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Abstract

We experiment an alternative routing scheme for the Robust Network Loading prob-
lem with demand uncertainty. Named k-adaptive, it is based on the fact that the
decision-maker chooses k second-stage solutions and then commits to one of them
only after realization of the uncertainty. This routing scheme, with its corresponding
k-partition of the uncertainty set, is dynamically defined under an iterative method
to sequentially improve the solution. The method has an inherent characteristic
of multiplying the number of variables and constraints after each iteration, so that
additional measures are introduced in the solution strategy in order to control time
performance. We compare our k-adaptive results with the ones obtained through
other routing schemes and also verify the effectiveness of the methods utilized using
several realistic instances from SNDlib.
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1 Introduction

This study is about a robust linear optimization approach for the network load-
ing problem under demand uncertainty (RNL). Given a graph G(V,E) and
a set of node-to-node uncertain demands as commodities origin-destination
flows, we want to define minimum cost integer capacity installations for the
edges (investment decisions), such that all commodities can be routed simul-
taneously on the network (routing decisions defining a routing scheme).

Robust network design problems, in general, have been widely studied
motivated by the fact that demands in modern applications vary and are hard
to forecast. The standard robust approach encompasses solutions that are
feasible for any realization of uncertainty, so that a decision taken hedges
against the worst contingency that may arise. This leads to a conservative
solution approach.

A robust approach to the network design problem with demand uncer-
tainty can be tracked back to the work of [19]. They introduce a polyhedral
uncertainty set for demands and a min-max-min approach to the problem us-
ing dualizations to derive an equivalent linear problem formulation. In [22]
the authors analyse for the first time many network design problems from a
robustness perspective and introduce the term robust network design. They
assert that multi commodity network design problems exhibit the important
property of having multiple, and significantly different, solutions within a few
percentage points from the optimal. This feature makes them amenable to al-
gorithmic developments that can find common near optimal (robust) solutions
for a variety of future operating scenarios. The uncertainty in the problems
they consider are in the costs of the instances and are modeled as discrete
scenarios.

Modeling uncertainty as discrete scenarios is limiting (see [15]) and since
then many studies have been made on how to model uncertainty and the effect
this has on the formulation, solution, and complexity of algorithms developed.
Modeling uncertainty has a objective of reflecting real data behavior, but can
affect conservatism of the solution.

Conservatism is also related to how the demands are routed through the
network, meaning how commodities flows are carried from source to desti-
nation using network resources. The problem can be seen as a two stage
robust optimization problem where the recourse function consists in choosing
the routing for each demand vector. In fact, robust network design problems
have a intrinsic separation between first stage decisions and second stage de-
cisions: investment decisions must be made before we observe the results of
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the demand uncertainty, while routing decisions have to route whatever de-
mand occurred. One can decide which route to take based on actual demands,
leading to less conservative solutions.

Routes can also have restrictions inherent to the application being mod-
eled. Possible restrictions are if demands can be split between different paths
(bifurcated) or not (non-birfucated) or if there is a number maximum of edges
to be used for each path, among others.

In this study we experiment and compare different modeling strategies to
treat conservatism of robust solutions for RNL. Our focus is on RNL with
polyedral uncertainty sets and routings based on the k-partitioning of the
uncertainty, named k-adaptive.

The purpose of this paper, which is an extended version of the short paper
[40] is four-fold:

• We present an extensive survey of the literature on robust network design,
focusing on the uncertainty set and routing used.

• We show the application of iterative k-adaptive partitioning algorithm de-
fined in [12] to RNL. As a side effect we apply decomposition techniques
where we verify performance of newly CPLEX 12.7 Benders Decomposition
functions.

• For nonbifurcated flows, we show the cost reductions provided by k-adaptive
routing scheme over static. This is the first attempt to improve over static
solutions as the integrality of the second stage variables prevents us from
enumerating the extreme points of the uncertainty set (see [37]), using clas-
sical decomposition algorithms (see [27], [3]) or using affine decision rules
(see [33], [34], [37]).

• For bifurcated flows, we compare the solution times and costs of k-adaptive
routing scheme with those of static, volume and 2-partitioning routings.

Outline We first review in sections 2 and 3 the literature dealing with poly-
hedral and ellipsoidal uncertainty sets and routing schemes, applied to robust
network design problems. Next, in Section 4, we formally present the prob-
lem that we will focus on our experiment. Section 5 details key concepts
used in our routing scheme, that dynamically partitions the uncertainty set.
In Section 6 we explain the solution strategy, with emphasis on techniques
to reduce branching and decomposition techniques developed to cope with
large instances. In Section 7 we present algorithm implementation details and
results. Finally, concluding remarks follow in Section 8.
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2 Uncertainty set

As stated in [9], the question of specifying an uncertainty set is mainly a
modeling issue that should be resolved on the basis of application-driven con-
siderations. Whatever the model utilized, special care should be taken to
correctly express correlations between parameters that compose uncertainty
and its consequence on problem’s complexity. For the robust network design
problem most of the literature reviewed models uncertainty by polyhedral or
ellipsoidal sets.

The polyhedral uncertainty set was generalized in [7] for robust network
design problems. They assume that demands satisfy linear inequalities, are
bounded and argue that the polytope so defined, D, has to be sufficiently
large to allow routes to be flexible, but not excessively large to avoid wasting
network resources. No need exists to make any probabilistic assumptions
about the demands. Each demand vector is defined in its components by its
node origin and destination (dij, i, j ∈ V ). They define a model in which A
is a real-valued matrix and b is a real-valued vector and :

D = {d ∈ R|V | x |V−1|
+ : Ad ≤ b}

Prior to that, another approach in the same direction can be found in
the work of [18] for ATM’s communications network and [17] for VPN’s com-
munications networks. They introduced a particular polyhedral model for
uncertainty, based on the definition of demand upper bounds, named Hose
model. The main driver was the ease and flexibility to model uncertainty
with not much data information. In the Hose model two upper bound de-
mand parameters are defined for each node:

douti : outgoing demand from node i ∈ V to all other nodes

dini : ingoing demand to node i ∈ V from all other nodes

The polyhedral uncertainty polytope that results is defined by the following
inequalities: ∑

j∈V \{i}

dij ≤ douti∑
j∈V \{i}

dji ≤ dini

The evolution of robust optimization as a discipline (see [9]) further leads
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to studying different forms of uncertainty sets. The effect of uncertainty ap-
plied to data of previous deterministic problems on algorithm’s complexity
was studied.

