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Practical Methods for Constructing Possibility Distributions

This survey paper provides an overview of existing methods for building possibility distributions. We both consider the case of qualitative possibility theory, where the scale remains ordinal, and the case of quantitative possibility theory, where the scale is the real interval [0, 1]. Methods may be order-based or similarity-based for qualitative possibility distributions, whereas statistical methods apply in the quantitative case and then possibilities encode nested random epistemic sets or upper bounds of probabilities. But distance-based approaches, or expert estimates, may be also exploited in the quantitative case.

INTRODUCTION

One of the key questions often raised by scientists when considering fuzzy sets is how to measure membership degrees. However, this question is hardly meaningful if no interpretive context for membership functions is provided. One such context is possibility theory, first outlined by Lotfi Zadeh in 1977. [START_REF] Zadeh | Fuzzy sets as a basis for a theory of possibility[END_REF] Possibility distributions are the basic building blocks of possibility theory. Zadeh proposes to consider them as fuzzy set membership functions interpreted in a disjunctive way, [START_REF] Zadeh | PRUF -a meaning representation language for natural languages[END_REF] namely, serving as elastic constraints restricting the possible values of a single-valued variable. Different kinds of possibility distributions may be encountered in a variety of applications ranging from information systems and databases [START_REF] Bosc | Fuzzy preference queries to relational databases[END_REF] to operations research [START_REF]Fuzzy optimisation: Recent advances and applications[END_REF] and artificial intelligence, [START_REF] Dubois | Fuzzy set and possibility theory-based methods in artificial intelligence[END_REF] from computation with ill-known quantities represented by fuzzy intervals, [START_REF] Dubois | Fuzzy interval analysis[END_REF] to the set of possible models of a possibilistic logic base [START_REF] Dubois | Possibilistic logic[END_REF] (see Ref. 8 for more references). Whatever the situation, having faithful elicitation or estimation methods for possibility distributions is clearly an important issue.

The idea of graded possibility was thus advocated by Zadeh in the late 1970s. But before him, the economist G. L. S. Shackle [START_REF] Shackle | The expectational dynamics of the individual[END_REF][START_REF] Shackle | Expectation in economics[END_REF][START_REF] Shackle | Decision, order and time in human affairs[END_REF] and the philosopher David Lewis [START_REF] Lewis | Counterfactuals and comparative possibility[END_REF] did the same, albeit on the basis of concerns very different from Zadeh's. Indeed, Zadeh was mainly motivated by the representation of linguistic terms as a way of expressing uncertain and imprecise information held by humans, referring to some appropriate distance to prototypical examples; in contrast, Shackle was

Possibility Distribution and Fuzzy Set

In his paper introducing possibility theory, Zadeh [START_REF] Zadeh | Fuzzy sets as a basis for a theory of possibility[END_REF] starts with the representation of pieces of information of the form "X is A," where X is a parameter or attribute of interest and A is a fuzzy set on the domain of X, often representing a linguistic category (e.g., John is Tall, where X = height(John), and A is the fuzzy set of Tall heights for humans). The question is then, knowing that "X is A," to determine what is the possibility distribution π X restricting the possible values of X (also assuming we know the meaning of A, given by a [0, 1]-valued membership function µ A ). Then Zadeh represents the piece of information " X is A" by the elastic restriction ∀u ∈ U, π X (u) = µ A (u) where U is the universe of discourse on which X ranges. Thus, µ A is turned into a kind of likelihood function for X. In the above example, U is the set of human heights. Note however that π X acts as a disjunctive restriction (X takes a single value in U ), while, prior to using it as above, A is a conjunctive fuzzy set, [START_REF] Zadeh | PRUF -a meaning representation language for natural languages[END_REF] the fuzzy set of all values more or less compatible with the meaning of A. Thus the degree of possibility that X = u is evaluated as the degree of compatibility µ A (u) of the value u with the fuzzy set A.

Representation of Imprecise Information and Specificity

In more abstract terms, π X is a mapping from a referential U (understood as a set of mutually exclusive values for the attribute X) to a totally ordered scale L, with top denoted by 1 and bottom by 0, such as the unit interval [0, 1]. Thus any mapping from a set of elements, viewed as a mutually exclusive set of alternatives, to [0, 1] (and more generally to any totally ordered scale) can be seen as acting as an elastic restriction on the value of a single-valued variable, i.e., can be seen as a possibility distribution. Apart from the representation of ill-known numerical quantities defined on continuums, as in the human height example above, another "natural" and simple use of possibility distributions is the representation of ill-known states of affairs (or worlds, according to logicians), a concern of interest for Shackle [START_REF] Shackle | Expectation in economics[END_REF] from a decision perspective.

Then U more generally stands for a (mutually exclusive) set of states of affairs (or descriptions thereof), or states, for short. If U is exhaustive, at least one of the elements of U should be the actual world, so that ∃u, π(u) = 1 (normalization). Different values may simultaneously have a degree of possibility equal to 1. In particular, extreme forms of epistemic states can be captured, namely: complete knowledge, where for some u 0 , π(u 0 ) = 1 and π(u) = 0, ∀u = u 0 (only u 0 is possible), and complete ignorance where π(u) = 1, ∀u ∈ U (all states are possible).

A possibility distribution π is said to be at least as specific as another π ′ if and only if for each state of affairs u, we have π(u) ≤ π ′ (u). [START_REF] Yager | An introduction to applications of possibility theory[END_REF] Then, π is at least as restrictive and informative as π ′ . This agrees with Zadeh's entailment principle that "X is A" entails "X is B," as soon as A ⊆ B. In the presence of pieces of knowledge coming from humans and acting as constraints, possibility theory is driven by the principle of least commitment called minimal specificity principle [START_REF] Dubois | Possibility theory[END_REF] . It states that any hypothesis not known to be impossible cannot be ruled out. In other words, if all we know is that "X is A," any possibility distribution for which π X ≤ µ A and ∃u, π X (u) < µ A (u) would be too restrictive, since we have no further information that could support the latter strict inequality. Hence, π X = µ A is the right representation, if we have no further information. The minimal specificity principle justifies the use of the minimum-based combination principle of n pieces of information of the form "X is A i ," in approximate reasoning, [START_REF] Zadeh | A theory of approximate reasoning[END_REF] since π X = min n i=1 µ A i is the largest possibility distribution such that we have π ≤ µ A i , ∀i = 1, . . . , n.

Sometimes, the opposite principle must be used. This is when we possess statistical information that represents data and not knowledge. In this case, we consider the most specific possibility distribution enclosing the data, assuming, like in probability density estimation, that what has not been observed is impossible. [START_REF] Dubois | New semantics for quantitative possibility theory[END_REF] This is similar to the closed-world assumption.

Possibilistic Set Functions

Given a simple query of the form "does event A occur?" where A is a subset of states, the response to the query can be obtained by computing degrees of possibility and necessity, respectively (assuming the possibility scale L = [0, 1]):

(A) = sup u∈A π(u); N(A) = inf u / ∈A (1 -π(u)).
(A) evaluates to what extent A is logically consistent with π, whereas N(A) evaluates to what extent A is certainly implied by π. The possibility-necessity duality says that a proposition is certain if its opposite is impossible, and this is expressed by

N(A) = 1 -(A c ),
where A c is the complement of A. Generally, (U ) = N(U ) = 1 and (∅) = N(∅) = 0. Possibility measures satisfy the basic "maxitivity" property

(A ∪ B) = max( (A), (B)).
Necessity measures satisfy a "minitivity axiom" dual to that of possibility measures, namely

N(A ∩ B) = min(N(A), N(B)),
expressing that being certain that A ∩ B is the same as being certain of A and of B.

