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6 Faculté de Médecine, InSciDenS, Vandoeuvre-lès-Nancy, France

* k.duarte@chru-nancy.fr

Abstract

The present study addresses the problem of sequential least square multidimensional
linear regression, particularly in the case of a data stream, using a stochastic
approximation process. To avoid the phenomenon of numerical explosion which can be
encountered and to reduce the computing time in order to take into account a
maximum of arriving data, we propose using a process with online standardized data
instead of raw data and the use of several observations per step or all observations until
the current step. Herein, we define and study the almost sure convergence of three
processes with online standardized data: a classical process with a variable step-size and
use of a varying number of observations per step, an averaged process with a constant
step-size and use of a varying number of observations per step, and a process with a
variable or constant step-size and use of all observations until the current step. Their
convergence is obtained under more general assumptions than classical ones. These
processes are compared to classical processes on 11 datasets for a fixed total number of
observations used and thereafter for a fixed processing time. Analyses indicate that the
third-defined process typically yields the best results.

1 Introduction

In the present analysis, A′ denotes the transposed matrix of A while the abbreviation
”a.s.” signifies almost surely.

Let R =
(
R1, ..., Rp

)
and S =

(
S1, ..., Sq

)
be random vectors in Rp and Rq

respectively. Considering the least square multidimensional linear regression of S with
respect to R: the (p, q) matrix θ and the (q, 1) matrix η are estimated such that

E
[
‖S − θ′R− η‖2

]
is minimal.

Denote the covariance matrices

B = Covar [R] = E
[
(R− E [R]) (R− E [R])

′]
,

F = Covar [R,S] = E
[
(R− E [R]) (S − E [S])

′]
.
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If we assume B is positive definite, i.e. there is no affine relation between the
components of R, then

θ = B−1F, η = E [S]− θ′E [R] .

Note that, R1 denoting the random vector in Rp+1 such that R′1 =
(
R′ 1

)
, θ1 the

(p+ 1, q) matrix such that θ′1 =
(
θ′ η

)
, B1 = E [R1R

′
1] and F1 = E [R1S

′] , we obtain

θ1 = B−11 F1.
In order to estimate θ (or θ1), a stochastic approximation process (Xn) in Rp×q (or

R(p+1)×q) is recursively defined such that

Xn+1 = Xn − an (BnXn − Fn) ,

where (an) is a sequence of positive real numbers, eventually constant, called step-sizes
(or gains). Matrices Bn and Fn have the same dimensions as B and F , respectively.
The convergence of (Xn) towards θ is studied under appropriate definitions and
assumptions on Bn and Fn.

Suppose that ((R1n, Sn) , n ≥ 1) is an i.i.d. sample of (R1, S). In the case where
q = 1, Bn = R1nR

′
1n and Fn = R1nS

′
n, several studies have been devoted to this

stochastic gradient process (see for example Monnez [1], Ljung [2] and references
hereafter). In order to accelerate general stochastic approximation procedures,
Polyak [3] and Polyak and Juditsky [4] introduced the averaging technique. In the case
of linear regression, Györfi and Walk [5] studied an averaged stochastic approximation
process with a constant step-size. With the same type of process, Bach and Moulines [6]
proved that the optimal convergence rate is achieved without strong convexity
assumption on the loss function.

However, this type of process may be subject to the risk of numerical explosion when
components of R or S exhibit great variances and may have very high values. For
datasets used as test sets by Bach and Moulines [6], all sample points whose norm of R
is fivefold greater than the average norm are removed. Moreover, generally only one
observation of (R,S) is introduced at each step of the process. This may be not
convenient for a large amount of data generated by a data stream for example.

Two modifications of this type of process are thus proposed in this article.
The first change in order to avoid numerical explosion is the use of standardized, i.e.

of zero mean and unit variance, components of R and S. In fact, the expectation and
the variance of the components are usually unknown and will be estimated online.

The parameter θ can be computed from the standardized components as follows. Let
σj the standard deviation of Rj for j = 1, ..., p and σk1 the standard deviation of Sk for
k = 1, ..., q. Define the following matrices

Γ =


1
σ1 · · · 0
...

. . .
...

0 · · · 1
σp

 ,Γ1 =


1
σ1
1
· · · 0

...
. . .

...
0 · · · 1

σq
1

 .

Let Sc = Γ1 (S − E [S]) and Rc = Γ (R− E [R]). The least square linear regression of
Sc with respect to Rc is achieved by estimating the (p, q) matrix θc such that

E

[∥∥∥Sc − θ′cRc∥∥∥2] is minimal. Then θc = Γ−1
(
B−1F

)
Γ1 ⇔ θ = B−1F = Γθc

(
Γ1
)−1

.

The second change is to use, at each step of the process, several observations of
(R,S) or an estimation of B and F computed recursively from all observations until the
current step without storing them.

More precisely, the convergence of three processes with online standardized data is
studied in sections 2, 3, 4 respectively.
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First, in section 2, a process with a variable step-size an and use of several online
standardized observations at each step is studied; note that the number of observations
at each step may vary with n.

Secondly, in section 3, an averaged process with a constant step-size and use of a
varying number of online standardized observations at each step is studied.

Thirdly, in section 4, a process with a constant or variable step-size and use of all
online standardized observations until the current step to estimate B and F is studied.

These three processes are tested on several datasets when q = 1, S being a
continuous or binary variable, and compared to existing processes in section 5. Note
that when S is a binary variable, linear regression is equivalent to a linear discriminant
analysis. It appears that the third-defined process most often yields the best results for
the same number of observations used or for the same duration of computing time used.

These processes belong to the family of stochastic gradient processes and are adapted to
data streams. Batch gradient and stochastic gradient methods are presented and
compared in [7] and reviewed in [8], including noise reduction methods, like dynamic
sample sizes methods, stochastic variance reduced gradient (also studied in [9]),
second-order methods, ADAGRAD [10] and other methods. This work makes the
following contributions to the variance reduction methods:

� In [9], the authors proposed a modification of the classical stochastic gradient
algorithm to reduce directly the gradient of the function to be optimized in order
to obtain a faster convergence. It is proposed in this article to reduce this gradient
by an online standardization of the data.

� Gradient clipping [11] is another method to avoid a numerical explosion. The idea
is to limit the norm of the gradient to a maximum number called threshold. This
number must be chosen, a bad choice of threshold can affect the computing speed.
Moreover it is then necessary to compare the norm of the gradient to this
threshold at each step. In our approach the limitation of the gradient is implicitly
obtained by online standardization of the data.

� If the expectation and the variance of the components of R and S were known,
standardization of these variables could be made directly and convergence of the
processes obtained using existing theorems. But these moments are unknown in
the case of a data stream and are estimated online in this study. Thus the
assumptions of the theorems of almost sure (a.s.) convergence of the processes
studied in sections 2 and 3 and the corresponding proofs are more general than
the classical ones in the linear regression case [1–5].

� The process defined in section 4 is not a classical batch method. Indeed in this
type of method (gradient descent), the whole set of data is known a priori and is
used at each step of the process. In the present study, new data are supposed to
arrive at each step, as in a data stream, and are added to the preceding set of
data, thus reducing by averaging the variance. This process can be considered as a
dynamic batch method.

� A suitable choice of step-size is often crucial for obtaining good performance of a
stochastic gradient process. If the step-size is too small, the convergence will be
slower. Conversely, if the step-size is too large, a numerical explosion may occur
during the first iterations. Following [6], a very simple choice of the step-size is
proposed for the methods with a constant step-size.

� Another objective is to reduce computing time in order to take into account a
maximum of data in the case of a data stream. It appears in the experiments that
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the use of all observations until the current step without storing them, several
observations being introduced at each step, increases at best in general the
convergence speed of the process. Moreover this can reduce the influence of
outliers.

As a whole the major contributions of this work are to reduce gradient variance by
online standardization of the data or use of a ”dynamic” batch process, to avoid
numerical explosions, to reduce computing time and consequently to better adapt the
stochastic approximation processes used to the case of a data stream.

2 Convergence of a process with a variable step-size

Let (Bn, n ≥ 1) and (Fn, n ≥ 1) be two sequences of random matrices in Rp×p and
Rp×q respectively. In this section, the convergence of the process (Xn, n ≥ 1) in Rp×q
recursively defined by

Xn+1 = Xn − an (BnXn − Fn)

and its application to sequential linear regression are studied.

2.1 Theorem

Let X1 be a random variable in Rp×q independent from the sequence of random
variables ((Bn, Fn) , n ≥ 1) in Rp×p × Rp×q.

Denote Tn the σ-field generated by X1 and (B1, F1) , ..., (Bn−1, Fn−1).
X1, X2, ..., Xn are Tn-measurable.

