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1 Abstract

The present study addresses the problem of sequential least square multidimensional
linear regression, particularly in the case of a data stream, using a stochastic
approximation process. To avoid the phenomenon of numerical explosion which can be
encountered and to reduce the computing time in order to take into account a
maximum of arriving data, we propose using a process with online standardized data
instead of raw data and the use of several observations per step or all observations until
the current step. Herein, we define and study the almost sure convergence of three
processes with online standardized data: a classical process with a variable step-size and
use of a varying number of observations per step, an averaged process with a constant
step-size and use of a varying number of observations per step, and a process with a
variable or constant step-size and use of all observations until the current step. Their
convergence is obtained under more general assumptions than classical ones. These
processes are compared to classical processes on 11 datasets for a fixed total number of
observations used and thereafter for a fixed processing time. Analyses indicate that the
third-defined process typically yields the best results.

2 Introduction

In the present analysis, A’ denotes the transposed matrix of A while the abbreviation
7a.s.” signifies almost surely.

Let R = (Rl, ...,Rp) and S = (Sl, . Sq) be random vectors in RP and R?
respectively. Considering the least square multidimensional linear regression of .S with
respect to R: the (p,q) matrix 6 and the (g, 1) matrix n are estimated such that

E [HS —0'R— 77||2} is minimal.
Denote the covariance matrices
B = Covar[R]=FE[(R—E[R])(R-EI[R])],
F = Covar[R,S]=E[(R—E[R])(S-EI[S])].




If we assume B is positive definite, i.e. there is no affine relation between the
components of R, then

0=B"'Fn=E[S]-0E[R].

Note that, R; denoting the random vector in RP*! such that R} = (R' 1) , 01 the
(p+1,q) matrix such that 6] = (¢’ 7)), B; = E[R1R}] and Fy = E[R, 5] , we obtain
0, = By 'F.

In order to estimate 6 (or ), a stochastic approximation process (X,,) in RP*? (or
R(P+Xa) ig recursively defined such that

Xn+1 - Xn — an (Ban - Fn) 5

where (a,,) is a sequence of positive real numbers, eventually constant, called step-sizes
(or gains). Matrices B,, and F,, have the same dimensions as B and F, respectively.
The convergence of (X,,) towards 6 is studied under appropriate definitions and
assumptions on B,, and Fj,.

Suppose that ((Rin,S,),n > 1) is an i.i.d. sample of (Ry,S). In the case where
q=1, B, = R, R}, and F,, = Ry,S),, several studies have been devoted to this
stochastic gradient process (see for example Monnez [1], Ljung [2| and references
hereafter). In order to accelerate general stochastic approximation procedures,

Polyak |3] and Polyak and Juditsky [4] introduced the averaging technique. In the case
of linear regression, Gyorfi and Walk [5] studied an averaged stochastic approximation
process with a constant step-size. With the same type of process, Bach and Moulines [6]
proved that the optimal convergence rate is achieved without strong convexity
assumption on the loss function.

However, this type of process may be subject to the risk of numerical explosion when
components of R or S exhibit great variances and may have very high values. For
datasets used as test sets by Bach and Moulines [6], all sample points whose norm of R
is fivefold greater than the average norm are removed. Moreover, generally only one
observation of (R, S) is introduced at each step of the process. This may be not
convenient for a large amount of data generated by a data stream for example.

Two modifications of this type of process are thus proposed in this article.

The first change in order to avoid numerical explosion is the use of standardized, i.e.
of zero mean and unit variance, components of R and S. In fact, the expectation and
the variance of the components are usually unknown and will be estimated online.

The parameter 6 can be computed from the standardized components as follows. Let
o7 the standard deviation of R7 for j = 1,...,p and of the standard deviation of S* for
k =1,...,q. Define the following matrices

1
L0 o 0
P=|[: -~ .=
0o --- chp o --- Uilq
1

Let S. =T (S — E[S]) and R. =T (R — E[R]). The least square linear regression of
S. with respect to R, is achieved by estimating the (p, ¢) matrix 6. such that
1

2
E U Se—0.R. } is minimal. Then . =" (B™'F)I'" & 6§ =B 'F =T6. (') .

The second change is to use, at each step of the process, several observations of
(R, S) or an estimation of B and F' computed recursively from all observations until the
current step without storing them.

More precisely, the convergence of three processes with online standardized data is
studied in sections 3, 4, 5 respectively.




First, in section 3, a process with a variable step-size a,, and use of several online
standardized observations at each step is studied; note that the number of observations
at each step may vary with n.

Secondly, in section 4, an averaged process with a constant step-size and use of a
varying number of online standardized observations at each step is studied.

Thirdly, in section 5, a process with a constant or variable step-size and use of all
online standardized observations until the current step to estimate B and F' is studied.

These three processes are tested on several datasets when ¢ = 1, S being a
continuous or binary variable, and compared to existing processes in section 6. Note
that when S is a binary variable, linear regression is equivalent to a linear discriminant
analysis. It appears that the third-defined process most often yields the best results for
the same number of observations used or for the same duration of computing time used.

These processes belong to the family of stochastic gradient processes and are adapted to
data streams. Batch gradient and stochastic gradient methods are presented and
compared in [7] and reviewed in [8], including noise reduction methods, like dynamic
sample sizes methods, stochastic variance reduced gradient (also studied in [9]),
second-order methods, ADAGRAD [10] and other methods. This work makes the
following contributions to the variance reduction methods:

e In [9], the authors proposed a modification of the classical stochastic gradient
algorithm to reduce directly the gradient of the function to be optimized in order
to obtain a faster convergence. It is proposed in this article to reduce this gradient
by an online standardization of the data.

o If the expectation and the variance of the components of R and S were known,
standardization of these variables could be made directly and convergence of the
processes obtained using existing theorems. But these moments are unknown in
the case of a data stream and are estimated online in this study. Thus the
assumptions of the theorems of almost sure (a.s.) convergence of the processes
studied in sections 3 and 4 and the corresponding proofs are more general than
the classical ones in the linear regression case [1-5].

e The process defined in section 5 is not a classical batch method. Indeed in this
type of method (gradient descent), the whole set of data is known a priori and is
used at each step of the process. In the present study, new data are supposed to
arrive at each step, as in a data stream, and are added to the preceding set of
data, thus reducing by averaging the variance. This process can be considered as a
dynamic batch method.

e A suitable choice of step-size is often crucial for obtaining good performance of a
stochastic gradient process. If the step-size is too small, the convergence will be
slower. Conversely, if the step-size is too large, a numerical explosion may occur
during the first iterations. Following [6], a very simple choice of the step-size is
proposed for the methods with a constant step-size.

As a whole the major contributions of this work are to reduce gradient variance by
online standardization of the data or use of a ”dynamic” batch process, to avoid
numerical explosions, to reduce computing time and consequently to better adapt the
stochastic approximation processes used to the case of a data stream.

3 Convergence of a process with a variable step-size

Let (Bp,n > 1) and (F,,n > 1) be two sequences of random matrices in RP*? and
RP*4? respectively. In this section, the convergence of the process (X,,n > 1) in RP*?
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recursively defined by
Xn+1 = Xn — an (Ban - Fn)

and its application to sequential linear regression are studied.