Human knowledge is often expressed in a declarative way, using statements to which belief degrees are attached. This format corresponds to expressing constraints with which the world is supposed to comply. Certainty-qualified pieces of uncertain information of the form "(X is A) is certain to degree α" can then be modeled by the constraint N(A) ≥ α. The least specific possibility distribution reflecting this information is [START_REF] Dubois | Possibility theory[END_REF] :

π (A,α) (u) = 1, if u ∈ A 1 -α otherwise. (1) 
Acquiring further pieces of knowledge consistent with the former leads to updating π (A,α) into some π < π (A,α) . Another example where the principle of minimal specificity is useful is when defining the notion of conditioning in possibility theory. The most usual form respects an equation of the form

(A ∩ B) = (A|B) ⋆ (B), N(A|B) : 1 -(A c |B), (2) 
where ⋆ is a t-norm and B = ∅. The most justified choices of ⋆ are min and product. [START_REF] Dubois | The logical view of conditioning and its application to possibility and evidence theories[END_REF] In the case of product, it looks like probabilistic conditioning applied to possibility measures and corresponds to Dempster conditioning. [START_REF] Dempster | Upper and lower probabilities induced by a multivalued mapping[END_REF] Using min, the above definition (3) does not yield a unique conditional possibility. Then the idea is to use the least specific possibility measure respecting (2), i.e.,

(A|B) = (A ∩ B) if (A ∩ B) < (B), 1 otherwise. ( 3 
)
Apart from and N, a measure of guaranteed possibility or sufficiency can be defined [START_REF] Dubois | Knowledge-driven versus data-driven logics[END_REF][START_REF] Dubois | An overview of the asymmetric bipolar representation of positive and negative information in possibility theory[END_REF] : (A) = inf u∈A π(u). It estimates to what extent all states in A are actually possible according to evidence. (A) can be used as a degree of evidential support for A. In contrast, appears to be a measure of potential possibility. Uncertain statements of the form "B is possible to degree β" often mean that all realizations of B are possible to degree β. They can then be modeled by the constraint (B) ≥ β. It corresponds to the idea of observed evidence. This type of information is better exploited by an informational principle opposite to the one discussed above (minimal specificity would give nothing). The most specific distribution δ (B,β) in agreement with (B) ≥ β is

δ (B,β) (u) = β, if u ∈ B 0 otherwise.
Acquiring further pieces of evidence leads to updating δ (B,β) into some wider distribution δ > δ (B,β) . 21

Different Scales for Graded Possibility

There are several representations of epistemic states that are in agreement with the above setting such as well-ordered partitions, [START_REF] Spohn | nonprobabilistic theory of inductive reasoning[END_REF] Lewis' systems of spheres, [START_REF] Lewis | Counterfactuals and comparative possibility[END_REF][START_REF] Grove | Two modellings for theory change[END_REF] Spohn's "ordinal conditional functions" (OCF) [START_REF] Spohn | nonprobabilistic theory of inductive reasoning[END_REF][START_REF] Spohn | Ordinal conditional functions: a dynamic theory of epistemic states[END_REF] (also called ranking functions [START_REF] Spohn | The laws of belief: ranking theory and its philosophical applications[END_REF] ), and possibilities viewed as upper probabilities. But all these representations of epistemic states do not have the same expressive power. They range from purely qualitative to quantitative possibility distributions, using weak orders, qualitative scales, integers, and reals. In fact, we can distinguish several representation settings according to the expressiveness of the scale used 26 :

1. The purely ordinal setting, where an epistemic state on a set of possible worlds is simply encoded by means of a total preorder , telling which worlds are more normal, less surprising than other ones. The quotient set U /∼, built from the equivalence relation ∼ extracted from , forms a well-ordered partition E 1 , . . . , E k such that the greater the index i, the less plausible or the less likely the possible states in E i . In that case the comparative possibility relation is such that A B if and only if ∃u 1 ∈ A, ∀u 2 ∈ B, u 1 u 2 . This is the setting used by Lewis [START_REF] Lewis | Counterfactuals and comparative possibility[END_REF] and by Grove [START_REF] Grove | Two modellings for theory change[END_REF] and Gärdenfors [START_REF] Gärdenfors | Knowledge in flux[END_REF] when modeling belief revision. Only possibility measures can account for such relations. [START_REF] Dubois | Belief structures, possibility theory and decomposable confidence measures on finite sets[END_REF] 2. The qualitative finite setting, with possibility degrees in a finite totally ordered scale:

L = {α 0 = 1 > α 1 > . . . > α m-1 > 0}.
This setting has a classificatory flavor, as we assign each event to a class in a finite totally ordered set thereof, corresponding to the finite scale of possibility levels. It is used in possibilistic logic. [START_REF] Dubois | Possibilistic logic[END_REF] However, note that the previous purely ordinal representation is less expressive than the qualitative encoding of a possibility distribution on a totally ordered scale, as the former cannot express absolute impossibility. 3. The denumerable setting, using a scale of powers L = {α 0 = 1 > α 1 > . . . > α i > . . . , 0}, for some α ∈ (0, 1). This is isomorphic to the use of integers in ranking functions by Spohn, [START_REF] Spohn | The laws of belief: ranking theory and its philosophical applications[END_REF] where the set of natural integers is used as a disbelief scale. 4. The dense ordinal scale setting using L = [0, 1], seen as an ordinal scale. In this case, the possibility distribution is defined up to any monotone increasing transformation

f : [0, 1] → [0, 1], f (0) = 0, f (1) = 1.
This setting is also used in possibilistic logic. [START_REF] Dubois | Possibilistic logic[END_REF] 5. The dense absolute setting, where L = [0, 1], seen as a genuine numerical scale equipped with product. In this case, a possibility measure can be viewed as a special case of Shafer's plausibility function, [START_REF] Shafer | Belief functions and possibility measures[END_REF] actually a consonant one, and 1π as a potential surprise function in the sense of Shackle. 11

Quantitative Possibilities and Their Links with Probabilities

The idea of a link between graded possibility and probability is natural since both acts as modalities for expressing some form of uncertainty. This link may be stated under the form of a consistency principle 1 stating that "what is possible may not be probable and what is improbable need not be impossible." Proceeding further, we may consider that what is probable should be possible, and what is necessarily (certainly) the case should be probable as well. This amounts to writing N ≤ P ≤ , where N, P , and are, respectively, a necessity, a probability, and a possibility measure (Ref. 30, p. 138).

