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ON RESTRICTIONS OF BESOV FUNCTIONS

JULIEN BRASSEUR

Abstract. In this paper, we study the smoothness of restrictions of Besov functions. It is
known that for any f ∈ Bs

p,q(RN ) with q 6 p we have f(·, y) ∈ Bs
p,q(Rd) for a.e. y ∈ RN−d. We

prove that this is no longer true when p < q. Namely, we construct a function f ∈ Bs
p,q(RN )

such that f(·, y) /∈ Bs
p,q(Rd) for a.e. y ∈ RN−d. We show that, in fact, f(·, y) belong to

B
(s,Ψ)
p,q (Rd) for a.e. y ∈ RN−d, a Besov space of generalized smoothness, and, when q =∞, we

find the optimal condition on the function Ψ for this to hold. The natural generalization of
these results to Besov spaces of generalized smoothness is also investigated.
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1. Introduction

In this paper, we address the following question: given a function f ∈ Bs
p,q(RN),

what can be said about the smoothness of f(·, y) for a.e. y ∈ RN−d ?

In order to formulate this as a meaningful question, one is naturally led to restrict oneself to
1 6 d < N , 0 < p, q 6∞ and s > σp, where

σp = N

(
1

p
− 1

)
+

,(1.1)

since otherwise f ∈ Bs
p,q(RN) need not be a regular distribution.
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2 JULIEN BRASSEUR

Let us begin with a simple observation. If f ∈ Lp(RN) for some 0 < p 6∞, then

f(·, y) ∈ Lp(Rd) for a.e. y ∈ RN−d.

This is a straightforward consequence of Fubini’s theorem. Using similar Fubini-type argu-
ments, one can show that, if f ∈ W s,p(RN) for some 0 < p 6∞ and σp < s /∈ N, then we have
f(·, y) ∈ W s,p(Rd) for a.e. y ∈ RN−d. We say that these spaces have the restriction property.

Unlike their cousins, the Triebel-Lizorkin spaces F s
p,q(RN), Besov spaces do not enjoy the

Fubini property unless p = q, that is

N∑
j=1

∥∥∥‖f(x1, ..., xj−1, ·, xj+1, ..., xN)‖Bsp,q(R)

∥∥∥
Lp(RN−1)

is an equivalent quasi-norm on Bs
p,q(RN) if, and only if, p = q; while the counterpart for

F s
p,q(RN) holds for any given values of p and q where it makes sense (see [26, Theorem 4.4,

p.36] for a proof). In particular, Bs
p,p(RN) and F s

p,q(RN) have the restriction property. It is

natural to ask wether or not this feature holds in Bs
p,q(RN) for an arbitrary q 6= p.

Let us recall some known facts.

Fact 1.1. Let N > 2, 1 6 d < N , 0 < q 6 p 6∞, s > σp and f ∈ Bs
p,q(RN). Then,

f(·, y) ∈ Bs
p,q(Rd) for a.e. y ∈ RN−d.

(A proof of a slightly more general result will be given in the sequel, see Proposition 5.1.)
In fact, there is a weaker version of Fact 1.1, which shows that this stays ”almost” true when

p < q. This can be stated as follows

Fact 1.2. Let N > 2, 1 6 d < N , 0 < p < q 6∞, s > σp and f ∈ Bs
p,q(RN). Then,

f(·, y) ∈
⋂
s′<s

Bs′

p,q(Rd) for a.e. y ∈ RN−d.

See e.g. [15, Theorem 1] or [5, Theorem 1.1].
Mironescu [19] suggested that it might be possible to construct a counterexample to Fact

1.1 when p < q. We prove that this is indeed the case. This is quite remarkable since, to our
knowledge, the list of properties of the spaces Bs

p,q where q plays a crucial role is rather short.
Our first result is the following

Theorem 1.3. Let N > 2, 1 6 d < N , 0 < p < q 6 ∞ and let s > σp. Then, there exists a
function f ∈ Bs

p,q(RN) such that

f(·, y) /∈ Bs
p,∞(Rd) for a.e. y ∈ RN−d.

Note that this is actually stronger than what we initially asked for, since Bs
p,q ↪→ Bs

p,∞.

Remark 1.4. We were informed that, concomitant to our work, a version of Theorem 1.3 for
N = 2 and p > 1 was proved by Mironescu, Russ and Sire in [20]. We present another proof
independent of it with different techniques. In fact, we will even prove a generalized version
of Theorem 1.3 that incorporates other related function spaces (see Theorem 6.1) which is of
independent interest.
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Despite the negative conclusion of Theorem 1.3, one may ask if something weaker than Fact
1.1 still holds when p < q. For example, by standard embeddings, we know that

Bs
p,q(RN) ↪→ As,p(RN) for any 0 < q <∞,

where As,p(RN) stands for respectively

Cs−N
p (RN), BMO(RN) and L

Np
N−sp ,∞(RN),(1.2)

when respectively sp > N , sp = N and sp < N (see Subsection 2.3). In particular, we may
infer from Fact 1.1 that if q 6 p, then for every f ∈ Bs

p,q(RN) it holds

f(·, y) ∈ As,p(Rd) for a.e. y ∈ RN−d.

It is tempting to ask wether the same is true when p < q. But, as it turns out, even this
fails to hold. This is the content of our next result.

Theorem 1.5. Let N > 2, 1 6 d < N , 0 < p < q 6 ∞ and let s > σp. Then, there exists a
function f ∈ Bs

p,q(RN) such that

f(·, y) /∈ As,p(Rd) for a.e. y ∈ RN−d.(1.3)

It is nonetheless possible to refine the conclusions of Fact 1.2 and Theorem 1.3. We find that
a natural way to characterize such restrictions is to look at a more general scale of functions

known as Besov spaces of generalized smoothness, denoted by B
(s,Ψ)
p,q (R) (see Definition 2.11).

This type of spaces were first introduced by the Russian school in the mid-seventies and were
shown to be useful in various problems ranging from Black-Scholes equations [23] to the study of
pseudo-differential operators [1, 13, 17, 18]. Several versions of these spaces were studied in the
literature, from different points of view and different degrees of generality. We choose to follow
the point of view initiated by Edmunds and Triebel in [11] (see also [10, 21, 25, 26]), which
seems better suited to our purposes. Here, s remains the dominant smoothness parameter
and Ψ is a positive function of log-type called admissible (see Definition 2.9). That admissible
function is a finer tuning that allows encoding more general types of smoothness. The simplest

example is the function Ψ ≡ 1 for which one has B
(s,Ψ)
p,q (RN) = Bs

p,q(RN).

More generally, the spacesB
(s,Ψ)
p,q (RN) are intercalated scales betweenBs−ε

p,q (RN) andBs+ε
p,q (RN).

For example: if Ψ is increasing, then we have

Bs
p,q(RN) ↪→ B(s,Ψ)

p,q (RN) ↪→ Bs′

p,q(RN) for every s′ < s,

see [21, Proposition 1.9(vi)].

We prove that restrictions of Besov functions to almost every hyperplanes belong toB
(s,Ψ)
p,q (Rd),

whenever Ψ satisfies the following growth condition∑
j>0

Ψ(2−j)χ <∞,(1.4)

with χ = qp
q−p (resp. χ = p if q =∞).

More precisely, we prove the following

Theorem 1.6. Let N > 2, 1 6 d < N , 0 < p < q 6 ∞, s > σp and let Ψ be an admissible
function satisfying (1.4). Suppose that f ∈ Bs

p,q(RN). Then,

f(·, y) ∈ B(s,Ψ)
p,q (Rd) for a.e. y ∈ RN−d.
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It turns out the condition (1.4) on Ψ in Theorem 1.6 is optimal, at least when q = ∞. In
other words, we obtain a sharp characterization of the aforementioned loss of regularity.

Theorem 1.7. Let N > 2, 1 6 d < N , 0 < p < q 6 ∞, s > σp and let Ψ be an admissible
function that does not satisfy (1.4). If q <∞ and Ψ is increasing suppose, in addition, that

qp

q − p
<

1

c∞
where c∞ := sup

0<t61
log2

Ψ(t)

Ψ(t2)
.(1.5)

Then, there is a function f ∈ Bs
p,q(RN) such that

f(·, y) /∈ B(s,Ψ)
p,q (Rd) for a.e. y ∈ RN−d.

Remark 1.8. Notice that condition (1.5) is sufficient and also not far from being necessary to
ensure that (1.4) does not hold, as it happens that for some particular choices of Ψ, (1.4) is
equivalent to qp

q−p >
1
c∞

.

A fine consequence of Theorem 1.6 is that it provides a substitute for As,p(Rd) when p < q (in
Theorem 1.5), which could be of interest in some applications (see e.g. [6, 20]). For example,
if sp > d, p < q and (1.4) is satisfied, then by Theorem 1.6 and [8, Proposition 3.4] we have

∀f ∈ Bs
p,q(RN), f(·, y) ∈ C(s− d

p
,Ψ)(Rd) for a.e. y ∈ RN−d,

where C(α,Ψ)(Rd) is the generalized Hölder space B
(α,Ψ)
∞,∞ (Rd) (see Remark 2.21 below).

Remark 1.9. It is actually possible to formulate Theorems 1.6 and 1.7 in terms of the space

B
w(·)
p,q (R) introduced by Ansorena and Blasco in [2, 3], even though their results do not allow

to handle higher orders s > 1 and neither the case 0 < p < 1 nor 0 < q < 1. Nevertheless,
this is merely another side of the same coin and we wish to avoid unnecessary complications.

Beyond technical matters, our approach is motivated by the relevance of the scale B
(s,Ψ)
p,q (R)

in physical problems and in fractal geometry (see e.g. [11, 12, 21, 25, 26]).