3.1 Theorem

Let X; be a random variable in RP*? independent from the sequence of random
variables ((By, F,),n > 1) in RPXP x RPX4,

Denote T;, the o-field generated by X; and (B, F1), ..., (Bn—1, Frn—1).
X1, Xo, ..., X,, are T,-measurable.

Let (a,,) be a sequence of positive numbers.

Make the following assumptions:

(Hla) There exists a positive definite symmetrical matrix B such that a.s.

o0
1) Zan ||E[Bn|Tn] - BH < oo
n=1

2) S a2E [||Bn ~ B|? \Tn} < .
n=1
(H2a) There exists a matrix F' such that a.s.

1) " an ||E[Fo|T,] — F|| < o0
n=1

2) Y o2E [||Fn — F|? |Tn] < .

n=1

oo
(H3a) Z ap = 00,
n=1

aQ’n < 0.
1

Theorem 1 Suppose Hia, H2a and H3a hold. Then X,, converges to # = B™'F a.s.
State the Robbins-Siegmund lemma [11] used in the proof.

Lemma 2 Let (2, A, P) be a probability space and (T,,) a non-decreasing sequence of
sub-o-fields of A. Suppose for all n, z,, cun, B and v, are four integrable non-negative
T,,-measurable random variables defined on (2, A, P) such that:

Elzpi1|Th] <zn(l+apn) +Bn—7n a.s.

oo oo
Then, in the set {Z ay < 00, Z Bn < oo}, (zn) converges to a finite random

n=1 n=1
oo
variable and E Yn < 0O @.S.
n=1

Proof of Theorem 1. The Frobenius norm || A|| for a matrix A is used. Recall that, if
|A|l, denotes the spectral norm of A, ||AB|| < || 4], [|B]|-

Xpp1—0 = Xp—0—ap(BuXn—F)
(I — anB) (Xn —0) — an (Bn — B) Xn — (F), — F))

Denote
Zn=B,-B)X,—-(F,—-F)=(B,—-B)(X,—0)+ (B,—B)0 — (F, — F) and
X! =X, — 6. Then:

X} = (I—aB)X,) —anZy
X017 = (T = anB) X2 = 2a0((T = anB) X2, Z,) + a2 || Za|*.




Denote A the smallest eigenvalue of B. As a,, — 0, we have for n sufficiently large
Il —anBll2=1—apA < 1.

Then, taking the conditional expectation with respect to T, yields almost surely:

2 2
BlIXhal* 1] < (= au)? [ X2 + 20a/((0 = 0uB) X}, B 1Z0|To])| +
a2B (12|12
E[Z,|T,] = (E[Bu|Tn] - B) X, + (E[B,|T,]— B)0 — (E[F,|T,] - F).
Denoting
Bn = |E[Bn|Tn] — Bll,6n = [|E[Fa|Ta] — F|,
bo = E||By—BI’IT] du = E[I1F - FIP T,

we obtain, as HX}LH <1+ HX71LH2 :

(I = a,B) X2 E(ZoT))| < || XY IE [Za]T0]]
X% (Bo (1+ 161]) + 60) + Bn |6]] + 6,
EZaP 1] < 3o [ X2 + 30, 101 + 3dn,

IN

IA

E [HX}M I |Tn} (14222 + 2 (1 + [|6]]) anBn + 20,6, + 3a2b,) || X2 || +

2101l @B + 2000 + 3 [10]1% a2by + 3a2dy, — 200\ || X1

Applying Robbins-Siegmund lemma under assumptions Hla, H2a and H3a implies that
there exists a non-negative random variable T such that a.s.

o0
[5G — 7.3 an 1G] < oo

n=1

o0
ASZan:oo,T:Oa.s. |
n=1
A particular case with the following assumptions is now studied.

(H1a’) There exist a positive definite symmetrical matrix B and a positive real

number b such that a.s.
1) for all n, E[B,|T,] = B

2) sup E [||Bn - B|? |Tn] <b.

(HQ;L’) There exist a matrix F' and a positive real number d such that a.s.
1) for all n, E[F,|T,)=F

2) sup E [||Fn _F|? |Tn} <d.

(H?)Z;L’) Denoting A the smallest eigenvalue of B,

= — >0*1< <1 = — >71
n — o’ 72 r n = ? 2 :
[¢ a (0% [©) [¢ a by

Theorem 3 Suppose Hla’, H2a’ and H3a’ hold. Then X, converges to 6 almost surely

and in quadratic mean. Moreover lim - F [||Xn - 9||2} < 00.




Proof of Theorem 3. In the proof of theorem 1, take 3, =0, 6, =0, b, <b, d, <d;
then a.s.:

B ([ Xh i ])* 1Ta] < (14 A%2 + 30a2) | X2]* + 3 (11617 + ) a2 — 20,7 | X2
Taking the mathematical expectation yields:
B {[X5al’] < (0+ (2 +36) a2) B [|IX4]7] +3 (01017 + d) a2 — 20,08 [||X4]] -

By Robbins-Siegmund lemma:

20 || x] —>t;§:anE [[13]%] < oo
n=1

As Z an, = o0, t = 0. Therefore, there exist N € N and f > 0 such that for n > N:

n=1

B (1% )] < (1~ 200 B [ X3]7] + fa2.
Applying a lemma of Schmetterer [12] for a,, = 1% with % < a < 1 yields:
T n® B [[|X4*] < oc.

1
Applying a lemma of Venter [13| for a,, = ¢ With a > ) yields:
n

TmnE [[[X1]°] <oom

3.2 Application to linear regression with online standardized
data

Let (Ry1,51) .., (Rny Sn), ... be an i.i.d. sample of a random vector (R, S) in RP x R,
Let T' (respectively T'!) be the diagonal matrix of order p (respectively q) of the inverses
of the standard deviations of the components of R (respectively 5).

Define the correlation matrices

B=TE[(R-E|[R])(R -

[R])]T,
F=TE[(R-EIR])(S - !

[T
Suppose that B~! exists. Let § = B~'F.

Denote R, (respectively S,,) the mean of the n-sample (R1, Ry, ..., R,,) of R

(respectively (S1,Sa, ..., Sp) of S).
Denote (V,{')2 the variance of the n-sample (R{, R%, e Rj) of the j** component

n

RJ of R, and (ank)2 the variance of the n-sample (Sf, Sk, Sﬁ) of the k' component
Sk of S.

Denote I',, (respectively I'!) the diagonal matrix of order p (respectively ¢) whose

element (7, j) (respectively (k, k)) is the inverse of \/TlVTf (respectively
n—

n 1k
V' n— 1V" )




Let (my,,n > 1) be a sequence of integers. Denote M,, = ka forn>1, My=0
k=1
and I, = {My_1 + 1, ..., M, }.
Define
= = ’
Bn = 1—‘Mn71 %ﬂ Zje[n (RJ - RM7L71) (RJ - RMn—l) FMn—l’

— = ’
F, = FMnflan Z]‘eln (Rj - RMn—l) (Sj - SMn—l) F}Mn—l'
Define recursively the process (X,,,n > 1) in RP*? by
Xnt1 =X —an (BpXn — Fn).

Corollary 4 Suppose there is no affine relation between the components of R and the
moments of order 4 of (R,S) exist. Suppose moreover that assumption H3a” holds:
o0 (o]

a"l
(H3a”) an, >O,Z <oo,Zafl < 00.
n=1 \/ﬁ n=1

Then X, converg@s to 6 a.s.