Keeping our focus on polyhedral uncertainty sets, it was verified that ro-
bust linear problems defined under these uncertainty sets can be reformulated
as linear problems, maintaining the complexity of the original deterministic
problem. It was also exercised how the design of the uncertainty sets can
influence the conservatism of the robust solution.

In that matter, a breakthrough that influenced future work on network
design was in [13]. They recognize that a robust approach can be too conser-
vative and a polyhedral uncertainty set is proposed in which one can flexibly
adjust the level of conservatism of the robust solutions in terms of bounds
of constraint violations. They make a link with the stochastic optimization
approach to handle uncertainty, where uncertainty is defined by their probabil-
ity properties. They protect against violation of constraint i of a optimization
problem deterministically, when only a pre-specified number Γi of the coeffi-
cients changes and where each coefficient is defined within a band of variation.
In our demand uncertainty context this band defines different maximum value
dmaxij and minimum value dminij . Named gamma-model or budgeted uncertainty,
the polyhedral uncertainty polytope that results is defined by the following
inequalities: ∑

i,j∈V

dij − dminij

dmaxij − dminij

≤ Γi

dij ≥ dminij , i, j ∈ V
dij ≤ dmaxij , i, j ∈ V

While the Hose model approach is useful when very limited information on
demand is available, the result may be an overly conservative network design,
as observed in [1]. Hence, when at least some degree of basic information is
available on node-to-node demands and if it conforms as model to real data,
the gamma-model may be an approach to avoid overly conservative network
design.

Further studies on polyhedral uncertainty sets have identified other op-
portunities to reduce conservatism. In [14] they verify that the single de-
viation band for each coefficient proposed in [13] may be too limitative in
practice, so that getting a higher resolution by partitioning the band into
multiple sub-bands seems advisable. Here we consider demands as com-
modities (q ∈ Q) origin-destination flows, expressed by their components

5



(dq), where each commodity (q ∈ Q) is defined through its nodes origin
and destination. Following authors definition, each demand component is
equal to the summation of a nominal value d̄q and a deviation lying in the
range [dK

−
q , dK

+

q ], where dK
−

q , dK
+

q ∈ R represent the maximum negative and
positive deviations from d̄q. They model by partitioning the single devia-
tion band [dK

−
q , dK

+

q ] into sub bands defined on the basis of deviation values

− inf < dK
−

q < · · · < d−1
q < d0

q < d1
q < · · · < dK

+

q < + inf, so that we have:

set of positive deviations bands: k ∈ {1, · · · , K+}, (dk−1
ij , dkij]

set of negative deviations bands: k ∈ {K− + 1, · · · , 0}, (dk−1
ij , dkij]

a deviation band: k = K−, that corresponds to a single value dK
−

ij

This definition of sub bands further facilitates the reformulation proposed
by the authors. They also define a maximum (uk ∈ Z) and minimum value
(lk ∈ Z) of number of coefficients that can change per sub band:

0 ≤ lk ≤ uk ≤ |Q|
u0 = |Q|∑
k∈K

lk ≤ |Q|

They use dominance rules and dual reformulation to come up with an
equivalent compact linear formulation. The performance of the new approach
is tested on instances of a wireless robust network design problem.

In [35], the author introduces the concept of decision dependent uncer-
tainty as an extension of the work presented in [13]. He identifies that the
uncertainty set proposed in [13] suffers from a practical drawback since they
are independent from the value of decision variables, so that some decision vec-
tors, for instance in combinatorial problems with few non-zero components,
are more protected than others. He proposes a new model where the uncer-
tain parameters belong to the image of multi-functions of the problem decision
variables. It can provide the same probabilistic guarantee as the uncertainty
set defined in [13] while being less conservative. The feasibility set of the re-
sulting optimization problem is in general non-convex so that a mixed-integer
programming reformulation for the problem is proposed for uncertainty sets
with affine dependency on decision variables. The study is developed for bi-
nary variables but is extended to non-binary variables and to more general
multi functions involving uncertainty set defined by conic constraints that are
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affine in the problem variables. For affine dependency on decision variables
(x) it defines a polyhedral uncertainty set, where B is a real valued decision
coefficient matrix, that can be expressed as:

D(x) = {d ∈ R|V | x |V−1|
+ : Ad ≤ b+Bx}

The model has been revived more recently in [31].

Ellipsoidal uncertainty sets were introduced in [10]. The motivation was
to make a link with stochastic optimization, where uncertain data is associ-
ated with some probability measure. The correspondent robust optimization
problem would pick as the uncertainty set some subset of the support of the
probability measure. The authors present the ellipsoidal uncertainty set as a
choice for many probability distributions. A ellipsoidal uncertainty set, in our
demand uncertainty context, is given by:

D = {d ∈ R|V | x |V−1|
+ : dtAd ≤ b}

In [4] and [5] the authors adopt ellipsoidal uncertainty sets to solve robust
network design problems. Compared to stochastic optimization, it has better
computational tractability. It also allows for the incorporation of statistical
data based on past observation of traffic as well as probabilistic assumptions,
especially correlation data. This is an advantage over polyhedral uncertainty
sets. On the other hand, robust counterparts of ellipsoidal uncertainty sets
linear problems turn into conic-quadratic optimization problems. The authors
devise a modeling framework that uses a compact and tight approximation of
ellipsoidal uncertainty sets by polyhedra. In this case, the robust counterpart
remains linear. In [30] the authors also exercise ellipsoidal uncertainty sets to
solve robust network design problems, under transportation cost and demand
uncertainty. They solve the LP relaxation of the quadratic robust counterpart
problem and provide computational experiments comparing results of different
polyhedral and ellipsoidal uncertainty sets.

