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ON RESTRICTIONS OF BESOV FUNCTIONS
JULIEN BRASSEUR

ABSTRACT. In this paper, we study the smoothness of restrictions of Besov functions. It is
known that for any f € Bf,yq(RN) with ¢ < p we have f(-,y) € B;,q(Rd) for a.e. y € RV, We
prove that this is no longer true when p < ¢q. Namely, we construct a function f € B;q(RN )
such that f(-,y) ¢ Bs ,(R?) for a.e. y € RN74 We show that, in fact, f(-,y) belong to
B,(,i’]‘ll)(Rd) for a.e. y € RV=4 a Besov space of generalized smoothness, and, when ¢ = oo, we

find the optimal condition on the function ¥ for this to hold. The natural generalization of
these results to Besov spaces of generalized smoothness is also investigated.

CONTENTS
1. Introduction 1
2. Notations and definitions 4
2.1. Classical Besov spaces )
2.2. Besov spaces of generalized smoothness 7
2.3. Related spaces and embeddings 9
3. Preliminaries 10
3.1. Some technical lemmata 10
3.2.  Some useful sequences 12
4. General estimates 16
5. The case ¢ < p 19
6. The case p < ¢ 21
7. Characterization of restrictions of Besov functions 26
Acknowledgments 28
References 28

1. INTRODUCTION

In this paper, we address the following question: given a function f € B;q(]RN ),

what can be said about the smoothness of f(-,y) for a.e. y € RVN- 2

In order to formulate this as a meaningful question, one is naturally led to restrict oneself to
1<d<N,0<p,q<o00ands > o, where

(1.1) o, — N(% - 1)+,

since otherwise f € B;vq(RN ) need not be a regular distribution.
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2 JULIEN BRASSEUR

Let us begin with a simple observation. If f € LP(RY) for some 0 < p < oo, then
f(y) € LP(RY) for a.e. y e RN,

This is a straightforward consequence of Fubini’s theorem. Using similar Fubini-type argu-
ments, one can show that, if f € W#P(RY) for some 0 < p < oo and 0, < s ¢ N, then we have
f(,y) € WeP(R?) for a.e. y € RVN~4. We say that these spaces have the restriction property.

Unlike their cousins, the Triebel-Lizorkin spaces F[f’q(RN ), Besov spaces do not enjoy the
Fubini property unless p = ¢, that is

B; ,(R) ‘

N
Z H“f(xl) ey Lj—1y "y Tj41, 7CC'N)|
7j=1

Lp(RNfl)

is an equivalent quasi-norm on B (RY) if, and only if, p = ¢; while the counterpart for
F3 (RY) holds for any given values of p and ¢ where it makes sense (see [26, Theorem 4.4,
p.36] for a proof). In particular, BS (RY) and F; (RY) have the restriction property. It is
natural to ask wether or not this feature holds in B;q(RN ) for an arbitrary q # p.

Let us recall some known facts.

Fact 1.1. Let N >2,1<d < N,0<q¢<p<oo,s>o0, and f € B (RY). Then,
f(y) € B;’q(]Rd) for a.e. ye RN

(A proof of a slightly more general result will be given in the sequel, see Proposition 5.1.)
In fact, there is a weaker version of Fact 1.1, which shows that this stays ”almost” true when
p < q. This can be stated as follows

Fact 1.2. Let N >2, 1<d<N,0<p<q<oo,s>o, and f € B (RY). Then,

f(y) € ﬂ B;:q(Rd) for a.e. ye RN

s'<s

See e.g. [15, Theorem 1] or [5, Theorem 1.1].

Mironescu [19] suggested that it might be possible to construct a counterexample to Fact
1.1 when p < gq. We prove that this is indeed the case. This is quite remarkable since, to our
knowledge, the list of properties of the spaces B, , where ¢ plays a crucial role is rather short.

Our first result is the following

Theorem 1.3. Let N 22,1 <d< N, 0<p<qg<ooandlets> o, Then, there exists a
function f € Bs (RY) such that

fGy) ¢ B (RY) for a.e. ye RN
Note that this is actually stronger than what we initially asked for, since B; , < B, ...

Remark 1.4. We were informed that, concomitant to our work, a version of Theorem 1.3 for
N =2 and p > 1 was proved by Mironescu, Russ and Sire in [20]. We present another proof
independent of it with different techniques. In fact, we will even prove a generalized version
of Theorem 1.3 that incorporates other related function spaces (see Theorem 6.1) which is of
independent interest.
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Despite the negative conclusion of Theorem 1.3, one may ask if something weaker than Fact
1.1 still holds when p < q. For example, by standard embeddings, we know that

B;Q(RN) < ASP(RY) for any 0 < ¢ < o0,
where A*P(RY) stands for respectively
(1.2) > % (RY), BMO(RY) and L¥-5(RY),

when respectively sp > N, sp = N and sp < N (see Subsection 2.3). In particular, we may
infer from Fact 1.1 that if ¢ < p, then for every f € B, q(RN ) it holds

f(y) € AP(RY) for a.e. y e RN,

It is tempting to ask wether the same is true when p < ¢. But, as it turns out, even this
fails to hold. This is the content of our next result.

Theorem 1.5. Let N > 2, 1 <d < N,0<p<q<ooandlets> o, Then, there exists a
function f € B;,q(]RN) such that

(1.3) f(y) ¢ A*P(RY) for a.e. ye RN

It is nonetheless possible to refine the conclusions of Fact 1.2 and Theorem 1.3. We find that
a natural way to characterize such restrictions is to look at a more general scale of functions
known as Besov spaces of generalized smoothness, denoted by Bzf,fq’m) (R) (see Definition 2.11).
This type of spaces were first introduced by the Russian school in the mid-seventies and were
shown to be useful in various problems ranging from Black-Scholes equations [23] to the study of
pseudo-differential operators [1, 13, 17, 18]. Several versions of these spaces were studied in the
literature, from different points of view and different degrees of generality. We choose to follow
the point of view initiated by Edmunds and Triebel in [11] (see also [10, 21, 25, 26]), which
seems better suited to our purposes. Here, s remains the dominant smoothness parameter
and WV is a positive function of log-type called admissible (see Definition 2.9). That admissible
function is a finer tuning that allows encoding more general types of smoothness. The simplest
example is the function ¥ = 1 for which one has BS3" (RY) = Bs (RY).

More generally, the spaces B;") (RY) are intercalated scales between Bs¢(RY) and B5te(R™Y).
For example: if ¥ is increasing, then we have

s N 5, N s’ N
B, (RY) — BI(W JRY) — B (RY) for every s’ < s,

see [21, Proposition 1.9(vi)].
We prove that restrictions of Besov functions to almost every hyperplanes belong to B}ff') (RY),
whenever U satisfies the following growth condition

(1.4) D (27X < oo,
j=0
with y = % (resp. x = p if ¢ = 0).
More precisely, we prove the following
Theorem 1.6. Let N 22, 1 <d < N,0<p<qg<o00,s>o,andlet ¥V be an admissible

function satisfying (1.4). Suppose that f € B;VQ(RN). Then,
s, ¥ d N—d
f(-y) € BED(RY for a.e. ye RN
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It turns out the condition (1.4) on ¥ in Theorem 1.6 is optimal, at least when ¢ = co. In
other words, we obtain a sharp characterization of the aforementioned loss of regularity.

