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Résumé
Les architectures neuromorphiques sont l’une des approches les plus prometteuses pour conti-
nuer l’amélioration des capacités de calcul après la fin imminente de la loi de Moore. En effet les
réseaux de neurones affichent aujourd’hui des succès retentissants dans le domaine de l’intelli-
gence artificielle et sont naturellement tolérants à la variabilité du matériel due aux processus
de fabrication aux échelles nanométriques. Ils permettent en outre d’espérer un fonctionnement
très économe en énergie.
Nous présentons ici une étude de cas montrant la flexibilité de notre simulateur en logiciel libre
d’architectures neuromorphiques, N2S3, et les gains énergétiques potentiels de ces architectures.

Mots-clés : architecture neuromorphique, aide à la conception de circuits, simulation, réseaux
de neurones à impulsions
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1. Introduction

Neuromorphic computing has the potential to bring very low power computation to future
computer architectures and embedded systems [7]. Indeed, parallel neuromorphic computing,
by performing computation and storage on the same devices, can overcome the von Neumann
bottleneck.
This work focuses on spiking neural networks (SNN) as they have the capability to handle
natural signals and can be implemented physically through ultra-low power devices based, for
instance, on CMOS [10] or memristors [6]. A comprehensive introduction and literature review
about SNN was published by Paugam-Moisy and Bohte in 2012 [8]. The authors explore the
computational capabilities of SNN, their learning capabilities, and their simulation.
Brette et al. [3] surveyed and discussed the existing work on SNN simulation in 2007. All the
simulators discussed in their article as well as the more recent Brian [4] target the simulation of
biological SNN. More recently, Bichler et al. [1] proposed Xnet, a C++ event-driven simulator
dedicated to the simulation of hardware SNN. In our work, we share the goals of Xnet: “in-
termediate modeling level, between low-level hardware description languages and high-level
neural networks simulators used primarily in neurosciences”, and “the integration of synaptic
memristive device modeling, hardware constraints and any custom features required for the
targeted application”. In addition to these goals, we put an emphasis on flexibility and usability
to allow the study of various kinds of hardware designs (possibly by other researchers than us),
scalability to simulate large hardware SNNs, and software engineering best practices (robust and
extensible software architecture for maintainability, extensive test suite, continuous integration,
open-source distribution).
We have developed N2S3 (Neural Network Scalable Spiking Simulator), an event-driven simula-
tor dedicated to the exploration of hardware SNN architectures. The internals of N2S3 are based
on the exchanges of messages between concurrent actors, mimicking the exchange of spikes be-
tween neurons. N2S3 has been developed from the ground up for extensibility, allowing to model
various kinds of neuron and synapse models, various network topologies (especially, it is not re-
stricted to feed-forward networks), various learning procedures, various reporting facilities, and
to be user-friendly, with a domain specific language to easily express and run new experiments.
It is available as open-source software at https://sourcesup.renater.fr/wiki/n2s3
so that its users can share their models and experimental settings to enable others to reproduce
their results. More details on the simulator are available in [2].
Flexibility in particular is a differentiating feature of N2S3. We demonstrate in this article
the advantage of this flexibility by the comparison of several designs on a motion detection
application. These designs differ by the topologies of their networks (recurrent or feed-forward),
and their learning procedures (local or global, supervised or unsupervised, acting on the synaptic
weights or delays).
Finally, since the CMOS technology is known as the most appropriate candidate for the hardware
implementation of SNN, thanks to its ability for large-scale integration, we estimate the gain in
terms of energy of the hardware implementation of these different neural networks based on
our own ultra-low power neurons and synapses.
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2. Case study: motion detection

We demonstrate the flexibility of N2S3, by using three different approachesto design a neural
network to solve a motion detection task. We have decided to work on a small task, so that
we can implement it on hardware without needing large numbers of neurons and synapses.
The task consists in detecting the direction of the motion of a pixel on a two-dimensional grid.
Each benchmark consists in a series of successive movements of a pixel on the grid, without
any overlap between two inputs. Each motion has a linear trajectory, a constant velocity and
a direction, and so, is represented by the successive activations of the different pixels of the
trajectory.
We create two datasets, a basic one and a more complex one. For both datasets, we set the grid
dimension to 10×10 to maintain a reasonable size for our networks. The simple dataset includes
only four directions (up, down, left, right), no variability on the orientations of the trajectories
(e.g., therefore each input has an orientation which has an angle to the x-axis of 0, π2 , π or 3π