Let (an) be a sequence of positive numbers.
Make the following assumptions:
(H1a) There exists a positive definite symmetrical matrix B such that a.s.

1)

∞∑
n=1

an ‖E [Bn|Tn]−B‖ <∞

2)

∞∑
n=1

a2nE
[
‖Bn −B‖2 |Tn

]
<∞.

(H2a) There exists a matrix F such that a.s.

1)

∞∑
n=1

an ‖E [Fn|Tn]− F‖ <∞

2)

∞∑
n=1

a2nE
[
‖Fn − F‖2 |Tn

]
<∞.

(H3a)

∞∑
n=1

an =∞,
∞∑
n=1

a2n <∞.

Theorem 1 Suppose H1a, H2a and H3a hold. Then Xn converges to θ = B−1F a.s.

State the Robbins-Siegmund lemma [12] used in the proof.

Lemma 2 Let (Ω, A, P ) be a probability space and (Tn) a non-decreasing sequence of
sub-σ-fields of A. Suppose for all n, zn, αn, βn and γn are four integrable non-negative
Tn-measurable random variables defined on (Ω, A, P ) such that:

E [zn+1|Tn] ≤ zn (1 + αn) + βn − γn a.s.
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Then, in the set

{ ∞∑
n=1

αn <∞,
∞∑
n=1

βn <∞

}
, (zn) converges to a finite random

variable and

∞∑
n=1

γn <∞ a.s.

Proof of Theorem 1. The Frobenius norm ‖A‖ for a matrix A is used. Recall that, if
‖A‖2 denotes the spectral norm of A, ‖AB‖ ≤ ‖A‖2 ‖B‖.

Xn+1 − θ = Xn − θ − an (BnXn − Fn)

= (I − anB) (Xn − θ)− an ((Bn −B)Xn − (Fn − F ))

Denote
Zn = (Bn −B)Xn − (Fn − F ) = (Bn −B) (Xn − θ) + (Bn −B) θ − (Fn − F ) and
X1
n = Xn − θ. Then:

X1
n+1 = (I − anB)X1

n − anZn∥∥X1
n+1

∥∥2 =
∥∥(I − anB)X1

n

∥∥2 − 2an〈(I − anB)X1
n, Zn〉+ a2n ‖Zn‖

2
.

Denote λ the smallest eigenvalue of B. As an −→ 0, we have for n sufficiently large

‖I − anB‖2 = 1− anλ < 1.

Then, taking the conditional expectation with respect to Tn yields almost surely:

E
[∥∥X1

n+1

∥∥2 |Tn] ≤ (1− anλ)
2 ∥∥X1

n

∥∥2 + 2an|〈(I − anB)X1
n, E [Zn|Tn]〉|+

a2nE
[
‖Zn‖2 |Tn

]
,

E [Zn|Tn] = (E [Bn|Tn]−B)X1
n + (E [Bn|Tn]−B) θ − (E [Fn|Tn]− F ) .

Denoting

βn = ‖E [Bn|Tn]−B‖ , δn = ‖E [Fn|Tn]− F‖ ,

bn = E
[
‖Bn −B‖2 |Tn

]
, dn = E

[
‖Fn − F‖2 |Tn

]
,

we obtain, as
∥∥X1

n

∥∥ ≤ 1 +
∥∥X1

n

∥∥2 :∣∣〈(I − anB)X1
n, E [Zn|Tn]〉

∣∣ ≤ ∥∥X1
n

∥∥ ‖E [Zn|Tn]‖

≤
∥∥X1

n

∥∥2 (βn (1 + ‖θ‖) + δn) + βn ‖θ‖+ δn,

E
[
‖Zn‖2 |Tn

]
≤ 3bn

∥∥X1
n

∥∥2 + 3bn ‖θ‖2 + 3dn,

E
[∥∥X1

n+1

∥∥2 |Tn] ≤
(
1 + a2nλ

2 + 2 (1 + ‖θ‖) anβn + 2anδn + 3a2nbn
) ∥∥X1

n

∥∥2 +

2 ‖θ‖ anβn + 2anδn + 3 ‖θ‖2 a2nbn + 3a2ndn − 2anλ
∥∥X1

n

∥∥2 .
Applying Robbins-Siegmund lemma under assumptions H1a, H2a and H3a implies that
there exists a non-negative random variable T such that a.s.

∥∥X1
n

∥∥ −→ T,

∞∑
n=1

an
∥∥X1

n

∥∥2 <∞.
As

∞∑
n=1

an =∞, T = 0 a.s. �
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A particular case with the following assumptions is now studied.
(H1a’) There exist a positive definite symmetrical matrix B and a positive real

number b such that a.s.
1) for all n, E [Bn|Tn] = B

2) sup
n
E
[
‖Bn −B‖2 |Tn

]
< b.

(H2a’) There exist a matrix F and a positive real number d such that a.s.
1) for all n, E [Fn|Tn] = F

2) sup
n
E
[
‖Fn − F‖2 |Tn

]
< d.

(H3a’) Denoting λ the smallest eigenvalue of B,(
an =

a

nα
, a > 0,

1

2
< α < 1

)
or

(
an =

a

n
, a >

1

2λ

)
.

Theorem 3 Suppose H1a’, H2a’ and H3a’ hold. Then Xn converges to θ almost surely

and in quadratic mean. Moreover lim 1
an
E
[
‖Xn − θ‖2

]
<∞.

Proof of Theorem 3. In the proof of theorem 1, take βn = 0, δn = 0, bn < b, dn < d ;
then a.s.:

E
[∥∥X1

n+1

∥∥2 |Tn] ≤ (1 + λ2a2n + 3ba2n
) ∥∥X1

n

∥∥2 + 3
(
b ‖θ‖2 + d

)
a2n − 2anλ

∥∥X1
n

∥∥2 .
Taking the mathematical expectation yields:

E
[∥∥X1

n+1

∥∥2] ≤ (1 +
(
λ2 + 3b

)
a2n
)
E
[∥∥X1

n

∥∥2]+ 3
(
b ‖θ‖2 + d

)
a2n − 2anλE

[∥∥X1
n

∥∥2] .
By Robbins-Siegmund lemma:

∃t ≥ 0 : E
[∥∥X1

n

∥∥2] −→ t;

∞∑
n=1

anE
[∥∥X1

n

∥∥2] <∞.
As

∞∑
n=1

an =∞, t = 0. Therefore, there exist N ∈ N and f > 0 such that for n > N :

E
[∥∥X1

n+1

∥∥2] ≤ (1− 2anλ)E
[∥∥X1

n

∥∥2]+ fa2n.

Applying a lemma of Schmetterer [13] for an =
a

nα
with

1

2
< α < 1 yields:

limnαE
[∥∥X1

n

∥∥2] <∞.
Applying a lemma of Venter [14] for an =

a

n
with a >

1

2λ
yields:

limnE
[∥∥X1

n

∥∥2] <∞ �

2.2 Application to linear regression with online standardized
data

Let (R1, S1) , ..., (Rn, Sn) , ... be an i.i.d. sample of a random vector (R,S) in Rp × Rq.
Let Γ (respectively Γ1) be the diagonal matrix of order p (respectively q) of the inverses
of the standard deviations of the components of R (respectively S).
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Define the correlation matrices

B = ΓE
[
(R− E [R]) (R− E [R])

′]
Γ,

F = ΓE
[
(R− E [R]) (S − E [S])

′]
Γ1.

Suppose that B−1 exists. Let θ = B−1F .
Denote R̄n (respectively S̄n) the mean of the n-sample (R1, R2, ..., Rn) of R

(respectively (S1, S2, ..., Sn) of S).

Denote
(
V jn
)2

the variance of the n-sample
(
Rj1, R

j
2, ..., R

j
n

)
of the jth component

Rj of R, and
(
V 1k
n

)2
the variance of the n-sample

(
Sk1 , S

k
2 , ..., S

k
n

)
of the kth component

Sk of S.
Denote Γn (respectively Γ1

n) the diagonal matrix of order p (respectively q) whose

element (j, j) (respectively (k, k)) is the inverse of

√
n

n− 1
V jn (respectively√

n

n− 1
V 1k
n ).

Let (mn, n ≥ 1) be a sequence of integers. Denote Mn =

n∑
k=1

mk for n ≥ 1, M0 = 0

and In = {Mn−1 + 1, ...,Mn}.
Define

Bn = ΓMn−1

1
mn

∑
j∈In

(
Rj − R̄Mn−1

) (
Rj − R̄Mn−1

)′
ΓMn−1 ,

Fn = ΓMn−1

1
mn

∑
j∈In

(
Rj − R̄Mn−1

) (
Sj − S̄Mn−1

)′
Γ1
Mn−1

.

Define recursively the process (Xn, n ≥ 1) in Rp×q by

Xn+1 = Xn − an (BnXn − Fn) .

