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Artifacts in Recursive Subdivision Surfaces

Malcolm Sabin and Loic Barthe

Abstract. For a subdivision scheme to be effective it has to be
possible for designers to provide relatively sparse data and achieve
something close to their mental images. The difference between what
is expected (or hoped for) from the subdivision scheme, and what
actually emerges as a limit surface is an artifact. This aspect has not
been much studied, and this paper provides an initial categorisation of
five issues and identifies how much and how little we understand them.
It is assumed that the reader is already familiar with eigenanalysis and
z-transform methods for analysis of the limit surface.

§1. What Kinds of Artifacts Are There 7

We define an artifact to be any feature of the limit surface which cannot
be controlled by the movement of control points at the current level of
subdivision. This implies that the concept of spatial frequency is a key
one. Spatial frequency components of a frequency greater than one cycle
per two control points cannot be controlled, and so mechanisms which give
them can be confidently called artifacts.

Preliminary work has identified two aspects of curve artifacts and five
of surface artifacts which we can address:

e longitudinal artifacts on curves
e end-conditions on curves
longitudinal artifacts on surfaces
edge- and corner-conditions
lateral artifacts

radial artifacts

rotational artifacts

The rest of this paper describes current knowledge, which is fairly
complete, relating to the first five of these. The last two, although de-
scribed here, will be addressed in much more detail in future papers.
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Fig. 1. (a) shows a piece of a cubic Bspline where the control points are at
the vertices of a regular octagon, and (b) its curvature plot (curvature
against distance). Although the curve looks smooth, the curvature plot
shows up the higher frequency components. Note the broken vertical
axis in the curvature plot; the peak to peak amplitude of the variation
is about 0.1% of the average curvature.

§2. Spatial Frequencies

The Shannon-Whittaker theorem [15] which gives us the minimal number
of samples necessary to exactly reconstruct a signal in terms of the extrema
of its frequency components is just as applicable when the abscissa is a
spatial dimension as when it is time.

The concept is already familiar in computer graphics under the name
‘aliasing’. The subtlety that we need for surface work is that spatial
frequency has not just a magnitude but a direction. If we regard the
surface as being expressed as a set of components

P(u,v) = Z A; cos(a;u + bjv + ¢;)

the A; are the amplitudes, [a;, b;] the frequencies, and ¢; the phases of the
various terms.

Where high-frequency artifacts appear, they are not necessarily in the
same direction as the dominant low frequency variations in the data.

§3. Longitudinal Artifacts on Curves

Longitudinal artifacts occur when smoothly positioned control points give
a limit curve which has spatial frequency components at a frequency higher
than the Shannon limit of one cycle per two samples. For B-spline curves
this is always, because the Fourier transform of the B-spline basis func-
tion is not band-limited. The exercise is one of damage limitation, but
fortunately the situation is not too bad quantitatively. Indeed it is often
necessary to look at curvature plots before it is visible at all.

We can analyse this either by Fourier methods, by looking at the
amplitude of one-cycle-per-control point frequency for data sets generated
with n points round a circle (this can be measured easily by evaluating
the limit curve near the control points and half-way in between them), or
by z-transforms.
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points degrees spline degree

per cycle per point 2 3 4 )
3 120 0.111111 0.066667 0.030303 0.015873
4 90 0.029437 0.014059 0.003799 0.001437
5 72 0.011146 0.004726 0.000849 0.000266
6 60 0.005155 0.002040 0.000261 0.000073
8 45 0.001565 0.000576 0.000043 0.000010
10 36 0.000629 0.000224 0.000011 0.000002
12 30 0.000300 0.000105 0.000004 0.000001
16 22.5 0.000094 0.000032 0.000001
20 18 0.000038 0.000013
24 15 0.000018 0.000006
32 11.25 0.000006 0.000002
40 9 0.000002 0.000001
48 7.5 0.000001

Tab. 1. The figures in the rightmost four columns are the amplitudes
of longitudinal artifacts measured for B-splines of degrees 2 to 5, tab-
ulated for different numbers of control points evenly spaced around a
unit circle.

The z-transform approach says that this artifact varies inversely with
the (d + 1)th power of the number of vertices per cycle, where d + 1 is
the number of 1 + z factors in the symbol. Direct measurements of B-
splines, tabulated in Table 1, suggest that the even degree B-splines in
fact are better than this, giving variation with the (d + 2)th power. This
is probably due to the fact that the z-transform picks up errors along the
curve as well as errors across it, and these dominate for the even degrees.

Two specific points to note are

e that the number of points needed is very low if the piece of curve
turns through only a small angle. Even for quadratics, the error is
only 1 part in a million at one vertex per 7.5 degrees of turn;

e that for very sparse polygons, increasing the degree does not help
much.