Let π be a possibility distribution where π(u) ∈ [0, 1]. Let P(π) be the never empty set of probability measures P such that P ≤ , i.e. ∀A ⊆ U, P (A) ≤ (A) (equivalently, P ≥ N). Then the possibility measure coincides with the upper probability function P * such that P * (A) = sup{P (A), P ∈ P(π)}, whereas the necessity measure N is the lower probability function P * such that P * (A) = inf{P (A), P ∈ P(π)}; see Refs. 31, 32 for details. P and π are said to be compatible if P ∈ P(π). So, and N are coherent upper and lower probabilities in the sense of Walley, [START_REF] Walley | Statistical reasoning with imprecise probabilitiess[END_REF] as already pointed out very early by Giles. [START_REF] Giles | Foundations for a theory of possibility[END_REF] The connection between possibility measures and imprecise probabilistic reasoning is especially interesting for the efficient representation of nonparametric families of probability functions, and it makes sense even in the scope of modeling linguistic information. [START_REF] Walley | A behavioural model for linguistic uncertainty[END_REF] A possibility measure can thus be computed from a set of nested confidence subsets {A 1 , A 2 , . . . , A k }, where A i ⊂ A i+1 , i = 1 . . . , k -1. To each confidence subset A i is attached a positive confidence level λ i interpreted as a lower bound of P (A i ), hence a necessity degree. The pair (A i , λ i ) can be viewed as a certainty-qualified statement that generates a possibility distribution π i , as recalled above. The corresponding possibility distribution is obtained by intersecting fuzzy sets like those in Equation 1:

π(u) = min i=1,...,k π i (u) = 1 if u ∈ A 1 1 -λ j -1 if j = max{i : u / ∈ A i } > 1. (4) 
The information modeled by π can also be viewed as a nested random set

{(A i , m(A i )), i = 1, . . . , k},
associated with a belief function, [START_REF] Shafer | A Mathematical theory of evidence[END_REF] letting m(A i ) = λ iλ i-1 . [START_REF] Dubois | On several representations of an uncertain body of evidence[END_REF] This framework allows for imprecision (reflected by the size of the A i s) and uncertainty (the m(A i )s). And m(A i ) is the probability that the agent only knows that A i contains the actual state (it is not P (A i )). The random set view of possibility theory is well adapted to the idea of imprecise statistical data, as developed in Section 4. Conversely, if a belief function is consonant then its contour function π(u) = i:u∈A i m(A i ) is sufficient to recover the belief function, where m is its basic probability assignment ( i m(A i ) = 1), and the A i s are both the nested focal elements associated with m, and the level cuts of π. [START_REF] Spohn | Ordinal conditional functions: a dynamic theory of epistemic states[END_REF] for his integer-valued ranking functions κ ranging from 0 to +∞ (0 meaning full possibility, and +∞ full impossibility), where κ(A) may be thought of as a degree of disbelief modeled by a kind of cost. Namely κ(A) = k is interpreted as a small probability of the form ǫ k with ǫ ≪ 1 (e.g., P (A) = 10 -7 , when ǫ = 0.1, and k = 7), i.e., the probability of a rare event. Indeed if A has a small probability with the order of magnitude ǫ k , and B is another event with a small probability with the order of magnitude ǫ n , the order of magnitude of the probability P (A ∪ B) is ǫ min(k,n) , which mirrors the maxitivity decomposition property of possibility measures, up to a rescaling from [0, +∞) to [0, 1] [START_REF] Dubois | Epistemic entrenchment and possibilistic logic[END_REF] . It suggests an interpretation of possibility (and necessity) measures in terms of probabilities of rare events.

REMARK 1. Let us mention another possible kind of link between very small probabilities and possibilities. This interpretation has been pointed out by Spohn

CONSTRUCTION METHODS FOR QUALITATIVE POSSIBILITY DISTRIBUTIONS

The elicitation of qualitative possibility distributions is made easier by the qualitative nature of possibility degrees. Indeed, even in a dense ordinal scale L = [0, 1], the precise values of the degrees do not matter, only their relative values are important as expressing strict inequalities between possibility levels. In fact, it basically amounts to determining a well-ordered partition.

In a purely ordinal setting, a possibility ordering is a complete preorder of states denoted by ≥ π , which determines a well-ordered partition {E 1 , . . . , E k } of U . It is the comparative counterpart of a possibility distribution π, i.e., u ≥ π u ′ if and only if π(u) ≥ π(u ′ ). By convention E 1 contains the most plausible (or normal), or the most satisfactory (or acceptable) states, E k the least plausible (or most surprising), or the least satisfactory ones, depending if we are modeling knowledge, or preferences. Ordinal counterparts of possibility and necessity measures [START_REF] Dubois | Belief structures, possibility theory and decomposable confidence measures on finite sets[END_REF] are defined as follows: {u} ≥ ∅ for all u ∈ U and

A ≥ B if and only if max(A) ≥ π max(B) A ≥ N B if and only if max(B c ) ≥ π max(A c ).
Possibility relations ≥ are those of Lewis. [START_REF] Lewis | Counterfactuals and comparative possibility[END_REF] They satisfy the characteristic property

A ≥ B implies C ∪ A ≥ C ∪ B,
while necessity relations can also be defined as A ≥ N B if and only if B c ≥ A c and satisfy a similar property:

A ≥ N B implies C ∩ A ≥ N C ∩ B.
Necessity relations coincide with epistemic entrenchment relations in the sense of belief revision theory. [START_REF] Gärdenfors | Knowledge in flux[END_REF][START_REF] Dubois | Epistemic entrenchment and possibilistic logic[END_REF] In particular, the assertion A > A c expresses the acceptance of A 39 and is the qualitative counterpart of N(A) > 0. This qualitative setting enables qualitative possibility distributions to be derived either from a set of certainty-qualified propositions, or from a set of conditional statements.

Certainty-Qualified Propositions

When an agent states beliefs with their (relative) strengths, it is more natural to expect that ordinal information, rather than truly numerical information, is supplied. This gives birth to a knowledge base in the sense of possibilistic logic, 7 i.e., a set of weighted statements K = {(A i , α i ) : i = 1, . . . , m}, each of them representing a constraint N(A i ) ≥ α i , where A i represents a subset of possible states or interpretations and α i is the associated certainty level (or priority level) belonging to a denumerable ordinal scale. Such a base K is semantically associated with the possibility distribution in (4), where we no longer assume nested events:

π K (u) = min i=1,...,m π (A i ,α i ) (u) = min i=1,...,m max(µ A i (u), 1 -α i )
and µ A i is the characteristic function of the subset A i . Besides, the α i s may also have a similarity flavor when some pair (A i , α i ) correspond to the level-cuts of fuzzy subsets. [START_REF] Dubois | Possibility theory in constraint satisfaction problems: handling priority, preference and uncertainty[END_REF][START_REF] Schockaert | Solving conflicts in information merging by a flexible interpretation of atomic propositions[END_REF] Let us mention that a similar construction can be made in an additive setting where each formula is associated with a cost (in N ∪ {+∞}), the weight (cost) attached to an interpretation being the sum of the costs of the formulas in the base violated by the interpretation, as in penalty logic. [START_REF] De | Penalty logic and its link with Dempster-Shafer theory[END_REF] The so-called "cost of consistency" of a formula is then defined as the minimum of the weights of its models. It is nothing but a ranking function (OCF) in the sense of Spohn, [START_REF] Spohn | Ordinal conditional functions: a dynamic theory of epistemic states[END_REF] the counterpart of a possibility measure defined on N ∪ {+∞}, where now 0 expresses full possibility (free violation), and +∞ complete impossibility (a price that cannot be paid). However, this view gives a more quantitative flavor to the construction, thus moving from a qualitative setting to a numerical one.