In the course of the paper we will also address the corresponding problem with f ∈ B(s,Ψ)
p,q (RN)

instead of f ∈ Bs
p,q(RN) which is of independent interest. In fact, as we will show, our tech-

niques allow to extend Theorems 1.3, 1.6 and 1.7 to this generalized setting with almost no
modifications, see Theorems 6.1, 7.1, 7.2 and Remark 7.3.

The paper is organized as follows. In the forthcoming Section 2 we recall some useful
definitions and results related to Besov spaces. In Section 3, we give some preliminary results
on sequences which will be needed for our purposes. In Section 4, we establish some general
estimates within the framework of subatomic decompositions and, in Section 5, we use these
estimates to prove a generalization of Fact 1.1 which will be used to prove Theorem 1.6. In
Section 6, we prove at a stroke Theorems 1.3 and 1.5 using the results collected at Section 3.
Finally, in Section 7, we prove Theorems 1.6 and 1.7.

2. Notations and definitions

For the convenience of the reader, we specify below some notations used all along this paper.
We will denote by LN the N -dimensional Lebesgue measure and by H N the N -dimensional

Hausdorff measure. The unit sphere of RN will be denoted by SN−1 and the N -dimensional
ball of radius R > 0 centered at zero will be denoted by BR.
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Given a real number x we denote by bxc its integral part and by x+ its positive part
max{0, x}. By analogy, we write R+ := {x+ : x ∈ R}.

We will sometimes make use of the approximatively-less-than symbol ”.”, that is we write
a . b for a 6 C b where C > 0 is a constant independent of a and b. Similarly, a & b means
that b . a. Also, we write

a ∼ b whenever a . b and b . a.

We recall that a quasi-norm is similar to a norm in that it satisfies the norm axioms, except
that the triangle inequality is replaced by

‖x+ y‖ 6 K(‖x‖+ ‖y‖) for some K > 0.

Given two quasi-normed spaces (A, ‖·‖A) and (B, ‖·‖B), we say that A ↪→ B when

A ⊂ B and ‖f‖B . ‖f‖A for all f ∈ A.

Further, we denote by `p(N), 0 < p <∞, the space of sequences u = (uj)j>0 such that

‖u‖`p(N) :=

(∑
j>0

|uj|p
)1/p

<∞,

and by `∞(N) the space of bounded sequences. As usual, we denote by S (RN) the (Schwartz)
space of rapidly decaying functions and by S ′(RN) its dual, the space of tempered distribu-
tions.

Given 0 < p 6∞, we denote by Lp(RN) the space of measurable functions f in RN for which
the p-th power of the absolute value is Lebesgue integrable (resp. f is essentially bounded when
p =∞), endowed with the quasi-norm

‖f‖Lp(RN ) :=

(ˆ
RN
|f(x)|pdx

)1/p

,

(resp. the essential sup-norm when p =∞).
We collect below the different representations of Besov spaces which will be in use in this

paper.

2.1. Classical Besov spaces. Perhaps the simplest (and the most intuitive) way to define
Besov spaces is through finite differences. This can be done as follows.

Let f be a function in RN . Given M ∈ N∗ and h ∈ RN , let

∆M
h f(x) =

M∑
j=0

(−1)M−j
(
M

j

)
f(x+ hj),

be the iterated difference operator.
Within these notations, Besov spaces can be defined as follows.

Definition 2.1. Let M ∈ N∗, 0 < p, q 6∞ and s ∈ (0,M) with s > σp where σp is given by
(1.1). The Besov space Bs

p,q(RN) consists in all functions f ∈ Lp(RN) such that

[f ]Bsp,q(RN ) :=

(ˆ
|h|61

‖∆M
h f‖

q
Lp(RN )

dh

|h|N+sq

) 1
q

<∞,(2.1)
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which, in the case q =∞, is to be understood as

[f ]Bsp,∞(RN ) := sup
|h|61

‖∆M
h f‖Lp(RN )

|h|s
<∞.

The space Bs
p,q(RN) is naturally endowed with the quasi-norm

‖f‖Bsp,q(RN ) := ‖f‖Lp(RN ) + [f ]Bsp,q(RN ),(2.2)

Remark 2.2. Different choices of M in (2.2) yield equivalent quasi-norms.

Remark 2.3. If p, q > 1, then ‖·‖Bsp,q(RN ) is a norm. However, if either 0 < p < 1 or 0 < q < 1,

then the triangle inequality is no longer satisfied and it is only a quasi-norm. Nevertheless, we
have the following useful inequality

‖f + g‖Bsp,q(RN ) 6 (‖f‖η
Bsp,q(RN )

+ ‖g‖η
Bsp,q(RN )

)1/η,

where η := min{1, p, q}, which compensates the absence of a triangle inequality.

For our purposes, we shall require a more abstract apparatus which will be provided by
the so-called subatomic decompositions. This provides a way to decompose any f ∈ Bs

p,q(RN)
along elementary building blocks (essentially made up of a single function independent of f)
and to, somehow, reduce it to a sequence of numbers (depending linearly on f). We outline
below the basics of the theory.

Given ν ∈ N and m ∈ ZN , we denote by Qν,m ⊂ RN the cube with sides parallel to the
coordinate axis, centered at 2−νm and with side-length 2−ν .

Definition 2.4. Let ψ ∈ C∞(RN) be a nonnegative function with

supp(ψ) ⊂ {y ∈ RN : |y| < 2r},
for some r > 0 and ∑

k∈ZN
ψ(x− k) = 1 for any x ∈ RN .(2.3)

Let s > 0, 0 < p 6 ∞, β ∈ NN and ψβ(x) = xβψ(x). Then, for ν ∈ N and m ∈ ZN , the
function

(βqu)ν,m(x) := 2−ν(s−N
p

)ψβ(2νx−m) for x ∈ RN ,(2.4)

is called an (s, p)-β-quark relative to the cube Qν,m.

Remark 2.5. When p =∞, (2.4) means (βqu)ν,m(x) := 2−νsψβ(2νx−m).

For the sake of convenience we will make use of the following notations

λ := {λβν,m ∈ C : (ν,m, β) ∈ N× ZN × NN},(2.5)

λβ := {λβν,m ∈ C : (ν,m) ∈ N× ZN}.(2.6)

Definition 2.6. Given 0 < p, q 6∞, we define bp,q as the space of sequences λ = (λν,m)ν>0,m∈ZN

such that

‖λ‖bp,q :=

(∑
ν>0

( ∑
m∈ZN

|λν,m|p
)q/p)1/q

< +∞.

Then, we have the
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Theorem 2.7. Let 0 < p, q 6 ∞, s > σp and (βqu)ν,m be (s, p)-β-quarks according to Defi-
nition 2.4. Let % > r (where r has the same meaning as in Definition 2.4). Then, Bs

p,q(RN)

coincides with the collection of all f ∈ S ′(RN) which can be represented as

f(x) =
∑
β∈NN

+∞∑
ν=0

∑
m∈ZN

λβν,m(βqu)ν,m(x),(2.7)

where λβ ∈ bp,q is a sequence such that

‖λ‖bp,q ,% := sup
β∈NN

2%|β|‖λβ‖bp,q < +∞.(2.8)

Moreover,

‖f‖Bsp,q(RN ) ∼ inf
(2.7)
‖λ‖bp,q ,%,(2.9)

where the infimum is taken over all admissible representations (2.7). In addition, the right
hand side of (2.9) is independent of the choice of ψ and % > r.

Remark 2.8. It is known that, given f ∈ Bs
p,q(RN) and a fixed % > r, there is a decomposition

λβν,m (depending on the choice of (βqu)ν,m and %) realizing the infimum in (2.9) and which is
said to be an optimal subatomic decomposition of f . We refer to [26] for further details.

2.2. Besov spaces of generalized smoothness. Before we define what we mean by ”Besov
space of generalized smoothness”, we first introduce some necessary definitions.

Definition 2.9. A real function Ψ on the interval (0, 1] is called admissible if it is positive
and monotone on (0, 1], and if

Ψ(2−j) ∼ Ψ(2−2j) for any j ∈ N.

Example 2.10. Let 0 < c < 1 and b ∈ R. Then,

Ψ(x) := | log(cx)|b for x ∈ (0, 1],

is an example of admissible function. Another example is

Ψ(x) := (log | log(cx)|)b for x ∈ (0, 1].

Roughly speaking, admissible functions are ”slowly varying” functions having at most loga-
rithmic growth or decay near zero.

We refer the interested reader to [21, 26] for a detailed review of the properties of admissible
functions.

Definition 2.11. Let M ∈ N∗, 0 < p, q 6 ∞, s ∈ (0,M) with s > σp and let Ψ be an

admissible function. The Besov space of generalized smoothness B
(s,Ψ)
p,q (RN) consists in all

functions f ∈ Lp(RN) such that

[f ]
B

(s,Ψ)
p,q (RN )

:=

(ˆ 1

0

sup
|h|6t
‖∆M

h f‖
q
Lp(RN )

Ψ(t)q

t1+sq
dt

) 1
q

<∞,(2.10)

which, in the case q =∞, is to be understood as

[f ]
B

(s,Ψ)
p,∞ (RN )

:= sup
0<t61

t−sΨ(t) sup
|h|6t
‖∆M

h f‖Lp(RN ) <∞.
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The space B
(s,Ψ)
p,q (RN) is naturally endowed with the quasi-norm

‖f‖
B

(s,Ψ)
p,q (RN )

:= ‖f‖Lp(RN ) + [f ]
B

(s,Ψ)
p,q (RN )

,(2.11)

Remark 2.12. Different choices of M in (2.11) yield equivalent quasi-norms.

