
HAL Id: hal-01538128
https://hal.science/hal-01538128v1

Submitted on 13 Jun 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Compilation of Linearizable Data Structures
Yannick Zakowski, David Cachera, Delphine Demange, David Pichardie

To cite this version:
Yannick Zakowski, David Cachera, Delphine Demange, David Pichardie. Compilation of Linearizable
Data Structures. [Research Report] ENS Rennes; IRISA, Inria Rennes; Université Rennes 1. 2017.
�hal-01538128�

https://hal.science/hal-01538128v1
https://hal.archives-ouvertes.fr

Compilation of Linearizable Data Structures

A Mechanised RG Logic for Semantic Refinement

Yannick Zakowski1, David Cachera1, Delphine Demange2?, and David Pichardie1

1 IRISA / ENS Rennes / Inria
2 IRISA / University of Rennes 1 / Inria

Abstract. Modern programming languages provide libraries for concur-
rent data structures. For better performance, these are implemented with
fine-grained concurrency. Still, such implementations are linearizable: the
programmer can safely assume that they behave atomically.
We formalize this insight in Coq as an end-to-end theorem establishing
the semantic preservation of a compiler translating abstract, atomic data
structures into their concrete, fine-grained concurrent implementation.
This embeds the notion of linearizable data structures in a formally
verified compiler.
At the crux of the proof lies a generic result establishing, once and for
all, a simulation relation, starting from a carefully crafted rely-guarantee
specification. Inspired by the work of Vafeiadis, implementations are
annotated with linearization points, which instrument programs semantics
to reflect the behavior of abstract data structures. We successfully applied
our generic theorem to concurrent buffers, a data structure used in the
implementation of concurrent garbage collectors.

Keywords: Verified Compilation, Linearizability, Rely Guarantee, Coq

1 Introduction

Modern programming languages like Java or C++ provide rich libraries with
efficient services and data structures, e.g. stacks, queues or sets. In a concurrent
setting, efficiency is often achieved by means of fine-grained concurrency, where
synchronization costs are reduced to a minimum. These algorithms are extremely
subtle, can contain data races, and are hard to implement correctly.

Experts who program such algorithms generally resort on well chosen data
structures that can be accessed using linearizable methods: even though the
implementation of these methods is by no means atomic, they appear to the
rest of the system to occur instantaneously. Linearizability thus considerably
simplifies the understanding: the programmer can safely reason at a higher-level,
and assume an abstract, atomic specification for these data structures.

Initially, linearizability was formally defined by Herlihy and Wing [7]. In
their seminal paper, they model systems as I/O automata producing event

? This work was supported by Agence Nationale de la Recherche, grant number ANR-
14-CE28-0004 DISCOVER.

2

traces (histories), and a system is linearizable whenever all valid histories can be
reordered into sequential histories.

In this work, we rather consider an alternative formulation, based on semantic
refinement. Indeed, we prove an end-to-end compiler correctness theorem between
a source language featuring atomic data-structures, and a target language where
data-structures are implemented with fine-grained concurrency. In a nutshell,
we want to establish that, for any source program p, obs(compile(p)) ⊆ obs(p),
where obs denotes the observable behaviors of a program. The reasons for this
choice are twofold. First, compiler verification has now become widespread, and
an accessible concept, even for non-expert. Second, this result serves as an
intermediate layer in the verification of complex language runtime artifacts, such
as garbage collectors or memory allocators: their correctness can be proved more
easily when reasoning at a higher level on the data structures they manipulate.

Proving the above theorem is usually done by showing that the target program
compile(p) simulates the source program p: for any execution of the target
program, we must exhibit a matching execution of the source program. While
the definition of the matching relation is relatively intuitive, proving that it is
indeed maintained along the execution can be cumbersome. Hence, we would like
to resort to popular program verification techniques.

In his PhD, Vafeiadis [16] proposed a promising approach that fits our needs.
It is based on Rely-Guarantee (RG) [9], a popular proof technique extending
Hoare logic to concurrency. In RG, interferences between threads are described
by binary relations on shared states. Each thread is proved correct under the
assumption that other threads obey a rely relation. The effect of the thread itself
must respect a guarantee relation, which must be accounted for in the relies of
the other threads. RG allows for thread-modular reasoning, and hence removes
the need to explicitly consider all interleavings in a global fashion. Now, RG
alone does not capture the notion of linearizable method. So Vafeiadis proposes
to extend RG to hybrid implementations, i.e. fine-grained concurrent methods
instrumented with linearization points that reflect the abstract, atomic behavior
of methods in a ghost part of the execution state. The approach is elegant, but is
not formally linked to the above standard notion of compiler correctness. Recently,
Liang et al. [12] improved on the work of Vafeiadis by expressing the soundness
of the methodology with a semantic refinement. Their work undoubtedly makes
progress in the right direction. Unfortunately, their proof is not machine-checked.

To sum up, we provide a machine-checked semantic foundation to the approach
outlined in Vafeiadis’ PhD, and embed it in a generic, end-to-end compiler
correctness theorem. More precisely, we make the following contributions:

– We integrate the notion of linearizable data structures in a formally verified
compiler. Correctness is phrased in terms of a simple semantic refinement
and avoids the difficult, though traditional, definition of linearizability.