2 )
and only one possible velocity (0.5 pixels/ms). In order to avoid that all the trajectories pass
through the center of the grid, a pixel is chosen at random as the reference point of the trajectory
for each sample. Because each trajectory is parallel to the axes of the grid, all samples have
exactly the same number of stimuli: 10. The complex dataset has eight possible directions (we
added the diagonals), and the possible velocities range from 0.25 to 0.5 pixels/ms. To introduce
some variability, we use a Gaussian distribution to generate the orientation of each trajectory.
Furthermore, we apply a random orthogonal shift to each trajectory; it follows a Gaussian
distribution with the grid center as its mean. We provide the option to apply a jitter noise to the
data to observe the tolerance of the network to noise.
The classification score of the task is computed by taking the ratio between the number of well
classified motion samples and the total number of samples. A motion is considered as well
classified if the first output neuron to fire since the beginning of the motion corresponds to the
class of the current motion. To assign a class to each output neuron, we select the class to which
the neuron reacts most.
Thanks to the flexibility of N2S3, we can test and compare several approaches to solve this
task. An interesting property of motion detection is that not only synaptic weight learning
is important: synaptic delays play an essential part in the resolution task. According to the
incoming temporal pattern, delays allow to synchronize the post synaptic spikes. Thus, neurons
will fire only when some specific input patterns arise [5]. We are therefore also interested in
setting and learning the synaptic delays. We are using several topologies and several learning
processes. We retain three approaches: reservoir computing with both weight and delay learning,
a small feed-forward network with global unsupervised learning of delays coupled to supervised
learning of weights, and a feed forward network with no training (i.e., all weights and delays
are manually set to solve the task).

3. Comparison of Three Approaches

3.1. Reservoir Computing Approach
Our first approach to solve this motion detection task is inspired from [9], which uses reservoir
computing and supervised delay adaptation to learn two different patterns. The basic principle
of reservoir computing is to couple a recurrent, randomly connected, layer (i.e., the reservoir),
with a linear classifier. Only the classifier needs to be trained in order to map the state of the
reservoir to a class (see Figure 1). More details about the network topology and the learning
algorithm are available in [9].
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Figure 1: Topology used in the reservoir computing approach.

We study the influence of the reservoir size on the classification score. With a larger reservoir,
the network yields a higher classification score: This make sense since a higher number of
neurons means more states to classify the current input (see Figure 2). Our second study is
about the impact of STDP on the reservoir state. After comparing results yielded by reservoirs
with or without STDP, we observe that this mechanism may improve slightly the classification
of the reservoir state. STDP reinforces recurrent patterns and reduces the chances of firing on an
unusual pattern. This leads to better classification results by the readout.

3.2. Trained Feed-Forward Approach
The second approach is an application-specific feed-forward network. We create the smallest
topology possible that can perform well on this task. This topology is a compound of three
layers. The first layer reduces the dimensionality of the inputs. The two orientations, vertical
and horizontal, are each mapped to a different sub-network. The second layer recognizes the
input velocity, in every orientation. We have chosen ten velocity classifiers per trajectory (five
per direction). Finally, the third layer classifies the directions by adjusting its synaptic weights
(see Figure 3).
We use a global unsupervised method to adapt the synapse delays in the second layer. Super-
vised weight learning is used in the third layer to map each velocity to the correct direction.
Such an application-specific network has the advantage of achieving a better score with fewer
neurons (see Figure 2), but has to be designed specifically for a given task.