Remark 2.13. Observe that, by taking Ψ ≡ 1, we recover the usual Besov spaces, that is we
have

‖f‖
B

(s,1)
p,q (RN )

∼ ‖f‖Bsp,q(RN ),

see [24, Theorem 2.5.12, p.110] for a proof of this.

Remark 2.14. In the literature these spaces are usually defined from the Fourier-analytical
point of view (e.g. in [21, 26]) but, as shown in [14, Theorem 2.5, p.161], the two approaches
are equivalent.

Remark 2.15. Notice that, here as well, the triangle inequality fails to hold when either 0 <
p < 1 or 0 < q < 1, but, in virtue of the Aoki-Rolewicz lemma, we have the same kind of
compensation as in the classical case, see [16, Lemma 1.1, p.3]. That is, there exists η ∈ (0, 1]
and an equivalent quasi-norm ‖·‖

B
(s,Ψ)
p,q (RN ),∗ with

‖f + g‖
B

(s,Ψ)
p,q (RN ),∗ 6 (‖f‖η

B
(s,Ψ)
p,q (RN ),∗

+ ‖g‖η
B

(s,Ψ)
p,q (RN ),∗

)1/η.

A fine property of these spaces is that they admit subatomic decompositions. In fact, it
suffices to modify the definition of (s, p)-β-quarks to this generalized setting in the following
way.

Definition 2.16. Let r, ψ and ψβ with β ∈ NN be as in Definition 2.4. Let s > 0 and
0 < p 6∞. Let Ψ be an admissible function. Then, in generalization of (2.4),

(βqu)ν,m(x) := 2−ν(s−N
p

)Ψ(2−ν)−1ψβ(2νx−m) for x ∈ RN ,

is called an (s, p,Ψ)-β-quark.

Then, we have the following

Theorem 2.17. Let 0 < p, q 6 ∞, s > σp and Ψ be an admissible function. Let (βqu)ν,m be
(s, p,Ψ)-β-quarks according to Definition 2.16. Let % > r (where r has the same meaning as

in Definition 2.16). Then, B
(s,Ψ)
p,q (RN) coincides with the collection of all f ∈ S ′(RN) which

can be represented as

f(x) =
∑
β∈NN

+∞∑
ν=0

∑
m∈ZN

λβν,m(βqu)ν,m(x),(2.12)

where λβ ∈ bp,q is a sequence such that

‖λ‖bp,q ,% := sup
β∈NN

2%|β|‖λβ‖bp,q < +∞.(2.13)

Moreover,

‖f‖Bsp,q(RN ) ∼ inf
(2.12)
‖λ‖bp,q ,%,(2.14)

where the infimum is taken over all admissible representations (2.12). In addition, the right
hand side of (2.14) is independent of the choice of ψ and % > r.
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Remark 2.18. The counterpart of Remark 2.8 for B
(s,Ψ)
p,q (RN) remains valid, see [21, 26].

2.3. Related spaces and embeddings. Let us now say a brief word about embeddings.
Given a function f in RN and a set B ⊂ RN having finite nonzero Lebesgue measure, we let

fB :=

 
B

f(y)dy =
1

LN(B)

ˆ
B

f(y)dy,

be the average of f on B. Moreover, we denote by f ∗ : R+ → R+ the decreasing rearrangement
of f , given by

f ∗(t) := inf
{
λ > 0, µf (λ) 6 t

}
,

for all t > 0, where

µf (λ) := LN

(
{x ∈ RN : |f(x)| > λ}

)
.

is the so-called distribution function of f .

Definition 2.19. Let s > 0 and 0 < p <∞.

(i) The Zygmund-Hölder space Cs(RN) is the Besov space Bs
∞,∞(RN).

(ii) The space of functions of bounded mean oscillation, denoted by BMO(RN), consists in
all locally integrable functions f such that

‖f‖BMO(RN ) := sup
B

 
B

|f(x)− fB| dx <∞,(2.15)

where the supremum in (2.15) is taken over all balls B ⊂ RN .
(iii) The weak Lp-space, denoted by Lp,∞(RN), consists in all measurable functions f such

that

‖f‖Lp,∞(RN ) := sup
t>0

t1/pf ∗(t) <∞,(2.16)

where f ∗ is the decreasing rearrangement of f .

Let us now state the following

Theorem 2.20 (Sobolev embedding theorem for Bs
p,q). Let 0 < p, q <∞ and s > σp.

(i) If sp > N , then Bs
p,q(RN) ↪→ Cs−N

p (RN).

(ii) If sp = N , then Bs
p,q(RN) ↪→ BMO(RN).

(iii) If sp < N , then Bs
p,q(RN) ↪→ L

Np
N−sp ,∞(RN).

In particular, Bs
p,q(RN) ↪→ As,p(RN) where As,p(RN) is as in (1.2).

Proof. The cases (i), (ii) and (iii) are respectively covered by [24, Formula (12), p.131], [20,
Lemma 6.5] and [22, Théorème 8.1, p.301]. �

Remark 2.21. Let us briefly mention that a corresponding result holds for the spacesB
(s,Ψ)
p,q (RN).

As already mentioned in the introduction, the space B
(s,Ψ)
p,q (RN) is embedded in a generalized

version of the Hölder space when sp > N . When sp < N , it is shown in [8] that B
(s,Ψ)
p,q (RN)

embeds in a weighted version of L
Np
N−sp ,∞(RN). Yet, when sp = N , the corresponding substitute

for BMO does not seem to have been identified nor considered in the literature, see however
[9].
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3. Preliminaries

In this section, we study the properties of some discrete sequences which will play an im-
portant role in the sequel. More precisely, we will be interested in the convergence of series of
the type ∑

j>0

2j|λj,b2jxc| for x > 0,

where λ = (λj,k)j,k>0 is an element of some Besov sequence space, say, b1,q with q > 1.

3.1. Some technical lemmata. Let us start with a famous result due to Cauchy.

Theorem 3.1 (Cauchy’s condensation test). Let λ ∈ `1(N) be a nonnegative, nonincreasing
sequence. Then, ∑

j>0

λj 6
∑
j>0

2jλ2j 6 2
∑
j>0

λj.

Remark 3.2. The monotonicity assumption on λ is central here. Indeed, there exists nonneg-
ative sequences λ ∈ `1(N) which are not nonincreasing and such that

∑
j>0 2jλ2j = ∞. Take

for example:

λj =

{
1/k2 if j = 2k,
2−j if j 6= 2k.

Then, clearly, λ ∈ `1(N). However, 2jλ2j = 2j

j2
so that (2jλ2j)j>0 /∈ `1(N).

A simple consequence of Cauchy’s condensation test is the following

Lemma 3.3. Let λ ∈ `1(N) be a nonnegative, nonincreasing sequence. Then,∑
j>0

2jλb2jxc 6 φ(x)
∑
j>0

λj for any x > 0,(3.1)

where φ(x) := 4
|x|

(
1[1,∞)(x) + (1− log2 |x|)1(0,1)(x)

)
.

Proof. Let k ∈ N and 2k 6 x 6 2k+1. Then, by Cauchy’s condensation test∑
j>0

2jλb2jxc 6
∑
j>0

2jλ2k+j = 2−k
∑
j>k

2jλ2j 6 2−k
∑
j>0

2jλ2j 6
4

x

∑
j>0

λj.

In like manner, for 2−(k+1) 6 x 6 2−k, we have∑
j>0

2jλb2jxc 6
∑
j>0

2jλb2j−k−1c = 2k+1
∑

j>−k−1

2jλb2jc 6 2k+1(k + 1)
∑
j>0

2jλ2j .

Finally, invoking again Cauchy’s condensation test, we have∑
j>0

2jλb2jxc 6 2k+2(k + 1)
∑
j>0

λj 6
4

x
(1− log2(x))

∑
j>0

λj. �

In some sense, this ”functional version” of Cauchy’s condensation test may be generalized
to sequences which are not necessarily nonincreasing. Indeed, one can show that

L1

({
x ∈ R+ :

∑
j>0

2j|λb2jxc| = +∞
})

= 0,



ON RESTRICTIONS OF BESOV FUNCTIONS 11

whenever λ ∈ `1(N). This is due to the fact that `p-spaces can be seen as ”amalgams” of
Lp(1, 2) and a weighted version of `p. More precisely, we have

Lemma 3.4. Let 0 < p <∞ and let λ ∈ `p(N). Then

‖λ‖`p(N) =

( ˆ
[1,2]

∑
j>0

2j|λb2jxc|p dx

)1/p

.

Proof. It suffices to assume p = 1 and that λ is nonnegative. Then,

1

2k

∑
2k6j<2k+1

λj =

 
[2k,2k+1]

λbxcdx =
1

2k

ˆ
[1,2]

λb2kyc2
kdy =

ˆ
[1,2]

λb2kycdy,(3.2)

which yields∑
j∈N∗

λj =
∑
k∈N

∑
2k6j<2k+1

λj =
∑
k∈N

2k
ˆ

[1,2]

λb2kxcdx =

ˆ
[1,2]

(∑
k∈N

λb2kxc2
k

)
dx.

The proof is complete. �

We now establish a technical inequality which we will be needed in the sequel.

Lemma 3.5. Let N > 1 and 0 < p < ∞. Let λ = (λβj,k)(j,β,k)∈N×NN×NN be a sequence such

that the partial sequences (λβj,k)k∈NN belong to `p(NN) for all (j, β) ∈ N × NN . Then, for any

positive (αj)j>0 ∈ `1(N) there exists C = C(λ, α,N, d) > 0 such that for any (j, β) ∈ N× NN ,

2jN |λβ
j,b2jxc|

p 6 C
max{1, |β|N+1}

αj

∑
k∈NN

|λβj,k|
p,(3.3)

holds for a.e. x = (x1, ..., xN) ∈ [1, 2]N where

b2jxc = (b2jx1c, ..., b2jxNc) ∈ NN .

