C R Barrett 
  
Prasanta K Pattanaik ## 
  
Maurice Salles 
  
TIONALITY AND AGGREGATION OF PREFERENCES IN AN ORDINALLY FUZZY FRAMEWORK

Keywords: fuzzy preferences, fuzzy aggregation rule, transitivity

The paper explores the problem of aggregating ordinally fuzzy individual preferences into ordinally fuzzy social preferences. Using Goguen's ordinal formulation of fuzziness, it is shown that, given certain plausible conditions, the requirement that the society' s preferences should satisfy any of several alternative transitivity conditions creates a dilemma: either power in the society is rather unevenly distributed, or the society tends to be indecisive. The problem increases as weaker transitivity conditions are replaced by stronger ones.

The purpose of this paper is to investigate the problem of aggregating fuzzy individual preferences into fuzzy social preferences. While this problem has been considered earlier by several writers (see, among others, [START_REF] Barrett | On the Structure of Fuzzy Social Welfare Function[END_REF], [START_REF] Barrett | Aggregation of Fuzzy Preferences[END_REF], Blin anc Whinston (1979), [START_REF] Blin | Fuzzy Relation in Group Decision Theory[END_REF], [START_REF] Dimitrov | Group Choice under Fuzzy Information[END_REF], [START_REF] Leclerc | Efficient and Binary Consensus Functions on Transitively Valued Relations[END_REF], Nurmi (1931), [START_REF] Subramanian | The Liberal Pardox with Fuzzy Preferences[END_REF] and [START_REF] Tanino | Fuzzy Preference Orderings in Group Decision Making[END_REF]), the present paper differs frcrj most earlier contributions in two important respects. First, in contrast to most earlier writers, who use the standard fuzzy set theoretic framework (with 'degrees of belonging' represented by numbers in the interval [0, [START_REF] Subramanian | The Liberal Pardox with Fuzzy Preferences[END_REF], we use an ordinal version of fuzziness due to Goguen (1S57). Thus, instead of representing degrees of belonging, in a cardinal fashion, by numbers lying between 0 and 1, we just assume an ordering of these degrees. Secondly, instead of concentrating on any single transitivity property for individual and social preferences, we explore the implications of imposing alternative transitivity properties, some betotvg very weak. Since the literature on fuzzy preferences contains a number of transitivity conditions, and, since none of these conditions seems to have any overwhelming intuitive claim to superiority over the others, it seems useful to explore the implications of different transitivity properties in the context of aggregation of preferences. This is what we have tried to do in the present paper. Using Goguen's ordinal formulation of fuzziness, we show that, given certain plausible conditions, the requirement that the society's preferences should satisfy even one of the weaker transitivity conditions considered by us creates a dilemma: either power in the society is rather unevenly distributed, or the society tends to be indecisive. The problem increases as weaker transitivity conditions are replaced by sironger ones.

Notation and Definitions

Let X be a set of social alternatives, and let N = <1, . .., n) index a finite set of individuals constituting the society. Let L (#L * 2) be a finite set, ordered by an ordering » the elements of L are to be interpreted as " degrees of belonging" . Let y* denote the asymmetric factor of ^ , and rsj the symmetric factor, and assume that L has a unique -least element d* and a unique ' j p -greatest element d*. (See [START_REF] Goguen | L-fuzzy Sets[END_REF] for the seminal work on an ordinally fuzzy framework, in which incidentally he refers to • L-sets' rather than 'fuzzy sets1.) A fuzzy binary relation over X, in this context, is defined to be a function f: X2 L.

Notation 2. 1 Let F be the set of all functions f: X2 -> L such that:

(2.1) for all xeX, f<x, x) = d*;

(2.2) for all distinct x, yeX, f (x, y) = d* implies f(y, x) = d*;

(2.3) for all x, y, zeXt f (x, y) = d* implies f(x, z) f(y, z), and f(y, z) = d* implies f (x, z) ^ f(x, y).

We interpret F as the set of ell fuzzy (binary) strict preference relations (FSPR's) over X. Thus, an FAR maps an n-tuple of FSPR' s, interpreted as the FSPR's of the individuals of the society, to an FSPR, interpreted as the society*s FSFR. We write P = g(P,..... P"), P* = g(P1\ .

P"'>, etc.

Defini tion 2. 4 An FAR satisfies:

(2.4.1) unanimi tv (U) iff, for all x, yeX and for all (P,, . .., P"jsG^9 there exists ieN such that P1 (x, y) ^ P;x, y), and there exists jeN such that P(x, y) ^ ? 6 (x, y).