3 Routings

From now on we consider an undirected graph G(V,E). Different routing
schemes have been proposed in the literature with the objective of mitigating
conservatism of standard robust approach where one solution only must satisfy
all realizations of uncertainty.

Here we take the approach of [36] and define each routing scheme from
a robust optimization perspective. Therein, a formal definition of routing is

7



made. A routing is a function, f : D ⊂ R|Q| → R|E| x |Q| that associates
each demand vector, expressed by its components (dq) as commodities (q ∈
Q) with nodes origin (s(q)) and destination (t(q)), with a multi-commodity
flow, defined for each edge and commodity. This function satisfies the flow
conservation constraint at each node of the network, where δ(v) = {ij ∈
E | i = v or j = v} and:

∑
j∈δ(i)

f qij(d)− f qji(d) =


dq if i = s(q)

−dq if i = t(q), for each i ∈ V

0 else

(1)

f qij(d) ≥ 0 (2)

Dynamic routing One routing scheme is the set of all functions that satisfy
(1) and (2) :

F ≡ {f : D → R|E| x |Q| | f satisfies (1) and (2)}

Named dynamic routing, it permits full flexibility in re-routing according
to demand changes and, in consequence, is potentially less costly. It has
been shown by [29] that the robust network design with dynamic routing is
NP-hard for polyhedral uncertainty. The author of [27] develops a branch-
and-cut algorithm to handle splittable dynamic routing RNL based on the
use of metric inequalities. She performs a polyhedral analysis of the resulting
capacity formulation and define a subproblem to separate metric inequalities
that based on a bilevel formulation that she is able to reformulate as one level.
She develops heuristic approaches as initial solutions and provides results in
terms of lower and upper bounds of solutions obtained within a time limit.

Static routing An opposite approach to dynamic routing has been intro-
duced by [7] for the robust network design problem. Designated static rout-
ing, meaning that for every commodity the same paths are used with the same
splitting independently of the realization of demand. It can be formulated as
a framework that considers a restriction on the second stage recourse. Each
function component f q : D to R|E|+ is forced to be a linear function of dq :

f qij(d) := yqijd
q, ij ∈ E, q ∈ Q, d ∈ D (3)

The flow y is called a routing template since it decides, for every commod-
ity, which paths are used to route the demand and what is the percentage
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splitting among these paths. Combining equations (1) and (3), the routing
template y satisfies:

∑
j∈δ(i)

yqij − y
q
ji =


1 if i = s(q)

−1 if i = t(q), for each i ∈ V

0 else

(4)

We define formally the set of all routing templates:

Y ≡ {y ∈ R|E| x |Q|
+ | y satisfies (4)} (5)

With that, we can define the set of all static routings:

Fstat ≡ {f : D → R|E| x |Q| | ∃y ∈ Y : f satisfies (3)}

The resulting optimization problem is polynomially solvable. Many approaches
have been presented to solve static routing network design problems, experi-
menting the effect of different formulations, uncertainty sets or solution meth-
ods through robust reformulation, decomposition and/or valid inequalities (as
examples, see [1],[2], [23],[24], [21])

As presented, static and dynamic are two extremes routing schemes. In
[20], they show that the solution for static routing RNL (splittable or unsplit-
table, under polyhedral uncertainty set) may be a factor of Ω(log |V |) more
than the cost required when using dynamic routing. So, there is a need to
define approximate solutions to the dynamic problem, that are tractable and
not as conservative as the static solution. Recently many progress has been
made in defining routing schemes in between static and dynamic, imposing a
restriction on how the flow can be tuned to demand.

Affine routing Defined in [9] as the simplest restriction of this type (two
stage), affine routing requires of the recourse variables to be affine functions
of the data. The main motivation behind this restriction is that it results in a
computationally tractable robust reformulation. The Affinely Adjustable Ro-
bust Counterpart problem (AARC), as named by the authors, is then shown
to be, in certain important cases, equivalent to a tractable optimization prob-
lem, and in other cases, having a tight approximation which is tractable. The
affine approximation does not support, however, second stage integer vari-
ables, or unsplittable flows for RNL. Affine routing was first addressed for
the robust network design problem by [33]. They did that by restricting f q to
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be an affine function of all components of d giving

Faff ≡ {f : D → R|E| x |Q| | ∃f0 ∈ R|Q|, y ∈ R|E| x |Q| x |Q| :

f qij(d) = f 0q
ij +

∑
h∈Q

yqhij d
q, ij ∈ E, q ∈ Q, d ∈ D, and f satisfies (1) and (2)}

In [37] the authors perform a theoretical and numerical study of the affine
routing robust network design problem and describe particular conditions
when affine, static or dynamic routing are equivalent. They also observe
that the concept of dominance between demand vectors cannot be applied
to affine routing, so that all demand vectors have to be considered, which in
turn has implications to how one defines the uncertainty set. They experi-
ment algorithms based on robust dual reformulation and conclude that the
affine principle can be used to approximate free recourse using tractable ro-
bust counterparts. The formulations however tend to be very large such that
they become hard to solve for large instances. In this context the authors
suggest that it might be wise to restrict the number of commodities in the
affine recourse or apply decomposition methods.

