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6 Faculté de Médecine, SPI-EAO, Vandoeuvre-lès-Nancy, France

* k.duarte@chru-nancy.fr

Keywords: Stochastic approximation, stochastic gradient, linear regression, linear
discriminant analysis, big data, data stream.

1 Abstract 1

The present study addresses the problem of sequential least square multidimensional 2

linear regression using a stochastic approximation process particularly in the case of a 3

data stream. To avoid the phenomenon of numerical explosion which can be 4

encountered and to reduce the computing time, we propose using a process with online 5

standardized data instead of raw data and the use of several observations per step or all 6

observations until the current step. Herein, we define and study the convergence of 7

three processes with online standardized data: a classical process with a variable 8

step-size and use of a varying number of observations per step, an averaged process with 9

a constant step-size and use of a varying number of observations per step, and a process 10

with a variable or constant step-size and use of all observations until the current step. 11

These processes are compared to classical processes on 11 datasets for a fixed total 12

number of observations used and thereafter for a fixed processing time. Analyses 13

indicate that the third-defined process typically yields the best results. 14

2 Introduction 15

In the present analysis, A′ denotes the transposed matrix of A while the abbreviation 16

”a.s.” signifies almost surely. 17

Let R =
(
R1, ..., Rp

)
and S =

(
S1, ..., Sq

)
be random vectors in Rp and Rq 18

respectively. Considering the least square multidimensional linear regression of S with 19

respect to R: the (p, q) matrix θ and the (q, 1) matrix η are estimated such that 20

E
[
‖S − θ′R− η‖2

]
is minimal. 21

Denote the covariance matrices 22

B = Covar [R] = E
[
(R− E [R]) (R− E [R])

′]
,

F = Covar [R,S] = E
[
(R− E [R]) (S − E [S])

′]
.
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If we assume B is positive definite, i.e. there is no affine relation between the 23

components of R, then 24

θ = B−1F, η = E [S]− θ′E [R] .

Note that, R1 denoting the random vector in Rp+1 such that R′1 =
(
R′ 1

)
, θ1 the 25

(p+ 1, q) matrix such that θ′1 =
(
θ′ η

)
, B1 = E [R1R

′
1] and F1 = E [R1S

′] , we obtain 26

θ1 = B−11 F1. 27

In order to estimate θ (or θ1), a stochastic approximation process (Xn) in Rp×q (or 28

R(p+1)×q) is recursively defined such that 29

Xn+1 = Xn − an (BnXn − Fn) ,

where (an) is a sequence of positive real numbers, eventually constant, called step-sizes 30

(or gains). Matrices Bn and Fn have the same dimensions as B and F , respectively. 31

The convergence of (Xn) towards θ is studied under appropriate definitions and 32

assumptions on Bn and Fn. 33

Suppose that ((R1n, Sn) , n ≥ 1) is an i.i.d. sample of (R1, S). In the case where 34

q = 1, Bn = R1nR
′
1n and Fn = R1nS

′
n, several studies have been devoted to this 35

stochastic gradient process (see for example Monnez [1], Ljung [2] and references 36

hereafter). In order to accelerate general stochastic approximation procedures, 37

Polyak [3] and Polyak and Juditsky [4] introduced the averaging technique. In the case 38

of linear regression, Györfi and Walk [5] studied an averaged stochastic approximation 39

process with a constant step-size. With the same type of process, Bach and Moulines [6] 40

proved that the optimal convergence rate is achieved without strong convexity 41

assumption on the loss function. 42

However, this type of process may be subject to the risk of numerical explosion when 43

components of R or S exhibit great variances and may have very high values. For 44

datasets used as test sets by Bach and Moulines [6], all sample points whose norm of R 45

is fivefold greater than the average norm are removed. Moreover, generally only one 46

observation of (R,S) is introduced at each step of the process. This may be not 47

convenient for a large amount of data generated by a data stream for example. 48

Two modifications of this type of process are thus proposed in this article. 49

The first change in order to avoid numerical explosion is the use of standardized, i.e. 50

of zero mean and unit variance, components of R and S. In fact, the expectation and 51

the variance of the components are usually unknown and will be estimated online. 52

The parameter θ can be computed from the standardized components as follows. Let 53

σj the standard deviation of Rj for j = 1, ..., p and σk1 the standard deviation of Sk for 54

k = 1, ..., q. Define the following matrices 55

Γ =


1
σ1 · · · 0
...

. . .
...

0 · · · 1
σp

 ,Γ1 =


1
σ1
1
· · · 0

...
. . .

...
0 · · · 1

σq
1

 .

Let Sc = Γ1 (S − E [S]) and Rc = Γ (R− E [R]). The least square linear regression of 56

Sc with respect to Rc is achieved by estimating the (p, q) matrix θc such that 57

E

[∥∥∥Sc − θ′cRc∥∥∥2] is minimal. Then θc = Γ−1
(
B−1F

)
Γ1 ⇔ θ = B−1F = Γθc

(
Γ1
)−1

. 58

The second change is to use, at each step of the process, several observations of 59

(R,S) or an estimation of B and F computed recursively from all observations until the 60

current step without storing them. 61

More precisely, the convergence of three processes with online standardized data is 62

studied in sections 3, 4, 5 respectively. 63
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First, in section 3, a process with a variable step-size an and use of several online 64

standardized observations at each step is studied; note that the number of observations 65

at each step may vary with n. 66

Secondly, in section 4, an averaged process with a constant step-size and use of a 67

varying number of online standardized observations at each step is studied. 68

Thirdly, in section 5, a process with a constant or variable step-size and use of all 69

online standardized observations until the current step to estimate B and F is studied. 70

These three processes are tested on several datasets when q = 1, S being a 71

continuous or binary variable, and compared to existing processes in section 6. Note 72

that when S is a binary variable, linear regression is equivalent to a linear discriminant 73

analysis. It appears that the third-defined process most often yields the best results for 74

the same number of observations used or for the same duration of computing time used. 75

3 Convergence of a process with a variable step-size 76

Let (Bn, n ≥ 1) and (Fn, n ≥ 1) be two sequences of random matrices in Rp×p and 77

Rp×q respectively. In this section, the convergence of the process (Xn, n ≥ 1) in Rp×q 78

recursively defined by 79

Xn+1 = Xn − an (BnXn − Fn)

and its application to sequential linear regression are studied. 80

3.1 Theorem 81

Let X1 be a random variable in Rp×q independent from the sequence of random 82

variables ((Bn, Fn) , n ≥ 1) in Rp×p × Rp×q. 83

Denote Tn the σ-field generated by X1 and (B1, F1) , ..., (Bn−1, Fn−1). 84

X1, X2, ..., Xn are Tn-measurable. 85

Let (an) be a sequence of positive numbers. 86

Make the following assumptions: 87

(H1a) There exists a positive definite symmetrical matrix B such that a.s. 88

1)

∞∑
n=1

an ‖E [Bn|Tn]−B‖ <∞ 89

2)

∞∑
n=1

a2nE
[
‖Bn −B‖2 |Tn

]
<∞. 90

(H2a) There exists a matrix F such that a.s. 91

1)

∞∑
n=1

an ‖E [Fn|Tn]− F‖ <∞ 92

2)

∞∑
n=1

a2nE
[
‖Fn − F‖2 |Tn

]
<∞. 93

(H3a)

∞∑
n=1

an =∞,
∞∑
n=1

a2n <∞. 94

Theorem 1 Suppose H1a, H2a and H3a hold. Then Xn converges to θ = B−1F a.s. 95

State the Robbins-Siegmund lemma [8] used in the proof. 96

Lemma 2 Let (Ω, A, P ) be a probability space and (Tn) a non-decreasing sequence of 97

sub-σ-fields of A. Suppose for all n, zn, αn, βn and γn are four integrable non-negative 98

Tn-measurable random variables defined on (Ω, A, P ) such that: 99

E [zn+1|Tn] ≤ zn (1 + αn) + βn − γn a.s.
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Then, in the set

{ ∞∑
n=1

αn <∞,
∞∑
n=1

βn <∞

}
, (zn) converges to a finite random 100

variable and

∞∑
n=1

γn <∞ a.s. 101

Proof of Theorem 1. The Frobenius norm ‖A‖ for a matrix A is used. Recall that, if 102

‖A‖2 denotes the spectral norm of A, ‖AB‖ ≤ ‖A‖2 ‖B‖. 103

Xn+1 − θ = Xn − θ − an (BnXn − Fn)

= (I − anB) (Xn − θ)− an ((Bn −B)Xn − (Fn − F ))

Denote 104

Zn = (Bn −B)Xn − (Fn − F ) = (Bn −B) (Xn − θ) + (Bn −B) θ − (Fn − F ) and 105

X1
n = Xn − θ. Then: 106

X1
n+1 = (I − anB)X1

n − anZn∥∥X1
n+1

∥∥2 =
∥∥(I − anB)X1

n

∥∥2 − 2an〈(I − anB)X1
n, Zn〉+ a2n ‖Zn‖

2
.