(2.4.2) independence of irrelevant alternatives (IIA) iff, for all x, ycX and for all (P, , ..., P0 >, (P/, >e G", [for all icN, P »(x, y) ^ Pif(x, y) and Pt <y, x) ^ Pi'(y. x)3 implies LP(x, y)^P'(x, y) and P(y, x) ^ P' (y, x)].

Remark 2.5 11A is the counterpart of the corresponding concision in the exact framework, and U is similar in spirit to the familiar ?»reto criterion (see [START_REF] Arrow | Social Choice and Individual Values[END_REF]).

Notation 2.6 A non-empty subset of N will be called a c o a l:::cn .

Given a coalition C = ii,..... i,") (where i, < ... < i,"), x, ytX and (P, , Pr,)eG' "'l Pc (x, y) will denote (P-(x, y)..... Pi (x, y)). Given deL, Pc <x, y) ^ d will denote Pw (x, y) d for all keC. Similarly for Pc (*.

y) y r d, Pc (x, y) r * d, etc.

Transitivity Conditions

The choice of transitivity conditions to be assumed for individual and also social preferences is an important issue in any discussion c: Proof We prove just G, e G2 , since the rest is straightforward. Let f eG. , let x, y, zeX, and let f(x, y) 'y f(y, x) and f(y, z)^-:Cz, y).

Suppose f(z, x) f(x, z). Then, by restricted max-min transitivity,

[f(x, 2 > y) or f(x, z) ^ f (y, z>3 , [f(y, x) ^ f(y, z) or f(y,
x) f (z, x>] and t f (z, y) 'jp-f(z, x) or f(z, y> ^ f (x, y) 3 • Theref ore, one of the following must hold:

[f (x, z) > f (x, y > > f <y. x) > f<y. Z) > f (2, y}> f <2, X) [ f (x, z) * f (X, y> > f(y, X) > f<y. z) > f (Z, y} > f (x, y>3; [f (x, z ) > f (x, y> > f <y. X) > f <2, X) > f (x, z): ; tf (X, z) > f(y. >■ f (z, y> > f <2. X) > f (x, z)I ; [ f (x, z) > z) y -f (Z, y> > f (x, y> f<y. x) f<y. 2)] ; [f (X, z) > f(y. z) y f (2, y> > f (x, y> >-f<y. X) 'yp f <2, x) f(x, z)3.
Since each of these involves a contradiction, f (x, z ) ^f ( z , x , and the proof of G, £ G2 is complete. Then, in the same manner as before, EP1 (2 , w;-r» p(z, w) ^7 P(x, w) P" (x, w) and P" (w, x) ^ P(w, x) ^ P(w, 2 ) rsj p1 (w, z)3 and C P* Cxf w) ^ P(x, w) ^ P(z, w)r^p«(2 t w) and P* (w, z) ^ p (w, z) ^ P <w, x) c*s P" (w, x) 1 .

Combining these results, P"(x, w) o-' P' (z, w) and P" (w, x) P* (w, z).

Since P(x, y ) ^ P"(x, w) and P" (w, x) ^ P(y, x), the result follows. 

  aggregation of individual preferences into social preferences. The problem is particularly difficult when one operates in the fuzzy framewori, since, in such a framework, one has many transitivity conditions to consider, none of which has any obvious intuitive superiority over the rest. Therefore, instead of confining ourselves to any single transitivity condition, we investigate the implications of a variety of such conditions. Definition 3. 1 An FSPR f over X satisfies: <3.1.1) restricted sax-min transitivity iff for all x, y, zsX, [fix, y) y ^ f(y, x) and f (y, z) yp* f(z, y)3 implies [f(x, z) f<x, y) or f (x, z) ^ f (y, z)] ; (3.1.2) quasi-transi tivitv iff for all x, y, zeX, [ f (x, y) ^ f <y. x) and f (y, z) f (z, y)] implies f (x, x); (3.1.3) acvclici tv iff there does not exist a sequence x,, x2 , ... , xreX (r > 1) such that [f(x,, x^>) > f (x^, x, ) and . . . and x^) ^ f(xr, xr.,) and fix,., x, > f<x,# xr)3; (3.1.4) simple transitivity iff for all x, y, zcX, [ f (x, y) ^ d* anc f (y, x) = d* and f (y, 2 ) ^ d* and f (z, y) = d*3 implies L f (x, z) y r d, ¿nd f (z, x) = d*3. Remark 3.2 An example, found in Barrett and Pattanaik (190^), invDlves the following three alternatives: a sum of money m, m + b (0 > 0) anc x (unspecified), For 6 small, one might easily observe (and without there seeming to be anything irrational about such preferences): f(m +6, m) = d*, f (m, x) = d and f (x, m + 8) = d* , where d* y ~ d y -d; * and d* : d*. Nevertheless, these preferences conflict with the familiar condition of max-min transitivity: (3.1) for all x, y, zsX, [f (x, 2 ) ^ f (x, y) or f(x, z) ^ f(y, z)]; anc also with the weaker transitivity condition used in Barrett, Pattanaik anc Salles (1986): (3.2) for all x, y, zeX, [f(x, y) y ~ d* and f(y, z) d: *3 implies f (x. z) y r d*. At The same time the above preferences are consistent with each of the transitiyity conditions introduced in Definition 3.1. (See Dasgupta and DetC1988> for a discussion of some of the available transitivity cor.zi tions. ) Notation 3.3 Let G, , G-,, G3 and G* be the set of all feF satisfying, respectively, restricted max-min transitivity, quasi-transitivity, acyclicity and simple transitivity. Let G' be the set of all it? satisfying (3.3) for all x, y, zeX, t f (x, y) = d* and f(y, z) = d,] implies f (x, z) = d*. Proposi t ion 3.4 t G, c G= c g "3 and [G2^G' c G""G'].