Theorem 1.7. Let N 22, 1 <d < N,0<p<qg<o00,s>o0,andlet ¥V be an admissible
function that does not satisfy (1.4). If ¢ < oo and ¥ is increasing suppose, in addition, that
qp 1 (t)
1.5 —_ < — where Co := sup log, ——=.
(1.5) q—pP Cx 0<t£1 &2 U (t2)
Then, there is a function f € Bj (RY) such that
f(, )géBS‘I’(Rd) for a.e. ye RN

Remark 1.8. Notice that condition (1.5) is sufficient and also not far from being necessary to
ensure that (1.4) does not hold, as it happens that for some particular choices of W, (1.4) is
equivalent to % > ci

(e’s}

A fine consequence of Theorem 1.6 is that it provides a substitute for A*?(R%) when p < ¢ (in
Theorem 1.5), which could be of interest in some applications (see e.g. [6, 20]). For example,
if sp > d, p < ¢ and (1.4) is satisfied, then by Theorem 1.6 and [8, Proposition 3.4] we have

VfeB: RY), fl.y) e C(sfg"l’)(]Rd) for a.e. y € RV
where C@%)(R9) is the generalized Holder space B2% (R%) (see Remark 2.21 below).

Remark 1.9. It is actually possible to formulate Theorems 1.6 and 1.7 in terms of the space
By, é')(R) introduced by Ansorena and Blasco in [2, 3], even though their results do not allow
to handle higher orders s > 1 and neither the case 0 < p < 1 nor 0 < ¢ < 1. Nevertheless,

this is merely another side of the same coin and we wish to avoid unnecessary complications.

Beyond technical matters, our approach is motivated by the relevance of the scale BZ(;‘Z\P) (R)

in physical problems and in fractal geometry (see e.g. [11, 12, 21, 25, 26]).

In the course of the paper we will also address the corresponding problem with f € Bz(,sqql) (RY)
instead of f € B; q(RN ) which is of independent interest. In fact, as we will show, our tech-
niques allow to extend Theorems 1.3, 1.6 and 1.7 to this generahzed setting with almost no
modifications, see Theorems 6.1, 7.1, 7.2 and Remark 7.3.

The paper is organized as follows. In the forthcoming Section 2 we recall some useful
definitions and results related to Besov spaces. In Section 3, we give some preliminary results
on sequences which will be needed for our purposes. In Section 4, we establish some general
estimates within the framework of subatomic decompositions and, in Section 5, we use these
estimates to prove a generalization of Fact 1.1 which will be used to prove Theorem 1.6. In
Section 6, we prove at a stroke Theorems 1.3 and 1.5 using the results collected at Section 3.
Finally, in Section 7, we prove Theorems 1.6 and 1.7.

2. NOTATIONS AND DEFINITIONS

For the convenience of the reader, we specify below some notations used all along this paper.

We will denote by £y the N-dimensional Lebesgue measure and by sV the N-dimensional
Hausdorff measure. The unit sphere of RY will be denoted by S¥~! and the N-dimensional
ball of radius R > 0 centered at zero will be denoted by Bg.
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Given a real number x we denote by |z] its integral part and by z, its positive part
max{0,z}. By analogy, we write R, := {z, : x € R}.

We will sometimes make use of the approximatively-less-than symbol ” <7, that is we write
a S bfor a < Cbwhere C > 0 is a constant independent of a and b. Similarly, a 2 b means
that b < a. Also, we write

a~b whenever a Sb and b < a.

We recall that a quasi-norm is similar to a norm in that it satisfies the norm axioms, except
that the triangle inequality is replaced by

l +yll < K(lJzll +[lyl) ~ for some K >0.
Given two quasi-normed spaces (A, ||-|| ,) and (B, ||| 3), we say that A < B when
AcC B and |flls S| flla forall fe A.

Further, we denote by #(N), 0 < p < oo, the space of sequences u = (u;);0 such that

1/p
llloey = (Z |uj|p) <,

J=0
and by *°(N) the space of bounded sequences. As usual, we denote by .7 (RY) the (Schwartz)
space of rapidly decaying functions and by .#/(RY) its dual, the space of tempered distribu-
tions.
Given 0 < p < oo, we denote by LP(RY) the space of measurable functions f in RY for which
the p-th power of the absolute value is Lebesgue integrable (resp. f is essentially bounded when
p = o0), endowed with the quasi-norm

1/p
| fll o @y == (/RN ]f(x)]”dx) ,

(resp. the essential sup-norm when p = o0).
We collect below the different representations of Besov spaces which will be in use in this

paper.

2.1. Classical Besov spaces. Perhaps the simplest (and the most intuitive) way to define
Besov spaces is through finite differences. This can be done as follows.
Let f be a function in RY. Given M € N* and h € RY, let

A f () = i(—lw—f (M)t + 1,

be the iterated difference operator.
Within these notations, Besov spaces can be defined as follows.

Definition 2.1. Let M € N*, 0 < p,q < oo and s € (0, M) with s > o, where o, is given by
(1.1). The Besov space B (RY) consists in all functions f € LP(R") such that

dh s
L M ¢1q _
(2.1) [f]B;)q(]RN) = </|h|<1 [FAVA f”LP(RN) ‘h|N+sq) < 0,
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which, in the case ¢ = 00, is to be understood as

M
B3 o) = e 18 e ,f;”fp(w
The space B;’q(]RN ) is naturally endowed with the quasi-norm
(2:2) /1
Remark 2.2. Different choices of M in (2.2) yield equivalent quasi-norms.

Remark 2.3. 1f p,q > 1, then |||

then the triangle mequahty is no longer satisfied and it is only a quasi-norm. Nevertheless, we
have the following useful inequality

Hf + gHB;,q(RN) < (Hf”nls),q(RN) + ||g||;l?57q(RN))1/77’

where 7 := min{1, p, ¢}, which compensates the absence of a triangle inequality.

B ((RN) += [ f ey + [f]Bqu(RN)a

By, (BN) is a norm. However, if either 0 <p<lor0<g<1,

For our purposes, we shall require a more abstract apparatus which will be provided by
the so-called subatomic decompositions. This provides a way to decompose any f € B (RN )
along elementary building blocks (essentially made up of a single function mdependent of f)
and to, somehow, reduce it to a sequence of numbers (depending linearly on f). We outline
below the basics of the theory.

Given v € N and m € Z", we denote by Q,,, C RY the cube with sides parallel to the
coordinate axis, centered at 27%m and with side-length 27.

Definition 2.4. Let 1) € C*(R") be a nonnegative function with
supp(¢) C {y € RY : [y <27},
for some r > 0 and

(2.3) Z Y —k)=1 for any = € RY.
kezZN

Let s > 0,0 < p < oo, B €N and ¢?(x) = 2°¢(x). Then, for v € N and m € Z", the
function

(2.4) (Bqu)ym(x) = 2_V(S_%)¢B(2”x —m) for z € RY,
is called an (s, p)-B-quark relative to the cube @, p,.
Remark 2.5. When p = 0o, (2.4) means (3qu),(z) == 27"¢?(2"x — m).

For the sake of convenience we will make use of the following notations

(2.5) A= {Afm €C:(v,m,p) e NxZ"N x NV},
(2.6) A= {X, €C:(vym) e NxZ"}.
Definition 2.6. Given 0 < p, ¢ < oo, we define b, 4 as the space of sequences A = (Aym)y>0.mezy
such that
a/p\ 1/4q
Ally = (Z ( 3 Mp) ) e
v20 “MmezZN

Then, we have the
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Theorem 2.7. Let 0 < p,q < 00, s > 0, and (Bqu),,, be (s,p)-B-quarks according to Defi-
nition 2.4. Let ¢ > r (where r has the same meaning as in Definition 2.4). Then, By (RV)
coincides with the collection of all f € y’(]RN) which can be represented as

(2.7) Z Z Z )\ ﬁqu um( )

BENN v=0 mezZN

where \° € b, , is a sequence such that

(2.8) Al g0 := sup 29°[A7[]y, < +o0.
BeNN

Moreover,

(2.9) ||f||Béq(RN ~ (Hlf ||)‘||bp 30

where the infimum is taken over all admissible representations (2.7). In addition, the right
hand side of (2.9) is independent of the choice of ¢ and o > r.