Volume routing Another concept for routing is derived from the idea of
sharing two routes for each commodity in a way that it depends on actual vol-
umes of demands. This type of routing, called volume routing, was originally
introduced in [42]. Formally, the authors use the following set of routings,
according to thresholds hq for each q ∈ Q:

FV ≡ {f : D → R|E| x |Q| | ∃y1, y2 ∈ Y, h ∈ R|Q|+ :

f qij(d) = y1q
ij min(dq, hq) + y2q

ij max(dq − hq, 0) ij ∈ E, q ∈ Q, d ∈ D}

They prove that the robust network design problem associated with FV is
a NP-hard optimization problem. Hence, they introduce simpler frameworks
described below. Defining dqmin = min

d∈D
dq and dqmax = max

d∈D
dq, the set of

routings becomes one of the following:

FV S ≡ {f : D → R|E| x |Q| | ∃y1, y2 ∈ Y :

f qij(d) = y1q
ij d

q
min + y2q

ij (dq − dqmin), ij ∈ E, q ∈ Q, d ∈ D}
FV G ≡ {f : D → R|E| x |Q| | ∃y1, y2 ∈ Y :

f qij(d) = y1q
ij d

q
min

dqmax − dq

dmax − dqmin
+ y2q

ij d
q
max

dq − dqmin
dmax − dqmin

,

ij ∈ E, q ∈ Q, d ∈ D}
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which are both well-defined whenever dqmin < dqmax for each q ∈ Q. When
dqmin = dqmax for some q ∈ Q, the q-th component of f ∈ FV G is defined by
f q(d) = y1qdq . By definition FV S and FV G are special cases of affine routing.

A generic volume routing is defined in [28], where each commodity flow is
based on two components: a flow that varies with demand and is a set of a
arc-paths from origin to destination plus a fixed circulation (see [37]). It also
restricts the number of commodities in the affine recourse and leads to smaller
formulations.

FV A ≡ {f : D → R|E| x |Q| | ∃f0 ∈ R|Q|, y ∈ Y :

f qij(d) = f 0q
ij + yqijd

q, ij ∈ E, q ∈ Q, d ∈ D}

In [36] the author compares different alternatives to opt(F), meaning a
comparison of conservatism between different routings solutions for the same
problem. They show that opt(Faff ) ≤ opt(FV G) ≤ opt(FV S), and opt(FV ) ≤
opt(FV S). They also show that it is not possible, in general, to order opt(FV )
and opt(Faff ). Also one can check that opt(Faff ) ≤ opt(FV A) ≤ opt(FV G)
using the same arguments of [36].

Multipolar routing More recently, in [8], an alternative routing scheme is
proposed with the objective of maintaining tractability of the reformulated
optimization problem to be solved. It assumes a polyhedral uncertainty set
and fixed recourse. Called multipolar routing, the authors approximate the
uncertainty set by a polytope defined by its extreme routings, named poles.
Each pole k ∈ K is a special demand vector. The poles are given before hand
and are defined in such a way as:

∃λ |
∑
k∈K

λkdkij = dij;
∑
k∈K

λkdkij ≤ 1; λkd ≥ 0; ∀d ∈ D, ∀i, j ∈ V (6)

Each pole k is defined as having a route associated with it, so that we
have:

f qij(k) := yqkij k
q, ij ∈ E, q ∈ Q, k ∈ K (7)

Moreover, the route for each realization of the demand vector will be a convex
combination of the routes defined for each pole. Expression (6) states also
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how each demand should be routed and we define:

f qij(d) =
∑
k∈K

λkdkijf
q
ij(k), ij ∈ E, q ∈ Q, k ∈ K (8)

=
∑
k∈K

λkdkijy
qk
ij k

q, ij ∈ E, q ∈ Q, k ∈ K (9)

We define formally the the set of all multipolar routings as

FMP ≡ {f : D → R|E| x |Q|| ∃λ ∈ RK, y ∈ R|K| x |E| x |Q| :

f satisfies (1), (2), (9)}
(10)

The adaptability (and conservatism) of the solution will depend on how
poles are defined. The authors show that multipolar routing encompasses
static and dynamic routings.

Routing by Partition of Uncertainty set. One recurring idea for another
approximate routing is the partitioning of the uncertainty set into subsets
and considering a static routing for each subset. It has been studied under
the general framework of multi-stage robust optimization in [11]. Therein,
it is called finite adaptability, where the decision-maker chooses k second-
stage static solutions, and then commits to one of them only after seeing
the realization of the uncertainty. The decision-maker defines a cover of the
uncertainty set with k subsets (possibly non-disjoint). It has the advantage of
being able to naturally accommodate discrete second stage decision variables.
We will call this routing scheme k-adaptive (Fk).

The inequalities opt(F) ≤ opt(Fk) ≤ opt(Fstat) hold in general. The au-
thors provide an important geometric interpretation of the gap between static
and dynamic routing solutions. They show that the gap is related to the fact
that the static solution is not able to correlate uncertainty components be-
tween different constraints. For polyhedral uncertainty sets they show that
this gap can be expressed in terms of matrices that belong to the uncertainty
set. The authors also affirm that their k-adaptability proposal is not com-
parable to affine adaptability: in some cases affine adaptability fails where
k-adaptability succeeds, and vice versa, so that we cannot order conservatism
between the two approaches. The quality of solutions obtained with a k-
adaptive approach depends on how the partition is built. Therefore there is
a natural trade-off between the number of sets of a partition (and the solu-
tion time) and how “close” the solution is to the dynamic solution. Hence,
a goal when using k-adaptability is to identify a partitioning scheme that is
near the efficient frontier of this trade-off. In [11], the authors show that even
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finding an optimal 2 partitioning is NP-hard and reformulate it as a bilinear
optimization problem. Being NP-Hard, many heuristics have been proposed
on how to split the uncertainty set.

In [6], the author introduces the idea of partitioning the uncertainty set
with two (or more) subsets using hyperplanes and they propose to use a static
routing template for each subset. This yields the following set of routings:

F2| ≡ {f : D → R|E| x |Q| | ∃y1, y2 ∈ Y and α ∈ Rq, β ∈ R :

f qij =

 y1q
ij d

q d ∈ D ∩ {d, αd ≤ β}

y2q
ij d

q d ∈ D ∩ {d, αd ≥ β}
, ij ∈ E, q ∈ Q, d ∈ D}

The definition above implies that both routing templates y1 and y2 must
be able to route demand vectors that lie in the hyperplane αd = β without
exceeding the capacity. They prove that the problem is NP hard in general and
describe simplification schemes, where the direction α is given and solution
for each partition can be different or have to be identical.