This process was tested on several datasets and some results are given in section 6
(process S11 for m,, = 1 and S12 for m,, = 10).
The following lemma is first proved.

(o]
Lemma 5 Suppose the moments of order 4 of R exist and a,, > 0, Z a\/—", < 0. Then
n
n=1

& oo
> an | R, — E[R]|| <00 and Y an[|[Tar,, =T < o0 a.s.
n=1

n=1

Proof of Lemma 5. The usual Euclidean norm for vectors and the spectral norm for
matrices are used in the proof.
Step 1:

Denote Var [R] = E [||R - B [R]ﬁ =Y Vvar[R].

_ P B Var [RI
(IR - 2] = Yver[m, ] =3 gn[_l] o Vorls)
J= j=

Then:

ank [HR et — E[R]H] < /Var[R] In__ < by H3a”.

n—1

o)
It follows that Z an ||Ro,_, — E[R]|| < o0 aus.

n=1

Likewise Zan |Sa,_, — E[S]| < o0 as.

n=1




Step 2:

HFan_FH = max
Lp

Mn_1 _y/i \/Var [R7]
\ My_i—1 "M,y
\,/ ”fn;llw  — Var[RT]
1\4”n111 M, \/V‘W [17]

i1 (VA-”M)2 ~ Var [R7]

NE

.
Il
A

p
N Z My,

J=1A/ M, -1

VJ 1\/V‘”“[Rj]( Nﬁfwlllvj + Var[Rj]).

Denote ,ui the centered moment of order 4 of R?. We have :
M, , 2
] \/Var |:Mn—1 — (VJ{%A) ]

_ ph — (Var [RI))
- o {EEZEE)

IN

HMn 1 Vlﬁf ) — Var [R’]

Then by H3a”, as M,,_1 >n — 1:

En;EHMnll ) —Var[RJ]]<oo

) 2 _
As (V]& ) — Var [RJ] a.s., j = 1,...,p, this implies :

n—1

o0
> an Ty, , —T|| <ocasH

n=1

Proof of Corollary 4.
Step 1: prove that assumption Hlal of theorem 1 is verified.

Denote R° = R — E[R|, RS = R; — E[R|, RS = R; — E[R).

1 c nC c nC !
Bn = FMn—lmi Z (R_] - 1\/In71) (R] - Mn71> FMn—l
" jel,
1 Cc pC D c (D ! e nDC !
= F]\/['n.—lmi Z (RJR]/ _ R(MnflR;/ — R] (ngn—l) + RMn—l (RMnfl) ) F]\lnfl-
" jel,
B = TE[R°R|T
As Tz, , and RMnfl are T,,-measurable and Rf, j € I, is independent of T,,, with
E[R§] =0
_ _ /
E[BuT.] - B = T, <E [R°R] + RS, . (wan_l) > Ta, ., —TE[R°RY]T

= (Mo ) B[R Oy 4 B[R] (0

/
neC DC .
+ln, Ry, (RMH,J Ing,_, as.

_1")

My 1




As Ty, _, and RS, _, converge respectively to I' and 0 a.s. and by lemma 5,

Zan ||FMn L= FH < oo and Zan

n 1

Zan |E [B,|T,] — B|| < 0o a.s.

Rc ., it follows that

Step 2: prove that assumption Hla2 of theorem 1 is verified.

1 o
1B = BI* < 2||Tas,, (Rs = Rsr, ) (RS = Rin,,) s
" jeln
+2|TE [R°RY] T
1 4
< 2|Tas|I* ZHRC ri, | +2||rE [ReR 1)
]Eln
<

4 , 9
) +2||TE [R°R] T||".

1 c DC
20 o 32 ()
" jel,

B1B, - BIPT) < 2w (B 1)+ R,

4) L 2|PE [RR T as.

oo
As Ty, _, and R§; | converge respectively to I' and 0 a.s., and Z a2 < oo, it follows

n=1
that ZanE [||B” _ B|P |Tn] <0 as.

Step 3: the proofs of the verification of assumptions H2al and H2a2 of theorem 1 are
similar to the previous ones, B,, and B being respectively replaced by

F, = Tu, 1— S (RS- A5, ) (S5 -85, Thi, e

jen

F = TE[RS]I'm

4 Convergence of an averaged process with a
constant step-size

In this section, the process (X,,n > 1) with a constant step-size a and the averaged
process (Y,,n > 1) in RP*? are recursively defined by

Xnt1 = Xu _a(Ban _Fn)
1 & 1
Y. = — X, =Y, -——Y,— X, .
+1 n+1 j:ZI 7 n+1 ( +1)

The a.s. convergence of (Y,,n > 1) and its application to sequential linear regression
are studied.
4.1 Lemma

Lemma 6 Let three real sequences (uy), (v,) and (ayn), with u, >0 and a, > 0 for all
n, and a real positive number X such that, forn > 1,

Unt1 < (1= ap)) un + anvy.




Suppose:
1) v, — 0

1 o0
2) (ana< )\> or <an*>0, ;anoo>.
Under assumptions 1 and 2, u,, — 0.

Proof of Lemma 6. In the case a,, depending on n, as a,, — 0, we can suppose without
loss of generality that 1 —a,A > 0 for n > 1. We have:

Upt1 < l_Il—aZ ul—i—ZaZH (1—aN) vl,wwhH—l

i=1 I=i+1 n+1

Now, for n; <ng <n and 0 < ¢; < 1 with ¢; = a; A for all ¢, we have:

no na n
> e H l-c) = > A-(1-a) [[ O-a)
i=n1 l=i+1 i=n1 l=i+1
no n n
= > ( 11 (1—cl)—H(1—cl)>
i=ni \l=i+1 =1
n n n
= I a-e)-JJ-a) < (I-ea)<1
l=ns+1 l=n l=ns+1

Let € > 0. There exists N such that for i > N, |v;| < %)\. Then for n > N, applying

the previous inequality with ¢; = a; A, n; = 1, no = N, yields:

Upy1 < H 1—a;\ ul—i—Zal H — ) |1;\2| % a;\ H (1 —aN)
i=1 i=1 l=i+1 =N+1  I=i+1

(1—ai)\)u1+f max_ |vs] H (I—aA)+ =

<
- A 1<
I=N+1

=

{\
Il
-

In the case n depending on n, In (1 — a;A) ~ —a;\ as a; — 0 (i — 00); then, as

Zan—oo H (1 —aq\) — 0(n — 00).

I=N+1
n

In the case a, = a, H (1—aX)=1-aN)" — 0(n — ) as
I=N+1
0<l—aX<1.
Thus there exists N7 such that u,+1 < e forn > N; B

4.2 Theorem

Make the following assumptions
(H1b) There exist a positive definite symmetrical matrix B in RP*P and a positive
real number b such that a.s.

) limy oo (B B[ To] = B) = 0
2y~ (B (12 BT - BI7])" <o

3) sup, B [| By - BI* |T,,] <.

(H2b) There exist a matrix F in RP*? and a positive real number d such that a.s.