Remark 2.8. 1t is known that, given f € B;ﬁq(RN) and a fixed o > r, there is a decomposition
A . (depending on the choice of (8qu)y,, and g) realizing the infimum in (2.9) and which is
said to be an optimal subatomic decomposition of f. We refer to [26] for further details.

2.2. Besov spaces of generalized smoothness. Before we define what we mean by ” Besov
space of generalized smoothness”, we first introduce some necessary definitions.

Definition 2.9. A real function ¥ on the interval (0, 1] is called admissible if it is positive
and monotone on (0, 1], and if

U(279) ~ W(27%) for any 7 € N.
Ezrample 2.10. Let 0 < c < 1 and b € R. Then,
U(x) := |log(cx)|® for z € (0,1],
is an example of admissible function. Another example is
U (x) := (log|log(cz)|)° for x € (0,1].

Roughly speaking, admissible functions are ”"slowly varying” functions having at most loga-
rithmic growth or decay near zero.

We refer the interested reader to [21, 26] for a detailed review of the properties of admissible
functions.
Definition 2.11. Let M € N*, 0 < p,q < oo, s € (0, M) with s > ¢, and let U be an

admissible function. The Besov space of generalized smoothness B;(féql) (RY) consists in all
functions f € LP(RY) such that

|n|<t

1
1 \I/(t)q q
(210) [f]Bl(f[I‘p)(RN) = (/0 sup HAMfHLp RN tlqudt < 00,

which, in the case ¢ = 00, is to be understood as

g oy = Sp £7°W(8) sup [|AR S|y <

Ih|<t
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The space B,(,i}qj)(RN ) is naturally endowed with the quasi-norm
(2'11) HfHBz()fé‘I’)(RN) = HfHLP(RN) + [f]B;gfé‘I’)(RN)?
Remark 2.12. Different choices of M in (2.11) yield equivalent quasi-norms.

Remark 2.13. Observe that, by taking ¥ = 1, we recover the usual Besov spaces, that is we
have

£l gy ~ ]
see [24, Theorem 2.5.12, p.110] for a proof of this.

Bs ,(RN);

Remark 2.14. In the literature these spaces are usually defined from the Fourier-analytical
point of view (e.g. in [21, 26]) but, as shown in [14, Theorem 2.5, p.161], the two approaches
are equivalent.

Remark 2.15. Notice that, here as well, the triangle inequality fails to hold when either 0 <
p < 1lor0 < q < 1, but, in virtue of the Aoki-Rolewicz lemma, we have the same kind of
compensation as in the classical case, see [16, Lemma 1.1, p.3]. That is, there exists n € (0, 1]

and an equivalent quasi-norm ||-|| B @Y with
D,q
||f+g||B§)?&q’)(RN)* (”f”B(s ) RN) + ||g||B(s ) ]RN) )1/7]'

A fine property of these spaces is that they admit subatomic decompositions. In fact, it
suffices to modify the definition of (s, p)-S-quarks to this generalized setting in the following
way.

Definition 2.16. Let r, ¢ and ¢® with 3 € NV be as in Definition 2.4. Let s > 0 and
0 < p < co. Let ¥ be an admissible function. Then, in generalization of (2.4),

(Bqu)ym(x) := 2_”(5_%)\11(2_”)_11#[3(2”x —m) for z € RY,
is called an (s, p, V)-S-quark.
Then, we have the following

Theorem 2.17. Let 0 < p,q < 00, s > 0, and V¥ be an admissible function. Let (Squ), ., be
(s,p, ¥)-B-quarks according to Deﬁmtzon 2.16. Let o > r (where v has the same meaning as

in Definition 2.16). Then, B},i}qj) (RN) coincides with the collection of all f € %' (RN) which
can be represented as

(2.12) = > Z > N (Bau)ym(2),

BENN v=0 mezZN

where \° € b, , is a sequence such that

(2.13) I\ 6,.0.0 := sup 298| N7)], < +o0.
BeNN

Moreover,

(2.14) 1/l 35, vy ~ inf [[A[ly, .0,

(2.12)

where the infimum is taken over all admissible representations (2.12). In addition, the right
hand side of (2.14) is independent of the choice of ¥ and o > r.
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Remark 2.18. The counterpart of Remark 2.8 for Bi(,i}q/) (RY) remains valid, see [21, 26].

2.3. Related spaces and embeddings. Let us now say a brief word about embeddings.
Given a function f in RY and a set B C RY having finite nonzero Lebesgue measure, we let

fa i ]i f(y)dy = fw) /B f(w)dy,

be the average of f on B. Moreover, we denote by f* : R, — R, the decreasing rearrangement
of f, given by

Fr@) :==if {A >0, up(\) < t},
for all ¢ > 0, where
(V) = Ly (fr € RV : [£(x)] > A}).

is the so-called distribution function of f.

Definition 2.19. Let s > 0 and 0 < p < oo.
(i) The Zygmund-Holder space C*(RY) is the Besov space B2, (RY).
(ii) The space of functions of bounded mean oscillation, denoted by BMO(RY), consists in
all locally integrable functions f such that

(2.15) 1 lstoges, = sup f (@) — fol da < oo,
B B

where the supremum in (2.15) is taken over all balls B C RY.
(iii) The weak LP-space, denoted by LP>°(R™), consists in all measurable functions f such
that

(2.16) | f1l oo vy := Stug’ £ () < oo,
>

where f* is the decreasing rearrangement of f.
Let us now state the following

Theorem 2.20 (Sobolev embedding theorem for B;q). Let 0 < p,q < oo and s > 0.
(i) If sp> N, then B (RY) — C* 7 (RY).
(i) If sp = N, then B (RY) — BMO(R"Y).
(iii) If sp < N, then B3 (RY) — L¥-5(RY).
In particular, Bs (RY) < AP(RN) where A*P(RY) is as in (1.2).

Proof. The cases (i), (ii) and (iii) are respectively covered by [24, Formula (12), p.131], [20,
Lemma 6.5] and [22, Théoreme 8.1, p.301]. O

Remark 2.21. Let us briefly mention that a corresponding result holds for the spaces Bz(,fq’\p) (RM).
As already mentioned in the introduction, the space B]Sff’) (RY) is embedded in a generalized
version of the Hélder space when sp > N. When sp < N, it is shown in [8] that BS;" (RY)

N
embeds in a weighted version of L~ f;p’oo(]RN ). Yet, when sp = N, the corresponding substitute
for BMO does not seem to have been identified nor considered in the literature, see however

[9].
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3. PRELIMINARIES

In this section, we study the properties of some discrete sequences which will play an im-
portant role in the sequel. More precisely, we will be interested in the convergence of series of
the type

Z 27|\ 12 | for = >0,
j=0
where A = () x); k>0 is an element of some Besov sequence space, say, by , with ¢ > 1.

3.1. Some technical lemmata. Let us start with a famous result due to Cauchy.

Theorem 3.1 (Cauchy’s condensation test). Let A € (*(N) be a nonnegative, nonincreasing

sequence. Then,
DD P <2> N

7=0 §=0 j=0

Remark 3.2. The monotonicity assumption on A is central here. Indeed, there exists nonneg-
ative sequences A € (}(N) which are not nonincreasing and such that > .. 27y, = co. Take

for example:
W[k =2,
PIT 2 i j £ 2k,
Then, clearly, A € ((N). However, 2/ \y; = 3—; so that (2/\y)) 50 ¢ (1(N).

j=0

A simple consequence of Cauchy’s condensation test is the following

Lemma 3.3. Let A\ € (*(N) be a nonnegative, nonincreasing sequence. Then,

(3.1) Z 2j)\L2j$J < ¢o(x) Z A for any x >0,
j=0 Jj=0
where ¢(z) := al (IL[LOO)(x) + (1 —log, |m|)]l(0,1)(x)).