Denote λ the smallest eigenvalue of B. As an −→ 0, we have for n sufficiently large 107

‖I − anB‖2 = 1− anλ < 1.

Then, taking the conditional expectation with respect to Tn yields almost surely: 108

E
[∥∥X1

n+1

∥∥2 |Tn] ≤ (1− anλ)
2 ∥∥X1

n

∥∥2 + 2an|〈(I − anB)X1
n, E [Zn|Tn]〉|+

a2nE
[
‖Zn‖2 |Tn

]
,

E [Zn|Tn] = (E [Bn|Tn]−B)X1
n + (E [Bn|Tn]−B) θ − (E [Fn|Tn]− F ) .

Denoting 109

βn = ‖E [Bn|Tn]−B‖ , δn = ‖E [Fn|Tn]− F‖ ,

bn = E
[
‖Bn −B‖2 |Tn

]
, dn = E

[
‖Fn − F‖2 |Tn

]
,

we obtain, as
∥∥X1

n

∥∥ ≤ 1 +
∥∥X1

n

∥∥2 : 110∣∣〈(I − anB)X1
n, E [Zn|Tn]〉

∣∣ ≤ ∥∥X1
n

∥∥ ‖E [Zn|Tn]‖

≤
∥∥X1

n

∥∥2 (βn (1 + ‖θ‖) + δn) + βn ‖θ‖+ δn,

E
[
‖Zn‖2 |Tn

]
≤ 3bn

∥∥X1
n

∥∥2 + 3bn ‖θ‖2 + 3dn,

E
[∥∥X1

n+1

∥∥2 |Tn] ≤
(
1 + a2nλ

2 + 2 (1 + ‖θ‖) anβn + 2anδn + 3a2nbn
) ∥∥X1

n

∥∥2 +

2 ‖θ‖ anβn + 2anδn + 3 ‖θ‖2 a2nbn + 3a2ndn − 2anλ
∥∥X1

n

∥∥2 .
Applying Robbins-Siegmund lemma under assumptions H1a, H2a and H3a implies that 111

there exists a non-negative random variable T such that a.s. 112

∥∥X1
n

∥∥ −→ T,

∞∑
n=1

an
∥∥X1

n

∥∥2 <∞.
As

∞∑
n=1

an =∞, T = 0 a.s. � 113
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A particular case with the following assumptions is now studied. 114

(H1a’) There exist a positive definite symmetrical matrix B and a positive real 115

number b such that a.s. 116

1) for all n, E [Bn|Tn] = B 117

2) sup
n
E
[
‖Bn −B‖2 |Tn

]
< b. 118

(H2a’) There exist a matrix F and a positive real number d such that a.s. 119

1) for all n, E [Fn|Tn] = F 120

2) sup
n
E
[
‖Fn − F‖2 |Tn

]
< d. 121

(H3a’) Denoting λ the smallest eigenvalue of B, 122(
an =

a

nα
, a > 0,

1

2
< α < 1

)
or

(
an =

a

n
, a >

1

2λ

)
. 123

Theorem 3 Suppose H1a’, H2a’ and H3a’ hold. Then Xn converges to θ almost surely 124

and in quadratic mean. Moreover lim 1
an
E
[
‖Xn − θ‖2

]
<∞. 125

Proof of Theorem 3. In the proof of theorem 1, take βn = 0, δn = 0, bn < b, dn < d ; 126

then a.s.: 127

E
[∥∥X1

n+1

∥∥2 |Tn] ≤ (1 + λ2a2n + 3ba2n
) ∥∥X1

n

∥∥2 + 3
(
b ‖θ‖2 + d

)
a2n − 2anλ

∥∥X1
n

∥∥2 .
Taking the mathematical expectation yields: 128

E
[∥∥X1

n+1

∥∥2] ≤ (1 +
(
λ2 + 3b

)
a2n
)
E
[∥∥X1

n

∥∥2]+ 3
(
b ‖θ‖2 + d

)
a2n − 2anλE

[∥∥X1
n

∥∥2] .
By Robbins-Siegmund lemma: 129

∃t ≥ 0 : E
[∥∥X1

n

∥∥2] −→ t;

∞∑
n=1

anE
[∥∥X1

n

∥∥2] <∞.
As

∞∑
n=1

an =∞, t = 0. Therefore, there exist N ∈ N and f > 0 such that for n > N : 130

E
[∥∥X1

n+1

∥∥2] ≤ (1− 2anλ)E
[∥∥X1

n

∥∥2]+ fa2n.

Applying a lemma of Schmetterer [9] for an =
a

nα
with

1

2
< α < 1 yields: 131

limnαE
[∥∥X1

n

∥∥2] <∞.
Applying a lemma of Venter [10] for an =

a

n
with a >

1

2λ
yields: 132

limnE
[∥∥X1

n

∥∥2] <∞ �

3.2 Application to linear regression with online standardized 133

data 134

Let (R1, S1) , ..., (Rn, Sn) , ... be an i.i.d. sample of a random vector (R,S) in Rp × Rq. 135

Let Γ (respectively Γ1) be the diagonal matrix of order p (respectively q) of the inverses 136

of the standard deviations of the components of R (respectively S). 137
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Define the correlation matrices 138

B = ΓE
[
(R− E [R]) (R− E [R])

′]
Γ,

F = ΓE
[
(R− E [R]) (S − E [S])

′]
Γ1.

Suppose that B−1 exists. Let θ = B−1F . 139

Denote R̄n (respectively S̄n) the mean of the n-sample (R1, R2, ..., Rn) of R 140

(respectively (S1, S2, ..., Sn) of S). 141

Denote
(
V jn
)2

the variance of the n-sample
(
Rj1, R

j
2, ..., R

j
n

)
of the jth component 142

Rj of R, and
(
V 1k
n

)2
the variance of the n-sample

(
Sk1 , S

k
2 , ..., S

k
n

)
of the kth component 143

Sk of S. 144

Denote Γn (respectively Γ1
n) the diagonal matrix of order p (respectively q) whose 145

element (j, j) (respectively (k, k)) is the inverse of

√
n

n− 1
V jn (respectively 146√

n

n− 1
V 1k
n ). 147

Let (mn, n ≥ 1) be a sequence of integers. Denote Mn =

n∑
k=1

mk for n ≥ 1, M0 = 0 148

and In = {Mn−1 + 1, ...,Mn}. 149

Define 150

Bn = ΓMn−1

1
mn

∑
j∈In

(
Rj − R̄Mn−1

) (
Rj − R̄Mn−1

)′
ΓMn−1 ,

Fn = ΓMn−1

1
mn

∑
j∈In

(
Rj − R̄Mn−1

) (
Sj − S̄Mn−1

)′
Γ1
Mn−1

.

Define recursively the process (Xn, n ≥ 1) in Rp×q by 151

Xn+1 = Xn − an (BnXn − Fn) .

Corollary 4 Suppose there is no affine relation between the components of R and the 152

moments of order 4 of (R,S) exist. Suppose moreover that assumption H3a” holds: 153

(H3a”) an > 0,

∞∑
n=1

an√
n
<∞,

∞∑
n=1

a2n <∞. 154

Then Xn converges to θ a.s. 155

This process was tested on several datasets and some results are given in section 6 156

(process S11 for mn = 1 and S12 for mn = 10). 157

The following lemma is first proved. 158

Lemma 5 Suppose the moments of order 4 of R exist and an > 0,

∞∑
n=1

an√
n
<∞. Then 159

∞∑
n=1

an
∥∥R̄Mn−1 − E [R]

∥∥ <∞ and

∞∑
n=1

an
∥∥ΓMn−1 − Γ

∥∥ <∞ a.s. 160

Proof of Lemma 5. The usual Euclidean norm for vectors and the spectral norm for 161

matrices are used in the proof. 162

Step 1: 163

Denote V ar [R] = E
[
‖R− E [R]‖2

]
=

p∑
j=1

V ar
[
Rj
]
. 164

E
[∥∥R̄Mn−1 − E [R]

∥∥2] =

p∑
j=1

V ar
[
R̄jMn−1

]
=

p∑
j=1

V ar
[
Rj
]

Mn−1
≤ V ar [R]

n− 1
.
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Then: 165

∞∑
n=1

anE
[∥∥R̄Mn−1 − E [R]

∥∥] ≤ √
V ar [R]

∞∑
n=1

an√
n− 1

<∞ by H3a”.