Corollary 4 Suppose there is no affine relation between the components of R and the
moments of order 4 of (R,S) exist. Suppose moreover that assumption H3a” holds:

(H3a”) an > 0,

∞∑
n=1

an√
n
<∞,

∞∑
n=1

a2n <∞.

Then Xn converges to θ a.s.

This process was tested on several datasets and some results are given in section 5
(process S11 for mn = 1 and S12 for mn = 10).

The following lemma is first proved.

Lemma 5 Suppose the moments of order 4 of R exist and an > 0,

∞∑
n=1

an√
n
<∞. Then

∞∑
n=1

an
∥∥R̄Mn−1 − E [R]

∥∥ <∞ and

∞∑
n=1

an
∥∥ΓMn−1 − Γ

∥∥ <∞ a.s.

Proof of Lemma 5. The usual Euclidean norm for vectors and the spectral norm for
matrices are used in the proof.

Step 1:

Denote V ar [R] = E
[
‖R− E [R]‖2

]
=

p∑
j=1

V ar
[
Rj
]
.

E
[∥∥R̄Mn−1 − E [R]

∥∥2] =

p∑
j=1

V ar
[
R̄jMn−1

]
=

p∑
j=1

V ar
[
Rj
]

Mn−1
≤ V ar [R]

n− 1
.
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Then:
∞∑
n=1

anE
[∥∥R̄Mn−1 − E [R]

∥∥] ≤ √
V ar [R]

∞∑
n=1

an√
n− 1

<∞ by H3a”.

It follows that

∞∑
n=1

an
∥∥R̄Mn−1 − E [R]

∥∥ <∞ a.s.

Likewise

∞∑
n=1

an
∥∥S̄Mn−1 − E [S]

∥∥ <∞ a.s.

Step 2:

∥∥ΓMn−1 − Γ
∥∥ = max

j=1,...,p

∣∣∣∣∣∣ 1√
Mn−1

Mn−1−1V
j
Mn−1

− 1√
V ar [Rj ]

∣∣∣∣∣∣
≤

p∑
j=1

∣∣∣√ Mn−1

Mn−1−1V
j
Mn−1

−
√
V ar [Rj ]

∣∣∣√
Mn−1

Mn−1−1V
j
Mn−1

√
V ar [Rj ]

=

p∑
j=1

∣∣∣∣ Mn−1

Mn−1−1

(
V jMn−1

)2
− V ar

[
Rj
]∣∣∣∣√

Mn−1

Mn−1−1V
j
Mn−1

√
V ar [Rj ]

(√
Mn−1

Mn−1−1V
j
Mn−1

+
√
V ar [Rj ]

) .
Denote µj4 the centered moment of order 4 of Rj . We have :

E

[∣∣∣∣ Mn−1

Mn−1 − 1

(
V jMn−1

)2
− V ar

[
Rj
]∣∣∣∣] ≤

√
V ar

[
Mn−1

Mn−1 − 1

(
V jMn−1

)2]

= O

√µj4 − (V ar [Rj ])
2

Mn−1

 .

Then by H3a”, as Mn−1 ≥ n− 1:

∞∑
n=1

an

p∑
j=1

E

[∣∣∣∣ Mn−1

Mn−1 − 1

(
V jMn−1

)2
− V ar

[
Rj
]∣∣∣∣] <∞

⇒
∞∑
n=1

an

p∑
j=1

∣∣∣∣ Mn−1

Mn−1 − 1

(
V jMn−1

)2
− V ar[Rj ]

∣∣∣∣ <∞ a.s.

As
(
V jMn−1

)2
−→ V ar

[
Rj
]

a.s., j = 1, ..., p, this implies :

∞∑
n=1

an
∥∥ΓMn−1

− Γ
∥∥ <∞ a.s.�

Proof of Corollary 4.
Step 1: prove that assumption H1a1 of theorem 1 is verified.

Denote Rc = R− E [R], Rcj = Rj − E [R], R̄cj = R̄j − E [R].

Bn = ΓMn−1

1

mn

∑
j∈In

(
Rcj − R̄cMn−1

)(
Rcj − R̄cMn−1

)′
ΓMn−1

= ΓMn−1

1

mn

∑
j∈In

(
RcjR

c
j
′ − R̄cMn−1

Rcj
′ −Rcj

(
R̄cMn−1

)′
+ R̄cMn−1

(
R̄cMn−1

)′)
ΓMn−1

.

B = ΓE
[
RcRc′

]
Γ.

8/27



As ΓMn−1
and R̄Mn−1

are Tn-measurable and Rcj , j ∈ In, is independent of Tn, with

E
[
Rcj
]

= 0:

E [Bn|Tn]−B = ΓMn−1

(
E
[
RcRc′

]
+ R̄cMn−1

(
R̄cMn−1

)′)
ΓMn−1

− ΓE
[
RcRc′

]
Γ

=
(
ΓMn−1 − Γ

)
E
[
RcRc′

]
ΓMn−1 + ΓE

[
RcRc′

] (
ΓMn−1 − Γ

)
+ΓMn−1

R̄cMn−1

(
R̄cMn−1

)′
ΓMn−1

a.s.

As ΓMn−1
and R̄cMn−1

converge respectively to Γ and 0 a.s. and by lemma 5,
∞∑
n=1

an
∥∥ΓMn−1

− Γ
∥∥ <∞ and

∞∑
n=1

an

∥∥∥R̄cMn−1

∥∥∥ <∞ a.s., it follows that

∞∑
n=1

an ‖E [Bn|Tn]−B‖ <∞ a.s.

Step 2: prove that assumption H1a2 of theorem 1 is verified.

‖Bn −B‖2 ≤ 2

∥∥∥∥∥∥ΓMn−1

1

mn

∑
j∈In

(
Rcj − R̄cMn−1

)(
Rcj − R̄cMn−1

)′
ΓMn−1

∥∥∥∥∥∥
2

+2
∥∥ΓE

[
RcRc′

]
Γ
∥∥2

≤ 2
∥∥ΓMn−1

∥∥4 1

mn

∑
j∈In

∥∥∥Rcj − R̄cMn−1

∥∥∥4 + 2
∥∥ΓE

[
RcRc′

]
Γ
∥∥2

≤ 2
∥∥ΓMn−1

∥∥4 1

mn

∑
j∈In

23
(∥∥Rcj∥∥4 +

∥∥∥R̄cMn−1

∥∥∥4)+ 2
∥∥ΓE

[
RcRc′

]
Γ
∥∥2 .

E
[
‖Bn −B‖2 |Tn

]
≤ 24

∥∥ΓMn−1

∥∥4(E [‖Rc‖4]+
∥∥∥R̄cMn−1

∥∥∥4)+ 2
∥∥ΓE

[
RcRc′

]
Γ
∥∥2 a.s.

As ΓMn−1 and R̄cMn−1
converge respectively to Γ and 0 a.s., and

∞∑
n=1

a2n <∞, it follows

that

∞∑
n=1

a2nE
[
‖Bn −B‖2 |Tn

]
<∞ a.s.

Step 3: the proofs of the verification of assumptions H2a1 and H2a2 of theorem 1 are
similar to the previous ones, Bn and B being respectively replaced by

Fn = ΓMn−1

1

mn

∑
j∈In

(
Rcj − R̄cMn−1

)(
Scj − S̄cMn−1

)′
Γ1
Mn−1

,

F = ΓE
[
RcSc′

]
Γ1�

3 Convergence of an averaged process with a
constant step-size

In this section, the process (Xn, n ≥ 1) with a constant step-size a and the averaged
process (Yn, n ≥ 1) in Rp×q are recursively defined by

Xn+1 = Xn − a (BnXn − Fn)

Yn+1 =
1

n+ 1

n+1∑
j=1

Xj = Yn −
1

n+ 1
(Yn −Xn+1) .
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The a.s. convergence of (Yn, n ≥ 1) and its application to sequential linear regression
are studied.

3.1 Lemma

Lemma 6 Let three real sequences (un), (vn) and (an), with un > 0 and an > 0 for all
n, and a real positive number λ such that, for n ≥ 1,

un+1 ≤ (1− anλ)un + anvn.

Suppose:
1) vn −→ 0

2)

(
an = a <

1

λ

)
or

(
an −→ 0,

∞∑
n=1

an =∞

)
.

Under assumptions 1 and 2, un −→ 0.

Proof of Lemma 6. In the case an depending on n, as an −→ 0, we can suppose without
loss of generality that 1− anλ > 0 for n ≥ 1. We have:

un+1 ≤
n∏
i=1

(1− aiλ)u1 +

n∑
i=1

ai

n∏
l=i+1

(1− alλ) vi, with

n∏
n+1

= 1.