The construction of π K from the collection of statements in K clearly relies on the application of the minimal specificity principle. As mentioned in the previous section, a dual principle may be more appropriate when we start from data, rather than constraints excluding impossible states. Assume that we have a collection of weighted data D = {(B j , β j ), j = 1, . . . , n}, understood as (B j ) ≥ β j , where the β j s belong to an ordinal scale and reflect, e.g., some similarity-based relevance of the data. Then by virtue of maximal specificity, we get the lower possibility distribution (which needs not to be normalized):

δ D (u) = max j =1,...,n δ (B j ,β j ) (u) = max j =1,...,n min(µ B i (u), β j ).
Note that this expression takes the form of the kind of fuzzy conclusions (prior to defuzzification) obtained from Mamdani fuzzy rule-based systems. [START_REF] Mamdani | Advances in the linguistic synthesis of fuzzy controllers[END_REF] 

Indicative Conditionals

Besides, there exists yet another method to obtain a qualitative possibility distribution, starting from a set of conditionals, rather than from a set of lower bounds on the necessity, or the guaranteed possibility, of a collection of subsets. This method was originally invented for stratifying a set of default rules to design proper methods for handling exception-tolerant reasoning about incompletely described cases; see, e.g., Ref. 44. A default rule "if A then B, generally," denoted A B, is then understood formally as the conditional constraint

(A ∩ B) > (A ∩ B c )
on a possibility measure , expressing that the examples of the rule (the situations where A and B hold) are more plausible than its counterexamples (the situations where A holds and B does not). It is equivalent to the conditional statement N(B|A) > 0. Remember that, in contrast, the probabilistic interpretation is such that

P (A ∩ B) > P (A ∩ B c ) if and only if P (B|A) > 1/2.
The above possibilistic constraint can be equivalently expressed in terms of a mere comparative possibility relation, namely

A ∩ B > A ∩ B c . Any finite con- sistent set of constraints of the form A k ∩ B k > A k ∩ B c k , representing a set of defaults = {A k B k , k = 1, . . . , r}
, is compatible with a nonempty family of relations > and determines a partially defined ranking > π on U that can be completed according to the principle of minimal specificity. This principle assigns to each state u the highest possibility level (in forming a well-ordered partition of U ) without violating the constraints. It defines a unique complete preorder. [START_REF] Benferhat | Practical handling of exception-tainted rules and independence information in possibilistic logic[END_REF] Let E 1 , . . . , E k be the obtained partition. Then u > π u ′ if u ∈ E i and u ′ ∈ E j with i < j , whereas u ∼ π u ′ if u ∈ E i and u ′ ∈ E i (where ∼ π means ≥ π and ≤ π ).

A numerical counterpart to > π on a denumerable finite scale can be defined by π(u) = k+1-j k if u ∈ E j , j = 1, . . . , k. [START_REF] Benferhat | Practical handling of exception-tainted rules and independence information in possibilistic logic[END_REF] Note that it is purely a matter of convenience to use a numerical scale, and any other numerical counterpart such that π(u) > π(u ′ ) iff u > π u ′ will work as well. Namely, the range of π is used as an ordinal scale. This approach has an infinitesimal probability counterpart, namely, a procedure called system Z. [START_REF] Pearl | System Z: a natural ordering of defaults with tractable applications to nonmonotonic reasoning[END_REF] It has been refined by the numerical system Z + , [START_REF] Goldszmidt | Qualitative probability for default reasoning, belief revision and causal modeling[END_REF] whose possibilistic counterpart corresponds to the handling of "strengthened" constraints of the form (A j ∩ B j ) > ρ j • (A j ∩ B c j ), where ρ j ≥ 1. This approach can also be expressed in terms of conditioning in the setting of Spohn's ranking functions. Note that the latter methods were intended to stratify default knowledge bases rather than to explicitly derive possibility distributions.

CONSTRUCTION METHODS FOR QUANTITATIVE POSSIBILITY DISTRIBUTIONS

The construction of possibility distributions in the quantitative setting either rely on numerical similarity or exploit the connection between probability and possibility inspired by Zadeh [START_REF] Zadeh | Fuzzy sets as a basis for a theory of possibility[END_REF] according to whom what is probable must be possible, which is understood here by the inequality (A) ≥ P (A), for all measurable subsets A. In the first case, possibility is viewed as a form of renormalized distance to most plausible values. In the second case, it means that we can derive possibility distributions from statistical data or from subjective probability elicitation methods.

Possibility as Similarity

In his approach to the non-Boolean representation of natural language categories, Zadeh 2 uses membership functions representing the extensions of fuzzy predicates to derive possibility distributions, as recalled in Section 2.1. If we know the membership function µ T all of Tall on the scale of human heights, then the piece of information John is Tall, accepted as being true, can be represented by a possibility distribution π hgt(J ohn) equated with µ T all :

π hgt(J ohn) (h) = µ T all (h).
In other words, the measurement of possibility degrees comes down to the measurement of membership functions of linguistic terms. However, in such a situation, µ T all (h) is often constructed as a function of the distance between the value a and the closest height ĥ that can be considered prototypical for Tall, i.e., µ T all ( ĥ) = 1, for instance,

µ T all (h) = f (d(h, ĥ)) ( 5 
)
where f is a nonnegative, decreasing function such that f (0) = 1, for instance f (u) = 1 1+u , and d(h, ĥ) = min{d(h, x) : µ T all (x) = 1}, where d is a distance. Sudkamp [START_REF] Sudkamp | Similarity and the measurement of possibility[END_REF] points out that conversely, given a possibility distribution π, the twoplace function δ(x, y) = |π(x)π(y)| is a pseudodistance indeed.

Results of fuzzy clustering methods can be interpreted as distance-based membership functions. Alternatively, one may define a fuzzy set F from a crisp set A of prototypes of µ T all and a similarity relation S(x, y) on the height scale, such that S(x, x) = 1 (then 1 -S(x, y) is akin to a distance). Ruspini [START_REF] Ruspini | On the semantics of fuzzy logic[END_REF] proposes to define the membership function as a kind of upper approximation of A:

µ F (h) = max u∈A S(u, h).
Then A stands as the core of the fuzzy set F . We refer the reader to the survey by Türksen and Bilgic [START_REF] Türksen | Measurement of membership functions: theoretical and empirical work[END_REF] for membership degree elicitation using measurement methods outside the possibility theory view, and more recently to papers by Marchant [START_REF] Marchant | The measurement of membership by comparisons[END_REF][START_REF] Marchant | The measurement of membership by subjective ratio estimation[END_REF] .

Besides, the idea of relating plausibility and distance also pervades the probabilistic literature: The use of normal distributions as likelihood functions can be viewed as a way to define degrees of likelihood via the Euclidean distance between a given number and the most likely value (which in that case coincides with the mean value of the distribution). In the neurofuzzy literature, one often uses Gaussian membership functions of the form ( 5) with f = e -x 2 .

Statistical Interpretations of Possibility Distributions

The use of possibility distributions seems to range far beyond the linguistic point of view advocated by Zadeh. [START_REF] Zadeh | PRUF -a meaning representation language for natural languages[END_REF] Namely, the use of (normalized) membership functions interpreted as ruling out the more or less impossible values of an ill-known quantity X, as well as the maxitivity axiom of possibility measures, are actually often found in the statistical literature, in connection with the non-Kolmogorovian aspects of statistics, namely the maximum likelihood principle, the comparison of probability distributions in terms of dispersion, and the notion of confidence interval; see Refs. 52, 53, 54 for surveys of such connections between probability and possibility. In this section, we focus on the derivation of possibility distributions from a (finite) set of statistical data.