– Our proof is generic in the abstract data structures under consideration, and
in the source program using them. The underlying simulation is proved once
and for all, provided that hybrid implementations meet a certain specification.

3

– We express this specification in terms of RG reasoning, so it integrates
smoothly with deductive proof systems.

– All theorems are proved correct in Coq, and available online [19].

2 Challenges and Overview

At the source level, our core concurrent language L] features abstract data
structures with a set I of atomic methods. We program a compiler compile〈I〉 ∈
L] → L, which replaces the abstract data structures with their fine-grained
concurrent implementation in L. Our goal is to prove that this compiler is correct,
in the sense that it preserves the observable behaviors of source programs, with
a theorem of the form ∀p ∈ L], obs(compile〈I〉(p)) ⊆ obs(p).

Our main result is generic in the abstract data structures used in L] and their
implementation I. Here, we illustrate on a simple example what are the intrinsic
challenges, and briefly overview our technical contribution.

def acquire () ::=
ok = 0
do {
ok=cas(this.flag ,0,1)

} while (ok == 0)
return

def release () ::=
this.flag = 0
return

Fig. 1: Spinlock in L

Running Example. Suppose L] offers abstract locks,
with methods I = {acquire, release}. At the level
of L], an abstract lock can be seen as a simple boolean
value, with the expected atomic semantics. At the
concrete level, L, acquire and release are imple-
mented with the code in Figure 1. They use a boolean
field flag, denoting the status of the lock. Releasing
the lock simply sets the field to 0, while acquiring
it requires a compare-and-swap instruction (cas) to
guarantee mutual exclusion. Note that both methods
could be executed concurrently by two client threads.

Semantic Refinement. Proving the above theorem is done with a simulation: for
any execution of the target program, we must exhibit a matching execution of
the source program. Between L and L], the simulation is particularly difficult to
establish. The figure below illustrates the problem. Execution steps labelled with
 are those where the effect of a method in I becomes visible to other threads,
and determines the behavior of other methods in I.

t tt t t t

t

L]

L]

✓

✓

t u t ut t u tu u t

u tL]

✓✓
u u u u u

u

L

L
L

At the intra-thread level (left), we need to relate several steps of a thread in the
target program to a single step in the source. The situation is even more difficult
at the inter-thread level (right): the matching scheduling of threads t and u at

4

the source level is not necessarily the same as the one at the target level. It all
depends on which thread will be the first to execute its step in the concrete
execution. The matching step for a given thread hence depends on the execution
of its environment.

Our main result removes this difficulty by establishing, under some hypotheses,
a generic simulation that entails semantic refinement. This is a meta-theorem
that we establish once and for all, independently of the abstract data-structures
available in L].

def acquire () ::=
ok = 0 ;
do {

atomic 〈
ok=cas(this.flag ,0,1)
Lin(ok==1)〉

} while (ok == 0)
return

def release () ::=
atomic 〈

this.flag = 0
Lin(true)〉

return

Fig. 2: Spinlock in L[

Rely-Guarantee for Atomicity. To prove the atom-
icity of linearizable methods, and establishing the
simulation, we introduce an intermediate, proof-
dedicated language L[, that comes with an RG
proof system L[provides explicit linearization
point annotations, Lin(b), to guide the proof.
Lin(b) annotations have an operational effect: they
trigger, whenever condition b is met, the execution
of the abstract method in a ghost part of the state.
They are what makes L[hybrid. Additionally, they
allow to track whether the thread has reached the
linearization point or not, thus helping the con-
struction of our generic simulation. The annotated
spinlock code is shown in Figure 2.

Hence, our compiler, defined as compile = clean ◦ concretize, first trans-
forms a source program p into concretize〈I〉(p)∈ L[where abstract methods
are implemented by hybrid, annotated code. Then, the second compilation phase
clean〈I〉 ∈ L[→ L takes care of removing Lin instructions in the target program.
We prove in Coq that the compiler is correct, providing that hybrid methods in
I are proved correct w.r.t. an RG specification, RGspec, that we carefully define,
in terms of L[semantics, to prove, via the aforementioned simulation:

RGspec (I) =⇒ ∀p ∈ L], obs(compile〈I〉(p)) ⊆ obs(p)

Cleaning the Proof Instrumentation. We also embed in judgment RGspec the
requirements sufficient to show that Lin instructions can be safely removed by the
clean phase. This ensures that, despite their operational nature, Lin instructions
are only passively intrumenting the program and its semantics.

Using our Result. The typical workflow for using our generic result is to (i) define
the abstract data structures specification, i.e. their type, and the atomic semantics
of methods in I, (ii) provide a concrete implementation, i.e. their representation
in the heap and a fine-grained hybrid implementation of methods, (iii) define a
coherence invariant between abstract and concrete data structures (iv) define
the rely and guarantee of each method, (v) prove the RG specification of each
method using a dedicated program logic3 and (vi) apply our meta-theorem to get

3 This contribution is out of the scope of this paper, though we use it in our development.

5

〈expr〉 e ::= n | null | x | e + e | - e | e mod n | . . .
〈bexpr〉 b ::= true | e == e | e <> e | b && b | b || b | !b | . . .
〈comm〉 c ::= • | assume(b) | print(e) | x = e | x = y.f | x.f = y | x = new(f,. . . ,f)

| return(e) | x = y.m(z) | c ; c | c + c | loop(c) | atomic 〈c〉
〈comm〉] c] ::= c | x =# y.m(z) 〈comm〉[c[::= c | Lin (b)

Fig. 3: Language Syntax

the global correctness result. We have successfully used this workflow to prove the
correctness of the above spinlock example, as well as concurrent buffers, a data
structure used in the implementation of a concurrent garbage collector [2,18].