Now, for n1 ≤ n2 ≤ n and 0 < ci < 1 with ci = aiλ for all i, we have:

n2∑
i=n1

ci

n∏
l=i+1

(1− cl) =

n2∑
i=n1

(1− (1− ci))
n∏

l=i+1

(1− cl)

=

n2∑
i=n1

(
n∏

l=i+1

(1− cl)−
n∏
l=i

(1− cl)

)

=

n∏
l=n2+1

(1− cl)−
n∏

l=n1

(1− cl) ≤
n∏

l=n2+1

(1− cl) ≤ 1.

Let ε > 0. There exists N such that for i > N , |vi| <
ε

3
λ. Then for n ≥ N , applying

the previous inequality with ci = aiλ, n1 = 1, n2 = N , yields:

un+1 ≤
n∏
i=1

(1− aiλ)u1 +

N∑
i=1

aiλ

n∏
l=i+1

(1− alλ)
|vi|
λ

+
ε

3

n∑
i=N+1

aiλ

n∏
l=i+1

(1− alλ)

≤
n∏
i=1

(1− aiλ)u1 +
1

λ
max

1≤i≤N
|vi|

n∏
l=N+1

(1− alλ) +
ε

3
.

In the case an depending on n, ln (1− aiλ) ∼ −aiλ as ai −→ 0 (i −→∞); then, as
∞∑
n=1

an =∞,

n∏
l=N+1

(1− alλ) −→ 0 (n −→∞).

In the case an = a,

n∏
l=N+1

(1− aλ) = (1− aλ)
n−N −→ 0 (n −→∞) as

0 < 1− aλ < 1.
Thus there exists N1 such that un+1 < ε for n > N1 �
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3.2 Theorem

Make the following assumptions
(H1b) There exist a positive definite symmetrical matrix B in Rp×p and a positive

real number b such that a.s.
1) limn→∞ (E [Bn|Tn]−B) = 0

2)

∞∑
n=1

1

n

(
E
[
‖E [Bn|Tn]−B‖2

]) 1
2

<∞

3) supnE
[
‖Bn −B‖2 |Tn

]
≤ b.

(H2b) There exist a matrix F in Rp×q and a positive real number d such that a.s.
1) limn→∞ (E [Fn|Tn]− F ) = 0

2) supnE
[
‖Fn − F‖2 |Tn

]
≤ d.

(H3b) λ and λmax being respectively the smallest and the largest eigenvalue of B,

0 < a < min

(
1

λmax
,

2λ

λ2 + b

)
.

Theorem 7 Suppose H1b, H2b and H3b hold. Then Yn converges to θ = B−1F a.s.

Remark 1 Györfi and Walk [5] proved that Yn converges to θ a.s. and in quadratic
mean under the assumptions E [Bn|Tn] = B, E [Fn|Tn] = F , H1b2 and H2b2. Theorem
7 is an extension of their a.s. convergence result when E [Bn|Tn] −→ B and
E [Fn|Tn] −→ F a.s.

Remark 2 Define R1 =

(
R
1

)
, B = E [R1R

′
1], F = E [R1S

′]. If ((R1n, Sn) , n ≥ 1) is

an i.i.d. sample of (R1, S) whose moments of order 4 exist, assumptions H1b and H2b
are verified for Bn = R1nR

′
1n and Fn = R1nS

′
n as E [R1nR

′
1n|Tn] = E [R1R

′
1] = B and

E [R1nS
′
n|Tn] = F .

Proof of Theorem 7. Denote

Zn = (Bn −B)(Xn − θ) + (Bn −B)θ − (Fn − F ),

X1
n = Xn − θ,

Y 1
n = Yn − θ =

1

n

n∑
j=1

X1
j .

Step 1: give a sufficient condition to have Y 1
n −→ 0 a.s.

We have (cf. proof of theorem 1):

X1
n+1 = (I − aB)X1

n − aZn,

Y 1
n+1 =

1

n+ 1
X1

1 +
1

n+ 1

n+1∑
j=2

X1
j

=
1

n+ 1
X1

1 +
1

n+ 1

n+1∑
j=2

(I − aB)X1
j−1 − a

1

n+ 1

n+1∑
j=2

Zj−1

=
1

n+ 1
X1

1 +
n

n+ 1
(I − aB)Y 1

n − a
1

n+ 1

n∑
j=1

Zj .

Take now the Frobenius norm of Y 1
n+1:

∥∥Y 1
n+1

∥∥ ≤
∥∥(I − aB)Y 1

n

∥∥+ a

∥∥∥∥∥∥ 1

n+ 1

n∑
j=1

Zj −
1

n+ 1

1

a
X1

1

∥∥∥∥∥∥ .
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Under H3b, all the eigenvalues of I − aB are positive and the spectral norm of
I − aB is equal to 1− aλ. Then :

∥∥Y 1
n+1

∥∥ ≤ (1− aλ)
∥∥Y 1

n

∥∥+ a

∥∥∥∥∥∥ 1

n+ 1

n∑
j=1

Zj −
1

n+ 1

1

a
X1

1

∥∥∥∥∥∥ .
By lemma 6, it suffices to prove

1

n

n∑
j=1

Zj −→ 0 a.s. to conclude Y 1
n −→ 0 a.s.

Step 2: prove that assumptions H1b and H2b imply respectively
1

n

n∑
j=1

Bj −→ B and

1

n

n∑
j=1

Fj −→ F a.s.

The proof is only given for (Bn), the other one being similar.

Assumption H1b3 implies supnE
[
‖Bn −B‖2

]
<∞. It follows that, for each

element Bkln and Bkl of Bn and B respectively,

∞∑
n=1

V ar
[
Bkln −Bkl

]
n2

<∞. Therefore:

1

n

n∑
j=1

(
Bklj −Bkl − E

[
Bklj −Bkl|Tj

])
−→ 0 a.s.

As E
[
Bklj −Bkl|Tj

]
−→ 0 a.s. by H1b1, we have for each (k, l)

1

n

n∑
j=1

(
Bklj −Bkl

)
−→ 0 a.s.

Then
1

n

n∑
j=1

(Bj −B) −→ 0 a.s.

Step 3: prove now that
1

n

n∑
j=1

(Bj −B)X1
j −→ 0 a.s.

Denote βn = ‖E [Bn|Tn]−B‖ and γn = ‖E [Fn|Tn]− F‖. βn −→ 0 and γn −→ 0
a.s. under H1b1 and H2b1. Then: ∀δ > 0, ∀ε > 0, ∃N (δ, ε): ∀n ≥ N (δ, ε),

P
(
{supj>n(βj) ≤ δ}

⋂
{supj>n(γj) ≤ δ}

)
> 1− ε.

As a <
2λ

λ2 + b
, choose η such that:

0 < η <
1

b

(
2λ

a
−
(
λ2 + b

))
⇔ λ >

a

2

(
λ2 + b+ ηb

)
.

Choose δ such that

0 < δ <
1

(1− aλ)(‖θ‖+ 2)

(
λ− a

2

(
λ2 + b+ ηb

))
.

Let ε be fixed. Denote N0 = N (δ, ε) and, for n > N0,

Gn =

({
sup

N0<j≤n
(βj) ≤ δ

}⋂{
sup

N0<j≤n
(γj) ≤ δ

})
,

G =

({
sup
j>N0

(βj) ≤ δ
}⋂{

sup
j>N0

(γj) ≤ δ
})

=
⋂
n>N0

Gn.
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Remark that Gn is Tn-measurable and, IG denoting the indicator of G,

G ⊂ Gn+1 ⊂ Gn ⇔ IG ≤ IGn+1
≤ IGn

.

Step 3a: prove that supnE
[∥∥X1

n

∥∥2 IGn

]
<∞.∥∥X1

n+1

∥∥2 IGn+1
≤

∥∥X1
n+1

∥∥2 IGn
=
∥∥(I − aB)X1

nIGn
− aZnIGn

∥∥2
≤

∥∥(I − aB)X1
nIGn

∥∥2 − 2a
〈
(I − aB)X1

nIGn
, ZnIGn

〉
+ a2 ‖ZnIGn

‖2 .

As the spectral norm ‖I − aB‖ = 1− aλ, taking the conditional expectation with
respect to Tn yields a.s.

E
[∥∥X1

n+1

∥∥2 IGn+1
|Tn
]
≤ (1− aλ)

2 ∥∥X1
nIGn

∥∥2 − 2a
〈
(I − aB)X1

nIGn
, E [Zn|Tn] IGn

〉
+a2E

[
‖ZnIGn

‖2 |Tn
]
.