Interval Data

It is useful to cast the problem in a more general setting, namely the one of set-valued data, and the theory of random sets. [START_REF] Couso | Statistical reasoning with set-valued information: Ontic vs. epistemic views[END_REF][START_REF] Ferson | Exact bounds on finite populations of interval data[END_REF][START_REF]Measurement of possibilistic histograms from interval data[END_REF] Consider a random variable X and a (multi)set of data reporting the results of some experiments under the form of intervals D = {I i : i = 1, . . . , n} subsets of a real interval U = [a, b]. In general, due to randomness, one cannot expect this set of intervals to be nested. Representing it by a possibility distribution will result in an approximation to this information. Strictly speaking, what is needed to represent this data set exactly is a random set defined by a mass function m : 2 [a,b] 

→ [0, 1] such that m(E) = |{I i : E = I i }| n , ∀E ⊆ [a, b] (6) 
Note that this expression is formally related to a belief function Bel(A) = E⊆A m(E) of Shafer. [START_REF] Shafer | A Mathematical theory of evidence[END_REF] In particular, each focal set E with m(E) > 0 represents incomplete information, namely that some x i ∈ I i should have been observed as the result of the ith experiment, but only an imprecise representation of this observation could be obtained in the form of I i . However, in the theory of evidence, Shafer assumes that m(E) is a subjective probability (the probability that the set E is a faithful representation of an agent's knowledge about X). The interval data are more in conformity with Dempster [START_REF] Dempster | Upper and lower probabilities induced by a multivalued mapping[END_REF] view, since m(E) is the frequency of observing E.

In fact, D = {I i : i = 1, . . . , n} is interpreted as an epistemic random set, 55 i.e., it describes an ill-known standard random variable. It represents the (finite, hence nonconvex) set of probabilities obtained by all selections of values in the intervals of D. Let d k = {x k 1 , . . . , x k n } represent a precise data set compatible with D in the sense that x k i ∈ I i , i = 1, . . . , n. This is denoted by d k ∈ D. Moreover, the belief function Bel(A) is a lower frequency of A, whereas the plausibility degree P l(A) = E∩A =∅ m(E) is an upper frequency. Let f k (a) be the frequency of

u = x k i in d k . Then Bel(A) = min d k ∈D u∈A f k (u); P l(A) = max d k ∈D u∈A f k (u).
(See Refs. 58, 59, 56 for more on statistics with interval data.) A straightforward way of deriving a possibility distribution from such statistical data is to consider what Shafer [START_REF] Shafer | A Mathematical theory of evidence[END_REF] called the contour function of m (actually, the onepoint coverage function of the random set):

π * (a) = a∈E m(E).
Note that this is only a partial view of the data, as it is generally not possible to reconstruct m from π * . This view of possibility distributions and fuzzy sets as random sets was very early pointed out by Kampé de Feriet 60 and Goodman. [START_REF] Goodman | Fuzzy sets as equivalence classes of random sets[END_REF] From a possibility theory point of view, it has some drawbacks: r π * is generally not normalized, hence not a proper possibility distribution (unless the data are not conflicting : n i=1 I i = ∅). For instance, π * = m is a probability distribution when data are precise.

r Even when it is normalized, the interval [N * (A), * (A)] determined by π * is the widest interval of this form contained in [Bel(A), P l(A)] 62 .

One may be more interested to get the narrowest ranges [N(A), (A)] containing intervals [Bel(A), P l(A)], as being safer; see Ref. 62 for an extensive discussion of this difficult problem whose solution is not unique. The idea, first suggested in Ref. 63 is to choose a family F = {E 1 ⊆ . . . ⊆ E q } of nested intervals such that I i ⊆ E q for all intervals I i , and I i ⊆ E 1 for at least one I i . Then it is easy to compute a nested random set m F , as follows: for each interval I i let α(i) = min{j : I i ⊆ E j }, such that E α(i) is the most narrow interval in F containing I i . Then let m F (E j ) = E:E=I i ,j =α(i) m(E), where m is the original mass function given by ( 6). An upper possibility distribution π F is derived such that

π F (a) = a∈E i m F (E j ) in the sense that [Bel(A), P l(A)] ⊆ [N F (A), F (A)]
. The difficult point is to choose a proper family of nested set F. Clearly, the intervals in F should be as narrow as possible. One may, for instance, choose F in the family of cuts of π * .

Interestingly, the random set {(E j , m F (E j )) : j = 1, . . . , q} can be viewed as a nested histogram, which is what is expected with empirical possibility distributions (while building a standard histogram comes down to choosing a partition of [a, b]).

From Large Precise Data Sets to Possibility Distributions

If we consider the special case of a standard point-valued data set, there does not exist a lower possibility distribution, but it is possible to derive an upper possibility distribution using a nested histogram. Of course, we lose much information, as we replace precise values by sets containing them. However, the problem of finding an optimal upper distribution has a solution known for a long time. [START_REF] Dubois | On several representations of an uncertain body of evidence[END_REF][START_REF] Delgado | On the concept of possibility-probability consistency[END_REF] Consider a histogram H made of a partition {H 1 , . . . , H n } of [a, b] with corresponding probabilities p 1 > p 2 > . . . > p n . Note that it is, strictly speaking, a special case of random set with disjoint realizations. Then, there is a most specific possibility distribution π * dominating the probability distribution, called optimal transformation, namely

∀a ∈ H i , π * (a) = j ≥i p j . (7) 
Indeed, one can check that P (A) ∈ [N * (A), * (A)] and * ( j i=1 H j ) = P ( j i=1 H j ). The distribution π * is known as the Lorentz curve of the vector (p 1 , p 2 , . . . , p n ). In fact, the main reason why this transformation is interesting is that it provides a systematic method for comparing probability distributions in terms of their relative peakedness (or dispersion). Namely, it has been shown that if π * p and π * q are optimal transformations of distributions p and q (sharing the same order of elements), and π * p < π * q (the former is more informative than the latter), then -n i=1 p i ln p i < -n i=1 q i ln q i , and this property holds for all entropies. 65 Note that many authors suggest another transformation consisting in a mere renormalization of the probability distribution in the style of possibility theory, namely

π r (a) = p i p 1 , if a ∈ H i . (8) 
However, it was already indicated in Ref. 30 (p. 259) that the inequality r (A) ≥ P (A) may fail to hold for some events A. In fact, for n = 3, one can prove the following:

PROPOSITION 1. Consider a probability distribution p 1 ≥ p 2 ≥ p 3 on a three-element set {1, 2, 3}. Then r (A) < P (A) for some A if and only if p 1 > 0.5 and p 2 < p 1 (1p 1 ).

Proof. The only problematic event is {2, 3} as r (A) ≥ P (A) obviously for other events. Noticing that p 1 = 1p 2p 3 , the condition r ({2, 3}) = p 2 p 1 < P ({2, 3}) boils down to the inequality p 2 < p 1 (1p 1 ). Moreover, the condition p 2 ≥ p 3 is actually p 2 ≥ 1p 1p 2 , i.e., p 2 ≥ 1-p 1 2 . So we need 1-p 1 2 < p 1 (1p 1 ), i.e., p 1 > 0.5.