Proof. For the sake of convenience, we use the following notations

Uj,β(x) := 2jN |λβ
j,b2jxc|

p and U j,β :=
∑
k∈NN

|λβj,k|
p.

We have to prove that

Uj,β(x) 6 C
max{1, |β|N+1}

αj
U j,β,

for a.e. x ∈ [1, 2]N and any (j, β) ∈ N× NN . By iterated applications of Lemma 3.4, we haveˆ
[1,2]N

Uj,β(x)dx 6 U j,β.(3.4)

Now, define

Γj,β :=

{
x ∈ [1, 2]N : Uj,β(x) >

max{1, |β|N+1}
αj

U j,β

}
.

Then, applying Markov’s inequality and using (3.4), we have

LN(Γj,β) 6
αj

max{1, |β|N+1}
for any (j, β) ∈ N× NN .
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In turn, this gives ∑
β∈NN

∑
j>0

LN(Γj,β) <∞.

Therefore, we can apply the Borel-Cantelli lemma and deduce that there exists j0, β0 > 0 such
that

Uj,β(x) 6
max{1, |β|N+1}

αj
U j,β,

for any j > j0 and/or |β| > β0 and a.e. x ∈ [1, 2]N . On the other hand, for any j 6 j0 and
|β| 6 β0 we have

Uj,β(x) 6 2j0N max{1, |β|N+1}max06j6j0 αj
αj

U j,β.

This completes the proof. �

3.2. Some useful sequences. We now construct some key sequences which will be at the
crux of the proofs of Theorems 1.3, 1.5 and 1.7.

Lemma 3.6. There exists a sequence (ζk)k>0 ⊂ R+ satisfying

sup
j>0

(
1

2j

∑
2j6k<2j+1

ζk

)
6 1,(3.5)

and such that

sup
j>0

ζb2jxc =∞ for all x ∈ [1, 2).(3.6)

Proof. Let us first construct an auxiliary sequence satisfying (3.5).

Let (λk)k>0 be a sequence such that λ0 = λ1 = 0 and such that, for any j > 1, the b2j

j
c

first terms of the sequence (λk)k>0 on the discrete interval [[2j, 2j+1 − 1]] have value j and the
remaining terms are all equal to zero. Then, for any j > 1, we have

1

2j

∑
2j6k<2j+1

λk =
j + · · ·+ j + 0 + · · ·+ 0

2j
=
jb2j

j
c

2j
6 1.

For the sake of convenience, we set

Tj := [[2j, 2j+1 − 1]] for any j > 0.

We will construct a sequence (ζk)k>0 satisfying both (3.5) and (3.6) by rearranging the terms
of (λk)k>0. To this end, we follow the following procedure.

For k ∈ [[0, 23−1]] we impose ζk = λk. For j = 3, we shift the values of (λk)k>0 on T3 in such
a way that the smallest x ∈ [1, 2) such that ζb23xc is nonzero coincides with the limit superior
of the set of all z ∈ [1, 2) such that ζb22zc is nonzero. For j = 4, we shift the values of (λk)k>0

on T4 in such a way that the smallest x ∈ [1, 2] such that ζb24xc is nonzero coincides with the
limit superior of the set of all z ∈ [1, 2) such that ζb23zc is nonzero, and so on. When the plage
of nonzero terms has reached the last term on Tj for some j > 1, we start again from Tj+1

and set ζk = λk on Tj+1, and we repeat the above procedure. See Fig. 1 below for a visual
illustration.
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Fig. 1 : Construction of the first terms of (ζk)k>0.
The hatched zone corresponds to the values of x for which ζb2jxc

takes nonzero values.

If, for some j > 0, it happens that the above shifting of the λk’s on Tj exceeds Tj, then we
shift the λk’s on Tj in such a way that the limit superior of the set of all x ∈ [1, 2] for which
ζb2jxc is nonzero coincides with x = 2.

Note that this procedure is well-defined because the proportion of nonzero terms on each Tj
is 2−jb2j

j
c which has a divergent series thus allowing us to fill as much ”space” as needed.

Then, by construction, for any x ∈ [1, 2) there are infinitely many values of j > 0 such that
ζb2jxc = j. Consequently, (3.6) holds. Moreover, (3.5) is trivially satisfied. This completes the
proof. �

As an immediate corollary, we have

Corollary 3.7. Let 0 < p < q 6∞. Then, there exists a sequence (λj,k)j,k>0 ⊂ R+ satisfying(∑
j>0

(∑
k>0

λpj,k

)q/p)1/q

<∞,(3.7)

(modification if q =∞) and such that

sup
j>0

2j/pλj,b2jxc =∞ for all x ∈ [1, 2).(3.8)

Proof. When q =∞, it suffices to set

λj,k =

{
2−j/pζ

1/p
k if 2j 6 k < 2j+1,

0 otherwise,
(3.9)

where (ζk)k>0 is the sequence constructed at Lemma 3.6.
When q <∞, we simply replace (ζk)k>0 in (3.9) by (ξk)k>0 where

ξk = j−
√

p
q ζk for any k ∈ [[2j, 2j+1 − 1]] with j > 1,
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and ξ0 = ξ1 = 0. Then, we obtain∑
j>1

(
1

2j

∑
2j6k<2j+1

ξk

)q/p
=
∑
j>1

(
j−
√

p
q · 1

2j

∑
2j6k<2j+1

ζk

)q/p
6
∑
j>1

j−
√

q
p <∞.

Moreover, by construction of (ζk)k>0, for any x ∈ [1, 2), there is a countably infinite set Jx ⊂ N
such that ζb2jxc = j for any j ∈ Jx. In particular,

ξb2jxc = jα for any j ∈ Jx and x ∈ [1, 2),

where α = 1−
√
p/q > 0. Thus,

sup
j>1

2jλp
j,b2jxc = sup

j>1
ξb2jxc > sup

j∈Jx
jα =∞ for any x ∈ [1, 2),

which is what we had to show. �

We conclude this section by a weighted version of Corollary 3.7.

Lemma 3.8. Let 0 < p < q 6∞. Let Ψ be an admissible function that does not satisfy (1.4).
If q <∞ and Ψ is increasing assume, in addition, that

χ =
qp

q − p
<

1

c∞
,

where c∞ is as in Theorem 1.7. Then, there exists a sequence (λj,k)j,k>0 ⊂ R+ such that(∑
j>0

(∑
k>0

λpj,k

)q/p)1/q

<∞,(3.10)

(modification if q =∞) and(∑
j>0

2j
q
pλq

j,b2jxcΨ(2−j)q
)1/q

=∞ for all x ∈ [1, 2),(3.11)

(modification if q =∞).

Proof. The proof is essentially the same as in the unweighted case with minor changes that we
shall now detail.

Let us begin with the case q =∞. Let βj := Ψ(2−j)p. Since βj > 0 and (βj)j>0 /∈ `1(N) we
may find another positive sequence (γj)j>0 which has a divergent series and such that

βj
γj
→∞ as j →∞,

i.e. (γj)j>0 diverges slower than (βj)j>0. Take, for example

γj =
βj∑j
k=0 βk

,

see e.g. [4]. Note that 0 < γj 6 1 for all j > 0. Let (%k)k>0 be a sequence such that %0 = %1 = 0
and such that, for any j > 1, the b2jγjc first terms of the sequence (%k)k>0 on the discrete
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interval Tj := [[2j, 2j+1− 1]] have value 1
γj

and the remaining terms are all equal to zero. Then,

for any j > 1, we have

1

2j

∑
2j6k<2j+1

%k =

1
γj

+ · · ·+ 1
γj

+ 0 + · · ·+ 0

2j
=

1
γj
b2jγjc
2j

6 1.

Now, since the proportion of nonzero terms on each Tj is 2−jb2jγjc which has a divergent
series, we may apply to (%j)j>0 the same rearrangement as in the proof of Lemma 3.6. That
is, we can construct a sequence (%∗j)j>0 such that

1

2j

∑
2j6k<2j+1

%∗k 6 1 for all j > 0,(3.12)

and for any x ∈ [1, 2) there is a countably infinite set Jx ⊂ N such that

βj%
∗
b2jxc =

βj
γj

=

j∑
k=0

βk for all j ∈ Jx,(3.13)

i.e. we have

sup
j>0

βj%
∗
b2jxc > lim

j→∞
j∈Jx

j∑
k=0

βk =∞.

Therefore, letting

λj,k =

{
2−j/p(%∗k)

1/p if 2j 6 k < 2j+1,
0 otherwise,

we obtain a sequence satisfying both (3.10) and (3.11).
Let us now prove the lemma when q <∞. Notice that if Ψ is either constant or decreasing

there is nothing to prove since the result is a consequence of Corollary 3.7. Hence, we may
assume that Ψ is increasing. By our assumptions, we have

1

p
log2

βj
β2j

6 c∞ <
1

χ
,

which implies that

βj 6 2c∞pβ2j 6 · · · 6 2kc∞pβ2kj for any k ∈ N.
By Cauchy’s condensation test, we have∑

j>0

β
q
q−p
j =

∑
j>0

2jβ
q
q−p
2j
> β

q
q−p
1

∑
j>0

2j(1−c∞χ) =∞.