Now:

‖E [Zn|Tn] IGn‖ = ‖ (E [Bn|Tn]−B)X1
nIGn + (E [Bn|Tn]−B) θIGn

− (E [Fn|Tn]− F ) IGn‖
≤ δ

∥∥X1
nIGn

∥∥+ δ (‖θ‖+ 1)

E
[
‖ZnIGn‖

2 |Tn
]
≤ (1 + η)E

[∥∥(Bn −B)X1
nIGn

∥∥2 |Tn]
+

(
1 +

1

η

)
E
[
‖(Bn −B) θIGn

− (Fn − F ) IGn
‖2 |Tn

]
≤ (1 + η) b

∥∥X1
nIGn

∥∥2 + 2

(
1 +

1

η

)(
b ‖θ‖2 + d

)
.

Therefore:

E
[∥∥X1

n+1

∥∥2 IGn+1
|Tn
]
≤

(
(1− aλ)

2
+ 2a (1− aλ) δ + a2 (1 + η) b

)∥∥X1
nIGn

∥∥2
+ 2a (1− aλ) δ (‖θ‖+ 1)

∥∥X1
nIGn

∥∥
+ 2a2

(
1 +

1

η

)(
b ‖θ‖2 + d

)
.

As
∥∥X1

nIGn

∥∥ ≤ 1 +
∥∥X1

nIGn

∥∥2, taking mathematical expectation yields:

E
[∥∥X1

n+1

∥∥2 IGn+1

]
≤ ρE

[∥∥X1
nIGn

∥∥2]+ e,

ρ = (1− aλ)
2

+ 2a (1− aλ) δ (‖θ‖+ 2) + a2 (1 + η) b,

e = 2a (1− aλ) δ (‖θ‖+ 1) + 2a2
(

1 +
1

η

)(
b ‖θ‖2 + d

)
.

As ρ = 1 + 2a
(

(1− aλ) (‖θ‖+ 2) δ − λ+
a

2

(
λ2 + b+ ηb

))
< 1 by the choice of δ,

this implies g = supnE
[∥∥X1

n

∥∥2 IGn

]
<∞.

Step 3b: conclusion.

E
[∥∥(Bn −B)X1

nIGn

∥∥2] = E
[
E
[∥∥(Bn −B)X1

nIGn

∥∥2 |Tn]]
≤ E

[
E
[
‖Bn −B‖2 |Tn

] ∥∥X1
nIGn

∥∥2]
≤ bg.
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Then:

∞∑
n=1

E
[∥∥(Bn −B)X1

nIGn

∥∥2]
n2

<∞. Therefore a.s.:

1

n

n∑
j=1

(
(Bj −B)X1

j IGj
− E

[
(Bj −B)X1

j IGj
|Tj
])
−→ 0.

Now:

∞∑
n=1

1

n
E
[∥∥(E [Bn|Tn]−B)X1

nIGn

∥∥] ≤ ∞∑
n=1

1

n
E
[
‖E [Bn|Tn]−B‖

∥∥X1
nIGn

∥∥]
≤
∞∑
n=1

1

n

(
E
[
‖E [Bn|Tn]−B‖2

]) 1
2
(
E
[∥∥X1

nIGn

∥∥2]) 1
2

≤ g 1
2

∞∑
n=1

1

n

(
E
[
‖E [Bn|Tn]−B‖2

]) 1
2

<∞ by H1b2.

Then:

∞∑
n=1

1

n

∥∥(E [Bn|Tn]−B)X1
nIGn

∥∥ <∞ a.s.

This implies by the Kronecker lemma:

1

n

n∑
j=1

(E [Bj |Tj ]−B)X1
j IGj

−→ 0 a.s.

Therefore:

1

n

n∑
j=1

(Bj −B)X1
j IGj

−→ 0 a.s.

In G, IGj
= 1 for all j, therefore

1

n

n∑
j=1

(Bj −B)X1
j −→ 0 a.s. Then:

P

 1

n

n∑
j=1

(Bj −B)X1
j −→ 0

 ≥ P (G) > 1− ε. This is true for every ε > 0. Thus:

1

n

n∑
j=1

(Bj −B)X1
j −→ 0 a.s.

Therefore by step 2 and step 1, we conclude that
1

n

n∑
j=1

Zj −→ 0 and Y 1
n −→ 0 a.s. �

3.3 Application to linear regression with online standardized
data

Define as in section 2:

Bn = ΓMn−1

1

mn

∑
j∈In

(
Rj − R̄Mn−1

) (
Rj − R̄Mn−1

)′
ΓMn−1

,

Fn = ΓMn−1

1

mn

∑
j∈In

(
Rj − R̄Mn−1

) (
Sj − S̄Mn−1

)′
Γ1
Mn−1

.

14/27



Denote U = (R− E [R]) (R− E [R])
′
, B = ΓE [U ] Γ the correlation matrix of R, λ and

λmax respectively the smallest and the largest eigenvalue of B, b1 = E
[
‖ΓUΓ−B‖2

]
,

F = ΓE
[
(R− E [R]) (S − E [S])

′]
Γ1.

Corollary 8 Suppose there is no affine relation between the components of R and the
moments of order 4 of (R,S) exist. Suppose H3b1 holds:

(H3b1) 0 < a < min

(
1

λmax
,

2λ

λ2 + b1

)
.

Then Yn converges to θ = B−1F a.s.

This process was tested on several datasets and some results are given in section 5
(process S21 for mn = 1 and S22 for mn = 10).
Proof of Corollary 8.

Step 1: introduction.
Using the decomposition of E [Bn|Tn]−B established in the proof of corollary 4, as

R̄Mn−1
−→ E [R] and ΓMn−1

−→ Γ a.s., it is obvious that E [Bn|Tn]−B −→ 0 a.s.
Likewise E [Fn|Tn]− F −→ 0 a.s. Thus assumptions H1b1 and H2b1 are verified.

Suppose that Yn does not converge to θ almost surely.
Then there exists a set of probability ε1 > 0 in which Yn does not converge to θ.
Denote σj =

√
V ar [Rj ], j = 1, ..., p.

As R̄Mn−1
− E [R] −→ 0,

√
Mn−1

Mn−1 − 1
V jMn−1

− σj −→ 0, j = 1, ..., p and

ΓMn−1 − Γ −→ 0 almost surely, there exists a set G of probability greater than 1− ε1
2 in

which these sequences of random variables converge uniformly to θ.

Step 2: prove that

∞∑
n=1

1

n

(
E
[∥∥ΓMn−1 − Γ

∥∥ IG]) 1
2 <∞.

By step 2 of the proof of lemma 5, we have for n > N :

∥∥ΓMn−1 − Γ
∥∥ IG ≤

p∑
j=1

∣∣∣∣ Mn−1

Mn−1−1

(
V jMn−1

)2
−
(
σj
)2∣∣∣∣√

Mn−1

Mn−1−1V
j
Mn−1

σj
(√

Mn−1

Mn−1−1V
j
Mn−1

+ σj
)IG.

As in G,

√
Mn−1

Mn−1 − 1
V jMn−1

converges uniformly to σj for j = 1, ..., p, there exists

c > 0 such that∥∥ΓMn−1
− Γ

∥∥ IG ≤ c

p∑
j=1

∣∣∣∣ Mn−1

Mn−1 − 1

(
V jMn−1

)2
−
(
σj
)2∣∣∣∣ .

Then there exists d > 0 such that

E
[∥∥ΓMn−1

− Γ
∥∥ IG] ≤ d√

Mn−1
≤ d√

n− 1
.

Therefore

∞∑
n=1

1

n

(
E
[∥∥ΓMn−1

− Γ
∥∥ IG]) 1

2 <∞.

Step 3: prove that assumption H1b2 is verified in G.
Using the decomposition of E [Bn|Tn]−B given in step 1 of the proof of corollary 4,

with Rc = R− E [R] and R̄cMn−1
= R̄Mn−1

− E [R] yields a.s.:

(E [Bn|Tn]−B) IG = (
(
ΓMn−1

− Γ
)
E
[
RcRc′

]
ΓMn−1

+ ΓE
[
RcRc′

] (
ΓMn−1

− Γ
)

+ΓMn−1R̄
c
Mn−1

(
R̄cMn−1

)′
ΓMn−1)IG.
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As in G, ΓMn−1
− Γ and R̄cMn−1

converge uniformly to 0, E [Bn|Tn]−B converges
uniformly to 0. Moreover there exists c1 > 0 such that

‖E [Bn|Tn]−B‖ IG ≤ c1

(∥∥ΓMn−1 − Γ
∥∥ IG +

∥∥∥R̄cMn−1

∥∥∥) a.s.

By the proof of lemma 5: E
[∥∥∥R̄cMn−1

∥∥∥] ≤ (V ar [R]

n− 1

) 1
2

; then

∞∑
n=1

1

n

(
E
[∥∥∥R̄cMn−1

∥∥∥]) 1
2

<∞.