For instance, take p 1 = 0.6, p 2 = p 3 = 0.2; then r ({2, 3}) = 1/3 < P ({2, 3}) = 0.4. In the case of more than three elements, one may find probability values p 1 ≥ . . . ≥ p n , such that p i p 1 < P ({i, . . . , n}), for all i = 2, . . . , n -1. It is sufficient to have p 1 > 0.5 and then to choose 0 < p i < p 1 (1 -i-1 j =1 p j ), i = 2, . . . , n -1 in this order, making sure that p n ≤ p n-1 .

Scarce Precise Data

Another case when a possibilistic representation can be envisaged is when the data set D = {x i : i = 1, . . . , n} is too small. Applying estimation methods to compute the probability distribution leads to large confidence intervals. Namely, if p(x|θ) is the density to be estimated via a parameter θ, then we get confidence intervals J β for θ with confidence level β ∈ [0, 1]. Usually, β = 0.95 is selected. The interval J β is random and contains θ with probability at least β. As the confidence intervals are nested, this family of confidence intervals can be modeled by a possibility distribution over the values of θ, which comes down to a possibility distribution over probabilistic models p(x|θ). This result is similar to the one we get from fuzzy probability qualification of a linguistic statement of the form "X is F is p" where p is a fuzzy interval on the probability scale. According to Zadeh, 2 this piece of information comes down to computing the possibility distribution π over probability measures P (on the range of X) for which π(P ) = µ p(P (F )) where P (F ) is the scalar probability of the fuzzy event F .

Finite setting.

In the case of a multinomial setting with n states, the identification of the probabilities p i of states i based on observation frequencies f i also yields confidence intervals. Fixing the confidence level, one gets probability intervals [l i , u i ] likely to contain the true probabilities p i . Such probability intervals lead to upper (and lower) probabilities of events that are submodular (and supermodular), a property far weaker than the property of possibility and necessity measures. [START_REF] De Campos | Probability intervals: a tool for uncertain reasoning[END_REF] They can be approximated by possibility and necessity measures as done by de Campos and Huete 67 , Masson and Denoeux 68 ; see also Destercke et al. [START_REF] Destercke | Unifying practical uncertainty representations, part II: clouds[END_REF] .

De Campos and Huete consider a finite set of n possibilities, and a small sample of N observations, where N i is the number of observations of class i. Maximum likelihood gives probabilities p i = N i N , and the statistical literature enables bounds l i ≤ p i ≤ u i to be computed as

p i ± c ǫ p i (1-p i ) N (if inside [0, 1])
, where c ǫ is the appropriate percentile of the standard normal distribution. These bounds have the peculiarity that the rankings of the lower bounds, of the upper bounds, and of the p i s are the same. Based on this ranking, the authors consider extending possibility-probability transformations ( 7) and ( 8) to probability intervals (as well as the converse of the pignistic transform (11) presented later in this paper) in such a way as to verify a number of expected properties:

1. The obtained possibility degrees for each class should be in agreement with the ranking provided by the sample sizes N i ; 2. The wider the intervals [l i , u i ], the less specific the possibility distribution; 3. The larger the sample size N , the more specific the possibility distribution; 4. The possibility distribution obtained from any probability assignment in the intervals and in agreement with the sample size should be more specific than the possibility distribution obtained from the intervals.

These transformations are simple to compute. In contrast, Masson and Denoeux 68 consider the probability intervals as being partially ordered and consider the transforms of all probability distributions consistent with these intervals according to all rankings extending the partial order. The obtained possibility distribution is covering all of them. This method is combinatorially more demanding.

Continuous setting.

An extreme case of scarce data is when a single observation x = x 0 on the real line has been obtained. Mauris 70 has shown that if we assume that the generation process is based on a unimodal distribution with mode M = x 0 , it is possible to compute a possibility distribution whose associated necessity functions bounds the probability of events from below. This perhaps surprising fact comes from the following result 71 used by Mauris: For any value t > 1 and any interval I t = [x -|x|t, x + |x|t] containing the mode M of the distribution, it holds that P (I t ) ≥ 1 -2 1-t , ∀t > 1. Then if the observed value x 0 > 0 is supposed to coincide with the mode of the distribution, we can derive a possibility distribution

π(x 0 (1 -t)) = π(x 0 (1 + t)) = 2 1-t if t > 1 1 otherwise.
This is done by interpreting 1 -2 1-t as a degree of necessity and by applying the minimal specificity principle to all such inequality constraints. Then, we know that whatever the underlying probability measure with mode x 0 , we get P (A) ≥ N(A), where N is constructed from π. The above result of Mauris 70 can be improved if more assumptions are made (symmetry, shape of the distribution) or if several observations obtained. Also, if the variable of interest is known to be bounded, i.e., to lie inside an interval [a, b], Dubois et al. [START_REF] Dubois | Possibility/probability transformations, triangular fuzzy sets, and probabilistic inequalities[END_REF] have shown that the triangular possibility distribution with mode x 0 and support [a, b] also dominates the probability of any event A for all unimodal probability distributions with mode x 0 and support in [a, b] (including uniform ones); see Mauris [START_REF] Mauris | Possibility distributions: a unified representation of usual direct-probability-based parameter estimation methods[END_REF][START_REF] Mauris | A review of relationships between possibility and probability representations of uncertainty in measurement[END_REF] for a more extensive view of the role of possibility distributions in statistics (evaluation of dispersion, estimation methods, etc.).

Possibility Measures and Cumulative Distributions

Possibility distributions, when related to probability measures, are closely related to cumulative distributions, as already suggested by expression (7). Namely, given a family I t = [a t , b t ], t ∈ [0, 1] of nested intervals, such that t < s implies I s ⊂ I t , I 1 = { x}, and a probability measure P whose support lies in [a 0 , b 0 ], letting

π(a t ) = π(b t ) = 1 -P (I t ), t ∈ [0, 1]
yields a possibility distribution (it is the membership function of a fuzzy interval) that is compatible with P . Now, 1 -P (I t ) = P ((-∞, a t )) + P ((b t , +∞)) making it clear that the possibility distribution coincides with a two-sided cumulative distribution function. Choosing I t = {x : p(x) ≥ t} for t ∈ [0, sup p], where p is the density of P , one gets the most specific possibility distribution compatible with P 72 . It has the same shape as p and x is the mode of p. It is the continuous counterpart of equation (7). It provides a faithfull description of the dispersion of P [START_REF] Dubois | On possibilityprobability transformations[END_REF] .

Conversely, given a possibility distribution in π the form of a fuzzy interval, then the set of probability measures P(π) dominated by its possibility measure is equal to {P : P (π α ) ≥ 1α, ∀α ∈ (0, 1]}, where π α = {x : π(x) ≥ α}, the α-cut of π, is a closed interval [a α , b α ]. [START_REF] Dubois | Possibility/probability transformations, triangular fuzzy sets, and probabilistic inequalities[END_REF][START_REF] Couso | The necessity of the strong α-cuts of a fuzzy set[END_REF] When π is an increasing function, it is generally the cumulative distribution of a unique probability measure such that P ((-∞, x)) = π(x). Otherwise, a possibility distribution π does not determine a unique probability distribution P , contrary to the situation with usual continuous cumulative distributions. Namely, there is not a unique probability measure such that α = 1 -P (π α ), ∀α ∈ (0, 1]. To show there are many probability measures such that α = 1 -P (π α ), first consider the upper and lower distributions functions F + and F -determined by π as follows:

F + (x) = ((-∞, x]), F -(x) = N((-∞, x]) (9) 
It should be clear that if P + and P -are the probability measures associated with cumulative distributions F + and F -, we do have that α = 1 -P + (π α ), and

α = 1 -P -(π α ), ∀α ∈ (0, 1]. Indeed, 1 -P + (π α ) = P + ((-∞, a α )) + P + ((b α , +∞)).
However, P + ((b α , +∞)) = 0 since the support of P + lies at the right-hand side of the core of π. Hence 1 -P + (π α ) = ((-∞, a α )) = α. A similar reasoning holds for P -, if we notice that P -((-∞, a α )) = 0. In fact, we have a more general result: PROPOSITION 2. Consider the cumulative distribution function F λ = λF + + (1λ)F -with λ ∈ [0, 1], and P λ the associated probability measure. Then ∀λ ∈ [0, 1], P λ (π α ) = 1α.