Thus, we may infer as above that the following positive sequence has divergent series:

γ̃j =
β

q
q−p
j∑j

k=0 β
q
q−p
k

,

Now define (τj)j>0 by τj :=
γ̃j
βj

. Then, by our assumptions on χ and c∞, we have

τ
q/p
j 6

β
−q/p
j

jq/p
6

1

jq(1/p−c∞)
∈ `1(N).
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The conclusion then follows by letting λ̃j,k := τ
1/p
j λj,k where λj,k is the sequence constructed

above with γ̃j instead of γj. Indeed, we have∑
j>0

(∑
k>0

λ̃pj,k

)q/p
6
∑
j>0

τ
q/p
j <∞,

and for each x ∈ [1, 2) there is a countably infinite set J̃x ⊂ N such that

2j/pλ̃j,b2jxcβ
1/p
j = 2j/p τ

1/p
j

(
βj
γ̃j

)1/p

2−j/p = 1 for any j ∈ J̃x.

Therefore, (2j/pλ̃j,b2jxcβ
1/p
j )j>0 /∈ `q(N). This completes the proof. �

4. General estimates

Throughout this section we will write x ∈ RN as x = (x1, ..., xN) = (x′, x′′) with x′ ∈ Rd,
x′′ ∈ RN−d and, similarly, m = (m′,m′′) ∈ ZN and β = (β′, β′′) ∈ NN . Also, we set

D := {0, 1}N−d.
Let ψ ∈ C∞0 (RN , [0, 1]) be such that supp(ψ) ⊂ B1 and that

2−ν(s−N
p

)ψβ(2νx−m),

are (s, p)-β-quarks. Also, we assume that ψ has the product structure

ψ(x1, ..., xN) = ψ(x1)...ψ(xN).(4.1)

Let % > 0 and f ∈ Bs
p,q(RN). Then, by Theorem 2.7, there are coefficients λβν,m such that

f(x) =
∑
β∈NN

+∞∑
ν=0

∑
m∈ZN

λβν,m2−ν(s−N
p

)ψβ(2νx−m).(4.2)

We can further assume that

‖f‖Bsp,q(RN ) ∼ sup
β∈NN

2%|β|
(∑

ν>1

( ∑
m∈ZN

|λβν,m|p
)q/p)1/q

,(4.3)

i.e. that λβν,m = λβν,m(f) is an optimal subatomic decomposition of f . Note, however, that the

optimality of the decomposition λβν,m(f) depends on the choice of % > 0 (this can be seen from
[26, Corollary 2.12, p.23]). Of course, by Theorem 2.7, we still have

‖f‖Bsp,q(RN ) . sup
β∈NN

2%
′|β|
(∑

ν>1

( ∑
m∈ZN

|λβν,m|p
)q/p)1/q

,(4.4)

for any positive %′ 6= %. Using (4.1) and (4.3), we can decompose f(·, x′′) as

f(x′, x′′) =
∑
ν>0

∑
β′∈Nd

∑
m′∈Zd

bβ
′

ν,m′(λ, x
′′)2−ν(s− d

p
)ψβ

′
(2νx′ −m′),

where we have set

bβ
′

ν,m′(λ, x
′′) := 2ν

N−d
p

∑
β′′∈NN−d

∑
m′′∈ZN−d

λβν,mψ
β′′(2νx′′ −m′′).(4.5)
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Then, defining

J%p,q(λ, x
′′) := sup

β′∈Nd
2%|β

′|
(∑

ν>1

( ∑
m′∈Zd

|bβ
′

ν,m′(λ, x
′′)|p
)q/p)1/q

,(4.6)

we obtain

‖f(·, x′′)‖Bsp,q(Rd) . J%p,q(λ, x
′′).

In fact, we also have

‖f(·, x′′)‖Bsp,q(Rd) . J%
′

p,q(λ, x
′′)(4.7)

for any %′ > 0. For the sake of convenience, we introduce some further notations. Given any
δ ∈ D , we set

bβ
′,δ
ν,m′(λ, x

′′) := 2ν
N−d
p

∑
β′′∈NN−d

|λβν,m′,b2νxd+1c+δd+1,...,b2νxN c+δN |,(4.8)

J%,δp,q (λ, x′) := sup
β′∈Nd

2%|β
′|
(∑

ν>1

( ∑
m′∈Zd

|bβ
′,δ
ν,m′(λ, x

′′)|p
)q/p)1/q

(4.9)

Notice that since supp(ψβ) ⊂ B1, we have

ψβ
′′
(2νx′′ −m′′) 6= 0 =⇒ mi ∈ {b2νxic, b2νxic+ 1} for all i ∈ [[d+ 1, N ]].

And so, using (4.5) and (4.6), we can derive the following bounds

bβ
′

ν,m′(λ, x
′′) 6

∑
δ∈D

bβ
′,δ
ν,m′(λ, x

′′),(4.10)

and

J%p,q(λ, x
′′) 6 c

∑
δ∈D

J%,δp,q (λ, x′′).(4.11)

for some c > 0 depending only on #D , p and q.
As a consequence of (4.7) and (4.11), to estimate ‖f(·, x′′)‖Bsp,q(Rd) from above one only need

to estimate the terms (4.9) from above, for each δ ∈ D .
Within these notations, we have the following

Lemma 4.1. Let N > 2, 0 < p, q 6 ∞, δ ∈ D and 0 < %′ < %0. Then, with the notations
above

J%
′,δ
p,q (λ, x′′) . sup

β∈NN
2%0|β|

(∑
ν>1

( ∑
m′∈Zd

|λβν,m′,b2νx′′c+δ|
p2ν(N−d)

)q/p)1/q

,(4.12)

for a.e. x′′ ∈ RN−d (modification if p =∞ and/or q =∞) where

b2νx′′c+ δ = (b2νxd+1c+ δd+1, ..., b2νxNc+ δN) ∈ ZN−d.

Proof. Suppose first that p, q <∞. For simplicity, we will write

m′′ν,δ := b2νx′′c+ δ.(4.13)
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Using (4.8) and (4.9) we get

J%
′,δ
p,q (λ, x′′) . sup

β′∈Nd
2%
′|β′|
(∑

ν>1

( ∑
m′∈Zd

( ∑
β′′∈NN−d

|λβν,m′,m′′ν,δ |
)p

2ν(N−d)

)q/p)1/q

.

Write λβν,m = 2−%0|β|Λβ
ν,m and let a := %0 − %′. Then,

2%
′|β′||λβν,m| = 2%

′|β′|−%0|β||Λβ
ν,m| 6 2−a|β||Λβ

ν,m| 6 2−a|β
′′||Λβ

ν,m|.
Hence, by Hölder’s inequality we have

J%
′,δ
p,q (λ, x′′) . sup

β′∈Nd

(∑
ν>1

( ∑
m′∈Zd

( ∑
β′′∈NN−d

2−a|β
′′||Λβ

ν,m′,m′′ν,δ
|
)p

2ν(N−d)

)q/p)1/q

6 Ka/2 sup
β′∈Nd

(∑
ν>1

( ∑
m′∈Zd

sup
β′′∈NN−d

2−p
a
2
|β′′||Λβ

ν,m′,m′′ν,δ
|p2ν(N−d)

)q/p)1/q

,

where we have used the notation

Kα =
∑

β′′∈NN−d
2−α|β

′′| for α > 0.(4.14)

Since the `p spaces are increasing with p, by successive applications of the Hölder inequality,
we have

J%
′,δ
p,q (λ, x′′) . Ka/2 sup

β′∈Nd

(∑
ν>1

( ∑
β′′∈NN−d

2−p
a
2
|β′′|

∑
m′∈Zd

|Λβ
ν,m′,m′′ν,δ

|p2ν(N−d)

)q/p)1/q

6 Ka/2K
1/p
pa

4
sup
β′∈Nd

(∑
ν>1

(
sup

β′′∈NN−d
2−p

a
4
|β′′|

∑
m′∈Zd

|Λβ
ν,m′,m′′ν,δ

|p2ν(N−d)

)q/p)1/q

= Ka/2K
1/p
pa

4
sup
β′∈Nd

(∑
ν>1

sup
β′′∈NN−d

2−q
a
4
|β′′|
( ∑
m′∈Zd

|Λβ
ν,m′,m′′ν,δ

|p2ν(N−d)

)q/p)1/q

6 Ka/2K
1/p
pa

4
sup
β′∈Nd

(∑
ν>1

∑
β′′∈NN−d

2−q
a
4
|β′′|
( ∑
m′∈Zd

|Λβ
ν,m′,m′′ν,δ

|p2ν(N−d)

)q/p)1/q

= Ka/2K
1/p
pa

4
sup
β′∈Nd

( ∑
β′′∈NN−d

2−q
a
4
|β′′|
∑
ν>1

( ∑
m′∈Zd

|Λβ
ν,m′,m′′ν,δ

|p2ν(N−d)

)q/p)1/q

6 Ka/2K
1/p
pa

4
K

1/q
q a

4
sup
β∈NN

(∑
ν>1

( ∑
m′∈Zd

|Λβ
ν,m′,m′′ν,δ

|p2ν(N−d)

)q/p)1/q

.

Letting Ka,p,q := Ka/2K
1/p
pa

4
K

1/q
q a

4
and recalling λβν,m = 2−%0|β|Λβ

ν,m we get

J%
′,δ
p,q (λ, x′′) 6 Ka,p,q sup

β∈NN
2%0|β|

(∑
ν>1

( ∑
m′∈Zd

|λβν,m′,m′′ν,δ |
p2ν(N−d)

)q/p)1/q

,

which is the desired estimate. The proof when p =∞ and/or q =∞ is similar but technically
simpler. �
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Remark 4.2. Of course, when p = ∞, the term ”2ν(N−d)” disappears (recall Remark 2.5) so
that, in this case, Fact 1.1 follows directly from the above lemma.