Proof. Let k € N and 2% < 2 < 281, Then, by Cauchy’s condensation test
, : , 4
D PN K2 =27F) 200, <27FY "0 < =) A
>0 >0 >k >0 >0
In like manner, for 2=*+1) <z < 2%, we have
D 2 Njgia) <> PN giir =250 N T 29N 2R+ 1)) 2.
>0 =0 jz—k-1 20
Finally, invoking again Cauchy’s condensation test, we have
> PN <2+ 1)D N < 1—10g2( N> A O
>0 >0 >0

In some sense, this ”functional version” of Cauchy’s condensation test may be generalized
to sequences which are not necessarily nonincreasing. Indeed, one can show that

$1<{ZL‘ eRy: 22j|/\|_23xj| = +OO}) =0,

Jj=0
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whenever A € (*(N). This is due to the fact that ¢P-spaces can be seen as ”amalgams” of
LP(1,2) and a weighted version of . More precisely, we have

Lemma 3.4. Let 0 < p < co and let A € (P(N). Then
p
H)\”gp( (/ ZQJ’)\LQJIJ‘ d:c) .
1,2] ]>0
Proof. Tt suffices to assume p = 1 and that A is nonnegative. Then,
1
(3.2) Z Aj —][ >‘L Jd&? ok )\szyJdey:/ )\LQkdey,
2k<j<2k+1 2k, 2kH1] [1,2] [1,2]
which yields

Ya=y > o=y

jEN* keN 2k j<okt1 keN 1

(1,2] 1,2

keN

The proof is complete. O
We now establish a technical inequality which we will be needed in the sequel.

Lemma 3.5. Let N > 1 and 0 < p < 0o. Let A = ()\J 1) (G,B.k)ENXNN xnN be a sequence such

that the partial sequences ()\fk)keNN belong to (P(NY) for all (4,8) € N x NV, Then, for any
positive (a;)jso € (*(N) there exists C = C (A, a, N,d) > 0 such that for any (j,3) € N x NV,

(33) ]N|/\ﬁ maX{l |ﬁ|N+1} Z |>\ k|p

P <
272
% EeNN

holds for a.e. x = (x1,...,an) € [1,2]™ where
L2]xJ = (L2jx1J7 BaS) LQJ:ENJ) < NN'

Proof. For the sake of convenience, we use the following notations

Ujgla) = 2NN, P and - 077 := Y7 NP7,
keNN
We have to prove that
1 N+1 )
Uj,ﬁ(x) g Cmax{ 7|B| } U]’ﬂ,

Q;

for a.e. x € [1,2]" and any (j,3) € N x NV, By iterated applications of Lemma 3.4, we have
(3.4) / U, p(z)dx < U,
[1,2]V

Now, define

el B 1)

a@;

Tj5:= {x €121V : Ujp(x) =
Then, applying Markov’s inequality and using (3.4), we have

a.
)< J
In(Tjp) < max{1, | 3|V 1}

for any (j,3) € N x NV,
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In turn, this gives

> D A(lp) < o

BeNN =0
Therefore, we can apply the Borel-Cantelli lemma and deduce that there exists jg, 5y = 0 such
that

Ujp(z) < Ui,

max{L, |8|""'}
Q;

for any j > jo and/or |8] > By and a.e. x € [1,2]". On the other hand, for any j < jo and

18] < Bo we have

, maxocj<jo O -
Uj () < 20N max{1, |g|N+1} —2550 I 1736
J
This completes the proof. O

3.2. Some useful sequences. We now construct some key sequences which will be at the
crux of the proofs of Theorems 1.3, 1.5 and 1.7.

Lemma 3.6. There exists a sequence ((x)k=0 C Ry satisfying

(3.5 (s X o)<t

720N g i
and such that
(3.6) SUp (214 = 00 for all = €[1,2).

Jj=0

Proof. Let us first construct an auxiliary sequence satisfying (3.5).

Let (Ax)r=0 be a sequence such that \g = A; = 0 and such that, for any j > 1, the L2J—JJ

first terms of the sequence (A)r=o on the discrete interval [27, 277! — 1] have value j and the
remaining terms are all equal to zero. Then, for any 5 > 1, we have

. . -1 27
1 G0+ +0 LT
21 Z

2 2 s

20 <k<29+1
For the sake of convenience, we set
T; == [27,27% —1] for any j > 0.

We will construct a sequence ((x)r>o satisfying both (3.5) and (3.6) by rearranging the terms
of (Ax)k=0. To this end, we follow the following procedure.

For k € [0,23 — 1] we impose (, = Ax. For j = 3, we shift the values of (A\;)r=0 on T3 in such
a way that the smallest x € [1,2) such that (|3, is nonzero coincides with the limit superior
of the set of all z € [1,2) such that (|52, is nonzero. For j = 4, we shift the values of (Ax)r=0
on Ty in such a way that the smallest 2 € [1,2] such that (|21, is nonzero coincides with the
limit superior of the set of all z € [1,2) such that (|ss,| is nonzero, and so on. When the plage
of nonzero terms has reached the last term on 7} for some j > 1, we start again from 7},
and set ¢ = A, on Tj41, and we repeat the above procedure. See Fig. 1 below for a visual
illustration.
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(1,2]

i 2 Z%
j=2 Z "
.|
- | 777,
i=5 (ZZA T;
i T

[ G

Fic. 1 : Construction of the first terms of (Cx)r>o0-
The hatched zone corresponds to the values of x for which (|2

takes nonzero values.

13

If, for some j > 0, it happens that the above shifting of the A;’s on T} exceeds T}, then we
shift the A;’s on 7} in such a way that the limit superior of the set of all = € [1,2] for which

(27| is nonzero coincides with z = 2.

Note that this procedure is well-defined because the proportion of nonzero terms on each T;

is 277 LQJ—]J which has a divergent series thus allowing us to fill as much "space” as needed.

Then, by construction, for any x € [1,2) there are infinitely many values of j > 0 such that
Cl272) = J. Consequently, (3.6) holds. Moreover, (3.5) is trivially satisfied. This completes the

proof.

As an immediate corollary, we have

g

Corollary 3.7. Let 0 < p < g < 00. Then, there exists a sequence (\;x);x>0 C Ry satisfying

(3.7) (Z (ZA;?},C)W) " 0,

7=0 N k>0
(modification if ¢ = 00) and such that
(3.8) sup 29/2); 91z = 00 forall x €[1,2).

Jj=0

Proof. When q = oo, it suffices to set

(3.9) M—{ 27I/PG P i 99 k< 2,
. =

0 otherwise,

where ((x)r>0 is the sequence constructed at Lemma 3.6.
When ¢ < oo, we simply replace ((x)r=0 in (3.9) by (&)k=0 where

&=5Vig for any k€ [27,27F' —1] with j > 1,
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and & = & = 0. Then, we obtain

(x50

j=1 27 k< 23+1 jz1

RS

qa/p
3 X a) <XiViex

2 <h<2it1 §>1

Moreover, by construction of ((x)x=0, for any = € [1,2), there is a countably infinite set J, C N
such that (|2, = j for any j € J,. In particular,

§l2i0) = J° for any j € J, and x € [1,2),

where a =1 — /p/q > 0. Thus,

sup 2\ |272) = SUD {212 = sup j* = o0 for any = € [1,2),
jz1 P j€Ta
which is what we had to show. OJ

We conclude this section by a weighted version of Corollary 3.7.