It follows that

∞∑
n=1

an
∥∥R̄Mn−1 − E [R]

∥∥ <∞ a.s. 166

Likewise

∞∑
n=1

an
∥∥S̄Mn−1 − E [S]

∥∥ <∞ a.s. 167

Step 2: 168

∥∥ΓMn−1 − Γ
∥∥ = max

j=1,...,p

∣∣∣∣∣∣ 1√
Mn−1

Mn−1−1V
j
Mn−1

− 1√
V ar [Rj ]

∣∣∣∣∣∣
≤

p∑
j=1

∣∣∣√ Mn−1

Mn−1−1V
j
Mn−1

−
√
V ar [Rj ]

∣∣∣√
Mn−1

Mn−1−1V
j
Mn−1

√
V ar [Rj ]

=

p∑
j=1

∣∣∣∣ Mn−1

Mn−1−1

(
V jMn−1

)2
− V ar

[
Rj
]∣∣∣∣√

Mn−1

Mn−1−1V
j
Mn−1

√
V ar [Rj ]

(√
Mn−1

Mn−1−1V
j
Mn−1

+
√
V ar [Rj ]

) .
Denote µj4 the centered moment of order 4 of Rj . We have : 169

E

[∣∣∣∣ Mn−1

Mn−1 − 1

(
V jMn−1

)2
− V ar

[
Rj
]∣∣∣∣] ≤

√
V ar

[
Mn−1

Mn−1 − 1

(
V jMn−1

)2]

= O

√µj4 − (V ar [Rj ])
2

Mn−1

 .

Then by H3a”, as Mn−1 ≥ n− 1: 170

∞∑
n=1

an

p∑
j=1

E

[∣∣∣∣ Mn−1

Mn−1 − 1

(
V jMn−1

)2
− V ar

[
Rj
]∣∣∣∣] <∞

⇒
∞∑
n=1

an

p∑
j=1

∣∣∣∣ Mn−1

Mn−1 − 1

(
V jMn−1

)2
− V ar[Rj ]

∣∣∣∣ <∞ a.s.

As
(
V jMn−1

)2
−→ V ar

[
Rj
]

a.s., j = 1, ..., p, this implies : 171

∞∑
n=1

an
∥∥ΓMn−1

− Γ
∥∥ <∞ a.s.�

Proof of Corollary 4. 172

Step 1: prove that assumption H1a1 of theorem 1 is verified. 173

Denote Rc = R− E [R], Rcj = Rj − E [R], R̄cj = R̄j − E [R]. 174

Bn = ΓMn−1

1

mn

∑
j∈In

(
Rcj − R̄cMn−1

)(
Rcj − R̄cMn−1

)′
ΓMn−1

= ΓMn−1

1

mn

∑
j∈In

(
RcjR

c
j
′ − R̄cMn−1

Rcj
′ −Rcj

(
R̄cMn−1

)′
+ R̄cMn−1

(
R̄cMn−1

)′)
ΓMn−1

.

B = ΓE
[
RcRc′

]
Γ.
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As ΓMn−1
and R̄Mn−1

are Tn-measurable and Rcj , j ∈ In, is independent of Tn, with 175

E
[
Rcj
]

= 0: 176

E [Bn|Tn]−B = ΓMn−1

(
E
[
RcRc′

]
+ R̄cMn−1

(
R̄cMn−1

)′)
ΓMn−1

− ΓE
[
RcRc′

]
Γ

=
(
ΓMn−1 − Γ

)
E
[
RcRc′

]
ΓMn−1 + ΓE

[
RcRc′

] (
ΓMn−1 − Γ

)
+ΓMn−1

R̄cMn−1

(
R̄cMn−1

)′
ΓMn−1

a.s.

As ΓMn−1
and R̄cMn−1

converge respectively to Γ and 0 a.s. and by lemma 5, 177

∞∑
n=1

an
∥∥ΓMn−1

− Γ
∥∥ <∞ and

∞∑
n=1

an

∥∥∥R̄cMn−1

∥∥∥ <∞ a.s., it follows that 178

∞∑
n=1

an ‖E [Bn|Tn]−B‖ <∞ a.s. 179

Step 2: prove that assumption H1a2 of theorem 1 is verified. 180

‖Bn −B‖2 ≤ 2

∥∥∥∥∥∥ΓMn−1

1

mn

∑
j∈In

(
Rcj − R̄cMn−1

)(
Rcj − R̄cMn−1

)′
ΓMn−1

∥∥∥∥∥∥
2

+2
∥∥ΓE

[
RcRc′

]
Γ
∥∥2

≤ 2
∥∥ΓMn−1

∥∥4 1

mn

∑
j∈In

∥∥∥Rcj − R̄cMn−1

∥∥∥4 + 2
∥∥ΓE

[
RcRc′

]
Γ
∥∥2

≤ 2
∥∥ΓMn−1

∥∥4 1

mn

∑
j∈In

23
(∥∥Rcj∥∥4 +

∥∥∥R̄cMn−1

∥∥∥4)+ 2
∥∥ΓE

[
RcRc′

]
Γ
∥∥2 .

181

E
[
‖Bn −B‖2 |Tn

]
≤ 24

∥∥ΓMn−1

∥∥4(E [‖Rc‖4]+
∥∥∥R̄cMn−1

∥∥∥4)+ 2
∥∥ΓE

[
RcRc′

]
Γ
∥∥2 a.s.

As ΓMn−1 and R̄cMn−1
converge respectively to Γ and 0 a.s., and

∞∑
n=1

a2n <∞, it follows 182

that

∞∑
n=1

a2nE
[
‖Bn −B‖2 |Tn

]
<∞ a.s. 183

Step 3: the proofs of the verification of assumptions H2a1 and H2a2 of theorem 1 are 184

similar to the previous ones, Bn and B being respectively replaced by 185

Fn = ΓMn−1

1

mn

∑
j∈In

(
Rcj − R̄cMn−1

)(
Scj − S̄cMn−1

)′
Γ1
Mn−1

,

F = ΓE
[
RcSc′

]
Γ1�

4 Convergence of an averaged process with a 186

constant step-size 187

In this section, the process (Xn, n ≥ 1) with a constant step-size a and the averaged 188

process (Yn, n ≥ 1) in Rp×q are recursively defined by 189

Xn+1 = Xn − a (BnXn − Fn)

Yn+1 =
1

n+ 1

n+1∑
j=1

Xj = Yn −
1

n+ 1
(Yn −Xn+1) .

PLOS 8/26



The a.s. convergence of (Yn, n ≥ 1) and its application to sequential linear regression 190

are studied. 191

4.1 Lemma 192

Lemma 6 Let three real sequences (un), (vn) and (an), with un > 0 and an > 0 for all 193

n, and a real positive number λ such that, for n ≥ 1, 194

un+1 ≤ (1− anλ)un + anvn.

Suppose: 195

1) vn −→ 0 196

2)

(
an = a <

1

λ

)
or

(
an −→ 0,

∞∑
n=1

an =∞

)
. 197

Under assumptions 1 and 2, un −→ 0. 198

Proof of Lemma 6. In the case an depending on n, as an −→ 0, we can suppose without 199

loss of generality that 1− anλ > 0 for n ≥ 1. We have: 200

un+1 ≤
n∏
i=1

(1− aiλ)u1 +

n∑
i=1

ai

n∏
l=i+1

(1− alλ) vi, with

n∏
n+1

= 1.

Now, for n1 ≤ n2 ≤ n and 0 < ci < 1 with ci = aiλ for all i, we have: 201

n2∑
i=n1

ci

n∏
l=i+1

(1− cl) =

n2∑
i=n1

(1− (1− ci))
n∏

l=i+1

(1− cl)

=

n2∑
i=n1

(
n∏

l=i+1

(1− cl)−
n∏
l=i

(1− cl)

)

=

n∏
l=n2+1

(1− cl)−
n∏

l=n1

(1− cl) ≤
n∏

l=n2+1

(1− cl) ≤ 1.

Let ε > 0. There exists N such that for i > N , |vi| <
ε

3
λ. Then for n ≥ N , applying 202

the previous inequality with ci = aiλ, n1 = 1, n2 = N , yields: 203

un+1 ≤
n∏
i=1

(1− aiλ)u1 +

N∑
i=1

aiλ

n∏
l=i+1

(1− alλ)
|vi|
λ

+
ε

3

n∑
i=N+1

aiλ

n∏
l=i+1

(1− alλ)

≤
n∏
i=1

(1− aiλ)u1 +
1

λ
max

1≤i≤N
|vi|

n∏
l=N+1

(1− alλ) +
ε

3
.