There is hope that subdivision may be able to outperform simple B-
splines in terms of longitudinal artifacts, by using the concept of geometric
sensitivity. It is certainly possible to define a variant of the four-point
scheme [5] in which each new vertex is positioned in such a way that the
3-point curvature estimator gives the mean of the old curvature estimates
at the adjacent old points. Such a scheme is trivially proven to have
circular precision — if enough consecutive control points lie on a circle,
the limit curve will contain an arc of that circle. Like the circular-precision
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Fig. 2. The ‘natural’ end conditions have the effect of sending the curvature to
zero at the ends. (a) shows a curve which uses this condition, and (b)
its curvature plot. Note that the effect at the ends is much larger than
the longitudinal variation in the interior of the curve.

scheme of Nasri and Farin [12] and unlike those of Dyn [4] and Warren
[17], no prior information about radius or points/cycle is required.

§4. End-conditions on Curves

The usual end-condition applied to cubic subdivision curves can be de-
scribed in three ways: as the extension of the control polygon by linear
extrapolation of one extra control point at each end, as the modification
of the rules near the end, or as the ad hoc appending of the original end
control point after computation of the next polygon. All three give the
same unsatisfactory result, which has zero curvature at the end points.

We need something more comparable to the (standard in practice) use
of Bezier end-conditions, where an extra control point gives slope control
at the end, and we retain all the convex hull properties. Unfortunately this
amounts to using unequal intervals, and so does not fit into the subdivision
world—view too easily.

The ‘not-a-knot’ conditions shown by Bejancu [1] to improve the ap-
proximation order in the semi-cardinal case look to be highly relevant.
It is well known that this gives much better results in the interpolating
spline context than the natural end conditions. A rather unsatisfactory
modification of the cubic subdivision to give the not-a-knot condition is
described by Nasri and Sabin [13]. Better formulations may be available,
which give an effect similar to Bezier end-conditions for a spline in which
the first knot interval is twice the normal, but this is still being explored.

§5. Longitudinal Artifacts on Surfaces

For quadrilateral grid schemes, these are just the tensor products of the
curve artifacts. For triangle grid schemes, we can reduce the problem to a
curve one by considering an initial polyhedron which is extruded in one of
the mesh directions. This forces the spatial frequencies to be essentially
univariate in a direction perpendicular to that of the extrusion.

What becomes interesting is what happens when the extrusion di-
rection is not one of the mesh directions. This does not appear to have
been considered at all yet. Clearly the approach of regarding the spatial
frequency as a vector will be appropriate.
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Fig. 3. (a) shows an extruded polyhedron. (b) shows the effect after one iter-
ation. The ‘dinosaur back’ effect is clearly visible. There are spatial
frequency components at twice the Shannon limit in the original direc-
tion of extrusion where there was no variation in the original at all.

§6. Edge- and Corner-conditions on Surfaces

In the quadrilateral grid case we merely use the tensor product struc-
ture. The main new difficulties with edge- and corner-conditions apply to
schemes based on regular triangular grids, such as Loop and Butterfly [6].

For regular triangular grids there are two types of convex corner, and
the two directions interact at either type of corner. Recent results indicate
that it may still be possible to define ‘not-a-knot’ conditions on triangular
grids, but the application of these to subdivision has not yet been carried
out.

Levin [10] has described a scheme for controlling a triangular scheme
in a way like Bezier edge-conditions, but the pattern of control points is
not really intuitive, because additional vertices, interior to the surface,
one per edge-vertex, are used to define the variation of tangent across the
edge. Bejancu [1] has discovered that the not-a-knot condition can be
applied to the 3-direction quartic box-spline (Loop) in the approximation
context, and this may lead to a reasonable solution, although at present
it looks as though achieving not-a-knot and the convex hull property at
the same time may require changes in the rules over a region as wide as
the support of the scheme. This could be unfortunate.

§7. Lateral Artifacts on Surfaces

These are an effect which has long been with us, unrecognised. It applies
to the regular-grid parts of both subdivision and B-spline surfaces. While
in a longitudinal artifact a spatial frequency in the original polyhedron
gives an artifact component in the same direction, in lateral artifacts they
cause an artifact component in a perpendicular direction.

This effect is fully understood. A lateral artifact will occur if the
original polyhedron is extruded in a direction for which the symbol of
the mask does not have a factor of 1 + z. The example in Figure 3 was
contrived by applying a version of the Loop scheme [11] whose mask was
deliberately altered so that there was no (1 + z) factor. (The mask is the
set of influences of a given old vertex on the surrounding new ones.)
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Fig. 4. The mask on the left is that of the standard Loop scheme, which has

a (1+ z)2 factor in each mesh direction. That on the right has been
altered so that although it still gives constant and linear precision, it
has no 1 + z factor in any direction.