Lemma 3.8. Let 0 < p < ¢ < oo. Let ¥ be an admissible function that does not satisfy (1.4).
If ¢ < 00 and YV is increasing assume, in addition, that

_w _ 1

_C]_P Co

where ¢ is as in Theorem 1.7. Then, there exists a sequence (\jx);jxr=0 C Ry such that

(3.10) (Z (Z Ag?,k) q/p) v < o0,

Jj=0 k>0

)

(modification if ¢ = 00) and

. . 1/q
(3.11) (Z 2JP)\?7L2j$J\II(2_J)q> = 00 for all x €[1,2),

Jj=0
(modification if ¢ = c0).
Proof. The proof is essentially the same as in the unweighted case with minor changes that we
shall now detail.

Let us begin with the case ¢ = oo. Let 8; := W(277)P. Since 3; > 0 and (5;);50 ¢ ¢*(N) we
may find another positive sequence (7,);>o which has a divergent series and such that

& — 00 as j — 00,
Vi
i.e. (7;)j=0 diverges slower than (/3;);s0. Take, for example
Vi = &
e ’
Zi:o Br

see e.g. [4]. Note that 0 < v; < 1forall j > 0. Let (k)0 be a sequence such that gy = 01 = 0
and such that, for any j > 1, the |277;] first terms of the sequence (gx)r=o on the discrete
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interval T} := [27, 27+ — 1] have value Wi and the remaining terms are all equal to zero. Then,
J
for any 7 > 1, we have

1 1 1 j
2j Ok = 2J Y

20 Lk<2it1

Now, since the proportion of nonzero terms on each Tj is 277[27v,] which has a divergent
series, we may apply to (g;)js0 the same rearrangement as in the proof of Lemma 3.6. That
1s, we can construct a sequence (g;)];() such that

1 . ,
(3.12) o > o<1 forall j>0,

21 k<2741

and for any x € [1,2) there is a countably infinite set J, C N such that

J
(3.13) Bj0l2iz) = % = Zﬁk forall j e J,,
7 k=0

i.e. we have
J
* : _
sup (3j0[2i,) 2 lim E B = o00.
320 jede k=0

Therefore, letting

o Q—j/P(QZ>1/P if 27 <k <20t
10 otherwise,
we obtain a sequence satisfying both (3.10) and (3.11).
Let us now prove the lemma when ¢ < co. Notice that if U is either constant or decreasing
there is nothing to prove since the result is a consequence of Corollary 3.7. Hence, we may

assume that W is increasing. By our assumptions, we have

1 ; 1
—log2ﬁ L Coo < —,
p 523' X

which implies that

B 297 By; L v L 2KCP B

j for any k£ € N.

By Cauchy’s condensation test, we have
_q R . .
ST =207 2 Y 0 = oo
j=0 j=0 Jj=0

Thus, we may infer as above that the following positive sequence has divergent series:

Vi = ) 7>
J q—p
k=0 "~k

Now define (7;);50 by 7; := g—” Then, by our assumptions on x and ¢4, we have
J

—q/p
7P < b < L
Jjo jalp = §a(1/p—coc)

€ (*(N).
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The conclusion then follows by letting S‘j,k = 7']-1/ PXjx where ;. is the sequence constructed
above with 7; instead of «;. Indeed, we have

_ a/p
S(T) X<
320 N k>0 3=0
and for each x € [1,2) there is a countably infinite set jx C N such that
Yy
2]/’”)\ 29z Jﬁl/p = 2]/p71/p (%) 27/P =1 for any j € J,.
j
Therefore, (2j/p5\j7t2m 5;/”)]-20 ¢ (4(N). This completes the proof. O

4. GENERAL ESTIMATES

Throughout this section we will write z € RY as z = (zy,...,xx) = (2/,2") with 2/ € R?,
2" € RN=4 and, similarly, m = (m’,m”) € Z" and 8 = (5, 3") € NV. Also, we set

2 = {0,117V,
Let ¢ € Cg°(RY, [0, 1]) be such that supp(v)) C By and that
2_”(5_%)1&6(2’% —m),
are (s, p)-B-quarks. Also, we assume that ¢ has the product structure
(4.1) (1, s an) = Y(@1). Y (aN).
Let ¢ > 0 and f € B; (RY). Then, by Theorem 2.7, there are coefficients A . such that

(4.2) Fa) =35 30 A8, 27 (20— m).

BENN v=0 mezN

We can further assume that

a/p\ 1/q
(4.3 gy ~ s 29 (3 (30 WEaP) )
BeN

vzl NmezN

i.e. that )\;im = )xﬁm(f) is an optimal subatomic decomposition of f. Note, however, that the

optimality of the decomposition )\fm( f) depends on the choice of g > 0 (this can be seen from
[26, Corollary 2.12, p.23]). Of course, by Theorem 2.7, we still have

q/p\ 1/q
. BS g 9
(4.4) [l o) < sup 2 Wl(}j( 3 |A,,m|f’) )
\q BENN

vzl NmezN

for any positive ¢ 7é 0. Using (4.1) and (4.3), we can decompose f(-,z") as

=220 3 U a2 I 2% ),

v20 g'eNd m/ezd

Z Z )\ 2/),8” oV ! m//>'

5”€NN d ey N—d

where we have set

(4.5) b (N, 2"
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Then, defining

(4.6) J¢ (A, 2") == sup 2@“(2( >, )q/p) Uq,

d
p'eN vzl “m/ezd

we obtain

1F (5 2l 5

3 ( S ng(A,ZE”).
In fact, we also have

(4.7) 1F (5 2l 5

for any ¢’ > 0. For the sake of convenience, we introduce some further notations. Given any
0 € 9, we set

s ( § ng(A ”)

8,6 mo._ oui=d 8
(48) bl/m’()\ T ) =2"» Z |>\1/,m’,|_2‘/a:d+1j+5d+1 ..... L2”xNJ+5N|’

a/p\ 1/4
(4.9) JEN, 1) = sup 2@'5<Z< > |bfﬂgf,()\,x”)]p) )
Notice that since supp(¢®) C By, we have
W2 —m") £ 0 = my; € {|2%;], |2%x;) + 1} for all i € [d + 1, N].
And so, using (4.5) and (4.6), we can derive the following bounds

(4.10) b (N ) <D 000 (A2,
S

and

(4.11) <) JoN 2
0ED

for some ¢ > 0 depending only on #%, p and q.
As a consequence of (4.7) and (4.11), to estimate || f(-,z")]
to estimate the terms (4.9) from above, for each § € 2.
Within these notations, we have the following

B, (R) from above one only need

Lemma 4.1. Let N > 2, 0 < p,q <00, d € P and 0 < ¢ < 09. Then, with the notations
above

(4.12) JEA(N ") < sup 2@0/3'(2( D DT [ d>)w) l/q,
BENN v>1 N prezd
for a.e. " € RN~ (modification if p = oo and/or ¢ = co) where
12°2" | 46 = (|2"Tasr | + Ogu, -y [272n | + On) € ZN 72
Proof. Suppose first that p,q < oo. For simplicity, we will write
(4.13) my, s = 272" ] 4 6.
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Using (4.8) and (4.9) we get
5 5 p Ned a/p\ 1/q
/ " /18 V(N —
sEoa S s 2 (S (S (X W l)200) )
p'eNd v>1 m!/ezd BeNN—d
Write )\E,m = 2*90|5‘A5m and let a := gy — ¢’. Then,
201BNNE | = 2€1ImeolBlAB | < 9malBlAS | < omalBIAB
Hence, by Holder’s inequality we have

P a/p\ 1/4
Jlf,z}é()‘axﬁ) S sup <Z( Z ( Z 9—als”| |Aym m/5|) 2V(N—d)) )

ﬁ/ENd v>1 m! ez BIIGNN d

a/p\ 1/q
g Ka/2 sup (Z ( Z sup 2_pg|6//|‘Afyml7mZ§’IJQV(N—d)) ) :

BleNd V21 m/GZ‘i BlleNNfd
where we have used the notation
(4.14) Ko= Y 291 for a>0.
ﬂ//eNNfd