10/27



1) lim, oo (B [F,|T] — F) =0
9) sup, [||Fn —F|? |Tn] <d.
(H3b) A\ and Ay,q. being respectively the smallest and the largest eigenvalue of B,

0<a< i 1 2\
min
“ Az’ N2+ b

Theorem 7 Suppose Hi1b, H2b and HSb hold. Then Y, converges to ® = B~'F a.s.

Remark 1 Gyorfi and Walk [5] proved that Y, converges to 0 a.s. and in quadratic
mean under the assumptions E [B,|T,,)] = B, E [F,|T,,] = F, H1b2 and H2b2. Theorem
7 is an extension of their a.s. convergence result when E[By|T,] — B and

E[F,|T,] — F a.s.

R
1
an i.i.d. sample of (R1,S) whose moments of order 4 exist, assumptions H1b and H2b
are verified for B, = R1,R},, and F,, = R1,S], as E [R1,R},,|Ty] = E[R1R}] = B and
E[R1,S,|T,] = F.

Remark 2 Define R; = , B=F[RR]], F=FE[RS]. If (Rin,Sn),n>1) is

Proof of Theorem 7. Denote

Zn = (Bn_B)(Xn_9)+(Bn_B)e_(Fn_F)a
X} = X,-0,
1 n
1 _ 1
v = Yn—a_ﬁzlxj.
iz

Step 1: give a sufficient condition to have Y, — 0 a.s.
We have (cf. proof of theorem 1):

X}, = (I—-aB)X\—aZy,,
1 n+1
Y, = X;
n+1 TL+1 1 +1Z
1 1 n+1 1 n+1
- X1 I—aB)X! , — 7
n+1 1+n+1z( aB) i—1 an+1z i-1
j=2 j=2
1 n n
= X1 I—aB)Y! - Z:.
n+1 1+n—|—1( aB)Y, an+1= J

Take now the Frobenius norm of Y,!

Youll = (I —aB) Y, || +a )~

z: n—|—1a 11

Under H3b, all the eigenvalues of I — aB are positive and the spectral norm of
I —aB isequal to 1 —aX. Then :

n

Z n+1a 1

Yol < @=aN[¥a][+a)-

11/27



1 n
By lemma 6, it suffices to prove — Z Z; — 0 a.s. to conclude Y, — 0 a.s.
n = L
Step 2: prove that assumptions Hlb and H2b imply respectively - Z B; — B and
j=1

%iFj — F a.s.

j=1
The proof is only given for (B,,), the other one being similar.

Assumption H1b3 implies sup,, {HBn - BHQ} < o0. It follows that, for each

e \% Bkl _ Bkl
element B* and B* of B,, and B respectively, Z %

n=1

< 00. Therefore:
n

% > (B} = BM - E[B}' - BMT;]) — 0 as.
j=1

As E [Bj’-“l — B¥|T;] — 0 a.s. by H1bl, we have for each (k,!)

1 n
fz Bkl Bkl — 0 a.s.
i=1

3

1 n
Then — B; — B 0 a.s.
ennZ(j ) —0as

J=1
n

1 1
Step 3: prove now that - z; (Bj —B)Xj — 0 as.
]:
Denote 8, = |F [Bn|Tn] — B|| and v,, = | E [Fr|Tn] — F||. B — 0 and v, — 0
a.s. under H1b1 and H2b1l. Then: V§ > 0, Ve > 0, AN (4,¢): Vn > N (4,¢),

P ({supjon(8;) < 8}V {supjon(3)) < 6}) > 1 <.

2
Asa < SO choose 7 such that:

0<n<2<?(x2+b)> SA> - ()\2+b+77b)

Choose § such that

1 G\ o
0<6< (1_a/\)(”9‘|+2)<)\—5(>\ +b+b)).

Let ¢ be fixed. Denote Ny = N (4,¢) and, for n > Ny,

G = ({fof<n (B) < 5} N {fo}ln () < 6}) ,
({]iupo (B) < } M {js;ljgo (1) < 5}) - nQ G

Remark that G,, is T),,-measurable and, /5 denoting the indicator of G,

G

GCGnJrlCG s Ig <lIg <lIg .

n

n+l —
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Step 3a: prove that sup,, F {||X1||QIG } < o0.

X i T < X5 Ta, = (T = aB) X} Ig, — aZuIe, ||
< |[(I —aB)X}Iq, H —2a((I —aB) X}, Zula,) + a® | Zalc, | .

As the spectral norm ||I — aB|| = 1 — a), taking the conditional expectation with
respect to T, yields a.s.

X0l oun 7] < (1 ad? X}, I 20 (( — aB) X}g,, B 1Z,[Ta] Ic,)
+a*E || Zula, |I” 1)
Now:
|B(ZalT) I, ]| = |(E [Ba|Ta] = B) Xila, + (B[BaT] - B) I,
~ (B[FulT] - F)Ia,|
< (Il +1)

E(|Zla, P IT.] < (14 B [|(B. - B) Xia, | T2

1
+ (1 + n) E [|(B. = B)blg, — (Fu — F) Ia,|* T

< (1+m)b|| Xt | +2<1+ )(b||9|| +d)
Therefore:
Bl X0l ToanlTn] < (=00 +20(0=ad) 0+ a* (1 +m)b) | X2, |
+ 2a(1—aX) s ([0 +1) || X} e, ||
1
+ 22(1+) bl|0]> +d) .
@ (1) (o160 +a)

As || Xple, || <1+ || X} e, H2, taking mathematical expectation yields:
E|xhl fo,] < 0B
p = (1—aN?+2a(1—a))d (6] +2)+a>(1+n)b,
1
e = 2a(1—a)\)d(]|0] +1)+ 24> (1 + 77) (b 101> + d) .

IN

2
n :|+€?

Asp=1+2a ((1 —aX) (0] +2)6 -+ - ()\2 + b—i—nb)) < 1 by the choice of ¢,

this implies g = sup,, E [HX}LH IGW} < .

Step 3b: conclusion.

E [||(Bn ~B) X}LIGTLHQ} - E [E [H(Bn ~ B)X}Ig, | |TnH
< E[E[IB, - B ITu] | X}a, ||
< bg.

© F {H(Bn - B) XrlzIGn HQ}
Then: Z 2 < 00. Therefore a.s.:
n=1
1 n
- ((Bj — B) Xjlg, — E[(B; — B) X I, |T;]) — 0.
=1
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Now:

o0

1 1 L
Z_jlg E[B,|T,) - B) X;1c,||] < X_j; (12 [B.IT.) - Bl | X e, ]
<54 (e lmimi o)) (s e )
e 1
<g? nz::l % (E {HE [B|T,] — B||2D * < o0 by H1b2.
Then:

1
> = (B [BIT:] - B) Xy e, || < o as.

n=1

This implies by the Kronecker lemma:
= Z [B;|T;] — B) X} I, — 0 a.s.
Therefore:

17’L

Z (B;j — B) X[Ig, — 0 as.
n

Jj=1

1 n
In G, Ig, = 1 for all j, therefore — Z (B — B)Xj1 — 0 a.s. Then:
n

Jj=1

1
P fZ(Bj —B)X; — 0| > P(G)>1—e¢. This is true for every £ > 0. Thus:
n-

1 n
EZ(Bj —B)X} — 0 as.
j=1

1 n
Therefore by step 2 and step 1, we conclude that — Z Z; — 0 and Yn1 —0a.s. N
n
=1

4.3 Application to linear regression with online standardized

data
Define as in section 3:
1 _ _
B, = FMn_lmfn ; (Rj = Rar,_,) (R; — R, ) Tty
JEIn
1 _ _
F, = I‘Mﬂ,—lnnT Z (Rj - RMn—l) (Sj - SMn—l),FZlVIn—l'
" jel,

Denote U = (R — E[R]) (R — E[R])’, B=TE[U]T the correlation matrix of R, A and
Amaz Tespectively the smallest and the largest eigenvalue of B, by = F “\FUF — B||2
F=TE[(R-EI[R)(S—-E[S])]T.
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Corollary 8 Suppose there is no affine relation between the components of R and the
moments of order 4 of (R, S) exist. Suppose H3b1 holds:
1 2A
H3b1
(H3b )0<a<mm<)\maz 2 erl)
Then Y, converges to § = B™'F a.s.