Proof. Note that

F λ (x) =    λπ(x) if x ≤ a 1 λ if x ∈ [a 1 , b 1 ] λ + (1 -λ)(1 -π(x)) if x ≥ b 1 Now: P λ (π α ) = F λ (b α ) -F λ (a α ) = λ + (1 -λ)(1 -α) -λα = 1 -α
We also have the following result, laying bare the connection between possibility distributions and the thin clouds of Neumaier, 75 already discussed by Destercke et al. [START_REF] Destercke | Unifying practical uncertainty representations, part II: clouds[END_REF] : PROPOSITION 3. The set of probability measures for which ∀α ∈ [0, 1], P (π α ) = 1α, where π is the membership function of a fuzzy interval, is P(π) ∩ P(1π).

Proof. We already know that P(π) = {P : ∀α ∈ [0, 1], P (π α ) ≥ 1 -α}. Now consider the other inequality P (π α ) ≤ 1α. Let π = 1π and note that for continuous membership functions we have that ( π ) α = π 1-α . Now, P (π α ) ≤ 1α is equivalent to P (π α ) ≥ α, i.e., P (( π ) 1-α ) ≥ α, or, equivalently, P (( π

) α ) ≥ 1 -α. So, {P : ∀α ∈ [0, 1], P (π α ) ≤ 1 -α} = P(1 -π).
(See Ref. 76 for examples of probability measures whose cumulative distributions lie between F -and F + but are not in the credal set P(π).) Providing a precise description of the content of P(π) is an interesting topic of research.

Possibility Distributions as Likelihood Functions

Another interpretation of numerical possibility distributions is the likelihood function in non-Bayesian statistics (Smets [START_REF] Smets | Possibilistic inference from statistical data[END_REF] , Dubois et al. [START_REF] Dubois | A semantics for possibility theory based on likelihoods[END_REF] ). In the framework of an estimation problem, the problem is to determine the value of some parameter θ ∈ that characterizes a probability distribution P (• | θ) over U . Suppose that our observations are summarized by the data set d. The function P ( d | θ), θ ∈ is not a probability distribution, but a likelihood function L(θ): A value a of θ is considered as being all the more plausible as P ( d | a) is higher, and the hypothesis θ = a will be rejected if P ( d | a) = 0 (or is below some relevance threshold). If we extend the likelihood of elementary hypotheses λ(θ) = cP ( d|θ) (it is defined up to a positive multiplicative constant c (Ref. 79)), viewed as a representation of uncertainty about θ, to disjunctions of hypotheses, the corresponding set-function should obey the laws of possibility measures [START_REF] Dubois | Possibility theory and statistical reasoning[END_REF][START_REF] Coletti | Coherent conditional probability as a measure of uncertainty of the relevant conditioning events[END_REF] in the absence of a probabilistic prior, namely, the following properties look reasonable for such a set-function :

r The properties of probability theory enforce ∀T ⊆ , (T ) ≤ max θ∈T λ(θ ); r A set-function representing likelihood should be monotonic with respect to inclusion: If

θ ∈ T , (T ) ≥ λ(θ );
r Keeping the same scale as probability functions, we assume ( ) = 1.

Then it is clear that λ(θ) = P ( d|θ) max θ∈ P ( d|θ) , and (T ) = max θ∈T λ(θ), i.e., the extended likelihood function is a possibility measure, and the coefficient c is then fixed. We recover Shafer's proposal of a consonant belief function derived from likelihood information, [START_REF] Shafer | A Mathematical theory of evidence[END_REF] 

Possibility Distributions Induced by Human-Originated Estimates

Another source of information for building possibility distributions consists in estimates supplied by human experts on the value of an unknown quantity X of interest, for instance, a failure rate.

Intervals with Confidence Levels

In the most elementary case, such information from a witness or an expert will most naturally take the form of an interval I = [a, b], since we cannot expect precise knowledge generally. A confidence level λ will be attached to this interval, either because the expert expresses some doubts about the estimate, or because the receiver does not fully trust the competence of the expert. This information can be modeled, following Shafer, 36 by a simple support belief function with mass m([a, b]) = λ, while the mass 1λ will be allocated to the widest possible range U for the unknown quantity X, expressing ignorance. Clearly, this procedure yields the hat-shaped possibility distribution π, presented in Equation 1, of the form π(u) = 1 if u ∈ [a, b], and 1λ otherwise. Now the receiver may sometimes find the interval [a, b] too wide to be informative, or, on the contrary, too narrow to be safe enough. It is natural to collect several such human-originated intervals of various sizes and levels of confidence. In contrast with intervals obtained from the imperfect observation of random experiments, intervals coming from one expert will generally be nested, if the latter displays self-consistency. Considering that there is full dependency between these information items (they come from the same person), the collection of nested intervals I 1 ⊆ . . . ⊆ I n with confidence levels λ i can be viewed as a kind of possibilistic knowledge base and correspond to the "double-staircase-shaped" possibility distribution of Equation 4π

(u) = n min i=1 max(I i (u), 1 -λ i ) = i:u∈I i m(I i )
where m(I i ) = λ iλ i-1 . Should the pieces of information (I i , λ i ) come from independent sources, one would be led to replace min by product in this expression (which would be in full agreement with Dempster's rule of combination). However, the intervals would have less chance to be nested.

One may be inspired by the way probability distributions are elicited from experts. In this case, information is requested in the form of quantiles of the distributions, typically, the interval [a, b] is such that P ((-∞, a]) = 0.05 and P ([b, +∞)) = 0.05. Clearly, the hat-shaped possibility distribution induced by the piece of information [a, b] with confidence 0.1 is a weak form of the information supplied by the two quantiles. This information is sometimes augmented by the 0.5 quantile (the median). In that case, a more faithful representation of this information is in the form of a belief function with disjoint focal sets.