In the case an depending on n, ln (1− aiλ) ∼ −aiλ as ai −→ 0 (i −→∞); then, as 204

∞∑
n=1

an =∞,

n∏
l=N+1

(1− alλ) −→ 0 (n −→∞). 205

In the case an = a,

n∏
l=N+1

(1− aλ) = (1− aλ)
n−N −→ 0 (n −→∞) as 206

0 < 1− aλ < 1. 207

Thus there exists N1 such that un+1 < ε for n > N1 � 208
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4.2 Theorem 209

Make the following assumptions 210

(H1b) There exist a positive definite symmetrical matrix B in Rp×p and a positive 211

real number b such that a.s. 212

1) limn→∞ (E [Bn|Tn]−B) = 0 213

2)

∞∑
n=1

1

n

(
E
[
‖E [Bn|Tn]−B‖2

]) 1
2

<∞ 214

3) supnE
[
‖Bn −B‖2 |Tn

]
≤ b. 215

(H2b) There exist a matrix F in Rp×q and a positive real number d such that a.s. 216

1) limn→∞ (E [Fn|Tn]− F ) = 0 217

2) supnE
[
‖Fn − F‖2 |Tn

]
≤ d. 218

(H3b) λ and λmax being respectively the smallest and the largest eigenvalue of B, 219

0 < a < min

(
1

λmax
,

2λ

λ2 + b

)
. 220

Theorem 7 Suppose H1b, H2b and H3b hold. Then Yn converges to θ = B−1F a.s. 221

Remark 1 Györfi and Walk [5] proved that Yn converges to θ a.s. and in quadratic 222

mean under the assumptions E [Bn|Tn] = B, E [Fn|Tn] = F , H1b2 and H2b2. Theorem 223

7 is an extension of their a.s. convergence result when E [Bn|Tn] −→ B and 224

E [Fn|Tn] −→ F a.s. 225

Remark 2 Define R1 =

(
R
1

)
, B = E [R1R

′
1], F = E [R1S

′]. If ((R1n, Sn) , n ≥ 1) is 226

an i.i.d. sample of (R1, S) whose moments of order 4 exist, assumptions H1b and H2b 227

are verified for Bn = R1nR
′
1n and Fn = R1nS

′
n as E [R1nR

′
1n|Tn] = E [R1R

′
1] = B and 228

E [R1nS
′
n|Tn] = F . 229

Proof of Theorem 7. Denote 230

Zn = (Bn −B)(Xn − θ) + (Bn −B)θ − (Fn − F ),

X1
n = Xn − θ,

Y 1
n = Yn − θ =

1

n

n∑
j=1

X1
j .

Step 1: give a sufficient condition to have Y 1
n −→ 0 a.s. 231

We have (cf. proof of theorem 1): 232

X1
n+1 = (I − aB)X1

n − aZn,

Y 1
n+1 =

1

n+ 1
X1

1 +
1

n+ 1

n+1∑
j=2

X1
j

=
1

n+ 1
X1

1 +
1

n+ 1

n+1∑
j=2

(I − aB)X1
j−1 − a

1

n+ 1

n+1∑
j=2

Zj−1

=
1

n+ 1
X1

1 +
n

n+ 1
(I − aB)Y 1

n − a
1

n+ 1

n∑
j=1

Zj .

Take now the Frobenius norm of Y 1
n+1: 233

∥∥Y 1
n+1

∥∥ ≤
∥∥(I − aB)Y 1

n

∥∥+ a

∥∥∥∥∥∥ 1

n+ 1

n∑
j=1

Zj −
1

n+ 1

1

a
X1

1

∥∥∥∥∥∥ .
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Under H3b, all the eigenvalues of I − aB are positive and the spectral norm of 234

I − aB is equal to 1− aλ. Then : 235

∥∥Y 1
n+1

∥∥ ≤ (1− aλ)
∥∥Y 1

n

∥∥+ a

∥∥∥∥∥∥ 1

n+ 1

n∑
j=1

Zj −
1

n+ 1

1

a
X1

1

∥∥∥∥∥∥ .
By lemma 6, it suffices to prove

1

n

n∑
j=1

Zj −→ 0 a.s. to conclude Y 1
n −→ 0 a.s. 236

Step 2: prove that assumptions H1b and H2b imply respectively
1

n

n∑
j=1

Bj −→ B and 237

1

n

n∑
j=1

Fj −→ F a.s. 238

The proof is only given for (Bn), the other one being similar. 239

Assumption H1b3 implies supnE
[
‖Bn −B‖2

]
<∞. It follows that, for each 240

element Bkln and Bkl of Bn and B respectively,

∞∑
n=1

V ar
[
Bkln −Bkl

]
n2

<∞. Therefore: 241

1

n

n∑
j=1

(
Bklj −Bkl − E

[
Bklj −Bkl|Tj

])
−→ 0 a.s.

As E
[
Bklj −Bkl|Tj

]
−→ 0 a.s. by H1b1, we have for each (k, l) 242

1

n

n∑
j=1

(
Bklj −Bkl

)
−→ 0 a.s.

Then
1

n

n∑
j=1

(Bj −B) −→ 0 a.s. 243

Step 3: prove now that
1

n

n∑
j=1

(Bj −B)X1
j −→ 0 a.s. 244

Denote βn = ‖E [Bn|Tn]−B‖ and γn = ‖E [Fn|Tn]− F‖. βn −→ 0 and γn −→ 0 245

a.s. under H1b1 and H2b1. Then: ∀δ > 0, ∀ε > 0, ∃N (δ, ε): ∀n ≥ N (δ, ε), 246

P
(
{supj>n(βj) ≤ δ}

⋂
{supj>n(γj) ≤ δ}

)
> 1− ε.

As a <
2λ

λ2 + b
, choose η such that: 247

0 < η <
1

b

(
2λ

a
−
(
λ2 + b

))
⇔ λ >

a

2

(
λ2 + b+ ηb

)
.

Choose δ such that 248

0 < δ <
1

(1− aλ)(‖θ‖+ 2)

(
λ− a

2

(
λ2 + b+ ηb

))
.

Let ε be fixed. Denote N0 = N (δ, ε) and, for n > N0, 249

Gn =

({
sup

N0<j≤n
(βj) ≤ δ

}⋂{
sup

N0<j≤n
(γj) ≤ δ

})
,

G =

({
sup
j>N0

(βj) ≤ δ
}⋂{

sup
j>N0

(γj) ≤ δ
})

=
⋂
n>N0

Gn.
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Remark that Gn is Tn-measurable and, IG denoting the indicator of G, 250

G ⊂ Gn+1 ⊂ Gn ⇔ IG ≤ IGn+1
≤ IGn

.

Step 3a: prove that supnE
[∥∥X1

n

∥∥2 IGn

]
<∞. 251∥∥X1

n+1

∥∥2 IGn+1
≤

∥∥X1
n+1

∥∥2 IGn
=
∥∥(I − aB)X1

nIGn
− aZnIGn

∥∥2
≤

∥∥(I − aB)X1
nIGn

∥∥2 − 2a
〈
(I − aB)X1

nIGn
, ZnIGn

〉
+ a2 ‖ZnIGn

‖2 .

As the spectral norm ‖I − aB‖ = 1− aλ, taking the conditional expectation with 252

respect to Tn yields a.s. 253

E
[∥∥X1

n+1

∥∥2 IGn+1
|Tn
]
≤ (1− aλ)

2 ∥∥X1
nIGn

∥∥2 − 2a
〈
(I − aB)X1

nIGn
, E [Zn|Tn] IGn

〉
+a2E

[
‖ZnIGn

‖2 |Tn
]
.

Now: 254

‖E [Zn|Tn] IGn‖ = ‖ (E [Bn|Tn]−B)X1
nIGn + (E [Bn|Tn]−B) θIGn

− (E [Fn|Tn]− F ) IGn‖
≤ δ

∥∥X1
nIGn

∥∥+ δ (‖θ‖+ 1)

E
[
‖ZnIGn‖

2 |Tn
]
≤ (1 + η)E

[∥∥(Bn −B)X1
nIGn

∥∥2 |Tn]
+

(
1 +

1

η

)
E
[
‖(Bn −B) θIGn

− (Fn − F ) IGn
‖2 |Tn

]
≤ (1 + η) b

∥∥X1
nIGn

∥∥2 + 2

(
1 +

1

η

)(
b ‖θ‖2 + d

)
.

Therefore: 255

E
[∥∥X1

n+1

∥∥2 IGn+1
|Tn
]
≤

(
(1− aλ)

2
+ 2a (1− aλ) δ + a2 (1 + η) b

)∥∥X1
nIGn

∥∥2
+ 2a (1− aλ) δ (‖θ‖+ 1)

∥∥X1
nIGn

∥∥
+ 2a2

(
1 +

1

η

)(
b ‖θ‖2 + d

)
.