Remark 4.3. The same kind of estimate holds in the setting of Besov spaces of generalized
smoothness. That is, given a function f ∈ Bs

p,q(RN) decomposed as above by (4.2) with

(4.1) and (4.3), we can estimate the B
(s,Ψ)
p,q (Rd)-quasi-norm of its restrictions to almost every

hyperplanes f(·, x′′) exactly in the same fashion. It suffices to replace the (s, p)-β-quarks
(βqu)ν,m in the decomposition of f(·, x′′) by Ψ(2−ν)−1(βqu)ν,m in order to get (s, p,Ψ)-β-
quarks. From here, we can reproduce the same reasoning as in Lemma 4.1 with Ψ(2−ν)λβν,m
instead of λβν,m and we obtain

‖f(·, x′′)‖
B

(s,Ψ)
p,q (Rd)

.
∑
δ∈D

J̃%0,δ
p,q (λ, x′′),

with

J̃%0,δ
p,q (λ, x′′) := sup

β∈NN
2%0|β|

(∑
ν>1

(
Ψ(2−ν)p

∑
m′∈Zd

|λβν,m′,b2νx′′c+δ|
p2ν(N−d)

)q/p)1/q

.

Similarly, given a function f ∈ B(s,Ψ)
p,q (RN), we can estimate the B

(s,Ψ)
p,q (Rd)-norm of its restric-

tions f(·, x′′) in the same spirit. This is done up to a slight modification in the discussion
above. It suffices to multiply the (s, p)-β-quarks considered above by a factor of Ψ(2−ν)−1 and

to take ηβν,m, the optimal subatomic decomposition of f ∈ B(s,Ψ)
p,q (RN) with respect to these new

quarks. Then, the B
(s,Ψ)
p,q (RN)-norm of f and the B

(s,Ψ)
p,q (Rd)-norm of its restrictions f(·, x′′)

satisfy the same relations as when Ψ ≡ 1 with ηβν,m instead of λβν,m. That is, we still have

‖f‖
B

(s,Ψ)
p,q (RN )

∼ sup
β∈NN

2%|β|
(∑

ν>1

( ∑
m∈ZN

|ηβν,m|p
)q/p)1/q

,

and

‖f(·, x′′)‖
B

(s,Ψ)
p,q (Rd)

.
∑
δ∈D

J%0,δ
p,q (η, x′′),

where %, %0 > 0 and J%0,δ
p,q (η, x′′) is as in (4.9).

5. The case q 6 p

This section is concerned with Fact 1.1 (Fact 1.2 being only a consequence of Theorem 1.6).
We will use subatomic decompositions together with the estimate given at Lemma 4.1 to get
the following generalization of Fact 1.1.

Proposition 5.1. Let N > 2, 1 6 d < N , s > σp, 0 < q 6 p 6 ∞ and Ψ be an admissible

function. Let K ⊂ RN−d be a compact set and let f ∈ B(s,Ψ)
p,q (RN). Then,(ˆ

K

‖f(·, x′′)‖q
B

(s,Ψ)
p,q (Rd)

dx′′
)1/q

6 C‖f‖
B

(s,Ψ)
p,q (RN )

,(5.1)

for some constant C = C(K,N, d, p, q) > 0 (modification if q =∞).
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Proof. Without loss of generality, we may consider the case K = [1, 2]N−d only (the general case
follows from standard scaling arguments). Also, we can suppose that p < ∞ since otherwise,
when p =∞, the desired result is a simple consequence of Lemma 4.1 (recall Remark 4.2). Let
us first prove Lemma 5.1 for Ψ ≡ 1 (it will be clear at the end why this is enough to deduce
the general case).

Let f ∈ Bs
p,q(RN). Given the (s, p)-β-quarks (βqu)ν,m and % > r defined at Section 4 we let

λβν,m = λβν,m(f) be the corresponding optimal subatomic decomposition. In particular

f(x) =
∞∑
ν=1

∑
β∈NN

∑
m∈ZN

λβν,m(βqu)ν,m(x),

with

‖f‖Bsp,q(RN ) ∼ sup
β∈NN

2%|β|
(∑

ν>1

( ∑
m∈ZN

|λβν,m|p
)q/p)1/q

.

By the discussion in Section 4, we have that

‖f(·, x′′)‖Bsp,q(Rd) .
∑
δ∈D

J%
′,δ
p,q (λ, x′′).(5.2)

for all %′ ∈ (0, %), where J%
′,δ
p,q (λ, x′′) is given by (4.9). Define

Λβ
ν,m′′ :=

( ∑
m′∈Zd

|λβν,m′,m′′ |
p

)1/p

.

In particular,

‖f‖Bsp,q(RN ) ∼ sup
β∈NN

2%|β|
(∑

ν>1

( ∑
m′′∈ZN−d

|Λβ
ν,m′′ |

p

)q/p)1/q

.

Then, the conclusion of Lemma 4.1 rewrites

J%
′,δ
p,q (λ, x′′)q . sup

β∈NN
2%0q|β|

∑
ν>1

2νq
N−d
p |Λβ

ν,b2νx′′c+δ|
q for all δ ∈ D ,

and some %0 ∈ (%′, %). Integration over [1, 2]N−d yields

Iδ :=

ˆ
[1,2]N−d

J%
′,δ
p,q (λ, x′′)qdx′′ .

ˆ
[1,2]N−d

sup
β∈NN

2%0q|β|
∑
ν>1

2νq
N−d
p |Λβ

ν,b2νx′′c+δ|
qdx′′

6
∑
β∈NN

2%0q|β|
∑
ν>1

ˆ
[1,2]N−d

2νq
N−d
p |Λβ

ν,b2νx′′c+δ|
qdx′′.

Now, we observe that

2νq
N−d
p |Λβ

ν,b2νx′′c+δ|
q 6

( ∑
k∈NN−d

|Λβ

ν,b2kd+1xd+1c+δd+1,··· ,b2kN xN c+δN
|p2kd+1+···+kN

)q/p
.

Hence, using the fact that q 6 p and applying N − d times Lemma 3.4, we get

Iδ .
∑
β∈NN

2%0q|β|
∑
ν>1

( ∑
k∈NN−d

|Λβ
ν,k+δ|

p

)q/p
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6
∑
β∈NN

2(%0−%)q|β| sup
β∈NN

2%q|β|
∑
ν>1

( ∑
k∈NN−d

|Λβ
ν,k+δ|

p

)q/p

= K%,N,q sup
β∈NN

2%q|β|
∑
ν>1

( ∑
k∈NN−d

|Λβ
ν,k+δ|

p

)q/p
6 K%,N,q sup

β∈NN
2%q|β|‖λβ‖qbp,q .(5.3)

Thus, recalling (5.2), we arrive at(ˆ
[1,2]N−d

‖f(·, x′′)‖q
Bsp,q(Rd)

dx′′
)1/q

. ‖f‖Bsp,q(RN ).(5.4)

Now, having in mind Remark 4.3, we can reproduce exactly the same proof when Ψ 6≡ 1 with
almost no modifications. This completes the proof. �

6. The case p < q

In this section we prove, at a stroke, Theorem 1.3 and Theorem 1.5. As will become clear,
the proof of Theorem 1.5 will easily follow from that of Theorem 1.3.

Let us begin with the following more general result:

Theorem 6.1. Let N > 2, 1 6 d < N , 0 < p < q 6 ∞ and s > σp. Let Ψ be an admissible

function. Then, there exists a function f ∈ B(s,Ψ)
p,q (RN) such that

f(·, x′′) /∈ B(s,Ψ)
p,∞ (Rd) for a.e. x′′ ∈ RN−d.

Proof. We will essentially follow two steps.

Step 1: case d = N − 1. We will construct a function satisfying the requirements of Theorem
1.3 via its subatomic coefficients.

Let Ψ be an admissible function. Let s > σp, M = bsc+ 1, 0 < p < q 6∞ and (λj,k)j,k>0 ∈
bp,q be the sequence constructed at Corollary 3.7.

Also, we let ψ ∈ C∞c (RN) be a function such that

supp(ψ) ⊂ [−2, 2]N , inf
z∈[0,1]N

ψ(z) > 0 and
∑
m∈ZN

ψ(· −m) ≡ 1.(6.1)

In addition, we will suppose that ψ has the product structure

ψ(x) = ψ(x1) ... ψ(xN).(6.2)

Notice that such a ψ always exists.1

1Here is an example. Let u(t) := e−1/t21(0,∞)(t) (extended by 0 in (∞, 0]) and let v(t) = u(1 + t)u(1 − t).
Then,

ψ(x) :=

N∏
j=1

1

2
ψ0

(xj
2

)
where ψ0(t) =

v(t)

v(t− 1) + v(t) + v(t+ 1)
,

is a smooth function satisfying (6.1) and (6.2).
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Then, we define

f(x) =
∑
j>0

∑
k>0

λj,k2
−j(s−N

p
)Ψ(2−j)−1ψ(2j(x1 − CMj)) ... ψ(2j(xN−1 − CMj))ψ(2jxN − k),

(6.3)

where CM = 2(M + 2). It follows from Definition 2.16 that

Ψ(2−j)−12−j(s−
N
p

)ψ(2jx−m) for x ∈ RN ,

with

m = (CM2jj, ... , CM2jj, k) ∈ ZN ,
can be interpreted as (s, p,Ψ)-0-quarks relative to the cube Qj,m. Consequently, by Theorem
2.17 and Corollary 3.7, we have

‖f‖
B

(s,Ψ)
p,q (RN )

6 c

(∑
j>0

(∑
k>0

λpj,k

)q/p)1/q

<∞,

(modification if q =∞). Therefore, f ∈ B(s,Ψ)
p,q (RN). In particular, the sum in the right-hand

side of (6.3) converges in Lp(RN) and is unconditionally convergent for a.e. x ∈ RN (notice
the terms involved are all nonnegative) and, by Fubini, f(·, xN) also converges in Lp(RN−1)
for a.e. xN ∈ R. Thus, letting

ηj(xN) :=
∑
k>0

λj,k2
j/pψ(2jxN − k),

we may rewrite (6.3) as

f(x′, xN) =
∑
j>0

ηj(xN)2−j(s−
N−1
p

)Ψ(2−j)−1ψ(2j(x1 − CMj)) ... ψ(2j(xN−1 − CMj)).