This process was tested on several datasets and some results are given in section 6
(process S21 for m,, = 1 and S22 for m,, = 10).

Proof of Corollary 8.

Step 1: introduction.

Using the decomposition of E[B,|T,] — B established in the proof of corollary 4, as
Ryr,_, — E[R] and I'yy, _, — I a.s., it is obvious that E [B,|T,,] — B — 0 a.s.
Likewise E [F},|T,,] — F — 0 a.s. Thus assumptions H1b1l and H2b1 are verified.

Suppose that Y,, does not converge to 6 almost surely.

Then there exists a set of probability €; > 0 in which Y,, does not converge to 6.

Denote o7 = \/W, i=1..p
—E[R —0 Mt vy i 0 =1, pand
"N M, -1 Mea ’ T
[ar,_, =T — 0 almost surely, there exists a set G of probability greater than 1 — - in
which these sequences of random variables converge uniformly to 6.

As RM

n—1

Step 2: prove that Z BTy, , —T[|1a])? < o.

By step 2 of the proof of lemma 5, we have for n > N:
2
Mn_1 j i\ 2
M, _1—1 (Vl\j4n—1> - (O—j)

FM,,L, -Tllec < Z ' -
W =tlle < e Javiy, 4 o)

p

Ic.

M, ; ,
As in G, ﬁVXh_l converges uniformly to o7 for j =1, ..., p, there exists
n—1 —
¢ > 0 such that
P i 9 e
||FMW,71 *FHIG < Z Mo -1 ( M, 1) - (‘7 )

Then there exists d > 0 such that

Bty ~Tllfe] <~ < o

Therefore Z ’FM,L L FH Ig])% < 00.

Step 3: prove that assumption H1b2 is verified in G.
Using the decomposition of F'[B,|T,] — B given in step 1 of the proof of corollary 4,
with R® = R — E'[R] and Ry, | = Ry, , — E[R] yields a.s.:

(E[B,|T,) - B)Ie¢ = ((Tm,_,—T)E[RR’|Tm, , +TE[RR”] (Tp,_, —T)
_ _ /
+Tat R, (RSr,_ ) Tar) o

Asin G, Ty, , —T and R, | converge uniformly to 0, E [B,|T,] — B converges
uniformly to 0. Moreover there exists ¢; > 0 such that
) a.s.

n—1

IE[BulTa] — BllIc < @ (||FMH — 1| I + HR;’M
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By the proof of lemma 5: E [Hﬁ’jwn_l

el

] < (Var [R]) - then
n—1

]>§<oo-

oo

Then:Z%me[Bn\T] Bl Ia))* < oc.

As E [B;|Tn] — B converges uniformly to 0 on G, we obtain:

1

> L (BB 1Bn - B 1)) <

n=1
Thus assumption H1b2 is verified in G.
Step 4: prove that assumption H1b3 is verified in G.
Denote R° = R— E[R], R; = R; — E[R], RS = R; — E[R] . Consider the
decomposition:

1 c nC c nC !
Bu=B = Ta o> (RS- Ry, ,) (B~ R,y ) Do

JEL,

~T'E [R°RY|T
= ap+Bn
I D, ! D ! D, D !
with ap, = T 17 3 <R§R;’ — Ry, R - RS (RS, ) + Rap, (Rir, ) )FMM

" jeln

frf Z RSRS'T

]eln
c pc! c pe!
= (Ta, , — o Z RSRY | Ty, +T Z RSRS" | (TCar,_, — 1)
JjEIn " jel,
nDC 1 C c
_]-—‘Mn—lRI\/fn_lmin ; R{Twn,_, —Tu,_, ; RS (RMW 1) U,y
J n ] n

/
nC nC
+m, Ry, ( M,,L,l) Ty, ys

5. = U= ReRY - E[RR T
" jel,

Let n > 0.

BBy~ BIP 16T = B|llow + Bul* I6| T

1
(1 + n) E {llal® 6|, |

+ (1) E (I8 IeIT] as.

IN

As random variables R, j € I, are independent of T5,, as Iy, , and R?\LL,I are

n—1

T,-measurable and converge uniformly respectively to I and 0 on G, E [||0<"||2 Ig|Tn}
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converges uniformly to 0. Then, for § > 0, there exists N; such that for n > Ny,
E [||Oén||21G|Tn] <4 as.

Moreover, denoting U = R°R¢" and U; = R;R;’, we have, as the random variables
U; form an i.i.d. sample of U:

2

ElisPim] = Bl Y rw - Eu)r| In,
" jel,
< E [||F(U B [U])rﬂ —F [||FUF _E [FUI‘]||2] = b, as.
Then:

1
E[||Bn—B||21G|Tn} < <1+n)5+(1—|—n)b1:ba.s.

Thus assumption H1b3 is verified in G.
As Sy, —E[S] — 0and T},  —T"' — 0 almost surely, it can be proved

n—1

likewise that there exist a set H of probability greater than 1 — 8—21 and d > 0 such that

E [||Fn — F||2 IH\Tn} < d a.s. Thus assumption H2b2 is verified in H.
Step 5: conclusion.

1 2 2
Asa<min< A ),b1<a>\—/\2.

)\mam’)\2+b1

22 2 22 2

2 2N —(1+n)b

Choose 0 < n < 2 —land0<d< 2 (1 ) b such that
bl 1+E
1 2 2\

b=14+-]d4+(1 b AR ¢ —_—.

<+n> +(+n)1<a <:>a<)\2+b

Thus assumption H3b is verified.

Applying theorem 7 implies that Y,, converges to # almost surely in H N G.
Therefore P (Y, — 0) > P(HNG) > 1 —¢;.

This is in contradiction with P (Y;, - 0) = £;. Thus Y,, converges to 6 a.s. B

5 Convergence of a process with a variable or
constant step-size and use of all observations until
the current step

In this section, the convergence of the process (X,,,n > 1) in RP*? recursively defined by
Xn+1 = Xn — ap (Ban - Fn)

and its application to sequential linear regression are studied.

5.1 Theorem

Make the following assumptions
(Hlc) There exists a positive definite symmetrical matrix B such that B,, — B a.s.
(H2c¢) There exists a matrix F' such that F,, — F' a.s.
(H3c¢) Apmaz denoting the largest eigenvalue of B,

1 oo
(an:a<)\ )or (an—>0,2an:oo>.

max n=1
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Theorem 9 Suppose Hic, H2c and H3c hold. Then X,, converges to B~'F a.s.