As
∥∥X1

nIGn

∥∥ ≤ 1 +
∥∥X1

nIGn

∥∥2, taking mathematical expectation yields: 256

E
[∥∥X1

n+1

∥∥2 IGn+1

]
≤ ρE

[∥∥X1
nIGn

∥∥2]+ e,

ρ = (1− aλ)
2

+ 2a (1− aλ) δ (‖θ‖+ 2) + a2 (1 + η) b,

e = 2a (1− aλ) δ (‖θ‖+ 1) + 2a2
(

1 +
1

η

)(
b ‖θ‖2 + d

)
.

As ρ = 1 + 2a
(

(1− aλ) (‖θ‖+ 2) δ − λ+
a

2

(
λ2 + b+ ηb

))
< 1 by the choice of δ, 257

this implies g = supnE
[∥∥X1

n

∥∥2 IGn

]
<∞. 258

Step 3b: conclusion. 259

E
[∥∥(Bn −B)X1

nIGn

∥∥2] = E
[
E
[∥∥(Bn −B)X1

nIGn

∥∥2 |Tn]]
≤ E

[
E
[
‖Bn −B‖2 |Tn

] ∥∥X1
nIGn

∥∥2]
≤ bg.
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Then:

∞∑
n=1

E
[∥∥(Bn −B)X1

nIGn

∥∥2]
n2

<∞. Therefore a.s.: 260

1

n

n∑
j=1

(
(Bj −B)X1

j IGj
− E

[
(Bj −B)X1

j IGj
|Tj
])
−→ 0.

Now: 261

∞∑
n=1

1

n
E
[∥∥(E [Bn|Tn]−B)X1

nIGn

∥∥] ≤ ∞∑
n=1

1

n
E
[
‖E [Bn|Tn]−B‖

∥∥X1
nIGn

∥∥]
≤
∞∑
n=1

1

n

(
E
[
‖E [Bn|Tn]−B‖2

]) 1
2
(
E
[∥∥X1

nIGn

∥∥2]) 1
2

≤ g 1
2

∞∑
n=1

1

n

(
E
[
‖E [Bn|Tn]−B‖2

]) 1
2

<∞ by H1b2.

Then: 262

∞∑
n=1

1

n

∥∥(E [Bn|Tn]−B)X1
nIGn

∥∥ <∞ a.s.

This implies by the Kronecker lemma: 263

1

n

n∑
j=1

(E [Bj |Tj ]−B)X1
j IGj

−→ 0 a.s.

Therefore: 264

1

n

n∑
j=1

(Bj −B)X1
j IGj

−→ 0 a.s.

In G, IGj
= 1 for all j, therefore

1

n

n∑
j=1

(Bj −B)X1
j −→ 0 a.s. Then: 265

P

 1

n

n∑
j=1

(Bj −B)X1
j −→ 0

 ≥ P (G) > 1− ε. This is true for every ε > 0. Thus: 266

1

n

n∑
j=1

(Bj −B)X1
j −→ 0 a.s.

Therefore by step 2 and step 1, we conclude that
1

n

n∑
j=1

Zj −→ 0 and Y 1
n −→ 0 a.s. � 267

4.3 Application to linear regression with online standardized 268

data 269

Define as in section 3: 270

Bn = ΓMn−1

1

mn

∑
j∈In

(
Rj − R̄Mn−1

) (
Rj − R̄Mn−1

)′
ΓMn−1

,

Fn = ΓMn−1

1

mn

∑
j∈In

(
Rj − R̄Mn−1

) (
Sj − S̄Mn−1

)′
Γ1
Mn−1

.
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Denote U = (R− E [R]) (R− E [R])
′
, B = ΓE [U ] Γ the correlation matrix of R, λ and 271

λmax respectively the smallest and the largest eigenvalue of B, b1 = E
[
‖ΓUΓ−B‖2

]
, 272

F = ΓE
[
(R− E [R]) (S − E [S])

′]
Γ1. 273

Corollary 8 Suppose there is no affine relation between the components of R and the 274

moments of order 4 of (R,S) exist. Suppose H3b1 holds: 275

(H3b1) 0 < a < min

(
1

λmax
,

2λ

λ2 + b1

)
. 276

Then Yn converges to θ = B−1F a.s. 277

This process was tested on several datasets and some results are given in section 6 278

(process S21 for mn = 1 and S22 for mn = 10). 279

Proof of Corollary 8. 280

Step 1: introduction. 281

Using the decomposition of E [Bn|Tn]−B established in the proof of corollary 4, as 282

R̄Mn−1
−→ E [R] and ΓMn−1

−→ Γ a.s., it is obvious that E [Bn|Tn]−B −→ 0 a.s. 283

Likewise E [Fn|Tn]− F −→ 0 a.s. Thus assumptions H1b1 and H2b1 are verified. 284

Suppose that Yn does not converge to θ almost surely. 285

Then there exists a set of probability ε1 > 0 in which Yn does not converge to θ. 286

Denote σj =
√
V ar [Rj ], j = 1, ..., p. 287

As R̄Mn−1
− E [R] −→ 0,

√
Mn−1

Mn−1 − 1
V jMn−1

− σj −→ 0, j = 1, ..., p and 288

ΓMn−1 − Γ −→ 0 almost surely, there exists a set G of probability greater than 1− ε1
2 in 289

which these sequences of random variables converge uniformly to θ. 290

Step 2: prove that

∞∑
n=1

1

n

(
E
[∥∥ΓMn−1 − Γ

∥∥ IG]) 1
2 <∞. 291

By step 2 of the proof of lemma 5, we have for n > N : 292

∥∥ΓMn−1 − Γ
∥∥ IG ≤

p∑
j=1

∣∣∣∣ Mn−1

Mn−1−1

(
V jMn−1

)2
−
(
σj
)2∣∣∣∣√

Mn−1

Mn−1−1V
j
Mn−1

σj
(√

Mn−1

Mn−1−1V
j
Mn−1

+ σj
)IG.

As in G,

√
Mn−1

Mn−1 − 1
V jMn−1

converges uniformly to σj for j = 1, ..., p, there exists 293

c > 0 such that 294∥∥ΓMn−1
− Γ

∥∥ IG ≤ c

p∑
j=1

∣∣∣∣ Mn−1

Mn−1 − 1

(
V jMn−1

)2
−
(
σj
)2∣∣∣∣ .

Then there exists d > 0 such that 295

E
[∥∥ΓMn−1

− Γ
∥∥ IG] ≤ d√

Mn−1
≤ d√

n− 1
.

Therefore

∞∑
n=1

1

n

(
E
[∥∥ΓMn−1

− Γ
∥∥ IG]) 1

2 <∞. 296

Step 3: prove that assumption H1b2 is verified in G. 297

Using the decomposition of E [Bn|Tn]−B given in step 1 of the proof of corollary 4, 298

with Rc = R− E [R] and R̄cMn−1
= R̄Mn−1

− E [R] yields a.s.: 299

(E [Bn|Tn]−B) IG = (
(
ΓMn−1

− Γ
)
E
[
RcRc′

]
ΓMn−1

+ ΓE
[
RcRc′

] (
ΓMn−1

− Γ
)

+ΓMn−1R̄
c
Mn−1

(
R̄cMn−1

)′
ΓMn−1)IG.
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As in G, ΓMn−1
− Γ and R̄cMn−1

converge uniformly to 0, E [Bn|Tn]−B converges 300

uniformly to 0. Moreover there exists c1 > 0 such that 301

‖E [Bn|Tn]−B‖ IG ≤ c1

(∥∥ΓMn−1 − Γ
∥∥ IG +

∥∥∥R̄cMn−1

∥∥∥) a.s.

By the proof of lemma 5: E
[∥∥∥R̄cMn−1

∥∥∥] ≤ (V ar [R]

n− 1

) 1
2

; then 302

∞∑
n=1

1

n

(
E
[∥∥∥R̄cMn−1

∥∥∥]) 1
2

<∞. 303

By step 2:

∞∑
n=1

1

n

(
E
[∥∥ΓMn−1

− Γ
∥∥ IG]) 1

2 <∞. 304

Then:

∞∑
n=1

1

n
(E [‖E [Bn|Tn]−B‖ IG])

1
2 <∞. 305

As E [Bn|Tn]−B converges uniformly to 0 on G, we obtain: 306

∞∑
n=1

1

n

(
E
[
‖E [Bn|Tn]−B‖2 IG

]) 1
2

<∞.