This can be understood in the same breath as the fact that any at-
tempt to run a feature skew to the mesh directions in a NURBS surface
also causes undesired ripples. It is the same effect.

The effect of having a (1 + 2)? factor is that a cross-section which is
linearly varying rather than merely constant gives no ripples. This is a
visible difference between Simplest [14] and Velho [16].

This raises the question ‘Is it better to have more directions in which
1+ z factors exist, as in, for example the Simplest scheme, or Velho, or to
have a higher power of (1+ z) in a few directions, as in Catmull-Clark ?’

For schemes of arity other than 2, the relevant factors are (1—2%)/(1—
z) rather than just (142z). This condition is closely related to the condition
for non-fractal support described by Ivrissimtzis [8], in that any scheme
with fractal support, such as the v/3 schemes described by Guskov [7] and
by Kobbelt [9] will have no directions free from lateral artifacts.

The lateral artifact story is thus pretty well complete. It is clear that
the scheme designer needs to ensure that the mask is well-endowed with
directions i with (1 + z;) factors in the symbol of the scheme, and the
surface designer needs to run those directions of the mesh along the ridge
features of the required surface. This is pretty natural anyway. It is merely
necessary to suppress the urge to try to be clever. This is perhaps one of
the strongest arguments for subdivision surfaces as distinct from B-splines,
that the mesh can be run locally along features, with extraordinary points
where necessary in relatively featureless regions.

§8. Radial Artifacts on Surfaces

The last two effects so far identified were demonstrated by Jos Stam at a
Dagstuhl meeting [3]. His original polyhedron consisted of a 14-gon upper
face and a 14-gon lower face, joined by 14 rectangles, and he applied a
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Fig. 5. The left figure shows the effect near the pole of the third iteration of
the Catmull-Clark scheme on a regular 14-sided prism. The right figure
shows that of the Loop scheme on an original polyhedron consisting of
a vertex at each pole and 20 vertices around the equator, all joined up
by 40 triangles. In both cases the facets near the pole are clearly much
larger than those elsewhere. The number of vertices/faces round the
equator was in each case chosen to show the artifacts most clearly.

few iterations of the standard Catmull-Clark [2] scheme. This showed two
undesirable effects, long thin facets near the pole, and ridges running along
lines of longitude. Very similar effects also occur in the Loop [11] scheme,
and it appears likely that all schemes have the same potential problems
related to extraordinary points. The question of continuity at such points
is not the only important one.

Where the effect has spatial frequency components in directions radial
to the extraordinary point, we call this a radial artifact; where it has spatial
frequency components in directions around the extraordinary point, we
call this a rotational artifact.

The specific radial artifact shown in Figure 5 is called the polar artifact,
and is relatively easy to understand. What is happening is that while over
the bulk of the shape each iteration halves the size of each triangle, near
the extraordinary point the radial shrinkage factor is the value of the
double eigenvalue A associated with the natural configuration. If this is
significantly larger than 1/2, then after a few iterations the facets there
are considerably larger than the average.

Interestingly, this is not a problem in the limit surface, although it
gets worse at every iteration. It does mean that the rate of convergence
is somewhat slower than quadratic, as was pointed out by Wang and Qin
[18].

The polar artifact can be completely eliminated by adjusting the ex-
traordinary point masks so that at every extraordinary point the second
eigenvalue () is the same as at ordinary vertices. Unfortunately the mask
adjustments which give bounded curvature tend to increase A.

We can also classify unbounded curvature at extraordinary points as
a radial artifact.
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Fig. 6. The same data after 3 iterations of the two schemes (left Catmull Clark,
right Loop) shows definite ridges. There is one ridge per original equato-
rial face/vertex, and so these ridges cannot be removed by repositioning
those vertices.

89. Rotational Artifacts on Surfaces

This effect was also shown at the Dagstuhl meeting. It is considerably
harder to understand, because there are at least three potential causes:

° the high valency extraordinary vertex at the pole, and its eigenvec-
tors.

) the low valency ones round the equator, and their eigenvectors.

° interaction between the two.

Preliminary experiments indicate that all three can contribute, and
different schemes may be sensitive to different aspects. This will be re-
ported in the detail it deserves in a separate paper.

§10. Conclusions

We are starting to understand the individual artifact mechanisms, and
can in some cases control them. There still remains significant research to
be done in the areas of edge conditions and rotational artifacts. More of a
problem is that sometimes the adjustments we would like to make to the
extraordinary point masks to control one artifact are exactly opposite to
those we want to make to control another, and getting control of everything
at once is the next big challenge. It may be necessary to focus on one
artifact at the early stages, and on others at later stages. Geometric
sensitivity may also be a useful idea to explore.

Acknowledgments. Much of the funding of the work described was pro-
vided by the EU through the Mingle project, HPRN-CT-1999-00117.
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