius of
curvature. This is due to the approximate nature of the PDE discretization, and to fact that
no path obeying this lower bound exists between these endpoints. These artifacts can easily be
eliminated by post-processing.

5.3 Tubular structure segmentation

Minimal path methods are a major tool in image processing [PPKC], in particular for the
segmentation of tubular structures in two or three dimensional medical data [BC10, CCM14].
In the case of two dimensional images, the projections of different e.g. blood vessels cross each
other, which causes to shortcuts or leakages in the segmentation. Curvature penalization is a
natural tool to address these issues [SBD+15].

We present on Figure 2 a synthetic test case for this application. The domain Ω = [0, 1]2×S1,
is discretized on a 732×60 grid. Let us emphasize that the O(N lnN) time complexity and O(N)
space complexity of the proposed method makes it suitable for larger problems as well. The
cost function α = α(x, θ) is set to α = 1/4 where x belongs to the S shaped tubular structure,
α = 1/3 on the straight one, and α = 1 elsewhere. We would like to emphasize that such
vessel segmentation results can be considerably improved by choosing cost functions α = α(x, θ)
depending on both the physical position x and the orientation θ, see [BC10, SBD+15], instead
of x alone as here. Our “inefficient” choice of cost function α is intended to exacerbate the
differences between the different models, by making the problem harder.

The PDE (7) is numerically solved, with u = 0 at two seed points, shown in blue on Figure
11, and with outflow boundary conditions on ∂Ω. Note that by point we mean an element of
M = R2 × S1, represented by an arrow on the figures. Minimal paths from two points, shown
in red, are backtraced. Ideally, we would like these paths to follow the S tubular structure and
end in the leftmost blue point.

The Reeds-Shepp reversible model fails this test, because the minimal paths shift into reverse
gear, and thus end at the incorrect blue point. The Reeds-Shepp forward model performs
slightly better, ending at the correct endpoint, and correctly extracting the bottom part of the
S structure for the larger value of ξ. However the top part of the S structure is not correctly
extracted, because the minimal path intended to do so takes a shortcut through the second
straight structure, because of its ability to perform in-place rotations. (Again, let us emphasize
that the Reeds-Shepp models can be perfectly suitable for tubular structure segmentation, when
contrary to this experiment an orientation dependent cost function α = α(x, θ) is provided, see
[DMMP16].)

The Euler-Mumford model is able to extract the S shaped tubular structure for a large range
of parameters ξ, from 0.55 to 1.25. Excessively small values of ξ allow tight turns and therefore
shortcuts through the intersecting structure (recall that ξ should be interpreted as a radius of
curvature). Excessively large values of ξ make it too costly to follow the S structure, hence the
path takes wider turns in the background of the image. We regard the Euler-Mumford model
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as the best choice among those considered here for image segmentation tasks, in view of our
numerical experiments and of the literature [Mum94].

The Dubins model is also able to extract the S shaped tubular structure, but for a narrower
range of parameters ξ than in the Euler-Mumford case, from 0.25 to 0.38. Excessively small
or excessively large choices of ξ lead to symptoms, respectively shortcuts and excursions in the
image background, similar to those observed in the Euler-Mumford case. We expect the Dubins
model to less efficient than the Euler-Mumford model in practical image segmentation tasks,
since it requires a finer tuning of the parameter ξ, matching the curvature of the extracted
structures.

Conclusion

In this paper, we introduced numerical PDE methods for solving a family of non-holonomic
optimal control problems, associated to the Reeds-Shepp (reversible or forward only), Euler-
Mumford and Dubins models. The design and analysis of these methods uses tools from different
branches of mathematics, including (i) an original reformulation of the Euler-Mumford hamilto-
nian, (ii) a convergence analysis in the setting of discontinuous viscosity solutions to HJB PDEs,
and (iii) a finite differences scheme based on lattice geometry. The discretized PDEs are solved
in a single pass via the dynamic programming principle, which guarantees fast computation
times. Synthetic test cases illustrate the potential of these methods in motion planning and
image segmentation, and can be reproduced using free and open source codes.