The authors of [41] develop an algorithm based on a sequence of binary
searches to solve a 2-partition robust linear problem with given hyperplane
direction α and identical solutions. They define a routine that can answer
the question: Is there a feasible solution with smaller or equal cost than a
given value? They perform a binary search using this routine and given upper
and lower bounds on the cost function. The routine is also based on binary
searches using given βmax and βmin as bounds to constantly shrink the interval
of possible positions of the hyperplane.

Also using the strategy of partitioning of the uncertainty set, [39] intro-
duces the idea of using conjointly two routing templates. Formally, the author
proposes to use two routing templates y1 and y2 such that each d ∈ D can be
served either by y1 or by y2 (or both). This yields the following set of routings:

F2 ≡ {f : D → R|E| x |Q| | ∃y1, y2 ∈ Y and D1, D2 ⊆ D,D = D1 ∪D2 :

f qij(d) =

 y1q
ij d

q d ∈ D1

y1q
ij d

q d ∈ D2
ij ∈ E, q ∈ Q, d ∈ D}

4 Problem definition

RNL are robust network design problems with integer capacities decision
variables, reflecting practical cases where a number of different facilities type
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can be installed at each edge. We focus on a simplification of RNL where
each commodity q can be routed along a predetermined set of paths P (q).
In many practical applications there are limits on the number of different
configurations of paths that can be implemented, so that we exercise the
flexibility of routing schemes to mitigate the static solution conservatism even
with this restriction. It has been used in several papers, see for instance [33]
and [34]. These paths are represented by δijqp that is equal to 1 if edge ij is
contained in path p ∈ P (q), for some q ∈ Q and is equal to 0 otherwise.
They were predetermined as shortest paths weighted by edges costs for each
commodity.

We work with two cases: one in which flows are unsplittable, or nonbi-
furcated, and must use a single path, and another one in which flows are
splittable, or bifurcated, and can be fractionally split among several paths.
The cost for routing flows is zero.

Each commodity q ∈ Q is associated with the uncertain demand dq, within
a given polyhedral uncertainty set D defined by m inequalities and given by
its matrices Am x |Q|d ≤ bm.

The formulation contains integer investment decision variables x, where xij
equals the planned installed capacity for edge ij, considering only one type
of facility at a unit cost of cij. It contains continuous (for bifurcated flows)
or binary (for nonbifurcated flows) routing decision variables yqp, where yqp
equals the fraction of commodity q ∈ Q assigned to path p ∈ P (q).

Given a partition D1 ∪ · · · ∪DK of the uncertainty set D, the k-adaptive
routing scheme restricts the routing functions to piece-wise constant func-
tions defined as yqp(d) = ykqp ⇔ d ∈ Dk where k ∈ {1, ..., K}. The formulation
follows, where Y ≡ {0, 1} for nonbifurcated flows and Y ≡ [0, 1] ⊂ R for
bifurcated flows and the partition can be optimized along with the other op-
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timization variables:

(kRNL) min
∑
ij∈E

cijxij

s.t.
∑
q∈Q

∑
p∈P (q)

dqδijqpy
k
qp ≤ xij ∀ij ∈ E,∀d ∈ Dk,

k ∈ {1, ..., K} (11)∑
p∈P (q)

ykqp = 1 ∀q ∈ Q, k ∈ {1, ..., K}

ykqp ∈ Y, xij ≥ 0, xij ∈ Z ∀q ∈ Q,∀p ∈ P (q),

∀ij ∈ E,
k ∈ {1, ..., K}

As mentioned before, choosing the optimal partition makes the problem ex-
tremely difficult so that we focus in the heuristic solution algorithm proposed
by [12].

5 Iterative Nested Partitioning

In [12] and [38] the authors use the concept of dominance and independently
identify that there is a set of active uncertain parameters d̂. The active uncer-
tain parameters are the values of the uncertain parameters that correspond to
the constraints with minimum slack and that are the constraints that restricts
the objective function. Applied to kRNL, the only constraints that involve
uncertainty are constraints (11). We can define the set D̂, of the active un-
certain parameters of D (or equivalently for any subset Dk) as follows. Given
a solution (x̃ij, ỹqp) we define:

D̂ = {d̂ | d̂ = arg min
d∈D

(x̃ij −
∑
q∈Q

∑
p∈P (q)

dqδijqpỹqp),∀ij ∈ E}, (12)

where only one nominal element will be selected for each constraint in-
volved in (12). If we were to remove all possible constraints that correspond
to uncertain parameters that are not active at optimality, we are left with
a reduced set of constraints that is sufficient to constrain the solution to its
value. These remaining constraints, and the values of the active uncertain
parameters that give rise to them, offer an important insight into how the
uncertainty set structure relates to the optimal solution of the RO problem.
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It shows that we must partition the uncertainty set in such a way as to guar-
antee that the uncertain parameters for the active constraints do not all lie in
one set of the partition.

This insight can help, for instance, to improve results and performance
of the 2 partitioning heuristics presented in Section 3. For the algorithms
developed in [6] for routing scheme F2| it helps to reduce the limits of the
binary search and can be used to make sure that the defined hyperplane does
not include all active uncertain parameters in one partition.