Since the (P spaces are increasing with p, by successive applications of the Holder inequality,
we have

a/p\ 1/a
Jgéé(/\,x//) SKa/z sup (Z( Z 9—p518"] Z |Al/m i |p2VN d)) )

B/ENd

y>1 B// NN d ’EZ‘i
q
< KopK L 1/p sup (Z( sup 27Pil8" Z |Al/m - ’p2VN d))
4 B’'eNd B/ eNN—d miezd

Z |A'Vm m// |p2VN d)

m/cZ4

= KoK P sup (Z sup 2795lF"l
4 ,B’ENd 1 ﬁ//eNN—d

FENT N\ 21 B"eNN—d m/€Zd )

— KK sup ( S 2 ST (YD AL, 2

B'e eNd B/IENN_d v>1 m'eZa
Y N qa/p
pr-1/q VIN—
< KoKW K it sup (Z( > |Aym,m,’6|p2 ) )

N
peN vzl m/ ez

Letting K, 4 := Ka/gKl/pK /7 and recalling NS =272lIAS e get

q/p\ 1/4
Jﬁ,lf()"a:“) < Kypg sup nglﬁl(z ( Z ’)\Vm s |p2l/ (N— d)) ) ’

N
peN vzl Nm/ezd

/P

/
Ka/zKpip sup (Z Z 2_Q%|BH ( Z |Aum m” |P2V (N—=d) )q '
( )

which is the desired estimate. The proof when p = oo and/or ¢ = oo is similar but technically
simpler. |
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Remark 4.2. Of course, when p = oo, the term "2"W=9” disappears (recall Remark 2.5) so

that, in this case, Fact 1.1 follows directly from the above lemma.

Remark 4.3. The same kind of estimate holds in the setting of Besov spaces of generalized
smoothness. That is, given a function f € B (RY) decomposed as above by (4.2) with

(4.1) and (4.3), we can estimate the Bz(,fq’\ll) (R%)-quasi-norm of its restrictions to almost every
hyperplanes f(-,z”) exactly in the same fashion. It suffices to replace the (s,p)-p-quarks
(Bqu),m in the decomposition of f(-,z”) by ¥(27*)~'(8qu),,, in order to get (s,p, ¥)-53-
quarks. From here, we can reproduce the same reasoning as in Lemma 4.1 with U(2~ ))\5
instead of A7, and we obtain

Hf( HB(S\II (Rd) ~ Z J907 //
€9
with

~ a/p\ 1/a
J2O (N, 2") == sup 20lAl <Z (@(2”)” Z \)\f’m,’tzyz,,J+§|p2”(Nd)) ) :

N
peN vzl m/ €74

Similarly, given a function f € BS3Y (RY), we can estimate the BS3" (R%)-norm of its restric-
tions f(-,2”) in the same spirit. This is done up to a slight modification in the discussion
above. It suffices to multiply the (s, p)-8-quarks considered above by a factor of ¥(27)~! and

to take nl,m, the optimal subatomic decomposition of f & BI(,S(;‘P) (RM) with respect to these new

quarks. Then, the BS3" (RV)-norm of f and the B (RY)-norm of its restrictions f(-,2")
satisfy the same relations as when ¥ =1 with ny’m instead of /\f’m. That is, we still have

a/p\ 1/4q
~ olBl B |p
HfHB}(i&‘I’)(RN) /BS;\]];J)V 2 ( Z ( Z ‘nu,m’ ) ) )

vl mezZN

and

Hf( |’BS‘I’>(Rd ZJQCM 7 a

0eP

where ¢, g9 > 0 and J2°(n, ) is as in (4.9).

5. THE CASE ¢ < p

This section is concerned with Fact 1.1 (Fact 1.2 being only a consequence of Theorem 1.6).
We will use subatomic decompositions together with the estimate given at Lemma 4.1 to get
the following generalization of Fact 1.1.

Proposition 5.1. Let N 22, 1 <d <N, s> 0, 0<qg<p<ooand V¥ be an admissible
function. Let K C RN~ be a compact set and let f € BSSY (RN). Then,

1/q
6.1 (MM 82”) < CllflLgany

for some constant C' = C(K, N, d, p, q) > 0 (modification if ¢ = 00).
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Proof. Without loss of generality, we may consider the case K = [1,2]"¥~¢ only (the general case
follows from standard scaling arguments). Also, we can suppose that p < oo since otherwise,
when p = 00, the desired result is a simple consequence of Lemma 4.1 (recall Remark 4.2). Let
us first prove Lemma 5.1 for ¥ = 1 (it will be clear at the end why this is enough to deduce
the general case).

Let f € Bs (RY). Given the (s,p)-B-quarks (8qu),m, and ¢ > r defined at Section 4 we let
AD = AD,.(f) be the corresponding optimal subatomic decomposition. In particular

ZZ Y Al m(Baw)um (),

v=1 BeNN megzZN

q/p\ 1/q
b ()~ SUD zew<z( 3 |)\fm|p) ) |
P BENN ’

vzl NmezZN

with
| f]

By the discussion in Section 4, we have that

(5.2) £ G ey ety S D T (A 2”)

0€D
for all o’ € (0, o), where Jlf’:é‘s()\,x”) is given by (4.9). Define

1/p
Af,m” = ( Z ’)\Vm ,m/’ ‘ ) :

m/ €z

In particular,

/]

a/p\ 1/q
Bs (RN) ~ sup 2Q|B‘ ( Z ( Z |Af m!’ |p) ) .
p,q ﬁeNN )

1/21 m//ezN—d
Then, the conclusion of Lemma 4.1 rewrites
x)
Jﬁ,c} ()\,m”)q < sup 9004|8] qu

ﬁGNN v>1

b \Ay L2”r”J+5‘ for all § € 9,

and some gy € (¢, 0). Integration over [1,2]V~¢ yields

Is = / ngf(/\,x")qu" < / sup 22047 ZQV']
[1,2N-d [1,2]N—d geNN V=1
<3 omail 3 /

ﬁeNN v>1 1 2]N d

Aﬂ

q "
v,[ 2V | +5| dz

ﬁ q..
v, L2”m”J+6| da”.

Now, we observe that

N—d g3 3 . . q/p
VI A 1 < Z A P9 d+1tt+EN .
’ v, LZD:E”J +6’ =~ ’ v, Lde+1iﬂd+1J+5d+1,m ,LQkN JCNJ+5N |
keNN—d

Hence, using the fact that ¢ < p and applying N — d times Lemma 3.4, we get

/
R

BENN vzl NEeNN-d
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Z 9(eo—e)q|A| sup 9048 Z ( Z Vk-}-g‘p) a/p

BENN v>1

BeNN keNN—d
q/p
= K, N4 SUp 904l Z ( Z k+6|p)
pe ENN v>1 keNN—d
(5.3) < KN sup 2gq|ﬁlH>‘BHq
BeENN

Thus, recalling (5.2), we arrive at

1/q
(5.4) 1fC 2% gade” ) S £
[1,2]N—d 5.a(R)

Now, having in mind Remark 4.3, we can reproduce exactly the same proof when ¥ # 1 with
almost no modifications. This completes the proof. [

B ,(RN)-

6. THE CASE p < q

In this section we prove, at a stroke, Theorem 1.3 and Theorem 1.5. As will become clear,
the proof of Theorem 1.5 will easily follow from that of Theorem 1.3.

Let us begin with the following more general result:
Theorem 6.1. Let N > 2, 1 <d< N,0<p<qg<ooands > o, Let V¥ be an admissible
function. Then, there exists a function f € B,(,i}qj)(]RN) such that

f(-,2") ¢ BED(RY) for a.e. 2" € RN
Proof. We will essentially follow two steps.
Step 1: case d = N — 1. We will construct a function satisfying the requirements of Theorem
1.3 via its subatomic coefficients.
Let W be an admissible function. Let s > 0,, M = [s] + 1,0 <p < ¢ < oo and (A\jx)jr=0 €

b, 4 be the sequence constructed at Corollary 3.7.
Also, we let 1 € C°(RY) be a function such that

(6.1) supp(v)) € [-2,2]", inf 4(2) >0 and Z v(-—m)=1.