Future works include (i) computing three dimensional8 Euler-Mumford and Dubins minimal
paths, by solving PDEs on R3 × S2, and addressing other instances of non-holonomic optimal
control problems, (ii) implementing GPU accelerations of the solver, in the spirit of [WDB+08],
(iii) designing mesh-based, instead of cartesian grid based, discretizations of the HJB PDEs
considered in this paper, and (iv) developing practical applications of our globally optimal,
curvature penalized minimal paths.

Acknowledgement. The author thanks Da-Chen9, Jorg Portegies10 and Erik Bekkers11, for
careful testing, bug-fixing, and feed-back on the numerical codes.

A Local validation of the numerical scheme, via the control sets

We present a local validation of our PDE discretization procedure, by comparing the model
control sets (10), see also Figure 2, with some numerical counterparts.

Consider a compact and convex set B ⊆ E = R3, containing the origin, and the corresponding
hamiltonian H. Contrary to the rest of this paper, the potential dependency of B and H on
some underlying base point p ∈ M is not considered, since the discussion is purely local. Let
also H be an approximation of H, for instance of the form (57). Consider the set

B := {ṗ ∈ E; ∀p̂ ∈ E∗, H(p̂) ≤ 1/2⇒ 〈p̂, ṗ〉 ≤ 1}, (58)

and note that B = B if H = H. We regard the closeness of B and B, inspected visually, as a
good witness of the closeness of H and H.

8The three dimensional Reeds-Shepp model is already adressed here and in [DMMP16].
9Post-Doctoral researcher at University Paris-Dauphine.

10PhD student under the direction of R. Duits at TU/e University, Eindhoven.
11Post-Doctoral researcher at TU/e University, Eindhoven.

34



Figure 5: Illustration of §A. Left: Discretization stencil for an quadratic anisotropic hamilto-
nian. The hamiltonian and control set representation are exact. Right: Discretization stencil of
Proposition 1.1, for a hamiltonian H(p̂) = 1

2〈p̂, ṅ〉
2
+. The approximate control set (58) is close

to the segment [0, ṅ], but slightly fatter.

Figure 6: Approximate control set (58) for the Reeds-Shepp reversible, Reeds-Shepp forward,
Euler-Mumford and Dubins models. The shapes of the original control sets, see Figure 2 are
recognizable, elongated due to the model parameter choice ξ = 0.2, and slightly fatter due to the
effect of discretization, with relaxation parameter ε = 0.1. Orientation θ = π/3. Seed Figure 3
for the corresponding stencils.

On Figure 5, left, is illustrated the case where B is an ellipsoid, with principal axes of
length (1, 0.1, 0.1). In that case H is a quadratic function, and the discrete representation using
Corollary 4.13 is exact. One therefore has H = H, thus B = B as can be observed. This
particular case is at the foundation of [Mir17].

On figure 5, right, is illustrated the case where B = [0, ṅ] is a segment, where ṅ ∈ E is a
unit vector, and therefore H(p̂) = 1

2〈p̂, ṅ〉
2
+. The discretization is performed using Proposition

1.1 with ε = 0.1, via the basis reduction techniques presented in §4. As can be observed, the
vectors ėk, 1 ≤ k ≤ K, are almost aligned with ṅ, and the set B is close to the segment B in
the Hausdorff distance, although slightly fatter.

Figure 6 is devoted to the models of interest in this paper. The parameters are ξ = 0.2
(appearing in the curvature cost (2)), θ = π/3 (the current orientation), and ε = 0.1 (tolerance
in Proposition 1.1). The offsets ėk, 1 ≤ k ≤ K, are illustrated on Figure 3 page 7. Comparing
with Figure 2, we can confirm that the sets B are close to the corresponding ellipse12, half
ellipse, non-centered ellipse, and triangle B respectively. However the true control sets B are
flat, with Haussdorff dimension 2, whereas their counterparts B are slightly fatter.

12The choice ξ = 1 in Figure 2, versus ξ = 0.2 in Figure 6, yields a round disk instead of an ellipse
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B Convexity of the metric

We prove in this appendix that the metrics FRS+
p ,FEM

p ,FD
p : E → [0,∞] are convex, for any

fixed p ∈ Ω, due their construction (3) and to the following two results.