3 The Languages and their Semantics

As explained in the previous section, this work considers three different languages
L], L[and L. To lighten the presentation, however, we will just assume one
language, L[, that includes all features, and keep in mind that source programs
in L] do not include any linearization instrumentation, while target programs in
L do not contain abstract method calls nor linearization instrumentation.
L] is a concurrent imperative language, with no dynamic creation of threads.

It is dynamically typed, and features a simplified object model: objects in the
heap are just records, and rather than virtual method calls, the current object –
the object whose method is being called – is an extra function argument, passed
in the reserved variable this. In the sequel, Var is a set of variables identifiers,
method names range over m ∈ Methods , and fields identifiers range over f∈ Fields .

Values and Abstract Data Structures We use the domain of values Val =
Z + Ref + Null , where Ref is a countable set of references. A central notion in
the language is the one of abstract data structure. They are specified with an
atomic specification. All our development and our proofs are parameterized by
an abstract data structure specification. It could be abstract locks as in Section 2,
bags, stacks, or buffers as detailed in Section 5.

Definition 1 (Abstract data structure specification). An abstract data
structure is specified by a tuple (A], I, J.K],P) where A] is a set of abstract
objects; I ⊆ Methods is a set of abstract methods identifiers, whose atomic
semantics is given by the partial map J.K] ∈ I → (A] × Val) ↪→ (A] × Val),
taking as inputs an object and value, and returning an updated object and a value;
P ⊆ Fields reserves private field identifiers for the concrete implementation of
abstract methods in I.

Abstract objects in A] are the possible values that an instance of a data
structure can take. We use private fields to express the property of interference
freedom from Herlihy and Shavit [6]. Namely, client code can only use public
fields in Fields \ P, and concrete implementations of abstract methods in I use
private fields only.

6

Acall
l(y) = r h](r) = a l(z) = v m’ ∈ I Jm’K](a, v) = (a′, v′)

(〈m, x=# y.m’(z), l, ls〉, (h], h))
τ−→ (〈m, •, l[x 7→ v′], ls〉, (h][r 7→ a′], h))

Ccall

l(y) = r l(z) = v l′ = [m’.this 7→ r, m’.arg 7→ v]
ls ′ = if m’ ∈ I then Before(r, v) else Nolin

(〈m, x=y.m’(z), l,Nolin〉, σ)
τ−→ (〈m’, m’.comm, l′, ls ′〉, σ)

Lin
JbKl = true h](r) = a m ∈ I JmK](a, v) = (a′, v′)

(〈m, Lin(b), l,Before(r, v)〉, (h], h))
τ−→ (〈m, •, l[x 7→ v′],After(r, v, v′)〉, (h][r 7→ a′], h))

Intl
γ(t) = ts (ts, σ)

o−→ (ts ′, σ′) ∀t′ 6= t, ¬inAtomic(γ(t′))

(γ, σ)
o−→ (γ[t 7→ ts ′], σ′)

Fig. 4: Semantics (excerpt)

Example 1 (Lock abstract data structure specification). In the spinlock example,
we define A] = {Locked, Unlocked}, I = {acquire, release}, and P = {flag}.
We also define JacquireK](Unlocked, v) = (Locked,Null) for any value v, and
JreleaseK](l, v) = (Unlocked,Null) for any input abstract lock l and value v.

Language Syntax The syntax of the language is detailed on Figure 3. In the se-
quel, we fix an abstract data structure specification (A], I, J.K],P). The language
provides constants (n, null, true), local variables (x,y,z . . .), and arithmetic and
boolean expressions (e, b). Regular commands (c) are standard, and common to
the three languages. They include • (skip), an assume(e) statement, a print(e)
instruction that emits the observable value of e, variable assignment of an ex-
pression, fields reads and updates, record allocation, non-deterministic choice (+),
loops, and atomic blocks atomic 〈c〉. Concrete method calls are written x=y.m(z).

Some instructions are specific to a language level. In L], abstract method
calls on a abstract object are written x =# y.m(z). For any m ∈ I, such a call in a
L] program is compiled to a concrete call x=y.m(z) in the L program. In L[, the
Lin(b) instruction is used to annotate a linearization point.

Finally, a client program is defined by a map from method names in Methods\I
to their command, and a map from thread identifiers to their initial command. In
the sequel, we will write m.comm for getting the command of method m, leaving
the underlying program implicit.

Semantics For the sake of conciseness, we present here a partial view of the
semantics, and refer the reader to the formal development [19] for full details4.

4 In our formal development, we use a continuation-based semantics to handle atomic
blocks and method calls. This has proven to lighten the mechanisation of many proofs,
by removing any recursivity from the small step semantics.