The authors of [12] use the active uncertain parameters to construct a
particular partition. Applied to kRNL, their approach imposes that each
indexed element selected d̂k, k ∈ {1, ..., |E|} of D̂ belongs to a single subset
of the new partition, using Voronoi diagrams. In other words, given a set of
|E| active uncertain parameters, the Voronoi diagram associated with these
parameters defines a partition of D with one subset defined for each d̂k ∈ D̂
such that the Euclidean distance between d̂k and any d in this subset is less
than or equal to the distance of d to any other given parameter d̂j, j 6= k:

Dk = D(d̂k) = {d | ||d̂k − d||2 ≤ ||d̂j − d||2, ∀d̂j, j 6= k} ∩D

= {d | (d̂j − d̂k)d ≤
1

2
(d̂j − d̂k)(d̂j + d̂k), ∀d̂j, j 6= k} ∩D

(13)

They further create the concept of nested partitions, where partitions can
be created after previous partitions, so as to create a partition tree of active
uncertain parameters. In other words one uses Voronoi Diagrams to partition
subsets of the previous level of the tree. The nodes of the tree, T , corresponds
to the set of all active uncertain parameters. Each level of the tree defines a
sequence of subsets that define a partition of D at that level. To define these
subsets under the concept of nested partitioning we need first to define some
sets:

• Leaves(T ) is the set of leaves of the tree T . This is the set of all active
uncertain parameters (d̂k) at the last level of the tree. As mentioned above,
each one is uniquely associated with a subset of a partition being considered
for the kRNL problem. We index each set as k ∈ {1, ..., K} as pointed out
in our formulation of kRNL.

• Children(d̂k) is the set of children of d̂k in the tree T . This is the set of the
active uncertain parameters associated with the partition of one subset.

• Parent(d̂k) is the parent of d̂k in the tree T . This is a one element set
defined by the active uncertain parameter that originated one subset at
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previous level of the tree.

• Siblings(d̂k) = Children(Parent(d̂k))

Hence a subset of the k-adaptive partition of the uncertainty set is obtained
through a sequence of partitioning of many levels. Each subset is defined by
the following inequalities:

Dk = D(d̂k) = {d | ||d̂k − d||2 ≤ ||d̂j − d||2, ∀d̂j ∈ Siblings(d̂k)}
∩ {d | ||Parent(d̂k)− d||2 ≤ ||d̂j − d||2, ∀d̂j ∈ Siblings(Parent(d̂k))}
· · ·
∩ D (14)

An iterative method is built around the partitioning scheme. It starts by
solving a static-policy version of the adaptive optimization problem to deter-
mine a set of active uncertain parameters. They are used, through Voronoi
Diagrams, to construct a finitely-adaptive version of the problem, and solve
it. This in turn produces a new set of active uncertain parameters which we
can then use to partition further, ideally improving on the previous solution
at each iteration.

Partitions are created inside the partitions from the previous iteration,
under the tree hierarchy concept presented above. This is important for our
approach since optimal solutions for a partition can be used as initial feasible
solutions (upper bounds) for the future nested partitions originated from it
and because at each iteration will have a solution that is as good or better
than the previous iteration (objective values using the nested approach do
decrease monotonically through iterations).

The pseudo code in Algorithm 1 reflects these main steps and defines the
algorithm implemented in our experiment for k-adaptive routing.

6 Algorithm improvements

We describe below improvements of Algorithm 1. The first two were already
suggested in [12], while the decomposition algorithm and valid inequalities are
specific to kRNL studied herein.

Nested partial partitioning In our problem, there are |E| capacity con-
straints leading to a total of as much of |E| active uncertain parameters and,
so, |E| subsets associated to the repartition of each subset Dk of the previous
partition. Using this approach without modifications, at each iteration n of
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Algorithm 1 Iterative k-Adaptive routing

Initialize . No partition at first round
repeat

Solve Equivalent Static RNL Problem
Calculate Bound
if Bound gap ≥ Threshold then

Calculate Active Uncertain Parameters
Formulate Nested Partitioning

end if
until Termination Criteria reached

our method, there will be as much as |E|(n−1) subsets of a partition. This
will possibly impact time performance due to the increase in the number of
variables and constraints.

In order to mitigate the effect above, the authors in [12] suggest two practi-
cal approaches as trade-offs between computation time and quality of solution.
One is to only take a subset of active samples from generated constraints, the
ones with lowest slack, since constraints with greater slack are less likely to
constrain the solution even with additional iterations. The other is based on
the fact that the value of the objective is given by the worst result if we con-
sider each element (Dk) of a partition. Only the elements (Dk) of the partition
with this worst objective value restrict the overall objective and are called ac-
tive subsets of a partition. If a subset is not active, further partitioning it is
less likely to improve the objective. Applying these approaches will reduce
the number of subsets of the partition at the next iteration, improving com-
putational efficiency. The overall number of subsets defined at each iteration
will then be algorithmic dependent.

To facilitate the formulations derived in further sections, we will represent
inequalities of polyhedral uncertainty set Dk, defined in Section 5, by matrix
notation Bkd ≥ Ck, except for inequalities defining the original uncertainty
set D.

For this, using equation (14) as reference, we define R, with r ∈ R, as an
index set for H ≡ {Siblings(d̂k) ∪ Siblings(Parent(d̂k)) ∪ · · · } and function
Siblings−1(Hr),∀Hr ∈ H, that returns the vector originating the sequence of
siblings. For instance, if Hr ∈ Siblings(Parent(d̂k)), than Siblings−1(Hr) =
Parent(d̂k).

So, Bk ∈ R|R| x |Q| and vector Ck ∈ R|R| where, with further development
of equation (14), we have:
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Bk(r, q) = 2((Siblings−1(Hr))
q −Hq

r )

Ck(r) =
∑
q∈Q

((Siblings−1(Hr))
q)2 − (Hq

r )2)

Bounds Given a lower bound on the dynamic solution, we can use it to esti-
mate the gap between our k-adaptive solution and the dynamic solution. The
set of all active uncertain parameters generated through different iterations
presented in Section 5, T , is used to obtain this lower bound. That is, after
the solution of the partitioned problem at iteration n, we can augment the set
and use them to construct and solve a deterministic problem whose objective
provides the lower bound. A useful property of this bound is that as we ob-
tain more samples the lower bound improves monotonically, so that at each
iteration we shrink the bound gap from above and below. The lower bound
formulation is given by:

min
∑
ij∈E

cijxij

s.t.
∑
q∈Q

∑
p∈P (q)

d̂qδijqpy
d̂
qp ≤ xij ∀ij ∈ E,∀d̂ ∈ T∑

p∈P (q)