Notice that assumption (6.1) implies that there is a c0 > 0 such that

ψ(2jxN − b2jxNc) > c0 > 0 for all xN ∈ [1, 2] and j > 0.

In particular, we have

ηj(xN) > c0 λj,b2jxN c2
j/p.(6.4)

Now, for all j > 0, we write

Kj := {h ∈ RN−1 : 2−(j+1) 6 |h| 6 2−j}.

By [7, Lemma 8.2] (in fact in [7] it is implicitly supposed that 1 6 p < ∞ but the proof still
works when 0 < p < 1) and (6.4), we have

sup
h∈Kj
‖∆M

h f(·, xN)‖Lp(RN−1) > c 2−jsΨ(2−j)−1ηj(xN)

> c′ 2−jsΨ(2−j)−1 2j/pλj,b2jxN c,(6.5)

for any j > 0 and some c′ > 0 independent of j. Recall that

‖g‖
B

(s,Ψ)
p,∞ (RN−1)

∼ ‖g‖Lp(RN−1) + sup
j>1

2jsΨ(2−j) sup
h∈Kj
‖∆M

h g‖Lp(RN−1),
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is an equivalent quasi-norm on B
(s,Ψ)
p,∞ (RN−1) (this is a discretized version of Definition 2.11).

This together with (6.5) and Corollary 3.7 gives

‖f(·, xN)‖
B

(s,Ψ)
p,∞ (RN−1)

& sup
j>0

2j/pλj,b2jxN c =∞ for a.e. xN ∈ [1, 2].

Therefore, f(·, xN) /∈ B(s,Ψ)
p,∞ (RN−1) for a.e. xN ∈ [1, 2].

We will show that one can construct a function satisfying the requirements of Theorem 1.3
by considering a weighted sum of translates of the function f constructed above. To this end,
we let

fl(x
′, xN) := f(x′, xN + l) for l ∈ Z,

and we define
g :=

∑
l∈Z

2−|l|fl.

Then, by the triangle inequality for Besov quasi-norms, we have

‖g‖η
B

(s,Ψ)
p,q (RN )

6
∑
l∈Z

2−η|l|‖fl‖η
B

(s,Ψ)
p,q (RN )

6 cη‖f‖η
B

(s,Ψ)
p,q (RN )

<∞,

for some 0 < η 6 1. Hence, g ∈ B(s,Ψ)
p,q (RN). To complete the proof we need to show that

g(·, xN) /∈ B(s,Ψ)
p,∞ (RN−1) for a.e. xN ∈ R.(6.6)

Let m ∈ Z. Then, by the triangle inequality for Besov quasi-norms we have

2−η|m|‖fm(·, xN)‖η
B

(s,Ψ)
p,∞ (RN−1)

6 ‖g(·, xN)‖η
B

(s,Ψ)
p,∞ (RN−1)

+
∑
l 6=m

2−η|l|‖fl(·, xN)‖η
B

(s,Ψ)
p,∞ (RN−1)

6 ‖g(·, xN)‖η
B

(s,Ψ)
p,∞ (RN−1)

+ cη sup
l 6=m
‖fl(·, xN)‖η

B
(s,Ψ)
p,∞ (RN−1)

.(6.7)

Clearly, the left-hand side of (6.7) is infinite for a.e. xN ∈ [1−m, 2−m]. Thus, to prove (6.6),
one only need to make sure that the last term on the right-hand side of (6.7) is finite for a.e.
xN ∈ [1−m, 2−m]. For it, we notice that, by construction, it is necessary to have

j > 1 and 2j 6 k < 21+j,(6.8)

for λj,k 6= 0 to hold. In particular, η0 ≡ 0 and ηj(xN) consists only in finitely many terms for
a.e. xN ∈ R. In addition, by our assumptions on the support of ψ, we have ψ(2jxN − k) 6= 0
provided ∣∣∣∣xN − k

2j

∣∣∣∣ 6 21−j.(6.9)

By (6.8) and (6.9), we deduce that if xN ∈ R \ [1, 2], then there are only finitely many values
of j > 1 such that ηj(xN) 6≡ 0. In particular,

f(·, xN + l) ∈ B(s,Ψ)
p,∞ (Rd) for a.e. xN ∈ [1, 2] and all l ∈ Z \ {0}.(6.10)

Moreover, a consequence of (6.8) and (6.9) is that

j > 1 and xN ∈ supp(ηj) =⇒ 1− 21−j 6 xN < 2 + 21−j.

In turn, this implies that the support of ηj is included in [0, 3]. Therefore,

f(·, xN + l) ≡ 0 for a.e. xN ∈ [1, 2] and all l ∈ Z with |l| > 2.(6.11)
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Hence, by (6.10) and (6.11), we infer that

max
l 6=0
‖fl(·, xN)‖

B
(s,Ψ)
p,∞ (RN−1)

<∞ for a.e. xN ∈ [1, 2].

In like manner, for every m ∈ Z, we have

max
l 6=m
‖fl(·, xN)‖

B
(s,Ψ)
p,∞ (RN−1)

<∞ for a.e. xN ∈ [1−m, 2−m].

This proves the theorem for d = N − 1.

Step 2: case 1 6 d < N − 1. By the above, we know that Theorem 1.3 holds for any

N > 2 and d = N − 1. In particular, there exists a function f ∈ B
(s,Ψ)
p,q (Rd+1) such that

f(·, xd+1) /∈ B(s,Ψ)
p,∞ (Rd) for a.e. xd+1 ∈ R. Now, pick a function w ∈ S (RN−d−1) with w > 0

on RN−d−1 and set

g(x) = g(x1, ..., xN) = f(x1, ..., xd, xd+1)w(xd+2, ..., xN).

It is standard that g ∈ Lp(RN) where p := max{1, p}. Then, letting M = bsc + 1 and using
[24, Formula (16), p.112], we have that

sup
|h|6t
‖∆2M

h g‖Lp(RN ) . ‖f‖Lp(Rd+1) sup
|h′′|6t

‖∆M
h′′w‖Lp(RN−d−1) + ‖w‖Lp(RN−d+1) sup

|h′|6t
‖∆M

h′ f‖Lp(Rd+1),

for any h = (h′, h′′) ∈ RN \ {0} with h′ = (h1, ..., hd+1) and h′′ = (hd+2, ..., hN). In particular,
recalling Remark 2.12, we see that this implies

‖g‖
B

(s,Ψ)
p,q (RN )

. ‖f‖Lp(Rd+1)‖w‖B(s,Ψ)
p,q (RN−d−1)

+ ‖w‖Lp(RN−d−1)‖f‖B(s,Ψ)
p,q (Rd+1)

.

Hence, g ∈ B(s,Ψ)
p,q (RN). Moreover, it is easily seen that

g(·, xd+1, ..., xN) = f(·, xd+1)w(xd+1, ..., xN) /∈ B(s,Ψ)
p,∞ (Rd),

for a.e. (xd+1, ..., xN) ∈ RN−d. This completes the proof. �

The function we have constructed above (in the proof of Theorem 6.1) turns out to verify
the conclusion of Theorem 1.5.

Proof of Theorem 1.5. For simplicity, we outline the proof for N = 2 and d = 1 only (the
general case follows from the same arguments as above). Let f be the function constructed in
the proof of Theorem 6.1 with Ψ ≡ 1, namely

f(x1, x2) :=
∑
j>0

ηj(x2)2−j(s−
1
p

)ψ(2j(x1 − CMj)),

with
ηj(x2) :=

∑
k>0

λj,k2
j/pψ(2jx2 − k),

where ψ, CM and (λj,k)j,k>0 are as in the proof of Theorem 6.1. Clearly,

‖f‖Bsp,q(R2) 6 c

(∑
j>0

(∑
k>0

λpj,k

)q/p)1/q

<∞.

Hence, f ∈ Bs
p,q(R2). We now distinguish the cases sp > 1, sp = 1 and sp < 1.
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Step 1: case sp > 1. This case works as in Theorem 6.1. Indeed, by the supports of the
functions involved, we have for a.e. x2 ∈ [1, 2],

‖f(·, x2)‖
C
s− 1

p (R)
∼ sup

j>0
2j(s−

1
p

) sup
h∈Kj
‖∆M

h f(·, x2)‖L∞(RN ) & sup
j>0

2j/pλj,b2jx2c =∞.

We may now conclude as in the proof of Theorem 6.1.

Step 2: case sp = 1. It suffices to notice that, for any k > 0, we have

‖f(·, x2)‖BMO(R) >
 k+2−k

k−2−k

∣∣∣∣∣
 k+2−k

k−2−k

(
f(x, x2)− f(z, x2)

)
dz

∣∣∣∣∣ dx
=

 k+2−k

k−2−k

∣∣∣∣∣∑
j>0

ηj(x2)

 k+2−k

k−2−k

(
ψ(2j(x− j))− ψ(2j(z − j))

)
dz

∣∣∣∣∣ dx(6.12)

Hence, by the support of the functions involved we deduce that

‖f(·, x2)‖BMO(R) > ηk(x2)

 k+2−k

k−2−k

∣∣∣∣∣
 k+2−k

k−2−k

(
ψ(2k(x− k))− ψ(2k(z − k))

)
dz

∣∣∣∣∣ dx
= ηk(x2)

 1

−1

∣∣∣∣ 1

−1

(
ψ(x)− ψ(z)

)
dz

∣∣∣∣ dx > c′ηk(x2).(6.13)

Therefore, we have

‖f(·, x2)‖BMO(R) & sup
j>0

ηj(x2) = sup
j>0

2j/pλj,b2jx2c =∞ for a.e. x2 ∈ [1, 2].