First

  we give a preliminary result on the 'neutrality' and ' monotonicity* of FAR's. Proposi 11 on 4.1 Let g: Gn -t F, where G, £ G, be an FAR which satisfies I ) and 11A, let distinct x, y, z, wcX and let (P,, .... P,,). (Pi', .... P"')eGr' . Then, tPN (x, y> ^ PN ' (z, w) and PN ' (w, z ) ^P N (y, x)3 implies [ P(x, y) ^ P* (z, w) and P' (w, z) "jp. P(y, x>3. Proof Let (Pi"..... Pr/'JeG" be such that [PN"(x, y) = PN (x, y) and PN"<y, x) = PN (y, x)3 , PN"<w, y) = d* and [ (x, w> = PN' (z, w) and Pm " (w, x) = Pm '(w, z)3. (Note that, since G, s G, there exists such a preference profile in G". ) Then, by 11 A, tP"(x, y) ~ P(x, y) and P" (y, x) P(y, x)3. By U, P"(w, y) = d". Thus, by (2.3), tP(x, y) ^ P" (x, w) and P"(w, x ) >P(y, x) 3. Now let (P,..... (P,, .... be such that IPN (x, w) = ^( x , w) = Pm (z , w) = P^iz, w) = PN' (z, w) and PN (w, x) = PN (w, x) = PN (w, z) = / PN (w, z) = PN'(w, z)3, PN (z. x) = d* and PN (x, z) = d*.