2€[0,1]V N
In addition, we will suppose that 1) has the product structure
(6.2) () =P(x1) . Y(TN).

Notice that such a ¢ always exists.

'Here is an example. Let u(t) := e_l/tz]l(oyoo)(t) (extended by 0 in (o0, 0]) and let v(t) = u(l + t)u(l —¢).

Then,

o N 1 Zj h 1 = U(t)
)_szo(2> where 4ot) = S LB Ton D

is a smooth function satisfying (6.1) and (6.2).
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Then, we define
(6.3)
=3 S A2 TR ) (@ @y — Cai)) (@ (w1 — Oni) Dy — K,

Jj=0 k>0
where Cyy = 2(M + 2). It follows from Definition 2.16 that
W(?‘j)_IQ_j(S_%)Qb(?jx —m) for z € RY,
with
= (Cu2j, ..., Cu2j, k) € Z",

can be interpreted as (s, p, V)-0-quarks relative to the cube Q;,,. Consequently, by Theorem
2.17 and Corollary 3.7, we have

a/p\ 1/a
Wlgram <2 (24:) ) <o

Jj20 k=0

(modification if ¢ = 0o). Therefore, f € BS5" (RY). In particular, the sum in the right-hand
side of (6.3) converges in LP(RY) and is unconditionally convergent for a.e. z € R" (notice
the terms involved are all nonnegative) and, by Fubini, f(-,zy) also converges in LP(RN-1)
for a.e. xxy € R. Thus, letting

ZL‘N) = Z )\j’ij/p@/J(le'N — k’),
k>0
we may rewrite (6.3) as

f(@ xy) anxNZJ

720

TW(27) (2 (21 — Carf)) o (2 (@1 — Curf))-

Notice that assumption (6.1) implies that there is a ¢y > 0 such that
V(xy — |2on]) =0 >0 for all xy €[1,2] and j > 0.
In particular, we have
(6.4) ni(Tn) = coAj 27wy 2/P.
Now, for all j > 0, we write
Kj:={hecRV"1 . 270D < |p| <277}

By [7, Lemma 8.2] (in fact in [7] it is implicitly supposed that 1 < p < oo but the proof still
works when 0 < p < 1) and (6.4), we have

sup [|Af (- on) | o1y = €270 (277) Ty ()

hekK;
(6.5) > 27527 T 2PN i)
for any j > 0 and some ¢ > 0 independent of j. Recall that

||g||B§)5£)(RN 1) ||9||LP RN-1) T SUP 2]5‘11(2 j) :Up ||Ah gHLP RN-1),
: i1
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is an equivalent quasi-norm on BYie) (RN=1) (this is a discretized version of Definition 2.11).
This together with (6.5) and Corollary 3.7 gives

Hf(H:CN)HBéSQ.f’)(RN—l) 2z S‘glo) Zj/ij:LijNJ = 00 for a.e. xy € [1, 2].
’ ]z

Therefore, f(-,zy) ¢ By (RN for ae. zy € [1,2].

We will show that one can construct a function satisfying the requirements of Theorem 1.3
by considering a weighted sum of translates of the function f constructed above. To this end,
we let

fild zn) = f(@',an +1) for 1 € Z,

g = Z Qill‘fl'

lez
Then, by the triangle inequality for Besov quasi-norms, we have

19117 0 gy < D2 il 00 gy < all Iy oy < 00
leZ

and we define

for some 0 < n < 1. Hence, g € B;(,Sqq’) (RM). To complete the proof we need to show that
(6.6) g(,zy) & BEY(RNT for a.e. zy € R.

Let m € Z. Then, by the triangle inequality for Besov quasi-norms we have

T g o < UMy + 3T
(6.7) < NG e sy € 592 LG TN e o

Clearly, the left-hand side of (6.7) is infinite for a.e. xy € [1 —m,2—m]. Thus, to prove (6.6),
one only need to make sure that the last term on the right-hand side of (6.7) is finite for a.e.
xy € [1 —m,2 —m]. For it, we notice that, by construction, it is necessary to have

(6.8) j=1 and 27 <k <27,

for Ajx # 0 to hold. In particular, ny = 0 and n;(zy) consists only in finitely many terms for
a.e. xy € R. In addition, by our assumptions on the support of ¢, we have ¥(2/xy — k) # 0
provided

k
[EN—Z—J

By (6.8) and (6.9), we deduce that if 2z € R\ [1, 2], then there are only finitely many values
of 7 > 1 such that n;(zy) # 0. In particular,

(6.10) flozn+1) € Blgif)(Rd) for a.e. xy €[1,2] and all [ € Z\ {0}.

Moreover, a consequence of (6.8) and (6.9) is that

(6.9) < 24

j=>1 and zy €supp(n;) = 1— 21 Loy < 24 2,
In turn, this implies that the support of 7; is included in [0, 3]. Therefore,
(6.11) floay+1) =0 for a.e. xy €[1,2] and all [ € Z with [I| > 2
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Hence, by (6.10) and (6.11), we infer that

max Hfl<'7xN)HB,<f£>(RN*1) < 00 for a.e. xy €11,2].

In like manner, for every m € Z, we have

max Hfl('axN)HBéfg)(RN*) < 00 for a.e. zny €[1—m,2—m].

This proves the theorem for d = N — 1.

Step 2: case 1 < d < N — 1. By the above, we know that Theorem 1.3 holds for any
N >2and d = N — 1. In particular, there exists a function f € BS" (R1) such that
fl xar) ¢ Béfggl)(Rd) for a.e. 41 € R. Now, pick a function w € Z(R¥N=4"1) with w > 0
on RY=4-1 and set

g(x) = g(z1,...,zn) = f(21, .o, Tay Taga1 )W (Tgio, ., TN).
It is standard that g € LP(RY) where p := max{1,p}. Then, letting M = |s| + 1 and using
[24, Formula (16), p.112], we have that

sup ”A}ZLMQHLP(RN) N ||f||LP(]Rd+1) sup ||A%w||LP(RN—d—1) + ||w||LP(RN—d+1) sup ||AhA/’[f||LP(Rd+1)>
|h|<t |h|<t W<t

for any h = (h',h") € RV \ {0} with k' = (hy, ..., hqy1) and b = (haya, ..., hy). In particular,
recalling Remark 2.12, we see that this implies

16 gy S 1 0l e vy + el ooy 71 gt

Hence, g € BSS")(RY). Moreover, it is easily seen that

g('u Ld+1y -+ xN) = f(’ xd+1)w(xd+17 e xN) ¢ B;(>,S£)(Rd)7
for a.e. (x4i1,...,xx) € RVN=4 This completes the proof. OJ

The function we have constructed above (in the proof of Theorem 6.1) turns out to verify
the conclusion of Theorem 1.5.

Proof of Theorem 1.5. For simplicity, we outline the proof for N = 2 and d = 1 only (the
general case follows from the same arguments as above). Let f be the function constructed in
the proof of Theorem 6.1 with ¥ = 1, namely

flonaa) =Y ny(w2)2 79 D9(2 (20 — Curg),
j=0
with
ni(w2) == Z Aj,ij/plﬁ(?sz — k),

k>0
where 1, Cy and () k=0 are as in the proof of Theorem 6.1. Clearly,

a/p\ 1/q
e <o( (X)) <

Jj20 k=0

/]

Hence, f € B;7q(R2). We now distinguish the cases sp > 1, sp =1 and sp < 1.
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Step 1: case sp > 1. This case works as in Theorem 6.1. Indeed, by the supports of the
functions involved, we have for a.e. xo € [1,2],

1f (- w2)]

. 1 .
o ~osup 2678 sup |AMF(- 20| > sup 27PN\ 19ip, | = 00.