Thus, we may again conclude as in the proof of Theorem 6.1.

Step 3: case sp < 1. Define r := p
1−sp and rewrite f as

f(x1, x2) :=
∑
j>0

cj(x2)2j/rfj(x1),

where we have set

fj(x1) := ψ(2j(x1 − CMj)) and cj(x2) := 2−j(s−
2
p

)2−j/r
∑
k>0

λj,kψ(2jx2 − k).

Since the fj’s have mutually disjoint support we find that

f(·, x2)∗(t) > cj(x2) 2j/rf ∗j (t) for any t > 0 and j > 0.

Moreover, it is easy to see that f ∗j (t) = ψ∗(2jt). In turn, this implies that

‖f(·, x2)‖Lr,∞(R) > cj(x2) 2j/r sup
t>0

t1/rψ∗(2jt) = cj(x2)‖ψ‖Lr,∞(R) & 2j/pλj,b2jx2c.

Hence, for a.e. x2 ∈ [1, 2],

‖f(·, x2)‖Lr,∞(R) & sup
j>0

2j/pλj,b2jx2c =∞.

This completes the proof. �
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7. Characterization of restrictions of Besov functions

In this section, we prove that Besov spaces of generalized smoothness are the natural scale
in which to look for restrictions of Besov functions. More precisely, we will prove Theorems
1.6 and 1.7. We present several results, with different assumptions and different controls on
the norm of f(·, x′′).

Let us begin with the following

Theorem 7.1. Let N > 2, 1 6 d < N , s > σp and 0 < p < q 6 ∞. Let K ⊂ RN−d be any
cube. Let Φ and Ψ be two admissible functions such that∑

j>0

Φ(2−j)−pΨ(2−j)p <∞.(7.1)

Let f ∈ B(s,Φ)
p,q (RN). Then, there exists a constant C > 0 such that

‖f(·, x′′)‖
B

(s,Ψ)
p,q (Rd)

6 C‖f‖
B

(s,Φ)
p,q (RN )

for a.e. x′′ ∈ K.(7.2)

Moreover, the constant C is independent of x′′ but may depend on f , K, N , d, p, q, Φ and Ψ.

Proof. Let us first suppose that q < ∞ and that Φ ≡ 1. Without loss of generality we may
take K = [1, 2]N−d, the general case being only a matter of scaling. Here again, we use the
following short notation

b2νx′′c = (b2νxd+1c, ..., b2νxNc) ∈ NN−d.

Let f ∈ Bs
p,q(RN) and write its subatomic decomposition as

f(x) =
∑
β∈NN

∑
ν>0

∑
m∈ZN

λβν,m(βqu)ν,m(x),

where the (s, p)-β-quarks (βqu)ν,m are as in Section 4 and λβν,m = λβν,m(f) is the optimal
subatomic decomposition of f , i.e. such that

‖f‖Bsp,q(RN ) ∼ sup
β∈NN

2%|β|‖λβ‖bp,q .(7.3)

Let ε > 0 be small. Rewriting f as in the discussion at Section 4 and using Lemma 4.1 together
with Remark 4.3 we have

‖f(·, x′′)‖
B

(s,Ψ)
p,q (Rd)

.
∑
δ∈D

J̃%−ε,δp,q (λ, x′′),(7.4)

where

J̃%−ε,δp,q (λ, x′′) := sup
β∈NN

2(%−ε)|β|
(∑

ν>0

(
2ν(N−d)Ψ(2−ν)p

∑
m′∈Zd

|λβν,m′,b2νx′′c+δ|
p

)q/p)1/q

.(7.5)

By Lemma 3.5, we know that for any positive sequence (αν)ν>0 ∈ `1(N) there is a constant
C = C(λ, α,N, d) > 0 such that

2ν(N−d)
∑
m′∈Zd

|λβν,m′,b2νx′′c+δ|
p 6 C

max{1, |β|N−d+1}
αν

∑
m∈ZN

|λβν,m|p,(7.6)
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for a.e. x′′ ∈ [1, 2]N−d and any (ν, β) ∈ N× NN . In particular, we have

J̃%−ε,δp,q (λ, x′′) . sup
β∈NN

2(%−ε)|β|max{1, |β|
N−d+1

p }
(∑

ν>0

(
Ψ(2−ν)p

αν

∑
m∈ZN

|λβν,m|p
)q/p)1/q

.

Now, by assumption (7.1), we can choose αν = Ψ(2−ν)p. Therefore, recalling (7.4), we have

‖f(·, x′′)‖
B

(s,Ψ)
p,q (Rd)

. sup
β∈NN

2(%−ε)|β|max{1, |β|
N−d+1

p }
(∑

ν>0

( ∑
m∈ZN

|λβν,m|p
)q/p)1/q

6 sup
β∈NN

2%|β|
(∑

ν>0

( ∑
m∈ZN

|λβν,m|p
)q/p)1/q

Finally, recalling (7.3), we have

‖f(·, x′′)‖
B

(s,Ψ)
p,q (Rd)

. ‖f‖Bsp,q(RN ) for a.e. x′′ ∈ [1, 2]N−d.(7.7)

The proof when q = ∞ and/or Φ 6≡ 1 is similar (recall Remark 4.3). It this latter case, one
only have to adjust the (s, p)-β-quarks by a factor of Φ(2−ν)−1 and to replace λβν,m by ηβν,m, the

optimal decomposition of f ∈ B(s,Φ)
p,q (RN) along these (s, p,Φ)-β-quarks. Then, as in Remark

4.3, it suffices to replace Ψ(2−ν)λβν,m in the estimates (7.4) and (7.5) of ‖f(·, x′′)‖
B

(s,Ψ)
p,q (Rd)

by

Ψ(2−ν)/Φ(2−ν)ηβν,m and the same proof yields the desired conclusion. �

We carry on with the following generalization of Theorem 1.6.

Theorem 7.2. Let N > 3, 1 6 d < N , 0 < r 6 p < q 6 ∞ and let χ = qr
q−r (resp. χ = r if

q =∞). Let Φ and Ψ be two admissible functions such that∑
j>0

Φ(2−j)−χΨ(2−j)χ <∞.(7.8)

Let K ⊂ RN−d be a compact set and suppose that f ∈ B(s,Φ)
p,q (RN). Then,(ˆ

K

‖f(·, x′′)‖r
B

(s,Ψ)
p,r (Rd)

dx′′
)1/r

6 C‖f‖
B

(s,Φ)
p,q (RN )

,

for some constant C = C(K,N, d, p, q,Ψ) > 0.

Proof. By Hölder’s inequality, the Definition of the norms involved and our assumptions on s,

p, q, r, χ, we see that (7.8) implies that B
(s,Φ)
p,q (RN) ↪→ B

(s,Ψ)
p,r (RN) continuously, i.e.

‖f‖
B

(s,Ψ)
p,r (RN )

6

(∑
j>0

Φ(2−j)−χΨ(2−j)χ
)1/χ

‖f‖
B

(s,Φ)
p,q (RN )

.

Using now Proposition 5.1, we obtain the desired conclusion. �

We now prove Theorem 1.7.

Proof of Theorem 1.7. The proof works exactly as in Theorem 1.3 and, here again, it suffices
to prove the result for N > 2, d = N − 1. We prove the case N = 2 only but the general case
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N > 2 is similar. Let (λj,k)j,k>0 be the sequence constructed at Lemma 3.8. Let M ∈ N∗ with
s < M . We consider the following function

f(x1, x2) =
∑
j>0

∑
k>0

λj,k2
−j(s− 2

p
)ψ(2j(x1 − CMj))ψ(2jx2 − k),(7.9)

where ψ and CM are as in the proof of Theorem 1.3. There, we have shown that

‖f‖Bsp,q(R2) 6 c‖λ‖bp,q ,
and

sup
h∈Kj

‖∆M
h f(·, x2)‖Lp(R) > c 2−js2j/pλj,b2jx2c,(7.10)

for any j > 0 and a.e. x2 ∈ [1, 2]. From this it follows that

2jsΨ(2−j) sup
h∈Kj

‖∆M
h f(·, x2)‖Lp(R) > cΨ(2−j)2j/pλj,b2jx2c.(7.11)

Now, by Lemma 3.8 and since

‖g‖
B

(s,Ψ)
p,q (R)

∼ ‖g‖Lp(RN ) +

(∑
j>0

2jsqΨ(2−j)q sup
h∈Kj

‖∆M
h g‖

q
Lp(R)

)1/q

,(7.12)

is an equivalent quasi-norm on B
(s,Ψ)
p,q (R), we have f ∈ Bs

p,q(R2) and f(·, x2) /∈ B(s,Ψ)
p,q (R) for

a.e. x2 ∈ [1, 2]. Then, arguing exactly as in Theorem 1.3, we obtain a function satisfying the
requirements of Theorem 1.7. This completes the proof. �

Remark 7.3. This can be generalized in the spirit of Theorem 7.1. Indeed, repeating the
arguments of the proof of Theorem 6.1, we can prove that if (7.8) is violated, then there is a

function f ∈ B(s,Φ)
p,q (RN) such that f(·, x′′) /∈ B(s,Ψ)

p,q (Rd) for a.e. x′′ ∈ RN−d.
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