Proposi tion 4 . 2 a

 42 Let #X \ n, and let g: G" -» G3 , where G, £ G, be an FAR which satisfies U and IIA. Let deL, d Then^tnere exists an individual JeN such *.r.= t, for all a, b e X and for all (P,, • Pr,)eG", [p_. (a, b)^-d'7'PJ (b1 a) and d ^ PN.tJ > (b, a)] implies P.^, b) P(b, a). Proof: Let distinct x,, x^eX, and let d_n denote an immediate predecessor of d (d / d_,) when d* y* d, and denote d* wher. d = d:r. Let <P, ' , . . . , )zGr' be such that [ P' (x, , x= ) = d and P, ' (x^. x, ) = d_, and P^-cd' (x,, x2) = d, ar.d PN_ri3'(x= , x,) = d3, [P2 '(x2 , x3 = d and P-.' (x3 , x= ) = d_, and PN_ C2j'(x~, x3) = d, and PN_~'(x?, x-) = dl, and (x,,, x, ) = d anc P^'Cx,, x"> = d_, and PN_Cr,31 (x^, x ,) = d* and Prj-t n j1 (x, , x") = d ]. Then, by a c y c lic ity , there e x is ts jcN such that P' 'vX;,, x.,*.-,) ^ P' tXj.-,, Xj) (d efin in g xr,*, = x,>. The resu lt follo w s froa P roposition 4.1. The next proposition indicates, in comparison with Pr:?osition 4.2, a strengthening of the 'veto power' of some individual, when the number of alternatives is increased. Proposi tion 4. 3 Let #X 2n, and let g: Gr > -» G3l where G, £ G, be an FAR which satisfies U and IIA. Let deL, d d*. Then, there exists an individual JeN such that, for all a, beX and for all (P-, , ..., Pri>eGr' , Pj(a, b) d Pj (b, a) implies P(a, b) ^ P(b, a). Proof: The proof is similar to that of Proposition 4.;. Remark 4.4 Propositions 4.2 and 4.3 can be generalize;. Assume no restriction on #X (but that otherwise conditions are uncharged). Let #X = t. and let in/kl denote the smallest integer greater than zr equal to n/k. V ran be partitioned into k, or fewer, coalitions, none of size greater Ln/kl. Thus, the veto power assigned to an individual, in the statement of Proposition ¿l^will be assigned more generally to some cc^lition of size no greater than Ln/k]. Similarly for Proposition 4.3, vi7.h Ln/k] replaced by [2n/kl. Proposition 4.5 Let g: G° -* G*, where G, £ G, be an FAR which satisfies U and 11A, and let deL, d d* . Then, there exists a coalition C S'.ch that: (1) for all a, beX and for all (Plf ..., P0 )eGr' , Pc (a. b) ^ d ?c .b, a) implies P(a, b) P(b, a); and (2) for all ieC, for all &, b£X and :cr all (P,..... P">eG", P4 <a, b) ^ d P* <b, a) implies P(a, b> ^ P(b, a) . Proof Let distinct x, yeX, and let d_«, denote an immediate predecessor of d <d }>-d_., ) when d* d, and denote d* when d = d*\ Let C oe a minimal coalition such that, for all (P , . .., Pr,)eGr\ [Pc (x, y) = d STiC Pc (y, x) = d_ 1 and P^-cCy, x) = d^j implies P(x, y) P(y, x). Clearly, by U, there exists such a minimal coalition, and, by Proposition 4.1, C satisfies (1). Let ieC, let zeX -<x, y) and let (F/, P"' )eGn be such that C Pc 1 (x, y) = d and Pc ' (y, x) = d_o and P^-c* <}'» = d*: ] , -? :r -c i :>1 (x, z) = d and Pc-cd' = d_, and Pm_<c-c i 5 >' {z> = end IF._C13 (y, z) = d: r and P^'Cy, z) = d--, and Pi ' (z, y) = d] . Then, by the inition of C, P'(x, y) ^ P' (y, x). Suppose P'(y, 2 ) ^ P'(z, y). Then, by quasi-transitivity, P* (x, z) ^ P'(z, x). From the definition of C =.nd Proposition 4.1, this is a contradiction. Thus, P* (z, y) ?' y, z). The result follows from Proposition 4.1. Proposl tion 4.6 Let g: G" -t G, , where G, £ G, be er. FAR which satisfies U and 11 A, and let deL, d ^d . . Then, there exists a coalition C such that: (1) for all a, beX and for all (P,..... >£:•". Pc<a. b > ^ d Pc'^b, a) implies P(a, b) ^ d ^ P(b, a); and (2) for all ieC, for all a, beX and for all (P1t Pri)eG", P4 (a, b) 'Jp-d ' y P4 (b, a) implies [P(a, b) "pp. d or d P(b, a)]. Proof The proof is similar to that of Proposition -4.5. a Proposition 4,7 Let g: Q n -t G4 , where G, c G, be ar. FAR which satisfies U and IIA. Then, there exists a coalition C such that: (1) for all a, beX and for all (P,..... P^JeG", [Pc (a, b) y -d» and Pc <b, a) = implies [P(a, b) d.,: and P(b, a) = d»]; and (2) for all ieC, for all a, beX and for all (P,, Pr ,)eGr\ £ P * (a, b) d» and P, (b, a) = d,] implies [P(a, b) 7" d* or P(b, a) = d*l . Proof The proof is again similar to that of Proposition 4.5. * Remark 4.6 Since G, s G= £ G3 (see Proposition 3.4-, either G, or G= can be substituted for G3 in Propositions 4.2 and 4.3, ar.d G-, can be substituted for G2 in Proposition 4.5. Remark 4.9 Note that the conclusion of Proposition 4.7 is formally wearer than the corresponding result in Barrett, Pattanaii and Salles (1956), where the transitivity condition (3.2) is applie: (see Remark 3.2). In this paper, we have investigated the problem of aggregating orcinally fuzzy individual preferences into ordinally fuzzy social preferences. We have shown that, given the conditions of unanimity and incependence of irrelevant alternatives, and given appropriate domain ccr.zi tions, each of several alternative transitivity conditions for social preferences has important implications for the aggregation rule, which are rernniscent of the classical 'impossibility theorems' (see Arrow (1963), Giti'ard (1969) and Sen (1970)) in the framework of exact preferences.
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