yd̂qp = 1 ∀q ∈ Q, ∀d̂ ∈ T

yd̂qp ≥ 0, xij ≥ 0 ∀q ∈ Q, ∀p ∈ P (q),∀ij ∈ E
∀d̂ ∈ T

Benders decomposition As already identified, iterative partitioning suffers
from an inherent characteristic of multiplying the number of variables and
constraints after each iteration. This affects time performance of problem
resolution, so that decomposition techniques are introduced in order to min-
imize the impact of this characteristic. For the unbifurcated case, we have
implemented a Dantzig-Wolfe decomposition approach, but that leads to poor
improvement in performance so that we do not present it here. For the bifur-
cated case, we take advantage of the natural staircase block structure of the
kRNL formulation, where each block is related to a subset of the partition,
to implement a Benders based decomposition. We use a branch-and-cut ap-
proach and break the problem into one that designs edge capacities (master
problem defining variables xij, ij ∈ E) and a sequence of other problems that
checks feasibility of the designed edge capacities with respect to the uncertain
demand requirements.
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Specifically, given an integer solution x̃ij for the master problem, typically
obtained at an integer node of the branch-and-bound tree of this master prob-
lem, we solve a feasibility subproblem for each block related to a subset of the
partition. Notice that each subproblem is the following robust linear program:

min
∑
ij∈E

sij

s.t.
∑
q∈Q

∑
p∈P (q)

dqykqpδ
p
ij − sij ≤ x̃ij ∀ij ∈ E,∀d ∈ Dk∑

p∈P (q)

ykqp = 1 ∀q ∈ Q

sij ≥ 0, ykqp ≥ 0, xij ≥ 0 ∀q ∈ Q,∀p ∈ P (q),∀ij ∈ E,

where variables sij are additional slack variables. This way, it is sufficient to
consider the demand uncertainty issues only when solving the much smaller
subproblems. Each subproblem is defined by a subset Dk of D. D is defined
by matrix notation Am x |Q|d ≤ bm. Each subset Dk is a a polyhedral uncer-
tainty set defined by an active uncertain parameter. Since each subproblem
will be solved many times it will be wise to reformulate it using robust de-
terministic reformulation, so that we leverage this structure and not have to
solve subproblems from scratch at each iteration. Using classical dualization
techniques (e.g. [9]) leads to the following reformulation:
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min
∑
ij∈E

sij

s.t.
∑
q∈Q

∑
p∈P (q)

(d̄qδijqpy
k
qp) +

∑
w∈{1,...,m}

bwpwij+

+
∑
r∈R

Ck(r)u
r
ij ≤ x̃ij + sij ∀ij ∈ E (15)∑

p∈P (q)

ykqp = 1 ∀q ∈ Q (16)∑
w∈{1,...,m}

AT (q, w)pwij +
∑
r∈R

Bk(r, q)u
r
ij

≥
∑
p∈P (q)

d̂qδijqpy
k
qp ∀ij ∈ E,∀q ∈ Q

pwij ≥ 0, urij ≥ 0, ykqp ≥ 0, sij ≥ 0 ∀q ∈ Q,∀p ∈ P (q),

∀ij ∈ E, r ∈ R,
w ∈ {1, ...,m}

Let πij ≤ 0,∀ij ∈ E and λq,∀q ∈ Q be the dual variables of constraints
(15) and (16), respectively, and let π̃ij and λ̃q denote the optimal dual solution.
By linear programming strong duality the solution for the subproblem above
can be given by

∑
ij∈E x̃ijπ̃ij+

∑
q∈Q λ̃q. Moreover, this solution is equal to 0 if

and only the feasible set is nonempty. Hence, if
∑

ij∈E x̃ijπ̃ij+
∑

q∈Q λ̃q ≥ 0 we
add a strengthened Benders cut to the master problem, where m = min

ij∈E
π̃ij:

∑
ij∈E

d−π̃ij
m
exij ≥ d

∑
q∈Q λ̃q

m
e,

If the master solution x̃ is not violated by the strengthened Benders cut
we add the non-rounded cut instead.

We take advantage of non zero values of the slack variables (sij) and im-
plement a heuristic solution for the master problem. For each subproblem,
non zero value slack variables correspond to the capacity value missing to
transform the master problem solution into a feasible one. For each solution
x̃ij we select the maximum non zero slack value sij provided by the different
subproblems. These non zero values of slack variables complement master
problem solutions and, rounded up, are used as upper bounds for the master
problem.
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Valid Inequalities The Benders decomposition approach normally has bad
performance since it has a poor convergence. Other than that the master
problem is an integer problem and may be computationally expensive. It is
critical to reduce the number of branchings. This can be done, additionally,
by the introduction of valid inequalities to the master problem. Many classes
of valid inequalities have been derived by exploiting the integer property of
design variables (see [21], [26], [28]). The cut-set inequalities are often used to
tighten the integrality gap in the linear programming based branch-and-cut
algorithms. Despite their simplicity, it has turned out that the cut-set inequal-
ity are quite strong in terms of reducing the linear programming relaxation
gap.

Consider a partition of the node set V given by sets S1 and S̄1, and let
E(S1, S̄1) and Q(S1, S̄1) be the set of edges and commodities with extremities
in different sets of the partition. The cut-set inequality associated with the
partition states that the amount of capacity installed on edges in E(S1, S̄1)
should be not less that the rounded up sum of the demands of commodities
in Q(S1, S̄1). We have our cut-set inequality given by:∑

ij∈E(S1,S̄1)

xij ≥ dmax
d∈D

∑
q∈Q(S1,S̄1)

dqe

Since x is a first stage decision variable cut-set inequalities have to hold for
the original uncertainty set.

We separate robust cut-set inequalities using two approaches: the master
problem starts with cuts generated for each node of the network and at each
integer solution, during branching, we separate cuts heuristically by generating
a two subset random partition of the nodes and them performing a local search
picking up one node and moving it to the other subset until there is no more
improvement in the violation. If no violated inequality is found we repeat the
procedure up to a maximum of 20 iterations.