Thus assumption H1b2 is verified in G. 307

Step 4: prove that assumption H1b3 is verified in G. 308

Denote Rc = R− E [R], Rcj = Rj − E [R], R̄cj = R̄j − E [R] . Consider the 309

decomposition: 310

Bn −B = ΓMn−1

1

mn

∑
j∈In

(
Rcj − R̄cMn−1

)(
Rcj − R̄cMn−1

)′
ΓMn−1

−ΓE
[
RcRc′

]
Γ

= αn + βn
311

with αn = ΓMn−1

1

mn

∑
j∈In

(
RcjR

c
j
′ − R̄cMn−1

Rcj
′ −Rcj

(
R̄cMn−1

)′
+ R̄cMn−1

(
R̄cMn−1

)′)
ΓMn−1

−Γ
1

mn

∑
j∈In

RcjR
c
j
′Γ

=
(
ΓMn−1 − Γ

) 1

mn

∑
j∈In

RcjR
c
j
′

ΓMn−1 + Γ

 1

mn

∑
j∈In

RcjR
c
j
′

(ΓMn−1 − Γ
)

−ΓMn−1
R̄cMn−1

1

mn

∑
j∈In

Rcj
′ΓMn−1

− ΓMn−1

1

mn

∑
j∈In

Rcj

(
R̄cMn−1

)′
ΓMn−1

+ΓMn−1
R̄cMn−1

(
R̄cMn−1

)′
ΓMn−1

,

βn = Γ

 1

mn

∑
j∈In

RcjR
c
j
′ − E

[
RcRc′

]Γ.

Let η > 0. 312

E
[
‖Bn −B‖2 IG|Tn

]
= E

[
‖αn + βn‖2 IG|Tn

]
≤

(
1 +

1

η

)
E
[
‖αn‖2 IG|Tn

]
+ (1 + η)E

[
‖βn‖2 IG|Tn

]
a.s.
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As random variables Rcj , j ∈ In, are independent of Tn, as ΓMn−1
and R̄cMn−1

are 313

Tn-measurable and converge uniformly respectively to Γ and 0 on G, E
[
‖αn‖2 IG|Tn

]
314

converges uniformly to 0. Then, for δ > 0, there exists N1 such that for n > N1, 315

E
[
‖αn‖2 IG|Tn

]
≤ δ a.s. 316

Moreover, denoting U = RcRc′ and Uj = RcjR
c
j
′, we have, as the random variables 317

Uj form an i.i.d. sample of U : 318

E
[
‖βn‖2 |Tn

]
= E


∥∥∥∥∥∥ 1

mn

∑
j∈In

Γ (Uj − E [U ]) Γ

∥∥∥∥∥∥
2

|Tn


≤ E

[
‖Γ (U − E [U ]) Γ‖2

]
= E

[
‖ΓUΓ− E [ΓUΓ]‖2

]
= b1 a.s.

Then: 319

E
[
‖Bn −B‖2 IG|Tn

]
≤

(
1 +

1

η

)
δ + (1 + η) b1 = b a.s.

Thus assumption H1b3 is verified in G. 320

As S̄Mn−1 − E [S] −→ 0 and Γ1
Mn−1

− Γ1 −→ 0 almost surely, it can be proved 321

likewise that there exist a set H of probability greater than 1− ε1
2

and d > 0 such that 322

E
[
‖Fn − F‖2 IH |Tn

]
≤ d a.s. Thus assumption H2b2 is verified in H. 323

Step 5: conclusion. 324

As a < min

(
1

λmax
,

2λ

λ2 + b1

)
, b1 <

2λ

a
− λ2. 325

Choose 0 < η <
2λ
a − λ

2

b1
− 1 and 0 < δ <

2λ
a − λ

2 − (1 + η) b1

1 + 1
η

such that 326

b =

(
1 +

1

η

)
δ + (1 + η) b1 <

2λ

a
− λ2 ⇐⇒ a <

2λ

λ2 + b
.

Thus assumption H3b is verified. 327

Applying theorem 7 implies that Yn converges to θ almost surely in H ∩G. 328

Therefore P (Yn −→ θ) ≥ P (H ∩G) > 1− ε1. 329

This is in contradiction with P (Yn 9 θ) = ε1. Thus Yn converges to θ a.s. � 330

5 Convergence of a process with a variable or 331

constant step-size and use of all observations until 332

the current step 333

In this section, the convergence of the process (Xn, n ≥ 1) in Rp×q recursively defined by 334

Xn+1 = Xn − an (BnXn − Fn)

and its application to sequential linear regression are studied. 335

5.1 Theorem 336

Make the following assumptions 337

(H1c) There exists a positive definite symmetrical matrix B such that Bn −→ B a.s. 338
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(H2c) There exists a matrix F such that Fn −→ F a.s. 339

(H3c) λmax denoting the largest eigenvalue of B, 340(
an = a <

1

λmax

)
or

(
an −→ 0,

∞∑
n=1

an =∞

)
. 341

Theorem 9 Suppose H1c, H2c and H3c hold. Then Xn converges to B−1F a.s. 342

Proof of Theorem 9. 343

Denote θ = B−1F , X1
n = Xn − θ, Zn = (Bn −B) θ − (Fn − F ). Then: 344

X1
n+1 = (I − anBn)X1

n − anZn.

Let ω be fixed belonging to the intersection of the convergence sets {Bn −→ B} and 345

{Fn −→ F}. The writing of ω is omitted in the following. 346

Denote ‖A‖ the spectral norm of a matrix A and λ the smallest eigenvalue of B. 347

In the case an depending on n, as an −→ 0, we can suppose without loss of 348

generality an <
1

λmax
for all n. Then all the eigenvalues of I − anB are positive and 349

‖I − anB‖ = 1− anλ. 350

Let 0 < ε < λ. As Bn −B −→ 0, we obtain for n sufficiently large: 351

‖I − anBn‖ ≤ ‖I − anB‖+ an ‖Bn −B‖

≤ 1− anλ+ anε , with an <
1

λ− ε∥∥X1
n+1

∥∥ ≤ (1− an (λ− ε))
∥∥X1

n

∥∥+ an ‖Zn‖ .

As Zn −→ 0, applying lemma 6 yields
∥∥X1

n

∥∥ −→ 0. 352

Therefore Xn −→ B−1F a.s. � 353

5.2 Application to linear regression with online standardized 354

data 355

Let (mn, n ≥ 1) be a sequence of integers. Denote Mn =
n∑
k=1

mk for n ≥ 1, M0 = 0 and 356

In = {Mn−1 + 1, ...,Mn}. 357

Define 358

Bn = ΓMn

 1

Mn

n∑
i=1

∑
j∈Ii

RjR
′
j − R̄Mn

R̄′Mn

ΓMn
,

Fn = ΓMn

 1

Mn

n∑
i=1

∑
j∈Ii

RjS
′
j − R̄Mn

S̄′Mn

Γ1
Mn

.

As ((Rn, Sn) , n ≥ 1) is an i.i.d. sample of (R,S), assumptions H1c and H2c are 359

obviously verified with B = ΓE
[
(R− E [R]) (R− E [R])

′]
Γ and 360

F = ΓE
[
(R− E [R]) (S − E [S])

′]
Γ1. Then: 361

Corollary 10 Suppose there is no affine relation between the components of R and the 362

moments of order 4 of (R,S) exist. Suppose H3c holds. Then Xn converges to B−1F 363

a.s. 364
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Remark 3 B is the correlation matrix of R of dimension p. Then 365

λmax < Trace (B) = p. In the case of a constant step-size a, it suffices to take a ≤ 1

p
to 366

verify H3c. 367

This process was tested on several datasets and some results are given in section 6 368

(with a variable step-size: process S13 for mn = 1 and S14 for mn = 10 ; with a 369

constant step-size: process S31 for mn = 1 and S32 for mn = 10). 370

6 Experiments 371

The three previously-defined processes of stochastic approximation with online 372

standardized data were compared with the classical stochastic approximation and 373

averaged stochastic approximation (or averaged stochastic gradient descent) processes 374

with constant step-size (denoted ASGD) studied in [5] and [6]. A description of the 375

methods along with abbreviations and parameters used is given in Table 1. 376

Table 1. Description of the methods.

Method
type

Abbreviation
Type of
data

Number of
observations

used
at each step
of the process

Use of all the
observations
until the

current step

Step-size
Use of the
averaged
process

Classic

C1

Raw data

1
No

variable No
C2 10
C3 1

Yes
C4 10

ASGD
A1 1

No constant Yes
A2 1

Standardization 1

S11

Online
standardized

data

1
No

variable No
S12 10
S13 1

Yes
S14 10

Standardization 2
S21 1

No
constant

Yes
S22 10

Standardization 3
S31 1

Yes No
S32 10

With the variable S set at dimension 1, 11 datasets were considered, some of which 377

are available in free access on the Internet, while others were derived from the 378

EPHESUS study [13]: 6 in regression (continuous dependent variable) and 5 in linear 379

discriminant analysis (binary dependent variable). All datasets used in our experiments 380

are presented in detail in Table 2, along with their download links. An a priori selection 381

of variables was performed on each dataset using a stepwise procedure based on Fisher’s 382

test with p-to-enter and p-to-remove fixed at 5 percent. 383

Let D = {(ri, si) , i = 1, 2, ..., N} be the set of data in Rp × R and assuming that it 384

represents the set of realizations of a random vector (R,S) uniformly distributed in D, 385

then minimizing E[(S − θ′R− η)
2
] is equivalent to minimizing

1

N

N∑
i=1

(si − θ′ri − η)
2
. 386

One element of D (or several according to the process) is randomly drawn at each step 387

to iterate the process. 388
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Table 2. Datasets used in our experiments.