By step 2:

∞∑
n=1

1

n

(
E
[∥∥ΓMn−1

− Γ
∥∥ IG]) 1

2 <∞.

Then:

∞∑
n=1

1

n
(E [‖E [Bn|Tn]−B‖ IG])

1
2 <∞.

As E [Bn|Tn]−B converges uniformly to 0 on G, we obtain:

∞∑
n=1

1

n

(
E
[
‖E [Bn|Tn]−B‖2 IG

]) 1
2

<∞.

Thus assumption H1b2 is verified in G.
Step 4: prove that assumption H1b3 is verified in G.

Denote Rc = R− E [R], Rcj = Rj − E [R], R̄cj = R̄j − E [R] . Consider the
decomposition:

Bn −B = ΓMn−1

1

mn

∑
j∈In

(
Rcj − R̄cMn−1

)(
Rcj − R̄cMn−1

)′
ΓMn−1

−ΓE
[
RcRc′

]
Γ

= αn + βn

with αn = ΓMn−1

1

mn

∑
j∈In

(
RcjR

c
j
′ − R̄cMn−1

Rcj
′ −Rcj

(
R̄cMn−1

)′
+ R̄cMn−1

(
R̄cMn−1

)′)
ΓMn−1

−Γ
1

mn

∑
j∈In

RcjR
c
j
′Γ

=
(
ΓMn−1 − Γ

) 1

mn

∑
j∈In

RcjR
c
j
′

ΓMn−1 + Γ

 1

mn

∑
j∈In

RcjR
c
j
′

(ΓMn−1 − Γ
)

−ΓMn−1
R̄cMn−1

1

mn

∑
j∈In

Rcj
′ΓMn−1

− ΓMn−1

1

mn

∑
j∈In

Rcj

(
R̄cMn−1

)′
ΓMn−1

+ΓMn−1
R̄cMn−1

(
R̄cMn−1

)′
ΓMn−1

,

βn = Γ

 1

mn

∑
j∈In

RcjR
c
j
′ − E

[
RcRc′

]Γ.

Let η > 0.

E
[
‖Bn −B‖2 IG|Tn

]
= E

[
‖αn + βn‖2 IG|Tn

]
≤

(
1 +

1

η

)
E
[
‖αn‖2 IG|Tn

]
+ (1 + η)E

[
‖βn‖2 IG|Tn

]
a.s.
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As random variables Rcj , j ∈ In, are independent of Tn, as ΓMn−1
and R̄cMn−1

are

Tn-measurable and converge uniformly respectively to Γ and 0 on G, E
[
‖αn‖2 IG|Tn

]
converges uniformly to 0. Then, for δ > 0, there exists N1 such that for n > N1,

E
[
‖αn‖2 IG|Tn

]
≤ δ a.s.

Moreover, denoting U = RcRc′ and Uj = RcjR
c
j
′, we have, as the random variables

Uj form an i.i.d. sample of U :

E
[
‖βn‖2 |Tn

]
= E


∥∥∥∥∥∥ 1

mn

∑
j∈In

Γ (Uj − E [U ]) Γ

∥∥∥∥∥∥
2

|Tn


≤ E

[
‖Γ (U − E [U ]) Γ‖2

]
= E

[
‖ΓUΓ− E [ΓUΓ]‖2

]
= b1 a.s.

Then:

E
[
‖Bn −B‖2 IG|Tn

]
≤

(
1 +

1

η

)
δ + (1 + η) b1 = b a.s.

Thus assumption H1b3 is verified in G.
As S̄Mn−1 − E [S] −→ 0 and Γ1

Mn−1
− Γ1 −→ 0 almost surely, it can be proved

likewise that there exist a set H of probability greater than 1− ε1
2

and d > 0 such that

E
[
‖Fn − F‖2 IH |Tn

]
≤ d a.s. Thus assumption H2b2 is verified in H.

Step 5: conclusion.

As a < min

(
1

λmax
,

2λ

λ2 + b1

)
, b1 <

2λ

a
− λ2.

Choose 0 < η <
2λ
a − λ

2

b1
− 1 and 0 < δ <

2λ
a − λ

2 − (1 + η) b1

1 + 1
η

such that

b =

(
1 +

1

η

)
δ + (1 + η) b1 <

2λ

a
− λ2 ⇐⇒ a <

2λ

λ2 + b
.

Thus assumption H3b is verified.
Applying theorem 7 implies that Yn converges to θ almost surely in H ∩G.
Therefore P (Yn −→ θ) ≥ P (H ∩G) > 1− ε1.
This is in contradiction with P (Yn 9 θ) = ε1. Thus Yn converges to θ a.s. �

4 Convergence of a process with a variable or
constant step-size and use of all observations until
the current step

In this section, the convergence of the process (Xn, n ≥ 1) in Rp×q recursively defined by

Xn+1 = Xn − an (BnXn − Fn)

and its application to sequential linear regression are studied.

4.1 Theorem

Make the following assumptions
(H1c) There exists a positive definite symmetrical matrix B such that Bn −→ B a.s.
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(H2c) There exists a matrix F such that Fn −→ F a.s.
(H3c) λmax denoting the largest eigenvalue of B,(
an = a <

1

λmax

)
or

(
an −→ 0,

∞∑
n=1

an =∞

)
.

Theorem 9 Suppose H1c, H2c and H3c hold. Then Xn converges to B−1F a.s.

Proof of Theorem 9.
Denote θ = B−1F , X1

n = Xn − θ, Zn = (Bn −B) θ − (Fn − F ). Then:

X1
n+1 = (I − anBn)X1

n − anZn.

Let ω be fixed belonging to the intersection of the convergence sets {Bn −→ B} and
{Fn −→ F}. The writing of ω is omitted in the following.

Denote ‖A‖ the spectral norm of a matrix A and λ the smallest eigenvalue of B.
In the case an depending on n, as an −→ 0, we can suppose without loss of

generality an <
1

λmax
for all n. Then all the eigenvalues of I − anB are positive and

‖I − anB‖ = 1− anλ.
Let 0 < ε < λ. As Bn −B −→ 0, we obtain for n sufficiently large:

‖I − anBn‖ ≤ ‖I − anB‖+ an ‖Bn −B‖

≤ 1− anλ+ anε , with an <
1

λ− ε∥∥X1
n+1

∥∥ ≤ (1− an (λ− ε))
∥∥X1

n

∥∥+ an ‖Zn‖ .

As Zn −→ 0, applying lemma 6 yields
∥∥X1

n

∥∥ −→ 0.
Therefore Xn −→ B−1F a.s. �

4.2 Application to linear regression with online standardized
data

Let (mn, n ≥ 1) be a sequence of integers. Denote Mn =
n∑
k=1

mk for n ≥ 1, M0 = 0 and

In = {Mn−1 + 1, ...,Mn}.
Define

Bn = ΓMn

 1

Mn

n∑
i=1

∑
j∈Ii

RjR
′
j − R̄Mn

R̄′Mn

ΓMn
,

Fn = ΓMn

 1

Mn

n∑
i=1

∑
j∈Ii

RjS
′
j − R̄Mn

S̄′Mn

Γ1
Mn

.

As ((Rn, Sn) , n ≥ 1) is an i.i.d. sample of (R,S), assumptions H1c and H2c are
obviously verified with B = ΓE

[
(R− E [R]) (R− E [R])

′]
Γ and

F = ΓE
[
(R− E [R]) (S − E [S])

′]
Γ1. Then:

Corollary 10 Suppose there is no affine relation between the components of R and the
moments of order 4 of (R,S) exist. Suppose H3c holds. Then Xn converges to B−1F
a.s.
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Remark 3 B is the correlation matrix of R of dimension p. Then

λmax < Trace (B) = p. In the case of a constant step-size a, it suffices to take a ≤ 1

p
to

verify H3c.

Remark 4 In the definition of Bn and Fn, the Rj and the Sj are not directly
pseudo-centered with respect to R̄Mn

and S̄Mn
respectively. Another equivalent

definition of Bn and Fn can be used. It consists of replacing Rj by Rj −m, R̄Mn by
R̄Mn −m, Sj by Sj −m, S̄Mn by S̄Mn −m1, m and m1 being respectively an estimation
of E[R] and E[S] computed in a preliminary phase with a small number of observations.

For example, at step n,
∑
j∈In

ΓMn (Rj −m) (ΓMn (Rj −m))
′
is computed instead of∑

j∈In

ΓMn
Rj (ΓMn

Rj)
′
. This limits the risk of numerical explosion.

This process was tested on several datasets and some results are given in section 5
(with a variable step-size: process S13 for mn = 1 and S14 for mn = 10 ; with a
constant step-size: process S31 for mn = 1 and S32 for mn = 10).