7

We assume a standard semantics J·K for expressions, omitted here. Abstract
objects are stored in an abstract heap, ranged over by h] ∈ H] = Ref → A]. At
the concrete level, abstract objects are implemented by regular, concrete objects,
living in a concrete heap h ∈ H = (Ref × Fields) → Val . A shared memory,
ranged over by σ ∈ H] ×H is made of an abstract heap, and a concrete heap.

An intra-thread state ts = 〈m, c, l, ls〉 includes a current method m, a current
command c, an environment l ∈ Lenv = Var → Val , and a linearization state
ls ∈ LinState, that we explain below. The intra-thread operational semantics,
partially shown in the top three rules of Fig. 4, is a transition relation on intra-
thread states. It is labelled with observable events (ranged over o, either a numeric
value emitted by a print, or the silent event τ).

An abstract method call x=# y.m(z) is executed according to the abstract
semantics JmK], and modifies only the abstract heap (rule Acall).

Concrete method calls (rule Ccall) behave as expected, but additionally
manage the local linearization state. This linearization state notably keeps track
of whether the execution of the current method is before its linearization point
(Before) or not (After). Initially, the linearization state is set to Nolin. When control
transfers to a method in I through a concrete method call, the linearization
state changes from Nolin to Before (see rule Ccall). It switches to After when
executing a Lin instruction (rule Lin), and then back to Nolin on method return.
Linearization states are used in the simulation proof, and instrument L[only.

At the L[level, the Lin instruction also accounts for the effect on the abstract
heap of concrete methods in I: it performs the abstract atomic call JmK] to the
enclosing method m, updating the local environment and abstract heap.

The interleaving of threads is handled in rule Intl, with relation (γ, σ)
o−→

(γ′, σ′) between global states (γ, σ), where γ maps thread identifiers to thread
local states and σ is a shared memory. Mutual exclusion between atomic blocks
is ensured by the ¬inAtomic side condition.

Finally, program behaviors are defined on top of the interleaving semantics:

Definition 2 (Program behavior). The observable behavior of a program p,
written obs(p, σi), is either a finite trace of values emitted by a finite sequence
of transitions or a infinite trace of values emitted by an infinite sequence of
transitions from an initial shared memory σi.

4 An RG Specification Entailing Semantic Refinement

In this section, we formalize our main result. We use the following notations and
vocabulary. For a set A, an A predicate P is a subset of A. An element a ∈ A
satisfies the A predicate P , written a |= P , when a ∈ P . For two sets A and B,
a relation R is an A× B predicate. We use infix notations for relations. State
predicates are (H]×H×Lenv×LinState) predicates, specifying shared memories
and intra-thread states. A shared memory interference is a binary relation on
H] ×H, and is used for relies and guarantees. We refer to both state predicates
and shared memory interferences as assertions.

8

The rely-guarantee reasoning is done at the intermediate level L[, on in-
strumented programs, more precisely on the hybrid code of abstract methods
implementations. Hence, assertions specify properties about the concrete and
abstract heaps simultaneously.

Our work derives a compiler correctness result from a generic rely-guarantee
specification. Of course, this cannot be achieved for an arbitrary RG specification,
so we require some constraints on assertions. We present these now.

Semantic RG judgment A hybrid method m must be specified with a semantic
RG judgment of the form R,G, I |=m {P} c {Q}, where P,Q, I are state predi-
cates, R and G are shared memory interferences, and c is the body of method m.
State predicate I is meant to specify the coherence invariant between abstract
objects and their representation in the concrete heap. It is proved to be invariant
separately (see Definition 6).

The RG judgment intuitively states that starting in a state satisfying P and
invariant I, interleaving c with an environment behaving as prescribed by R
(written →∗R), leads to a state satisfying Q. Additionally, this execution of c
must be fully reflected by guaranty G. This intuition, typical of RG reasoning, is
formalized by the first two conditions below.

Definition 3. Judgment R,G, I |=m {P} c {Q} holds whenever:

1. The post-condition is established from pre-condition and invariant:
(〈m, c, l, ls〉, σ)→∗R (〈m, •, l′, ls ′〉, σ′)
∧ (l, ls, σ) |= P ∩ I

™
⇒ (l′, ls ′, σ′) |= Q

2. Instructions comply with the guarantee:
(〈m, c, l, ls〉, σ)→∗R (〈m, c’, l′, ls ′〉, σ′)→ (〈m, c’’, l′′, ls ′′〉, σ′′)
∧ (l, ls, σ) |= P ∩ I

™
⇒ σ′ G σ′′

3. Linearization points are unique and non-blocking:
(〈m, c, l, ls〉, σ)→∗R (〈m, Lin(b), l′, ls ′〉, (h], h))
∧ (l, ls, σ) |= P ∩ I
∧ JbKl′ = true

⇒ ∃r, a, a
′, v, v′, h](r) = a
∧ JmK](a, v) = (a′, v′)
∧ ls ′ = Before(r, v)

The third condition in Definition 3 is novel, and more subtle. It captures a
necessary requirement to ensure that Lin instructions do not block programs
(JmK] is defined), and are unique (the linearization state is Before). This condition
is essential to ensure that we can clean up the Lin instrumentation of hybrid
programs, and that our semantic refinement is not vacuously true. We come back
to this third condition in Section 6.