Dataset name N pa p
Type of

dependent
variable

T 2
Number

of
outliers

CADATA 20640 8 8 Continuous 1.6x106 122 www.dcc.fc.up.pt/∼ltorgo/Regression/DataSets.html

AILERONS 7154 40 9 Continuous 247.1 0 www.dcc.fc.up.pt/∼ltorgo/Regression/DataSets.html

ELEVATORS 8752 18 10 Continuous 7.7x104 0 www.dcc.fc.up.pt/∼ltorgo/Regression/DataSets.html

POLY 5000 48 12 Continuous 4.1x104 0 www.dcc.fc.up.pt/∼ltorgo/Regression/DataSets.html

eGFR 21382 31 15 Continuous 2.9x104 0 derived from EPHESUS study [13]

HEMG 21382 31 17 Continuous 6.0x104 0 derived from EPHESUS study [13]

QUANTUM 50000 78 14 Binary 22.5 1068 www.osmot.cs.cornell.edu/kddcup

ADULT 45222 97 95 Binary 4.7x1010 20 www.cs.toronto.edu/∼delve/data/datasets.html

RINGNORM 7400 20 20 Binary 52.8 0 www.cs.toronto.edu/∼delve/data/datasets.html

TWONORM 7400 20 20 Binary 24.9 0 www.cs.toronto.edu/∼delve/data/datasets.html

HOSPHF30D 21382 32 15 Binary 8.1x105 0 derived from EPHESUS study [13]

N denotes the size of global sample, pa the number of parameters available, p the number of parameters selected and T 2 the
trace of E [RR′]. Outlier is defined as an observation whose the L2 norm is greater than five times the average norm.

To compare the methods, two different studies were performed: one by setting the 389

total number of observations used, the other by setting the computing time. 390

The choice of step-size, the initialization for each method and the convergence 391

criterion used are respectively presented and commented below. 392

Choice of step-size 393

In all methods of stochastic approximation, a suitable choice of step-size is often 394

crucial for obtaining good performance of the process. If the step-size is too small, the 395

convergence rate will be slower. Conversely, if the step-size is too large, a numerical 396

explosion phenomenon may occur during the first iterations. 397

For the processes with a variable step-size (processes C1 to C4 and S11 to S14), we 398

chose to use an of the following type: 399

an =
cγ

(b+ n)
α .

The constant α =
2

3
was fixed, as suggested by Xu [14] in the case of stochastic 400

approximation in linear regression, and b = 1. The results obtained for the choice 401

cγ =
1

p
are presented although the latter does not correspond to the best choice for a 402

classical method. 403

For the ASGD method (A1, A2), two different constant step-sizes a as used in [6] 404

were tested: a =
1

T 2
and a =

1

2T 2
, T 2 denoting the trace of E [RR′]. Note that this 405

choice of constant step-size assumes knowing a priori the dataset and is not suitable for 406

a data stream. 407

For the methods with standardization and a constant step-size a (S21, S22, S31, 408

S32), a =
1

p
was chosen since the matrix E [RR′] is thus the correlation matrix of R, 409

whose trace is equal to p, such that this choice corresponds to that of [6]. 410

Initialization of processes 411

All processes (Xn) were initialized by X1 = 0, the null vector. For the processes 412

with standardization, a small number of observations (n = 1000) were taken into 413

account in order to calculate an initial estimate of the means and standard deviations. 414
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Convergence criterion 415

The ”theoretical vector” θ1 is assigned as that obtained by the least square method 416

in D such that θ′1 =
(
θ′ η

)
. Let Θ1

n+1 be the estimator of θ1 obtained by stochastic 417

approximation after n iterations. 418

In the case of a process (Xn) with standardized data, which yields an estimation of 419

the vector denoted θc in section 2 as θ = Γθc
(
Γ1
)−1

and η = E [S]− θ′E [R], we can 420

define: 421

Θ1
n+1
′ =

(
Θ′n+1 Hn+1

)
with Θn+1 = ΓMn

Xn+1(Γ1
Mn

)−1

Hn+1 = S̄Mn
−Θ′n+1R̄Mn

.

To judge the convergence of the method, the cosine of the angle formed by exact θ1 and 422

its estimation θ1n+1 was used as criterion, 423

cos
(
θ1, θ1n+1

)
=

θ1
′
θ1n+1

‖θ1‖2
∥∥θ1n+1

∥∥
2

.

Other criteria, such as
∥∥θ1 − θ1n+1

∥∥
2

or f(θ1n+1)− f(θ1), f being the loss function, were 424

also tested, although the results are not presented in this article. 425

6.1 Study for a fixed total number of observations used 426

For all N observations used by the algorithm (N being the size of D) up to a maximum 427

of 100N observations, the criterion value associated with each method and for each 428

dataset was recorded. The results obtained after using 10N observations are provided in 429

Table 3. 430

Table 3. Results after using 10N observations.

C
A
D
A
T
A

A
IL

E
R
O
N
S

E
L
E
V
A
T
O
R
S

P
O
L
Y

E
G
F
R

H
E
M

G

Q
U
A
N
T
U
M

A
D
U
L
T

R
IN

G
N
O
R
M

T
W

O
N
O
R
M

H
O
S
P
H
F
3
0
D

M
e
a
n

ra
n
k

C1 Expl. -0.0385 Expl. Expl. Expl. Expl. 0.9252 Expl. 0.9998 1.0000 Expl. 11.6
C2 Expl. 0.0680 Expl. Expl. Expl. Expl. 0.8551 Expl. 0.9976 0.9996 Expl. 12.2
C3 Expl. 0.0223 Expl. Expl. Expl. Expl. 0.9262 Expl. 0.9999 1.0000 Expl. 9.9
C4 Expl. -0.0100 Expl. Expl. Expl. Expl. 0.8575 Expl. 0.9981 0.9996 Expl. 12.3
A1 -0.0013 0.4174 0.0005 0.3361 0.2786 0.2005 Expl. 0.0027 0.9998 1.0000 0.0264 9.2
A2 0.0039 0.2526 0.0004 0.1875 0.2375 0.1846 0.0000 0.0022 0.9999 1.0000 0.2047 8.8
S11 1.0000 0.9516 0.9298 1.0000 1.0000 0.9996 0.9999 0.7599 0.9999 1.0000 0.7723 5.2
S12 0.9999 0.9579 0.9311 1.0000 0.9999 0.9994 0.9991 0.6842 0.9999 1.0000 0.4566 6.1
S13 1.0000 0.9802 0.9306 1.0000 1.0000 0.9998 1.0000 0.7142 0.9999 1.0000 0.7754 3.7
S14 0.9999 0.9732 0.9303 1.0000 0.9999 0.9994 0.9991 0.6225 0.9998 1.0000 0.4551 6.9
S21 0.9993 0.6261 0.9935 Expl. Expl. Expl. Expl. Expl. 0.9998 1.0000 Expl. 10.5
S22 1.0000 0.9977 0.9900 1.0000 1.0000 0.9989 0.9999 -0.0094 0.9999 1.0000 0.9454 4.1
S31 1.0000 0.9988 0.9999 1.0000 1.0000 0.9992 0.9999 0.9907 0.9999 1.0000 0.9788 2.3
S32 1.0000 0.9991 0.9998 1.0000 1.0000 0.9992 0.9999 0.9867 0.9999 1.0000 0.9806 2.2

Expl. means numerical explosion.
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As can be seen in Table 3, a numerical explosion occured in most datasets using the 431

classical methods with raw data and a variable step-size (C1 to C4). As noted in 432

Table 2, these datasets had a high T 2 = Tr (E [RR′]). Corresponding methods S11 to 433

S14 using the same variable step-size but with online standardized data quickly 434

converged in most cases. However classical methods with raw data can yield good 435

results for a suitable choice of step-size, as demonstrated by the results obtained for 436

POLY dataset in Figure 1. The numerical explosion can arise from a too high step-size 437

when n is small. This phenomenon can be avoided if the step-size is reduced, although 438

if the latter is too small, the convergence rate will be slowed. Hence, the right balance 439

must be found between step-size and convergence rate. Furthermore, the choice of this 440

step-size generally depends on the dataset which is not known a priori in the case of a 441

data stream. In conclusion, methods with standardized data appear to be more robust 442

to the choice of step-size. 443

The ASGD method (A1 with constant step-size a =
1

T 2
and A2 with a =

1

2T 2
) did 444

not yield good results except for the RINGNORM and TWONORM datasets which 445

were obtained by simulation (note that all methods functioned very well for these two 446

datasets). Of note, A1 exploded for the QUANTUM dataset containing 1068 447

observations (2.1 %) whose L2 norm was fivefold greater than the average norm 448