3.3. Fixed Feed-Forward Approach
The third approach is a fixed network. We set all the synaptic weights and delays at the creation
of the network, and so, do not train the network at all. Since the learning algorithms of SNN are
not mastered yet, pre-computing the parameters can have the advantage to produce a network
suited better to solve the task.
We create a two-layer feed-forward network. The first layer aims to cover a maximum of possible
cases that can arise from the input of the benchmark. The neurons of the first layer each cover a
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Figure 2: Result of classification with the different approaches. Each configuration is run 100
times. For reservoir computing, the network topology is regenerated randomly every time.
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Figure 3: Topology used in the trained feed-forward approach.
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Figure 4: Topology used in the fixed feed-forward approach.

specific case. After testing different configurations, we retain three parameters to define these
cases: the orientation of the trajectory (Θ), the orthogonal shift (C) and the velocity (V). The
incoming synaptic delays and weights are defined by the following equations:

dx,y = ||
−−−→
Px,yC||× cos

(
P̂x,yΘ

)
× V

wx,y =

{
1 when min(d(Px,y, Θmin), d(Px,y, Θmax)) < D
0 otherwise

where x and y are the synapse coordinates on the input grid, Px,y the point at coordinates (x, y),
C a reference point of the trajectory, V the current velocity, Θ the current orientation, Θmin
and Θmax the orientation class bounds and d the perpendicular distance from a point to a line.
The second layer aims to map each selection neuron to the associated class. According to the
orientation parameter of each neuron of the first layer, a unique outgoing connection will be
created to the classifier neuron associated to the orientation class (see Figure 4).
This approach provides excellent results (see Figure 2), but requires a large number of neurons
and synapses to cover enough parameters.

4. Energy Consumption

In many types of applications, using SNNs can help to save a large amount of energy as
compared to the same applications on classic Von Neumann architectures. However, since a
comparison with such architectures is very difficult to realize (estimating the energy consump-
tion of a program instruction is a difficult issue because of the numerous complex hardware and
software mechanisms involved), we compare only the different SNN approaches to themselves.
The estimation of the energy consumption of our models can be computed by the following
equations:

Edynamic = |fire |× Efire + | spike |× Espike

Estatic = ∆t×
(
Pneuron × |neuron |+ Psynapse × | synapse |

)
Etotal = Edynamic + Estatic
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with |fire | the number of neuron firing events, Efire the energy consumed when a neuron fires,
| spike | the number of spikes passing through the synapses, Espike the energy needed to transmit
a spike through a synapse, ∆t the duration of the measurement, |neuron | the number of neurons
in the network, Pneuron the power dissipated by one neuron, | synapse | the number of synapses
in the network, and Psynapse the power dissipated by one synapse.

Table 1: Estimation of the parameters of energy consumption for our hardware model.
Parameter Value

Efire 4 fJ
Espike 4 fJ
Pneuron 100 pW
Psynapse 100 pW

Table 2: Estimation of the energy consumption of the different approaches. The results are
obtained by averaging over 100 runs. Our estimations show that the consumed dynamic energy
is negligible.

Network Edynamic (pJ) Estatic (µJ) Etotal (µJ)

RC 4 · 4 · 4 261 8.5 8.5
RC 7 · 7 · 7 1369 100.30 100.31
RC 10 · 10 · 10 4003 526.24 526.25
Trained FF 227 2.62 2.62
Fixed FF 1303 102.04 102.04

Table 1 lists the parameters of our hardware model and Table 2 shows the simulated energy
consumption of the three architectures considered. While conventional artificial neurons exhibit
an energy efficiency in the range of 1 pJ/spike, it is worth noting that the dynamic power is far
much lower than the static power in our case [10]: as described by table 2, the energy efficiency
of the implemented model (4 fJ per spike) is negligible when compared to the static power
(100 pW).
By comparing the energy consumption and the task performance of the three approaches, we
see that they each have their own benefits. On the one hand, reservoir computing is the most
general approach. However, in order to obtain satisfactory results, it is necessary to use a large
reservoir, which rapidly increases the energy consumption. On the other hand, using a fixed
network yields excellent results on the reference dataset. But again, a large network is required
to have a good coverage of the parameters. Thus, the trained feed-forward network is a good
candidate because it provides a very good compromise between the network size, and so the
energy consumption, and the task performance. Even if this trained feed-forward network
remains task-specific, it can be retrained on a different dataset.
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5. Conclusion

We have demonstrated the flexibility of N2S3, our hardware spiking neural network simulator
on a motion detection case study. This flexibility concerns the network topologies (feed-forward
or recurrent), the learning approaches (local or global, supervised or unsupervised, weight or
delay learning). We have also shown that we can evaluate both the generalization performance
and the energy consumption of these various networks built with a very low power CMOS
design.
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