Specifying hybrid methods We now explain the specific RG judgment we
require for hybrid methods.

9

Single Object Assertions. The above RG judgment involves state predicates and
shared memory interferences. In fact, we build them from elementary bricks,
object predicates and object interferences, that consider one object — one instance
of a data structure — at a time, pointed to by a given reference.

Definition 4 (Object predicate, object interference). Let r ∈ Ref . An
object predicate Pr is a predicate on pairs of an abstract object and a concrete
heap: Pr ⊆ A]×H. An object interference Rr is a relation on pairs of an abstract
object and a concrete heap: Rr ⊆ (A] ×H)× (A] ×H).

Example 2 (Lock – Object invariant, object guarantees, and object relies).
The coherence invariant specifies that an abstract Locked (resp. Unlocked)

lock is implemented in the concrete heap as an object whose field flag is set to
1 (resp. 0). It is formalized as the following object predicate:

ILockr , {(Locked, h) | h(r, flag) = 1} ∪ {(Unlocked, h) | h(r, flag) = 0}
Object guarantees for acquire and release express the effect of the methods

on the shared memory when called on a reference r. They are defined as:

Gr
rel , {((a, h1), (Unlocked, h2)) | h2 = h1[r, flag← 0]}

Gr
acq , {((Unlocked, h1), (Locked, h2)) | h1(r, flag) = 0 ∧ h2 = h1[r, flag← 1]}

In Gr
acq, the assignment to flag is performed only if the cas succeeds.

Finally, both acquire and release have the same object rely, when called on
a reference r – another thread could call both methods on the same reference. So
we define the following object interference: for m ∈ {rel, acq}, Rr

m , Gr
rel ∪Gr

acq.

Lifting Single Object Assertions. We now need to lift object predicates and object
interferences to state predicates and shared-memory interferences to enunciate
the RG specifications of hybrid implementations. The challenge here is twofold:
make the specification effort relatively light for the user, and, more importantly,
sufficiently control the specifications so that we can derive our generic result.

An object predicate Pr is lifted to a state predicate by further specifying that,
in the abstract heap, r points to an abstract object satisfying Pr:“Pr = {(h], h, l, ls) | ∃a, h](r) = a ∧ (a, h) |= Pr}

Similarly, for an object guarantee Gr, reference r should point to an abstract
object in the abstract heap. Moreover, its effect on this object should be reflected
in the resulting abstract heap. Formally:

Ĝr = {((h], h1), (h][r 7→ a2], h2)) | ∃a1, h](r) = a1 ∧ (a1, h1) Gr (a2, h2)}

Lifting relies is a bit more subtle. When executing an hybrid implementation
m, one should account for two kinds of concurrent effects: the client code, and the

10

rely of the method itself. To model the client code effect, we introduce a public
shared memory interference, written Rc , that models any possible effect on the
concrete heap, except modifying private fields in P:

Rc = {((h], h1), (h], h2)) | ∀r, f, f ∈ P ⇒ h1(r, f) = h2(r, f)}

As for the method’s rely Rr, we should consider that it could occur on any
abstract object present in the abstract heap. Hence, a lifted rely includes (i) the
client public interference, and (ii) the method’s rely Rr quantified over all r:

R̃ = Rc ∪ {((h]1, h1), (h]2, h2)) |∃r, a1, a2,
h]1(r) = a1 ∧ (a1, h1) Rr (a2, h2) ∧ h]2 = h]1[r 7→ a2]}

The RG Specification. Before we define the RG proof obligation asked of hybrid
method implementations, let us first recall the definition of stability.

Definition 5 (Stability). State predicate P is stable w.r.t. shared memory
interference R if ∀l, ls, σ1, σ2, (σ1, l, ls) |= P and (σ1R σ2) implies (σ2, l, ls) |= P .

Now, we fix an invariant Ir. For a method m ∈ I, let Gr
m and Rr

m be the
object guaranty and rely of m, as previously illustrated in Example 2. An RG
specification for m includes an RG semantic judgment, and stability obligations:

Definition 6 (RG method specification). The RG specification for method
m ∈ I includes the three following conditions:

– For all r ∈ Ref , R̃m, Ĝr
m, Îr |=m {Pr} m.comm {Qr}

– For all r ∈ Ref , predicate Îr is stable w.r.t. R̃m

– For all r, r′ ∈ Ref , predicate Îr is stable w.r.t. G̃r′
m

In the above judgment, we impose the pre- and post-condition Pr and Qr. Pr

expresses that (i) r points to an abstract object in the abstract heap, (ii) the
linearization state is set to Before and (iii) the reserved local variable this of
method m is set to r. Qr expresses that (i) the linearization state is set to After,
and (ii) the value virtually returned by the abstract method (when encountering
the Lin instruction) matches the value returned by the concrete code. Intuitively,

stability requirements ensure that Îr is indeed an invariant of the whole program.

Main theorem So far, we have expressed requirements on hybrid methods,
each taken in isolation. The last requirement we formulate is the consistency
between relies and guarantees of methods. For a method m, to ensure that Rm is
indeed a correct over-approximation of its environment, we ask that Rm includes
any guaranty Gm′ , where m′ is a method that may be called concurrently to m.
This requirement is formalized by the following definition.