(Table 2). The corresponding method S21 with online standardized data yielded several 449

numerical explosions with the a =
1

p
step-size, however these explosions disappeared 450

when using a smaller step-size (see Figure 1). Of note, it is assumed in corollary 8 that 451

0 < a < min

(
1

λmax
,

2λ

λ2 + b1

)
; in the case of a =

1

p
, only a <

1

λmax
is certain. 452

Finally, for methods S31 and S32 with standardized data, the use of all observations 453

until the current step and the very simple choice of the constant step-size a =
1

p
454

uniformly yielded good results. 455

Thereafter, for each fixed number of observations used and for each dataset, the 14 456

methods ranging from the best (the highest cosine) to the worst (the lowest cosine) were 457

ranked by assigning each of the latter a rank from 1 to 14 respectively, after which the 458

mean rank in all 11 datasets was calculated for each method. A total of 100 mean rank 459

values were calculated for a number of observations used varying from N to 100N . The 460

graph depicting the change in mean rank based on the number of observations used and 461

the boxplot of the mean rank are shown in Figure 2. 462

Overall, for these 11 datasets, a method with standardized data, a constant step-size 463

and use of all observations until the current step (S31, S32) represented the best 464

method when the total number of observations used was fixed. 465

6.2 Study for a fixed processing time 466

For every second up to a maximum of 2 minutes, the criterion value associated to each 467

dataset was recorded. The results obtained after a processing time of 1 minute are 468

provided in Table 4. 469

The same conclusions can be drawn as those described in section 6.1 for the classical 470

methods and the ASGD method. The methods with online standardized data typically 471

faired better. 472

As in the previous study in section 6.1, the 14 methods were ranked from the best to 473

the worst on the basis of the mean rank for a fixed processing time. The graph 474

depicting the change in mean rank based on the processing time varying from 1 second 475

to 2 minutes as well as the boxplot of the mean rank are shown in Figure 3. 476

As can be seen, these methods with online standardized data using more than one 477
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Fig 1. Results obtained for dataset POLY using 10N and 100N observations:

A/ process C1 with variable step-size an =
1

(b+ n)
2
3

by varying b,

B/ process C1 with variable step-size an =

1
p

(b+ n)
2
3

by varying b,

C/ process S21 by varying constant step-size a.
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Fig 2. Results for a fixed total number of observations used: A/ change in the mean rank based on the
number of observations used, B/ boxplot of the mean rank by method.

Table 4. Results obtained after a fixed time of 1 minute.

C
A
D
A
T
A

A
IL

E
R
O
N
S

E
L
E
V
A
T
O
R
S

P
O
L
Y

E
G
F
R

H
E
M

G

Q
U
A
N
T
U
M

A
D
U
L
T

R
IN

G
N
O
R
M

T
W

O
N
O
R
M

H
O
S
P
H
F
3
0
D

M
e
a
n

ra
n
k

C1 Expl. -0.2486 Expl. Expl. Expl. Expl. 0.9561 Expl. 1.0000 1.0000 Expl. 12.2
C2 Expl. 0.7719 Expl. Expl. Expl. Expl. 0.9519 Expl. 1.0000 1.0000 Expl. 9.9
C3 Expl. 0.4206 Expl. Expl. Expl. Expl. 0.9547 Expl. 1.0000 1.0000 Expl. 10.6
C4 Expl. 0.0504 Expl. Expl. Expl. Expl. 0.9439 Expl. 1.0000 1.0000 Expl. 10.1
A1 -0.0067 0.8323 0.0022 0.9974 0.7049 0.2964 Expl. 0.0036 1.0000 1.0000 Expl. 9.0
A2 0.0131 0.8269 0.0015 0.9893 0.5100 0.2648 Expl. 0.0027 1.0000 1.0000 0.2521 8.6
S11 1.0000 0.9858 0.9305 1.0000 1.0000 1.0000 1.0000 0.6786 1.0000 1.0000 0.9686 5.8
S12 1.0000 0.9767 0.9276 1.0000 1.0000 0.9999 1.0000 0.6644 1.0000 1.0000 0.9112 5.8
S13 1.0000 0.9814 0.9299 1.0000 1.0000 0.9999 1.0000 0.4538 1.0000 1.0000 0.9329 6.1
S14 1.0000 0.9760 0.9274 1.0000 1.0000 1.0000 0.9999 0.5932 1.0000 1.0000 0.8801 6.1
S21 -0.9998 0.2424 0.6665 Expl. Expl. Expl. Expl. 0.0000 1.0000 1.0000 Expl. 11.5
S22 1.0000 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000 -0.0159 1.0000 1.0000 0.9995 3.1
S31 1.0000 0.9995 1.0000 1.0000 1.0000 0.9999 1.0000 0.9533 1.0000 1.0000 0.9997 4.5
S32 1.0000 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000 0.9820 1.0000 1.0000 0.9999 1.5

Expl. means numerical explosion.

observation per step yielded the best results (S32, S22). One explanation may be that 478

the total number of observations used in a fixed processing time is higher when several 479

observations are used per step rather than one observation per step. This can be verified 480

in Table 5 in which the total number of observations used per second for each method 481
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Fig 3. Results for a fixed processing time: A/ change in the mean rank based on the processing time, B/
boxplot of the mean rank by method.

and for each dataset during a processing time of 2 minutes is given. Of note, the number 482

of observations used per second in a process with standardized data and one observation 483

per step (S11, S13, S21, S31) was found to be generally lower than in a process with raw 484

data and one observation per step (C1, C3, A1, A2), since a method with 485

standardization requires the recursive estimation of means and variances at each step. 486

Of note, for the ADULT dataset with a large number of parameters selected (95), 487

the only method yielding sufficiently adequate results after a processing time of one 488

minute was S32, and methods S31 and S32 when 10N observations were used. 489

7 Conclusion 490

In the present study, three processes with online standardized data were defined and for 491

which their a.s. convergence was proven. 492

A stochastic approximation method with standardized data appears to be 493

advantageous compared to a method with raw data. First, it is easier to choose the 494

step-size. For processes S31 and S32 for example, the definition of a constant step-size 495

only requires knowing the number of parameters p. Secondly, the standardization 496

usually allows avoiding the phenomenon of numerical explosion often obtained in the 497

examples given with a classical method. 498

The use of all observations until the current step can reduce the influence of outliers 499

and increase the convergence rate of a process. Moreover, this approach is particularly 500

adapted to the case of a data stream. 501

Finally, among all processes tested on 11 different datasets (linear regression or 502

linear discriminant analysis), the best was a method using standardization, a constant 503

step-size equal to
1

p
and all observations until the current step, and the use of several 504

new observations at each step improved the convergence rate. 505
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Table 5. Number of observations used after 2 minutes (expressed in number of observations per second).

C
A
D
A
T
A

A
IL

E
R
O
N
S

E
L
E
V
A
T
O
R
S

P
O
L
Y

E
G
F
R

H
E
M

G

Q
U
A
N
T
U
M

A
D
U
L
T

R
IN

G
N
O
R
M

T
W

O
N
O
R
M

H
O
S
P
H
F
3
0
D

C1 19843 33170 17133 14300 10979 9243 33021 476 31843 31677 10922
C2 166473 291558 159134 134249 104152 89485 281384 4565 262847 261881 102563
C3 17206 28985 16036 13449 10383 8878 28707 462 28123 28472 10404
C4 132088 194031 125880 106259 87844 76128 184386 4252 171711 166878 86895
A1 33622 35388 36540 35800 35280 34494 11815 15390 34898 34216 14049
A2 33317 32807 36271 35628 35314 34454 15439 16349 34401 34205 34890
S11 17174 17133 17166 16783 15648 14764 16296 1122 14067 13836 14334
S12 45717 47209 45893 43470 39937 37376 40943 4554 34799 34507 36389
S13 12062 12731 11888 12057 11211 10369 11466 620 9687 9526 10137
S14 43674 46080 43068 42123 38350 35338 39170 4512 33594 31333 32701
S21 15396 17997 16772 10265 8404 7238 9166 996 13942 13274 7672
S22 47156 47865 46318 43899 40325 37467 41320 4577 34478 31758 37418
S31 12495 12859 12775 12350 11495 10619 11608 621 9890 9694 10863
S32 44827 47035 45123 42398 38932 36288 39362 4532 33435 33385 35556
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