5 Experiments

The three previously-defined processes of stochastic approximation with online
standardized data were compared with the classical stochastic approximation and
averaged stochastic approximation (or averaged stochastic gradient descent) processes
with constant step-size (denoted ASGD) studied in [5] and [6]. A description of the
methods along with abbreviations and parameters used is given in Table 1.

Table 1. Description of the methods.

Method
type

Abbreviation
Type of
data

Number of
observations

used
at each step
of the process

Use of all the
observations
until the

current step

Step-size
Use of the
averaged
process

Classic

C1

Raw data

1
No

variable No
C2 10
C3 1

Yes
C4 10

ASGD
A1 1

No constant Yes
A2 1

Standardization 1

S11

Online
standardized

data

1
No

variable No
S12 10
S13 1

Yes
S14 10

Standardization 2
S21 1

No
constant

Yes
S22 10

Standardization 3
S31 1

Yes No
S32 10

With the variable S set at dimension 1, 11 datasets were considered, some of which
are available in free access on the Internet, while others were derived from the
EPHESUS study [15]: 6 in regression (continuous dependent variable) and 5 in linear
discriminant analysis (binary dependent variable). All datasets used in our experiments
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Table 2. Datasets used in our experiments.

Dataset name N pa p
Type of

dependent
variable

T 2
Number

of
outliers

CADATA 20640 8 8 Continuous 1.6x106 122 www.dcc.fc.up.pt/∼ltorgo/Regression/DataSets.html

AILERONS 7154 40 9 Continuous 247.1 0 www.dcc.fc.up.pt/∼ltorgo/Regression/DataSets.html

ELEVATORS 8752 18 10 Continuous 7.7x104 0 www.dcc.fc.up.pt/∼ltorgo/Regression/DataSets.html

POLY 5000 48 12 Continuous 4.1x104 0 www.dcc.fc.up.pt/∼ltorgo/Regression/DataSets.html

eGFR 21382 31 15 Continuous 2.9x104 0 derived from EPHESUS study [15]

HEMG 21382 31 17 Continuous 6.0x104 0 derived from EPHESUS study [15]

QUANTUM 50000 78 14 Binary 22.5 1068 www.osmot.cs.cornell.edu/kddcup

ADULT 45222 97 95 Binary 4.7x1010 20 www.cs.toronto.edu/∼delve/data/datasets.html

RINGNORM 7400 20 20 Binary 52.8 0 www.cs.toronto.edu/∼delve/data/datasets.html

TWONORM 7400 20 20 Binary 24.9 0 www.cs.toronto.edu/∼delve/data/datasets.html

HOSPHF30D 21382 32 15 Binary 8.1x105 0 derived from EPHESUS study [15]

N denotes the size of global sample, pa the number of parameters available, p the number of parameters selected and T 2 the
trace of E [RR′]. Outlier is defined as an observation whose the L2 norm is greater than five times the average norm.

are presented in detail in Table 2, along with their download links. An a priori selection
of variables was performed on each dataset using a stepwise procedure based on Fisher’s
test with p-to-enter and p-to-remove fixed at 5 percent.

Let D = {(ri, si) , i = 1, 2, ..., N} be the set of data in Rp × R and assuming that it
represents the set of realizations of a random vector (R,S) uniformly distributed in D,

then minimizing E[(S − θ′R− η)
2
] is equivalent to minimizing

1

N

N∑
i=1

(si − θ′ri − η)
2
.

One element of D (or several according to the process) is randomly drawn at each step
to iterate the process.

To compare the methods, two different studies were performed: one by setting the
total number of observations used, the other by setting the computing time.

The choice of step-size, the initialization for each method and the convergence
criterion used are respectively presented and commented below.
Choice of step-size

In all methods of stochastic approximation, a suitable choice of step-size is often
crucial for obtaining good performance of the process. If the step-size is too small, the
convergence rate will be slower. Conversely, if the step-size is too large, a numerical
explosion phenomenon may occur during the first iterations.

For the processes with a variable step-size (processes C1 to C4 and S11 to S14), we
chose to use an of the following type:

an =
cγ

(b+ n)
α .

The constant α =
2

3
was fixed, as suggested by Xu [16] in the case of stochastic

approximation in linear regression, and b = 1. The results obtained for the choice

cγ =
1

p
are presented although the latter does not correspond to the best choice for a

classical method.
For the ASGD method (A1, A2), two different constant step-sizes a as used in [6]

were tested: a =
1

T 2
and a =

1

2T 2
, T 2 denoting the trace of E [RR′]. Note that this
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choice of constant step-size assumes knowing a priori the dataset and is not suitable for
a data stream.

For the methods with standardization and a constant step-size a (S21, S22, S31,

S32), a =
1

p
was chosen since the matrix E [RR′] is thus the correlation matrix of R,

whose trace is equal to p, such that this choice corresponds to that of [6].
Initialization of processes

All processes (Xn) were initialized by X1 = 0, the null vector. For the processes
with standardization, a small number of observations (n = 1000) were taken into
account in order to calculate an initial estimate of the means and standard deviations.
Convergence criterion

The ”theoretical vector” θ1 is assigned as that obtained by the least square method
in D such that θ1

′
=
(
θ′ η

)
. Let Θ1

n+1 be the estimator of θ1 obtained by stochastic
approximation after n iterations.

In the case of a process (Xn) with standardized data, which yields an estimation of

the vector denoted θc in section 1 as θ = Γθc
(
Γ1
)−1

and η = E [S]− θ′E [R], we can
define:

Θ1
n+1
′ =

(
Θ′n+1 Hn+1

)
with Θn+1 = ΓMn

Xn+1(Γ1
Mn

)−1

Hn+1 = S̄Mn
−Θ′n+1R̄Mn

.

To judge the convergence of the method, the cosine of the angle formed by exact θ1 and
its estimation θ1n+1 was used as criterion,

cos
(
θ1, θ1n+1

)
=

θ1
′
θ1n+1

‖θ1‖2
∥∥θ1n+1

∥∥
2

.

Other criteria, such as

∥∥θ1 − θ1n+1

∥∥
2

‖θ1‖2
or

f(θ1n+1)− f(θ1)

f(θ1)
, f being the loss function,

were also tested, although the results are not presented in this article.

5.1 Study for a fixed total number of observations used

For all N observations used by the algorithm (N being the size of D) up to a maximum
of 100N observations, the criterion value associated with each method and for each
dataset was recorded. The results obtained after using 10N observations are provided in
Table 3.

As can be seen in Table 3, a numerical explosion occured in most datasets using the
classical methods with raw data and a variable step-size (C1 to C4). As noted in
Table 2, these datasets had a high T 2 = Tr (E [RR′]). Corresponding methods S11 to
S14 using the same variable step-size but with online standardized data quickly
converged in most cases. However classical methods with raw data can yield good
results for a suitable choice of step-size, as demonstrated by the results obtained for
POLY dataset in Fig 1. The numerical explosion can arise from a too high step-size
when n is small. This phenomenon can be avoided if the step-size is reduced, although
if the latter is too small, the convergence rate will be slowed. Hence, the right balance
must be found between step-size and convergence rate. Furthermore, the choice of this
step-size generally depends on the dataset which is not known a priori in the case of a
data stream. In conclusion, methods with standardized data appear to be more robust
to the choice of step-size.

The ASGD method (A1 with constant step-size a =
1

T 2
and A2 with a =

1

2T 2
) did

not yield good results except for the RINGNORM and TWONORM datasets which
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Table 3. Results after using 10N observations.

CADATA AILERONS ELEVATORS POLY EGFR HEMG QUANTUM ADULT RINGNORM TWONORM HOSPHF30D
Mean
rank

C1 Expl. -0.0385 Expl. Expl. Expl. Expl. 0.9252 Expl. 0.9998 1.0000 Expl. 11.6
C2 Expl. 0.0680 Expl. Expl. Expl. Expl. 0.8551 Expl. 0.9976 0.9996 Expl. 12.2
C3 Expl. 0.0223 Expl. Expl. Expl. Expl. 0.9262 Expl. 0.9999 1.0000 Expl. 9.9
C4 Expl. -0.0100 Expl. Expl. Expl. Expl. 0.8575 Expl. 0.9981 0.9996 Expl. 12.3
A1 -0.0013 0.4174 0.0005 0.3361 0.2786 0.2005 Expl. 0.0027 0.9998 1.0000 0.0264 9.2
A2 0.0039 0.2526 0.0004 0.1875 0.2375 0.1846 0.0000 0.0022 0.9999 1.0000 0.2047 8.8
S11 1.0000 0.9516 0.9298 1.0000 1.0000 0.9996 0.9999 0.7599 0.9999 1.0000 0.7723 5.2
S12 0.9999 0.9579 0.9311 1.0000 0.9999 0.9994 0.9991 0.6842 0.9999 1.0000 0.4566 6.1
S13 1.0000 0.9802 0.9306 1.0000 1.0000 0.9998 1.0000 0.7142 0.9999 1.0000 0.7754 3.7
S14 0.9999 0.9732 0.9303 1.0000 0.9999 0.9994 0.9991 0.6225 0.9998 1.0000 0.4551 6.9
S21 0.9993 0.6261 0.9935 Expl. Expl. Expl. Expl. Expl. 0.9998 1.0000 Expl. 10.5
S22 1.0000 0.9977 0.9900 1.0000 1.0000 0.9989 0.9999 -0.0094 0.9999 1.0000 0.9454 4.1
S31 1.0000 0.9988 0.9999 1.0000 1.0000 0.9992 0.9999 0.9907 0.9999 1.0000 0.9788 2.3
S32 1.0000 0.9991 0.9998 1.0000 1.0000 0.9992 0.9999 0.9867 0.9999 1.0000 0.9806 2.2