Definition 7 (RG consistency). For all threads t, t′ such that t 6= t′, all
methods m, m’ ∈ I and all r ∈ Ref , is called(t, m)∧ is called(t′, m’)⇒ Gr

m’ ⊆ Rr
m

where is called(t, m) indicates that m appears syntactically in the code of t.

11

Relying on predicate is called allows for accounting for data structures used
according to an elementary protocol (such as single-pusher, single-reader buffers).

We finally package the formal requirements on hybrid implementations into
the RGspec judgment and use it to state our main result, establishing that the
target program semantically refines the source program.

Definition 8 (RGspec judgment). Let I = {m1 . . . , mn}. I satisfies RGspec,
written RGspec(I), if ∀ i ∈ [1, n], an RG method specification is provided for mi,
and RG consistency holds.

Theorem 1 (Compiler correctness). Let σi an initial shared memory sat-
isfying the invariant Ir for all r ∈ Ref allocated in it. If RGspec(I), then
∀p ∈ L], obs(compile〈I〉(p), σi) ⊆ obs(p, σi).

We insist that the client program p is arbitrary, modulo some basic syntactical
well-formedness conditions (e.g., no private field is accessed in the client code, or
methods in I do not modify public fields).

Theorem 1 is phrased and proved w.r.t. an RG semantic judgment. In our
formal development, we have developed a sound, syntax-directed proof system to
discharge the RG semantic judgment, and have successfully used this system to
prove the implementation of the spinlock, as well as the buffer data structure.

5 Case Study: Concurrent Buffers

This case study is taken from our larger verification project of a concurrent
mark-and-sweep garbage collector [18]. Describing the full algorithm is out of the
scope of this paper. Here, we only give an idea of why and how buffers are used.

In this algorithm, application threads, a.k.a mutators, are never blocked by the
collector thread. They must therefore participate to the marking of potentially live
objects. Buffers, so-called mark buffers in Domani et al.’s Java implementation [2],
keep track of references to objects that are the roots of the graph of objects that
may be live. Each thread, including the collector, owns a buffer. Only the owner
of the buffer can push on it, and only the collector can read and pop from buffers.

In this section, we present abstract buffers and their fine-grained implementa-
tion. They are fully verified in our formal development [19].

An abstract buffer is a queue of bounded size SIZE , that we model by a
list (of type list value). A buffer is pushed on one end of the list, and popped
off from its other end. Buffers provide four methods: isEmpty, top, pop, and
push. Due to space constraints, we focus here on methods pop and push. Their
respective abstract semantics are5: JpopK](x ::b, v) = (b,Null) and JpushK](b, v) =
(b++[v],Null) if |b|<SIZE − 1.

The fine-grained implementation we prove is similar to that of Domani et
al. [2], except that we use bounded-sized buffers. Buffers are objects with three
fields (see Figure 5). Field data contains a reference to an array of fixed size
SIZE , containing the elements of the buffer. Two other fields, next_read and

5 The input value argument v is irrelevant for pop.

12

next_read

next_write

data

nr
nw …

nr

nw

0
1

SIZE-1

2

next_read

next_write

data

nr
nw …

nr

nw
0
1

SIZE-1

2

Fig. 5: Concrete buffers layout (examples). Elements contained in the buffer are
colored in grey. Example on the right shows how the array is populated circularly.

next_write, indicate the bounds, within the array, of the effective content of
the buffer. Field next_read contains the array index from which to read, while
next_write contains the index of the first free slot in the array.

def push(v) ::=
nw=this.next_write
nr=this.next_read
d=this.data
d[nw]=v
nw=(nw+1) mod SIZE
assume (nr <>nw) //no overflow
atomic 〈

this.next_write=nw ; Lin(true)〉
return

def pop() ::=
nr=this.next_read
nw=this.next_write
assume (nr <>nw) //no empty buffer
nr=(nr+1) mod SIZE
atomic 〈

this.next_read=nr ; Lin(true)〉
return

Fig. 6: Buffers in L[.

Pushing a value on a buffer consists
in writing this value in the array, at po-
sition next_write, and then increment-
ing next_write. Conversely, popping a
value from a buffer is done by incrementing
next_read. In fact, the data array can be
populated in a modulo fashion (see right
example in Figure 5). The code for imple-
menting buffers is given in Figure 6, and
follows the above principles. Our core lan-
guage does not include proper arrays, but
we encode them with appropriate macros.
The code is blocking when trying to pop
on a empty buffer, or trying to push on a
full buffer, as is the case for the abstract
version. This is no limitation in practice:
the size of buffers is chosen at initialization time, and can be upgraded at will.

Using the approach illustrated on the lock in Section 4, we were able to
formally establish RGspec({isEmpty, top, pop, push}), and then apply our generic
refinement theorem, establishing the correctness of the compiler specialized to
buffers. We refer to our formal development [19] for further details on the proof.

6 Establishing the Generic Simulation from RGspec

Theorem 1 is proved by establishing, from the RGspec(I) hypothesis, a simulation
between the source program and its compilation. Here, we use the terminology
of backward simulation, as is standard in compiler verification [11].