Proof of Theorem 9.
Denote § = B~'F, X! = X,, — 0, Z,, = (B, — B)0 — (F,, — F). Then:
X} = —anBy) X, — anZn.

n

Let w be fixed belonging to the intersection of the convergence sets {B,, — B} and
{F,, — F'}. The writing of w is omitted in the following.

Denote ||A|| the spectral norm of a matrix A and A the smallest eigenvalue of B.

In the case a,, depending on n, as a,, — 0, we can suppose without loss of

generality a,, < for all n. Then all the eigenvalues of I — a,, B are positive and

max

Il —anB||=1-apA.
Let 0 <e < A. As B, — B — 0, we obtain for n sufficiently large:

[ —anByl < |1 —anB| +an|Bn,— B

IN

1—a, A+ aye , with a,, < P

IN

1

As Z, — 0, applying lemma 6 yields ||X}l|| — 0.
Therefore X,, — B~ 'F a.s. &

(T=an A=) || Xp| + an [ Znll -

5.2 Application to linear regression with online standardized
data

n
Let (my,n > 1) be a sequence of integers. Denote M,, = ka forn > 1, My =0 and

k=1
Iny={M,_1+1,..,M,}.

Define
1 - / D, H/
i=1j€l;
1 « -
F, = Ty, E;;WQ-*RMHSM ISV
1=1jg¢ci;

As ((Rpn, Sn),n > 1) is an i.i.d. sample of (R, S), assumptions Hlc and H2c are
obviously verified with B =TE [(R— E[R]) (R — E[R])'] T and
F=TE[(R—EIR])(S—E[S])|T*. Then:

Corollary 10 Suppose there is no affine relation between the components of R and the
moments of order 4 of (R, S) ewist. Suppose H3c holds. Then X, converges to B~'F
a.s.
Remark 3 B is the correlation matriz of R of dimension p. Then
1
Amaz < Trace (B) = p. In the case of a constant step-size a, it suffices to take a < — to
p
verify H3c.
This process was tested on several datasets and some results are given in section 6

(with a variable step-size: process S13 for m,, = 1 and S14 for m,, = 10 ; with a
constant step-size: process S31 for m,, = 1 and S32 for m,, = 10).
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6 Experiments

The three previously-defined processes of stochastic approximation with online
standardized data were compared with the classical stochastic approximation and
averaged stochastic approximation (or averaged stochastic gradient descent) processes
with constant step-size (denoted ASGD) studied in [5] and [6]. A description of the
methods along with abbreviations and parameters used is given in Table

Table 1. Description of the methods.

Number: of Use of all the
observations . Use of the
Method . L. Type of observations .
Abbreviation used . Step-size | averaged
type data until the
at each step current ste process
of the process p
C1 1
. 2 10 No .
Classic variable No
C3 Raw data L Yes
C4 10
Al 1
ASGD 5 i No constant Yes
gg 110 No
Standardization 1 313 i variable No
Online Yes
S14 . 10
o1 standardized i
Standardization 2 data No Yes
S22 10
331 1 constant
Standardization 3 39 10 Yes No

With the variable S set at dimension 1, 11 datasets were considered, some of which
are available in free access on the Internet, while others were derived from the
EPHESUS study [16]: 6 in regression (continuous dependent variable) and 5 in linear
discriminant analysis (binary dependent variable). All datasets used in our experiments
are presented in detail in Table [2| along with their download links. An a priori selection
of variables was performed on each dataset using a stepwise procedure based on Fisher’s
test with p-to-enter and p-to-remove fixed at 5 percent.

Let D = {(r4,s:),i=1,2,..., N} be the set of data in R? x R and assuming that it
represents the set of realizations of a random vector (R, S) uniformly distributed in D,

1
then minimizing E[(S — 6’ R — n)?] is equivalent to minimizing i Z (si —0'r; — 77)2‘

i=1

One element of D (or several according to the process) is randomly drawn at each step
to iterate the process.

To compare the methods, two different studies were performed: one by setting the
total number of observations used, the other by setting the computing time.

The choice of step-size, the initialization for each method and the convergence
criterion used are respectively presented and commented below.
Choice of step-size

In all methods of stochastic approximation, a suitable choice of step-size is often
crucial for obtaining good performance of the process. If the step-size is too small, the
convergence rate will be slower. Conversely, if the step-size is too large, a numerical
explosion phenomenon may occur during the first iterations.
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Table 2. Datasets used in our experiments.

Type of Number
Dataset name N | p, | p | dependent T? of

variable outliers
CADATA 20640 | 8 8 | Continuous | 1.6x10° 122 www.dcc.fc.up.pt/~ltorgo/Regression/DataSets.html
AILERONS 7154 | 40 | 9 | Continuous 247.1 0 www.dcc.fc.up.pt/~ltorgo/Regression/DataSets.html
ELEVATORS | 8752 | 18 | 10 | Continuous | 7.7x10% 0 www.dce.fc.up.pt/~ltorgo/Regression/DataSets.html
POLY 5000 | 48 | 12 | Continuous | 4.1x10% 0 www.dce.fc.up.pt/~ltorgo/Regression/DataSets.html
eGFR 21382 | 31 | 15 | Continuous | 2.9x10% 0 derived from EPHESUS study [16]
HEMG 21382 | 31 | 17 | Continuous | 6.0x10* 0 derived from EPHESUS study [16]
QUANTUM 50000 | 78 | 14 Binary 22.5 1068 www.osmot.cs.cornell.edu/kddcup
ADULT 45222 | 97 | 95 Binary 4.7x10%° 20 www.cs.toronto.edu/~delve/data/datasets.html
RINGNORM | 7400 | 20 | 20 Binary 52.8 0 www.cs.toronto.edu/~delve/data/datasets.html
TWONORM 7400 | 20 | 20 Binary 24.9 0 www.cs.toronto.edu/~delve/data/datasets.html
HOSPHF30D | 21382 | 32 | 15 Binary 8.1x10° 0 derived from EPHESUS study [16]

N denotes the size of global sample, p, the number of parameters available, p the number of parameters selected and T2 the
trace of E[RR']. Outlier is defined as an observation whose the L2 norm is greater than five times the average norm.

For the processes with a variable step-size (processes C1 to C4 and S11 to S14), we
chose to use a,, of the following type:

Cy
(b+n)*

(7% ==

2
The constant « = — was fixed, as suggested by Xu [17] in the case of stochastic

approximation in linear regression, and b = 1. The results obtained for the choice
1
cy = — are presented although the latter does not correspond to the best choice for a

classical method.
For the ASGD method (A1, A2), two different constant step-sizes a as used in [6]
were tested: a = - and a =

T2 T2 T? denoting the trace of E [RR']. Note that this

choice of constant step-size assumes knowing a priori the dataset and is not suitable for
a data stream.
For the methods with standardization and a constant step-size a (S21, S22, S31,

1
S32), a = — was chosen since the matrix E [RR'] is thus the correlation matrix of R,

whose trace is equal to p, such that this choice corresponds to that of [6].
Initialization of processes

All processes (X,,) were initialized by X; = 0, the null vector. For the processes
with standardization, a small number of observations (n = 1000) were taken into
account in order to calculate an initial estimate of the means and standard deviations.
Convergence criterion

The ”theoretical vector” 6! is assigned as that obtained by the least square method
in D such that 6! = (0" n). Let ©L; be the estimator of §' obtained by stochastic
approximation after n iterations.