Expert-Originated Statistical Parameters

Another kind of information experts may supply consists of parameters of an otherwise unknown distribution when the unknown quantity is a random variable. In this case, one may use probabilistic inequalities to derive a possibility distribution. For instance, if the expert has a clear idea of the mean x of the probability measure P , and of its standard deviation σ , the Chebychev inequality gives us a family of inequalities P (A λ ) ≤ min(1, 1 λ 2 ), where

A λ = [ x -λ • σ, x + λ • σ ]. This nested family corresponds to the possibility distribution π( x -λ • σ ) = π( x + λ • σ ) = min(1, 1 λ 2 )
. [START_REF] Dubois | Possibility/probability transformations, triangular fuzzy sets, and probabilistic inequalities[END_REF] It is consistent with any probability measure with mean x and standard deviation σ . The work of Mauris [START_REF] Mauris | Inferring a possibility distribution from very few measurements[END_REF] presented above allows to derive a nontrivial possibility distribution from the mere knowledge of the mode of a distribution. Note that the mode corresponds to the idea of most frequently observed values and sounds like a more likely information to be supplied by one expert than for instance the mean value, or even the median. The mode is generally not unique but corresponds to the idea of usual value, whereas the mean value may correspond to seldom observed values, e.g., located between modes. If the information about the mode is supplemented by a safe range for the unknown quantity, the triangular fuzzy number with such mode and support is a faithful representation of this information, [START_REF] Mauris | Inferring a possibility distribution from very few measurements[END_REF][START_REF] Dubois | Possibility/probability transformations, triangular fuzzy sets, and probabilistic inequalities[END_REF] and it a special case of Gauss inequality, [START_REF] Upton | Gauss inequality. In: A dictionary of statistics[END_REF] which dates back to 1823; see Baudrit and Dubois [START_REF] Baudrit | Practical representations of incomplete probabilistic knowledge[END_REF] for more details on possibility distributions induced by the knowledge of statistical parameters.

From Subjective Probabilities to Subjective Possibilities

One traditional approach to elicitate probability distributions is via fair betting rates. Namely, the subjective probability P (A) of a singular event A, as per an agent, is viewed as the fair price of a lottery ticket that provides one dollar to this agent if this event occurs. Fairness means that the buyer would accept to sell the lottery ticket at the same price. It is clear that for any k mutually exclusive and exhaustive events A 1 , . . . , A k , we must have that k i=1 P (A i ) = 1 by fear of losing money otherwise. If there is no reason to consider one event more likely than another then P (A i ) = 1/k for such all events.

The legitimacy of this representation of the epistemic state of an agent has been questioned. [START_REF] Walley | Statistical reasoning with imprecise probabilitiess[END_REF][START_REF] Shafer | A Mathematical theory of evidence[END_REF][START_REF] Dubois | Formal representations of uncertainty. In: Decision-making Process-Concepts and Methods[END_REF] In particular, it can be considered ambiguous. It presupposes a one-to-one function between epistemic states and probability distributions. However, the subjective distribution would be uniform in both cases where the agent is fully ignorant and when he perfectly knows that the stochastic process generating the events is pure randomness. So it is actually a many-to-one mapping, and, given a subjective probability assignment provided by an expert following the betting rate protocol, there is no clue about the precise epistemic state that led to those betting rates.

If we stick to the Bayesian methodology of eliciting fair betting rates from the agent, but we reject the assumption that degrees of beliefs coincide with these betting rates, it follows that the subjective probability distribution supplied by an agent is only a trace of this agent's beliefs. While, in the presence of partial information, beliefs can be more faithfully represented by a set of probabilities, the agent is forced to be additive by the postulates of exchangeable bets. In the transferable belief model, [START_REF] Smets | The transferable belief model[END_REF] the agent's epistemic state is supposed to be represented by a random epistemic set with mass m, and the subjective probability provided by the Bayesian protocol is called the pignistic probability [START_REF] Smets | Constructing the pignistic probability function in a context of uncertainty[END_REF] (also known as Shapley value in the game-theoretic literature 86 ):

pp(u i ) = j :u i ∈E j m(E j ) |E j | . ( 10 
)
This is an extension of the Laplace principle of insufficient reason, whereby uniform betting rates are assumed inside each focal set. Then, given a subjective probability, the problem consists in reconstructing the underlying belief function.

There are clearly several random sets {(E i , m(E i )) : i = 1 . . . n} corresponding to a given pignistic probability. It is in agreement with the minimal specificity principle to consider, by default, the least informative among those. It means adopting a pessimistic view on the agent's knowledge. This is in contrast with the case of statistical probability distributions where the available information consists of observed data. Here, the available information being provided by an agent, it is not assumed that the epistemic state is a unique probability distribution. The most elementary way of comparing belief functions in terms of informativeness consists in comparing contour functions in terms of the specificity ordering of possibility distributions. Dubois et al. [START_REF] Dubois | A definition of subjective possibility[END_REF] proved that the least informative random set with a prescribed pignistic probability p i = pp(u i ), i = 1, . . . , n is unique and consonant. It is based on a possibility distribution π sub , previously suggested in Ref. 88 with a totally different rationale:

π sub (u i ) = n j =1
min(p j , p i ). (11) More precisely, let F(p) be the set of random sets R with pignistic probability p. Let π R be the possibility distribution induced by R using the one-point coverage Equation (6). Define R 1 to be at least as informative a random set as R 2 whenever π R 1 ≤ π R 2 . Then, the least informative R in F(p) is precisely the consonant one such that π R = π sub . Note that, mathematically, Equation 10, when restricted to consonant masses of possibility measures, defines the converse function of Equation 11, i.e., they define a bijection between possibility and probability distributions. Namely, starting from π 1 ≥ . . . ≥ π n defining the possibility distribution π, computing its associated pignistic probability pp, we have that π sub (u i ) = n j =1 min(pp(u j ), pp(u i )) = π i . By construction, π sub is a subjective possibility distribution. Its merit is that it does not assume human knowledge is precise, like in the subjective probability school. The subjective possibility distribution (11) is less specific than the optimal transformation (7), as expected, i.e., π sub > π p , generally. The transformation (11) was first proposed in Ref. 88 for objective probability, interpreting the empirical necessity of an event as the sum of excesses of probability of realizations of this event with respect to the probability of the most likely realization of the opposite event.

CONCLUSION

One of the most promising seminal off-spring of fuzzy sets introduced in Zadeh's 1965 paper [START_REF] Zadeh | Fuzzy sets[END_REF] is possibility theory. Possibility theory bridges the gap between artificial intelligence and statistics. The above survey of methods for deriving possibility distributions from data or human knowledge suggests that this framework is one way to go in the problem of membership function assessment. Of course, not all fuzzy sets are possibility distributions, especially those representing utility functions, or those fuzzy sets with a conjunctive interpretation, 2 like a vector of ratings in multifactorial evaluations. However, possibility theory clarifies the role of fuzzy sets in uncertainty management and explains why probability degrees, viewed as frequency or betting rates, can be used to derive membership functions.

  The function π represents the state of knowledge of an agent (about the actual state of affairs) distinguishing what is plausible from what is less plausible, what is the normal course of things from what is not, what is surprising from what is expected. It represents a flexible restriction on what is the actual state with the following conventions: a r π (u) = 0 means that state u is rejected as impossible; r π (u) = 1 means that state u is totally possible.

  more recently studied by Aickin.[START_REF] Aickin | Connecting Dempster-Shafer belief functions with likelihood-based inference[END_REF] What is interesting to notice is that a conditional probability P (A | B) conveys two meanings. It generally represents frequentist information about the frequency of randomly generated objects having property A in class B; conversely, it represents epistemic (nonfrequentist) uncertainty about the class B for an object having property A. It is a bifaced notion with one side that is probabilistic and another side possibilistic. Clearly, acquiring likelihood functions is one way of constructing possibility distributions.

a The interpretation for 0 is similar to the case of probability, but Shackle's potential surprise scale is stated the other way around: 0 means possible, and the more impossible an event, the more surprising it is.