We may now conclude as in the proof of Theorem 6.1.

Step 2: case sp = 1. It suffices to notice that, for any & > 0, we have

k42~ k+27k
| f(-, z2) | BMO(R) 2][ ]i (f(z,22) — f(z,22))d2| dz

k—2—k —2-k

k427 F k+27F
(612 —f e 0@ ) - @ )z ds
k—27% |50 k—2—F
Hence, by the support of the functions involved we deduce that
k+2-F k+27F
I Calloom > e £ | (0O — k) = 024z — k)| da

dz > d'np(z2).

} (=)

(6.13) =) {

Therefore, we have

1f(-s22)|lBMOR) 2 Sug) nj(xs) = Sug 2j/”/\j¢2j$2j = 00 for a.e. x5 €[1,2].
j= j>

Thus, we may again conclude as in the proof of Theorem 6.1.

Step 3: case sp < 1. Define r := lf'sp and rewrite f as
flwr,me) =Y ei(w2)27" f(x1),
j=0

where we have set
fi@n) =02 (a1 — Carj)) and ¢j(wz) = 2770702790 N N\ (2 — k).
k>0

Since the f;’s have mutually disjoint support we find that
Floma) (t) = ¢j(wa) 2777 f1(t) for any ¢ >0 and j > 0.
Moreover, it is easy to see that ff(t) = ¥*(27¢). In turn, this implies that

1 Cw2)llroe @y > () 277 sup t7"(27t) = cj(w) [Yllree @) 2 27PN 1210,
>

Hence, for a.e. 25 € [1,2],

1 2)

L7 (R) Z SAup 2j/p)\j7t2szj = OQ.
j=0

This completes the proof. |
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7. CHARACTERIZATION OF RESTRICTIONS OF BESOV FUNCTIONS

In this section, we prove that Besov spaces of generalized smoothness are the natural scale
in which to look for restrictions of Besov functions. More precisely, we will prove Theorems

1.6 and 1.7. We present several results, with different assumptions and different controls on
the norm of f(-,z").
Let us begin with the following

Theorem 7.1. Let N > 2, 1<d< N, s>o0, and 0 <p < q < oo. Let K C RN¥=4 be any
cube. Let ® and ¥ be two admissible functions such that

(7.1) D )Py
Jj=0
Let f € BS®) (RN). Then, there exists a constant C > 0 such that
(7.2) G e < Clf oo, Jor ae. o’ € K.
Moreover, the constant C' is independent of x” but may depend on f, K, N, d, p, q, ® and V.

Proof. Let us first suppose that ¢ < oo and that ® = 1. Without loss of generality we may
take K = [1,2]V~4, the general case being only a matter of scaling. Here again, we use the
following short notation

12°2" | = (|2°@qs1], ..., [2°2N]) € NV,
Let f € B; (RY) and write its subatomic decomposition as
=22 2 Mm(Bawun(a).
BENN v=0 mezZN

where the (s, p)-B-quarks (8qu),,, are as in Section 4 and XJ = A (f) is the optimal
subatomic decomposition of f, i.e. such that

(7.3) Sy~ sup 225Ny, .

BENN

Let € > 0 be small. Rewriting f as in the discussion at Section 4 and using Lemma 4.1 together
with Remark 4.3 we have

(7.4) 1 f(-, ||B<a«z) (R4) ZJQ O\ "
€D
where
a/p\ 1/q
Jo—¢e,0 L —c v(N— d
(75) Jﬁq ()\,.T//> = SUII)V 2(9 )|B| (Z (2 ( Z |)\ m’, L2V1/1J+5| > > .
BEN v>0 m/ €74

By Lemma 3.5, we know that for any positive sequence (o, ),>o € ¢*(N) there is a constant

C =C(\a,N,d) > 0 such that

. max{l, |5|N 1}
(7.6) 2NN N al” € > Wl

m/ €z meZN
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for a.e. 2" € [1,2]V~% and any (v, 3) € N x NV, In particular, we have

~ Nt a/p\ 1/a
Jee8(0a") < sup 2090 max(1, | }(}j( §j|amv) ) .

BENN v=0 meZN

Now, by assumption (7.1), we can choose «, = W(27")P. Therefore, recalling (7.4), we have

d+1 q/p\ 1/q
17t ey S s 20 W1, 135 (3 (50 W) )

BeENN v20 NmezN
q/p\ 1/q
olBl B |p
<23 X war) )
v20 “mezN

Finally, recalling (7.3), we have
(17) 152y S 1

The proof when ¢ = oo and/or ® # 1 is similar (recall Remark 4.3). It this latter case, one
only have to adjust the (s, p)-G-quarks by a factor of ®(27)~" and to replace \J,, by 1, the

B, (BN) for a.e. 2’ € [1,2]V ¢

optimal decomposition of f € B,(,Sqq))(RN ) along these (s, p, ®)-5-quarks. Then, as in Remark
4.3, it suffices to replace W(27*)\? in the estimates (7.4) and (7.5) of ||f(-,:B”)||B<é, ) (R by

rv,m

(277)/®(27")n5,, and the same proof yields the desired conclusion. O
We carry on with the following generalization of Theorem 1.6.

Theorem 7.2. Let N >3, 1 <d< N,0<r<p<qg< o andletxzﬁ (resp. x = r if
qg=o00). Let ® and ¥ be two admissible functions such that

(7.8) D B2 W2

j=0

Let K € RV=4 be a compact set and suppose that f € B}(,i}@) (RY). Then,

1/r
(1M ya”) < Ly

for some constant C' = C(K, N,d,p,q,¥) > 0.

Proof. By Holder’s inequality, the Definition of the norms involved and our assumptions on s,
P, q, T, X, we see that (7.8) implies that B (RY) — B&Y (RY) continuously, i.e.

1/x
115 vy < <§3¢23 at >) 115 vy

7=0

Using now Proposition 5.1, we obtain the desired conclusion. O
We now prove Theorem 1.7.

Proof of Theorem 1.7. The proof works exactly as in Theorem 1.3 and, here again, it suffices
to prove the result for N > 2, d = N — 1. We prove the case N = 2 only but the general case
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N > 2 is similar. Let (\;z);k>0 be the sequence constructed at Lemma 3.8. Let M € N* with
s < M. We consider the following function

(7.9) Flan ) = 303 \u2 792 (21 — Carg) (2 as — k),
Jj=20 k>0

where ¢ and C'y; are as in the proof of Theorem 1.3. There, we have shown that

/1155 ,m2) < cl[Allb,

and
(7.10) sup IAN F(y22) || Logr)y = €277°29/PX; 9say

J
for any j > 0 and a.e. x5 € [1,2]. From this it follows that
(7.11) W) sup (A Sl > VRPN

J
Now, by Lemma 3.8 and since
‘ A u 1/q
(712)  Nllgen ~ l9lmam + (Z P27 sup A g||zp(R)) ,
j=0 J

is an equivalent quasi-norm on BS5")(R), we have f € Bs (R?) and f(-,22) ¢ BSY(R) for
a.e. o € [1,2]. Then, arguing exactly as in Theorem 1.3, we obtain a function satisfying the
requirements of Theorem 1.7. This completes the proof. 0

Remark 7.3. This can be generalized in the spirit of Theorem 7.1. Indeed, repeating the
arguments of the proof of Theorem 6.1, we can prove that if (7.8) is violated, then there is a

function f € BSS® (RY) such that f(-,2”) ¢ BSSY(RY) for a.e. 2 € RV,
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