In the case of a process (X,,) with standardized data, which yields an estimation of

the vector denoted 6. in section 2 as 6 = ', (Fl)_1 and n = E[S] — 0'E [R], we can
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define:

@;’_"_1/ = (9,/”4',1 Hn+1)
with @n+1 = FMan—ﬁ-l(F}\ln)il
H,yw = gMn - ®;+1RM71'

To judge the convergence of the method, the cosine of the angle formed by exact #' and
its estimation 6, ; was used as criterion,

1/p1
9 9n+1

~0M, ([T,

16" = Oniall,  S(Oh0) — £(6Y)
161, f(607)

were also tested, although the results are not presented in this article.

cos (01, 9711+1)

, [ being the loss function,

Other criteria, such as

6.1 Study for a fixed total number of observations used

For all N observations used by the algorithm (N being the size of D) up to a maximum
of 100N observations, the criterion value associated with each method and for each
dataset was recorded. The results obtained after using 10V observations are provided in

Table Bl
Table 3. Results after using 10N observations.
0 E = E > g

< Z 2 2 c | &5 | & || g

= S > 3 ~ z S T g

< = N > o 2 Z = U A & o

A E B e R = < =) z o 7] 3

< — - o &) €3 -} a = ? o Qv

&) < = & =) s o < & H e =
C1 Expl. | -0.0385 | Expl. Expl. Expl. Expl. | 0.9252 | Expl. 0.9998 | 1.0000 | Expl. 11.6
C2 Expl. 0.0680 | Expl. | Expl. | Expl. | Expl. | 0.8551 | Expl. | 0.9976 | 0.9996 | Expl. 12.2
C3 Expl. 0.0223 | Expl. Expl. Expl. Expl. | 0.9262 | Expl. | 0.9999 | 1.0000 | Expl. 9.9
C4 Expl. | -0.0100 | Expl. | Expl. | Expl. | Expl. | 0.8575 | Expl. | 0.9981 | 0.9996 | Expl. 12.3
A1l | -0.0013 | 0.4174 | 0.0005 | 0.3361 | 0.2786 | 0.2005 | Expl. | 0.0027 | 0.9998 | 1.0000 | 0.0264 || 9.2
A2 | 0.0039 | 0.2526 | 0.0004 | 0.1875 | 0.2375 | 0.1846 | 0.0000 | 0.0022 | 0.9999 | 1.0000 | 0.2047 || 8.8
S11 | 1.0000 | 0.9516 | 0.9298 | 1.0000 | 1.0000 | 0.9996 | 0.9999 | 0.7599 | 0.9999 | 1.0000 | 0.7723 || 5.2
S12 | 0.9999 | 0.9579 | 0.9311 | 1.0000 | 0.9999 | 0.9994 | 0.9991 | 0.6842 | 0.9999 | 1.0000 | 0.4566 || 6.1
S13 | 1.0000 | 0.9802 | 0.9306 | 1.0000 | 1.0000 | 0.9998 | 1.0000 | 0.7142 | 0.9999 | 1.0000 | 0.7754 || 3.7
S14 | 0.9999 | 0.9732 | 0.9303 | 1.0000 | 0.9999 | 0.9994 | 0.9991 | 0.6225 | 0.9998 | 1.0000 | 0.4551 6.9
S21 | 0.9993 | 0.6261 | 0.9935 | Expl. | Expl. | Expl. | Expl. Expl. | 0.9998 | 1.0000 | Expl. 10.5
S22 | 1.0000 | 0.9977 | 0.9900 | 1.0000 | 1.0000 | 0.9989 | 0.9999 | -0.0094 | 0.9999 | 1.0000 | 0.9454 || 4.1
S31 | 1.0000 | 0.9988 | 0.9999 | 1.0000 | 1.0000 | 0.9992 | 0.9999 | 0.9907 | 0.9999 | 1.0000 | 0.9788 || 2.3
S32 | 1.0000 | 0.9991 | 0.9998 | 1.0000 | 1.0000 | 0.9992 | 0.9999 | 0.9867 | 0.9999 | 1.0000 | 0.9806 || 2.2

Expl. means numerical explosion.

As can be seen in Table [3] a numerical explosion occured in most datasets using the

classical methods with raw data and a variable step-size (C1 to C4). As noted in

Table [2| these datasets had a high T2 = Tr (E [RR']). Corresponding methods S11 to

S14 using the same variable step-size but with online standardized data quickly
converged in most cases. However classical methods with raw data can yield good
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results for a suitable choice of step-size, as demonstrated by the results obtained for
POLY dataset in Fig[l] The numerical explosion can arise from a too high step-size
when n is small. This phenomenon can be avoided if the step-size is reduced, although
if the latter is too small, the convergence rate will be slowed. Hence, the right balance
must be found between step-size and convergence rate. Furthermore, the choice of this
step-size generally depends on the dataset which is not known a priori in the case of a
data stream. In conclusion, methods with standardized data appear to be more robust
to the choice of step-size.

1 1
The ASGD method (Al with constant step-size a = T2 and A2 with a = ﬁ) did

not yield good results except for the RINGNORM and TWONORM datasets which
were obtained by simulation (note that all methods functioned very well for these two
datasets). Of note, Al exploded for the QUANTUM dataset containing 1068
observations (2.1 %) whose L2 norm was fivefold greater than the average norm
(Table . The corresponding method S21 with online standardized data yielded several

numerical explosions with the a = — step-size, however these explosions disappeared

when using a smaller step-size (see Fig . Of note, it is assumed in corollary 8 that
1 2\ ) 1

; in the case of a = —, only a <

)\mam ’ )\2 + bl p )\maz
Finally, for methods S31 and S32 with standardized data, the use of all observations

0 < a < min is certain.

1
until the current step and the very simple choice of the constant step-size a = —
p

uniformly yielded good results.

Thereafter, for each fixed number of observations used and for each dataset, the 14
methods ranging from the best (the highest cosine) to the worst (the lowest cosine) were
ranked by assigning each of the latter a rank from 1 to 14 respectively, after which the
mean rank in all 11 datasets was calculated for each method. A total of 100 mean rank
values were calculated for a number of observations used varying from N to 100/N. The
graph depicting the change in mean rank based on the number of observations used and
the boxplot of the mean rank are shown in Fig [2]

Overall, for these 11 datasets, a method with standardized data, a constant step-size
and use of all observations until the current step (S31, S32) represented the best
method when the total number of observations used was fixed.

6.2 Study for a fixed processing time

For every second up to a maximum of 2 minutes, the criterion value associated to each
dataset was recorded. The results obtained after a processing time of 1 minute are
provided in Table

The same conclusions can be drawn as those described in section 6.1 for the classical
methods and the ASGD method. The methods with online standardized data typically
faired better.