Definition 9 (Backward simulation). A relation o between states of L and

L] is a backward simulation from L] to L if for any s1, s2, s
]
1, s

]
1 o s1 and

s1
o−→ s2, implies that there exists s]2 such that s]1

o−→∗ s]2, and s]2 os2.

13

Eliding customary constraints on initial and final states, such a simulation entails
preservation of observable behaviors (Theorem 3 in [11]). We establish two
backward simulations, from L to L[and from L[to L], which we compose.

Leveraging RGspec(I). The key point is to carry, within the simulation re-
lation, enough information to leverage RGspec(I). This is necessary for both
simulations, so we factorize the work by expressing a rich semantic invariant I
over the execution of the L[program. To simplify its definition and its proof, I
is built as a combination of thread-local invariants.

Thread local invariant. For a thread t, the invariant It includes three kinds of
information. First, it ensures various well-formedness properties of intra-thread
states. Second, it demands that Îr, the coherence invariant, holds for all r. The
third information is more subtle. When executing a hybrid method m called

on a reference r, to leverage its specification R̃m, Ĝr
m, Îr |=m {Pr} m.comm {Qr},

we keep track, in It, that the state is reachable from a state satisfying Îr and
Pr. Recall that Definition 3 uses the abstract semantics →

R̃m
. When defining

It, we generalize →
R̃m

into relation →Rt , where Rt ,
⋂
m∈is called(t) R̃m. Rely Rt

overapproximates interferences of threads concurrent to t, while being precise
enough to deal with any method m called by t, since Rt ⊆ R̃m.

Global invariant. We define I , {(γ, σ) | ∀t, (γ(t), σ) |= It}. To prove that I
holds on the interleaving semantics, we first prove that It are preserved by the
intra-thread steps. Besides, we prove their preservation by other threads’ steps:

Lemma 1. Let γ, σ and t 6= t′ be such that (γ(t), σ) |= It and (γ(t′), σ) |= It′ .
If (γ(t′), σ)

o−→ (ts′, σ′), then (γ(t), σ′) |= It.

Simulation relations. For both compilation phases, we build an intra-thread,
or local, simulation that we then lift at the inter-thread level. Both relations are
defined using the same pattern: in a pair of related states, the L[state satisfies
It. It remains to encode in the relation the matching between execution states.

Local high simulation. For the first compilation phase, a whole execution of an
hybrid method is simulated by a single abstract step, occurring at the linearization
point. We therefore build a 1-to-0/1 backward simulation.

Relation o][states that shared memories are equal on the domains of heaps
in L]. Local environments are trickier to relate. In client code, they simply are
equal. During a hybrid method call x=y.m(z), before the Lin point, the abstract
environment is equal to the environment of the L[caller. After the Lin point, the
only mismatch is on variable x, which has been updated in L], but not yet in L[.

Proving that o][is indeed a simulation follows the above three phases. Steps by
client code are matched 1-to-1 ; inside a hybrid method, steps match 1-to-0 until
the Lin point; the Lin step is matched 1-to-1 ; after the Lin point, steps match
1-to-0 until the return instruction. At method call return, we use RGspec(I) via
It, and in particular Qr, to prove that environments coincide on x again.

14

Local low simulation. When simulating from L to L[, Lin instructions have
been replaced by a •. It is therefore a 1-to-1 backward simulation. Recall that
L semantics contains no LinState nor abstract heap. Relation o[therefore only
states the equality of local environments and concrete heaps.

Proving this simulation is what makes the third item in Definition 3 necessary.
Indeed, we can match the • step in the L program only if the Lin instruction in
the L[program is non-blocking.

Global simulations. The independent proof of the invariant simplifies the lifting of
simulations. Indeed, except for the part about It, that is already proved invariant
by other threads’ steps, relations keep track of the same information for all
threads. Hence, their preservation by the interleaving essentially comes for free.

7 Related Work and Conclusion

Related Work The literature on linearizability verification is vast. Dongol et
al. [3] provide a comprehensive survey of techniques for verifying linearizability
w.r.t. the seminal definition of Herlihy [7]. Notably, a number of works use
concurrent program logics, most of them influenced by Jones’s rely-guarantee [9]
and O’Hearn’s Concurrent Separation Logic [14]. Both ideas have been combined
into logics like RGSep [17], SAGL [4], and more recently Iris [10]. Another logic
is worth mentioning, although not directly applied to linearizability: Sergey et
al. [15] provide a Coq framework to mechanically verify fine-grained concurrent
algorithms, based on the FCSL logic. FCSL’s soundness is formally proved in Coq
w.r.t. a denotational semantics, but the shallow embedding of programs in Coq
makes the approach hard to use in compiler verification. While the above logics
have highly expressive powers, they are not formally linked with observational
refinement, which is what we aim at. Filipović et al. [5] characterize linearizability
in terms of observable refinement, on top of a non-operational semantics. Here,
we want to express our main result in terms of observable refinement directly.

Our work is inspired by the technique outlined in [16]. Here, we use a simple
rely-guarantee formulation: we think it is a good balance between the logic
expressivity and its mechanization effort. Indeed, it is enough to prove the buffers
used in the concurrent garbage collector we verify in a related project [18].