Expl. means numerical explosion.

were obtained by simulation (note that all methods functioned very well for these two
datasets). Of note, A1 exploded for the QUANTUM dataset containing 1068
observations (2.1 %) whose L2 norm was fivefold greater than the average norm
(Table 2). The corresponding method S21 with online standardized data yielded several

numerical explosions with the a =
1

p
step-size, however these explosions disappeared

when using a smaller step-size (see Fig 1). Of note, it is assumed in corollary 8 that

0 < a < min

(
1

λmax
,

2λ

λ2 + b1

)
; in the case of a =

1

p
, only a <

1

λmax
is certain.

Finally, for methods S31 and S32 with standardized data, the use of all observations

until the current step and the very simple choice of the constant step-size a =
1

p
uniformly yielded good results.

Thereafter, for each fixed number of observations used and for each dataset, the 14
methods ranging from the best (the highest cosine) to the worst (the lowest cosine) were
ranked by assigning each of the latter a rank from 1 to 14 respectively, after which the
mean rank in all 11 datasets was calculated for each method. A total of 100 mean rank
values were calculated for a number of observations used varying from N to 100N . The
graph depicting the change in mean rank based on the number of observations used and
the boxplot of the mean rank are shown in Fig 2.

Overall, for these 11 datasets, a method with standardized data, a constant step-size
and use of all observations until the current step (S31, S32) represented the best
method when the total number of observations used was fixed.

5.2 Study for a fixed processing time

For every second up to a maximum of 2 minutes, the criterion value associated to each
dataset was recorded. The results obtained after a processing time of 1 minute are
provided in Table 4.

The same conclusions can be drawn as those described in section 5.1 for the classical
methods and the ASGD method. The methods with online standardized data typically
faired better.

As in the previous study in section 5.1, the 14 methods were ranked from the best to
the worst on the basis of the mean rank for a fixed processing time. The graph
depicting the change in mean rank based on the processing time varying from 1 second
to 2 minutes as well as the boxplot of the mean rank are shown in Fig 3.
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Table 4. Results obtained after a fixed time of 1 minute.

CADATA AILERONS ELEVATORS POLY EGFR HEMG QUANTUM ADULT RINGNORM TWONORM HOSPHF30D
Mean
rank

C1 Expl. -0.2486 Expl. Expl. Expl. Expl. 0.9561 Expl. 1.0000 1.0000 Expl. 12.2
C2 Expl. 0.7719 Expl. Expl. Expl. Expl. 0.9519 Expl. 1.0000 1.0000 Expl. 9.9
C3 Expl. 0.4206 Expl. Expl. Expl. Expl. 0.9547 Expl. 1.0000 1.0000 Expl. 10.6
C4 Expl. 0.0504 Expl. Expl. Expl. Expl. 0.9439 Expl. 1.0000 1.0000 Expl. 10.1
A1 -0.0067 0.8323 0.0022 0.9974 0.7049 0.2964 Expl. 0.0036 1.0000 1.0000 Expl. 9.0
A2 0.0131 0.8269 0.0015 0.9893 0.5100 0.2648 Expl. 0.0027 1.0000 1.0000 0.2521 8.6
S11 1.0000 0.9858 0.9305 1.0000 1.0000 1.0000 1.0000 0.6786 1.0000 1.0000 0.9686 5.8
S12 1.0000 0.9767 0.9276 1.0000 1.0000 0.9999 1.0000 0.6644 1.0000 1.0000 0.9112 5.8
S13 1.0000 0.9814 0.9299 1.0000 1.0000 0.9999 1.0000 0.4538 1.0000 1.0000 0.9329 6.1
S14 1.0000 0.9760 0.9274 1.0000 1.0000 1.0000 0.9999 0.5932 1.0000 1.0000 0.8801 6.1
S21 -0.9998 0.2424 0.6665 Expl. Expl. Expl. Expl. 0.0000 1.0000 1.0000 Expl. 11.5
S22 1.0000 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000 -0.0159 1.0000 1.0000 0.9995 3.1
S31 1.0000 0.9995 1.0000 1.0000 1.0000 0.9999 1.0000 0.9533 1.0000 1.0000 0.9997 4.5
S32 1.0000 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000 0.9820 1.0000 1.0000 0.9999 1.5

Expl. means numerical explosion.

As can be seen, these methods with online standardized data using more than one
observation per step yielded the best results (S32, S22). One explanation may be that
the total number of observations used in a fixed processing time is higher when several
observations are used per step rather than one observation per step. This can be verified
in Table 5 in which the total number of observations used per second for each method
and for each dataset during a processing time of 2 minutes is given. Of note, the number
of observations used per second in a process with standardized data and one observation
per step (S11, S13, S21, S31) was found to be generally lower than in a process with raw
data and one observation per step (C1, C3, A1, A2), since a method with
standardization requires the recursive estimation of means and variances at each step.

Of note, for the ADULT dataset with a large number of parameters selected (95),
the only method yielding sufficiently adequate results after a processing time of one
minute was S32, and methods S31 and S32 when 10N observations were used.

Table 5. Number of observations used after 2 minutes (expressed in number of observations per second).
CADATA AILERONS ELEVATORS POLY EGFR HEMG QUANTUM ADULT RINGNORM TWONORM HOSPHF30D

C1 19843 33170 17133 14300 10979 9243 33021 476 31843 31677 10922
C2 166473 291558 159134 134249 104152 89485 281384 4565 262847 261881 102563
C3 17206 28985 16036 13449 10383 8878 28707 462 28123 28472 10404
C4 132088 194031 125880 106259 87844 76128 184386 4252 171711 166878 86895
A1 33622 35388 36540 35800 35280 34494 11815 15390 34898 34216 14049
A2 33317 32807 36271 35628 35314 34454 15439 16349 34401 34205 34890
S11 17174 17133 17166 16783 15648 14764 16296 1122 14067 13836 14334
S12 45717 47209 45893 43470 39937 37376 40943 4554 34799 34507 36389
S13 12062 12731 11888 12057 11211 10369 11466 620 9687 9526 10137
S14 43674 46080 43068 42123 38350 35338 39170 4512 33594 31333 32701
S21 15396 17997 16772 10265 8404 7238 9166 996 13942 13274 7672
S22 47156 47865 46318 43899 40325 37467 41320 4577 34478 31758 37418
S31 12495 12859 12775 12350 11495 10619 11608 621 9890 9694 10863
S32 44827 47035 45123 42398 38932 36288 39362 4532 33435 33385 35556

6 Conclusion

In the present study, three processes with online standardized data were defined and for
which their a.s. convergence was proven.

A stochastic approximation method with standardized data appears to be
advantageous compared to a method with raw data. First, it is easier to choose the
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step-size. For processes S31 and S32 for example, the definition of a constant step-size
only requires knowing the number of parameters p. Secondly, the standardization
usually allows avoiding the phenomenon of numerical explosion often obtained in the
examples given with a classical method.

The use of all observations until the current step can reduce the influence of outliers
and increase the convergence rate of a process. Moreover, this approach is particularly
adapted to the case of a data stream.

Finally, among all processes tested on 11 different datasets (linear regression or
linear discriminant analysis), the best was a method using standardization, a constant

step-size equal to
1

p
and all observations until the current step, and the use of several

new observations at each step improved the convergence rate.
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Fig 1. Results obtained for dataset POLY using 10N and 100N observations:

A/ process C1 with variable step-size an =
1

(b+ n)
2
3

by varying b,

B/ process C1 with variable step-size an =

1
p

(b+ n)
2
3

by varying b,

C/ process S21 by varying constant step-size a.
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Fig 2. Results for a fixed total number of observations used: A/ change in the mean rank based on the
number of observations used, B/ boxplot of the mean rank by method.

Fig 3. Results for a fixed processing time: A/ change in the mean rank based on the processing time, B/
boxplot of the mean rank by method.
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