Lemma B.1. Let C : R→ [1,∞] be convex and lower semi-continuous, and let f :]0,∞[×R→
[0,∞] be defined by f(n, t) := nC(t/n). Then f is lower semi-continuous, 1-positively homoge-
neous, everywhere positive, and obeys the triangular inequality.

Proof. Lower semi-continuity, homogeneity and positivity are obvious. In addition for any
(n, t), (n′, t′) ∈]0,∞[×R one obtains

f(n+ n′, t+ t′)

n+ n′
= C

(
t

n

n

n+ n′
+
t′

n′
n′

n+ n

)
≤ n

n+ n′
C( t
n

) +
n′

n+ n′
C( t

′

n′
) =

f(n, t) + f(n′, t′)

n+ n′
.

Note that 1-positive homogeneity and the triangular inequality together imply convexity.
We recall the notation E := R2 × R, used in the next result.

Corollary B.2. Let C : R → [1,∞] be convex, lower semi-continuous, and such that l(ε) :=
lim C(εt)/t as t → ∞ exists and belongs to ]0,∞], for each ε ∈ {−1, 1}. Let F : E → [0,∞]
be defined as F (ẋ, θ̇) := ‖ẋ‖C(θ̇/‖ẋ‖) for each (ẋ, θ̇) ∈ E such that ẋ = ‖ẋ‖n and ‖ẋ‖ > 0,
where n ∈ Sd−1 is a fixed direction. Let also F (0, 0) = 0, F (0, θ̇) = |θ̇|l(θ̇/|θ̇|) if θ̇ 6= 0, and
F (ẋ, θ̇) := +∞ otherwise. Then F is lower semi-continuous and obeys

• (1-positive homogeneity) F (λṗ) = λF (ṗ), for all λ > 0 and all ṗ ∈ E.

• (Separation) F (ṗ) = 0 iff ṗ = 0, for all ṗ ∈ E.

• (Triangular inequality) F (ṗ + q̇) ≤ F (ṗ) + F (q̇), for all ṗ, q̇ ∈ E.

Proof. By the previous lemma, F obeys the announced properties on the convex set (]0,∞[n)×R.
These properties are also satisfied on the closure ([0,∞[n)×R since, clearly, F is extended to it
by its lower continuous envelope, and since the limits l(1) and l(−1) are positive (for separation).
Finally the announced properties hold for the trivial extension of F to R2×R by +∞ since the
subset ([0,∞[n)× R is closed and convex.
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Figure 7: Reeds Shepp reversible model, ξ ∈ {0.1, 0.2, 0.4, 0.8}. ε = 0.1, CPU time ≈ 0.3s

Figure 8: Reeds Shepp forward model, ξ ∈ {0.1, 0.2, 0.4, 0.8}. ε = 0.1, CPU time ≈ 0.2s

Figure 9: Euler-Mumford elastica, ξ ∈ {0.1, 0.2, 0.3, 0.4}. ε = 0.1, K = 5, CPU time ≈ 1.2s

Figure 10: Dubins model, ξ ∈ {0.05, 0.1, 0.15, 0.2}. ε = 0.1, CPU time ≈ 0.6s
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Figure 11: Tubular segmentation test with the Reeds-Shepp models, reversible (left), and for-
ward (right). First image ξ = 0.2, second ξ = 0.8. This segmentation test is mostly “failed”, on
purpose, for different reasons, see §5.3. CPU time ≈ 0.3s.

Figure 12: Tubular segmentation using Euler-Mumford elasticas. Curvature penalization is left:
insufficient (ξ = 0.2), middle: adequate (ξ = 0.6), right: exaggerate (ξ = 1.5). CPU time ≈ 1.2s.

Figure 13: Tubular segmentation using the Dubins model. Curvature penalization is left: insuf-
ficient (ξ = 0.2), middle: adequate (ξ = 0.35), right: exaggerate (ξ = 0.5). CPU : ≈ 0.5s.
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Figure 14: Level sets, ξ = 0.14, at time 0.3, 0.6, 0.9, 1.2. Origin shown as red point.
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