As in the previous study in section 6.1, the 14 methods were ranked from the best to
the worst on the basis of the mean rank for a fixed processing time. The graph
depicting the change in mean rank based on the processing time varying from 1 second
to 2 minutes as well as the boxplot of the mean rank are shown in Fig

As can be seen, these methods with online standardized data using more than one
observation per step yielded the best results (S32, S22). One explanation may be that
the total number of observations used in a fixed processing time is higher when several
observations are used per step rather than one observation per step. This can be verified
in Table |5 in which the total number of observations used per second for each method
and for each dataset during a processing time of 2 minutes is given. Of note, the number
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Table 4. Results obtained after a fixed time of 1 minute.

0 E = E = g

< Z ° o S z 5| E

S | 2 | = S e |z | 2| £ | ¢

< m § > o S Z = U Z o o

A = & = B = < = 7 9 ) 3

< = = O O & = a 5 = O 3

&) < = & =) = o < & = = =
C1 Expl. | -0.2486 | Expl. Expl. Expl. Expl. | 0.9561 | Expl. 1.0000 | 1.0000 | Expl. 12.2
C2 Expl. 0.7719 | Expl. | Expl. | Expl. | Expl. | 0.9519 | Expl. | 1.0000 | 1.0000 | Expl. 9.9
C3 Expl. 0.4206 | Expl Expl. Expl. Expl. | 0.9547 | Expl. 1.0000 | 1.0000 | Expl. 10.6
C4 Expl. 0.0504 | Expl. | Expl. | Expl. | Expl. | 0.9439 | Expl. | 1.0000 | 1.0000 | Expl. 10.1
A1l | -0.0067 | 0.8323 | 0.0022 | 0.9974 | 0.7049 | 0.2964 | Expl. | 0.0036 | 1.0000 | 1.0000 | Expl. 9.0
A2 | 0.0131 | 0.8269 | 0.0015 | 0.9893 | 0.5100 | 0.2648 | Expl. | 0.0027 | 1.0000 | 1.0000 | 0.2521 || 8.6
S11 | 1.0000 | 0.9858 | 0.9305 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.6786 | 1.0000 | 1.0000 | 0.9686 || 5.8
S12 | 1.0000 | 0.9767 | 0.9276 | 1.0000 | 1.0000 | 0.9999 | 1.0000 | 0.6644 | 1.0000 | 1.0000 | 0.9112 || 5.8
S13 | 1.0000 | 0.9814 | 0.9299 | 1.0000 | 1.0000 | 0.9999 | 1.0000 | 0.4538 | 1.0000 | 1.0000 | 0.9329 || 6.1
S14 | 1.0000 | 0.9760 | 0.9274 | 1.0000 | 1.0000 | 1.0000 | 0.9999 | 0.5932 | 1.0000 | 1.0000 | 0.8801 || 6.1
S21 | -0.9998 | 0.2424 | 0.6665 | Expl. | Expl. | Expl. | Expl. | 0.0000 | 1.0000 | 1.0000 | Expl. 11.5
S22 | 1.0000 | 0.9999 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | -0.0159 | 1.0000 | 1.0000 | 0.9995 || 3.1
S31 | 1.0000 | 0.9995 | 1.0000 | 1.0000 | 1.0000 | 0.9999 | 1.0000 | 0.9533 | 1.0000 | 1.0000 | 0.9997 || 4.5
S32 | 1.0000 | 0.9999 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9820 | 1.0000 | 1.0000 | 0.9999 || 1.5

Expl. means numerical explosion.

of observations used per second in a process with standardized data and one observation
per step (S11, S13, S21, S31) was found to be generally lower than in a process with raw
data and one observation per step (C1, C3, Al, A2), since a method with
standardization requires the recursive estimation of means and variances at each step.

Of note, for the ADULT dataset with a large number of parameters selected (95),
the only method yielding sufficiently adequate results after a processing time of one
minute was S32, and methods S31 and S32 when 10N observations were used.

7 Conclusion

In the present study, three processes with online standardized data were defined and for
which their a.s. convergence was proven.

A stochastic approximation method with standardized data appears to be
advantageous compared to a method with raw data. First, it is easier to choose the
step-size. For processes S31 and S32 for example, the definition of a constant step-size
only requires knowing the number of parameters p. Secondly, the standardization
usually allows avoiding the phenomenon of numerical explosion often obtained in the
examples given with a classical method.

The use of all observations until the current step can reduce the influence of outliers
and increase the convergence rate of a process. Moreover, this approach is particularly
adapted to the case of a data stream.

Finally, among all processes tested on 11 different datasets (linear regression or
linear discriminant analysis), the best was a method using standardization, a constant

step-size equal to — and all observations until the current step, and the use of several

new observations at each step improved the convergence rate.
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Table 5. Number of observations used after 2 minutes (expressed in number of observations per second).

1.

n g = E = g
< Z © = S & &
> g 2 O & = 4 2 T
< = > Y o Z [} ) o) o,
S8 B |2 5 | |3 2|& 2|8
o 2 & g = T o < = & i
C1 | 19843 | 33170 | 17133 | 14300 | 10979 | 9243 | 33021 | 476 | 31843 | 31677 | 10922
C2 | 166473 | 291558 | 150134 | 134249 | 104152 | 80485 | 281384 | 4565 | 262847 | 261881 | 102563
C3 | 17206 | 28985 | 16036 | 13449 | 10383 | 8878 | 28707 | 462 | 28123 | 28472 | 10404
C4 | 132088 | 194031 | 125880 | 106259 | 87844 | 76128 | 184386 | 4252 | 171711 | 166878 | 86895
A1 | 33622 | 35388 | 36540 | 35800 | 35280 | 34494 | 11815 | 15390 | 34898 | 34216 | 14049
A2 | 33317 | 32807 | 36271 | 35628 | 35314 | 34454 | 15439 | 16349 | 34401 | 34205 | 34890
S11 | 17174 | 17133 | 17166 | 16783 | 15648 | 14764 | 16296 | 1122 | 14067 | 13836 | 14334
S12 | 45717 | 47200 | 45893 | 43470 | 39937 | 37376 | 40943 | 4554 | 34799 | 34507 | 36389
S13 | 12062 | 12731 | 11888 | 12057 | 11211 | 10369 | 11466 | 620 | 9687 | 9526 | 10137
S14 | 43674 | 46080 | 43068 | 42123 | 38350 | 35338 | 39170 | 4512 | 33594 | 31333 | 32701
S21 | 15396 | 17997 | 16772 | 10265 | 8404 | 7238 | 9166 | 996 | 13942 | 13274 | 7672
S22 | 47156 | 47865 | 46318 | 43899 | 40325 | 37467 | 41320 | 4577 | 34478 | 31758 | 37418
S31 | 12495 | 12859 | 12775 | 12350 | 11495 | 10619 | 11608 | 621 | 9890 | 9694 | 10863
S32 | 44827 | 47035 | 45123 | 42398 | 38932 | 36288 | 39362 | 4532 | 33435 | 33385 | 35556
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Fig 1. Results obtained for dataset POLY using 10N and 100N observations:

1
A/ process C1 with variable step-size a, = —— by varying b,
(b+n)°
1
B/ process C1 with variable step-size a, = —%— by varying b,
(b+n)°

C/ process S21 by varying constant step-size a.
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Fig 2. Results for a fixed total number of observations used: A/ change in the mean rank based on the
number of observations used, B/ boxplot of the mean rank by method.
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Fig 3. Results for a fixed processing time: A/ change in the mean rank based on the processing time, B/
boxplot of the mean rank by method.
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