The technique presented in [16] lacks a mechanized soundness proof that
would be suitable to a verified compiler infrastructure. Our work provides such
a foundation. Liang et al. [13] tackle a problem similar to ours. They define a
simulation parameterized by relies and guarantees, and compositionality rules,
to reason about program transformations. In [12], they combine it with the
technique in [16] to verify linearizability. This work is not mechanized.

The work of Derrick et al. [1], formalized in the KIV tool, is also closely
related. Like us, they express linearizability through thread-local proof obligations,
establishing systematically inter-thread simulations. Our work differs in the nature
of the proof obligations: we choose to express them in terms of rely-guarantee, so
we can discharge them using program logics.

15

Jagannathan et al. [8] propose an atomicity refinement methodology for
verified compilation. Their final theorem, mechanized in Coq, is expressed as a
behavior preservation, but the proof methodology is completely different from
the one presented here. They provide compositional rules to symbolically refine
high-level atomic blocks into fine-grained low-level code.

Conclusion This work embeds the notion of linearizable data structures in a
compiler formally verified in Coq. As such, this represents a mechanized soundness
foundation for Vafeiadis’ technique [16], phrased in terms of semantic refinement.
To achieve this result, we establish, starting from proof obligations expressed in
terms of rely-guarantee reasoning, a generic backward simulation theorem. We
use our meta-theorem to compile two fine-grained concurrent data structures: an
illustrative spinlock and a realistic implementation of concurrent buffers. The
development is 13kloc long, an effort of one man-year.

This work is part of a larger project aiming at verifying concurrent compilation
mechanisms such as garbage collectors or dynamic allocators, and plugging them
in a verified compiler. In an ongoing work, we are in particular connecting
the present work with a soundness proof of a concurrent garbage collector [18].
Indeed, the language we designed to implement the collector is enhanced with
constructs facilitating the programming and the proof of compiler services, such
as introspection on objects and high-level management of threads roots. Notably,
the collector and mutators share abstract concurrent buffers to keep track of
potentially live objects. The work presented here will allow to propagate the formal
soundness of the collector down to its low-level, fine-grained implementation.

References

1. J. Derrick, G. Schellhorn, and H. Wehrheim. Mechanically verified proof obligations
for linearizability. ACM Trans. Program. Lang. Syst., January 2011.

2. T. Domani, E. K. Kolodner, E. Lewis, E. E. Salant, K. Barabash, I. Lahan, Y. Lev-
anoni, E. Petrank, and I. Yanover. Implementing an on-the-fly garbage collector
for Java. In Proc. of ISMM’00, 2000.

3. B. Dongol and J. Derrick. Verifying linearisability: A comparative survey. ACM
Comput. Surv., September 2015.

4. X. Feng, R. Ferreira, and Z. Shao. On the relationship between concurrent separation
logic and assume-guarantee reasoning. In ESOP, 2007.

5. I. Filipović, P. O’Hearn, N. Rinetzky, and H. Yang. Abstraction for concurrent
objects. In ESOP, 2009.

6. M. Herlihy and N. Shavit. The Art of Multiprocessor Programming. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 2008.

7. M. P. Herlihy and J. M. Wing. Linearizability: A correctness condition for concurrent
objects. TOPLAS, 1990.

8. S. Jagannathan, V. Laporte, G. Petri, D. Pichardie, and J. Vitek. Atomicity
refinement for verified compilation. TOPLAS, 2014.

9. C. B. Jones. Specification and design of (parallel) programs. In IFIP, 1983.

16

10. R. Jung, D. Swasey, F. Sieczkowski, K. Svendsen, A. Turon, L. Birkedal, and
D. Dreyer. Iris: Monoids and invariants as an orthogonal basis for concurrent
reasoning. In POPL, 2015.

11. X. Leroy. A formally verified compiler back-end. JAR, 2009.
12. H. Liang and X. Feng. Modular verification of linearizability with non-fixed

linearization points. In PLDI, 2013.
13. H. Liang, X. Feng, and M. Fu. Rely-Guarantee-based simulation for compositional

verification of concurrent program transformations. TOPLAS, 2014.
14. P. W. O’Hearn. Resources, concurrency, and local reasoning. TCS, 2007.
15. I. Sergey, A. Nanevski, and A. Banerjee. Mechanized verification of fine-grained

concurrent programs. In PLDI, 2015.
16. V. Vafeiadis. Modular Fine-Grained Concurrency Verification. PhD thesis, Univer-

sity of Cambridge, July 2007.
17. V. Vafeiadis and M. J. Parkinson. A marriage of Rely/Guarantee and separation

logic. In CONCUR, 2007.
18. Y. Zakowski, D. Cachera, D. Demange, G. Petri, D. Pichardie, S. Jagannathan,

and J. Vitek. Verifying a concurrent garbage collector using a rely-guarantee
methodology. ITP, 2017. Accepted for publication.

19. Y. Zakowski, D. Cachera, D. Demange, and D. Pichardie. Companion website.
Available at http://www.irisa.fr/celtique/ext/simulin.

http://www.irisa.fr/celtique/ext/simulin

	Compilation of Linearizable Data Structures