7 Implementation and Results

Instances Six network instances available from SNDlib [32] were utilized with
the characteristics given in Table 1. We have predetermined a maximum of 5
paths for each commodity (if they exist). Each commodity q ∈ Q is associated
with the uncertain demand dq, within a given uncertainty set modeled as in
[13]. The demand for commodity q ∈ Q varies around a given nominal demand
d̄q ≥ 0 with a maximal possible deviation of d̂q ≥ 0, that is, dq(ξ) = d̄q + ξqd̂q

for ξ ∈ Ξ where Ξ = {ξ |
∑

q∈Q ξ
q ≤ Γ, 0 ≤ ξq ≤ 1}.Two Γs for the uncertainty
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set are defined for each instance, based on the probabilistic bound of 25% and
1% (see [13],[28]). For the abilene instance a test case with all possible Γs was
also utilized.

Routing schemes We experiment many of the different routing schemes
presented in this study. We test routing schemes with bifurcated (BF) and
nonbifurcated (NBF) flows according to configuration Table 2. Static routing
scheme solution is provided as a result of first iteration of our nested iterative
k-adaptive static algorithm here presented. The volume routing scheme was
implemented according to routing FV S. The 2 partitioning was implemented
according to routing F2|. Full partitioning (FP) means k-adaptive routing
scheme going through our nested iterative partitioning where at the end of
each iteration we add active uncertain parameters for all capacity constraints
(11) of our formulation. Partial partitioning (PP) means nested iterative k-
adaptive routing scheme where (i) we only add active uncertain parameters
referent to the set of the partition that is restricting the objective value and
(ii) we restrict to active uncertain parameters referent to the first half of con-
straints of this set with minimum slack. We do this as a trade off between
time performance and quality of the solution. FP and PP were implemented
using equivalent static solutions at each iteration, as presented in this study,
but also incorporating an extension where we adopt volume routing solutions
for each subset of the partition.

Algorithms Specification Algorithms were coded in Julia [25] using JuMP,
JuMPeR and BlockDecomposition packages and Cplex 12.7. All algorithms
were run in an Intel CORE i7 CPU 3770 machine. A limit of 7200 seconds of
computing time was given for each instance and iteration.

Algorithms were defined according to second column of Table 3. Algo-
rithms were adapted to each routing scheme, and can run with or without
adding cut-set inequalities, or also adding cut-set inequalities only at root
node of our branch-and-cut procedure. Cut-set inequalities were implemented
using JuMP lazy callback functions. Root node only cut-set inequalities were
introduced to CPLEX BENDERS Algorithm because Cplex 12.7 does not
support callback functions for its Benders Decomposition.

Compact formulation means using classical robust dual reformulation to
solve the original formulation of the problem (for Static and Volume rout-
ing schemes), or the k-adaptive formulation (for Partial Partitioning or Full
Partitioning routing schemes). This is done using JuMP.

For CPLEX BENDERS, we have utilized the new automatic Benders de-
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composition functionality of Cplex 12.7 to solve a compact formulation, using
BlockDecomposition and JuMP.

Adapted Benders Decomposition implements the Benders method pre-
sented in this study. Benders primal subproblems were solved through robust
dual reformulation using JuMP lazy callback functions and with dual simplex
method to leverage the fact that only the right hand side (x̃ij) of constraints
(15) change between two calls of the subproblems.

The 2-partition was implemented replicating the algorithm presented in
[41], extended to integer capacities. Here problems were solved using a cutting
plane approach provided by JuMPeR.

As mentioned above, both Partial Partitioning and Full Partitioning rout-
ing schemes were implemented using the overall nested iterative k-adaptive
algorithm presented in this study. At each iteration we solve Static or Volume
routing k-adaptive problems using algorithms indicated in Table 3. We have
applied decomposition algorithms only for Static Partial Partitioning routing
as an experiment to verify their time performance compared to Compact re-
formulations.

Results Figures 1 and 2 present solution improvement over static routing
provided by different bifurcated and nonbifurcated routing schemes with 2
different Γs. For Figure 1 there are a number of cases that do not achieve
an optimal solution under the time limit and they appear as blank bars. For
Figure 2 instances missing correspond to cases where there was no improve-
ment in solution or to cases that did not achieve an optimal solution under
the time limit. Solution improvement is given as percentage by the formula
100% ∗ (Static Solution−Solution)

Static Solution
. The bars referenced as Bound correspond to the

solution of the Bound procedure at the last iteration of our nested iterative
k-adaptive algorithm and provides a reference of how much space for reducing
conservatism is still available.

Figure 3 presents solution improvement in percentage over static routing
provided by different bifurcated routing schemes, for instance abilene and
0 ≤ Γ ≤ |Q|. Routings FkV lPP and FkV lFP are not presented since they
did not improve over FV S in this case.

Table 7 summarizes analysis we make of Figures 1 and 2 regarding the
performance of each routing scheme in improving static result. Table 7 and
further analysis of conservatism from Figures 1 and 2 and Figure 3 indicates:

• For our SNDlib instances, there is a short gap between static and dynamic
solutions. Nevertheless, the routing schemes implemented were able to re-
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duce this gap in many cases.

• The restriction on number of paths imposes less flexibility in reducing con-
servatism. This is even worse for non bifurcated flows where more restric-
tions are imposed on the permitted flows. This impacts the solutions as-
sociated with non bifurcated routings where improvement was even more
reduced.

• Cost reduction is higher for lower Γs. From theory we know already that
increasing Γ leads to more conservatism, but we see also that all routing
schemes have more difficulty to provide better solutions for higher Γs.

• The analysis of routes based on partitioning shows that F2| provided less
solution improvement. In part this was due to time limit and because the
partition hyperplane direction was arbitrarily chosen. In that sense, FkPP
and FkFP had more success, for Static and especially for Volume solutions.
In particular, FkPP for Static and Volume solutions, was able to give results
comparable to FkFP and in some instances even better.

• Volume solutions, both for FV S and Fk, were able to give best improvements,
but it cannot handle non bifurcated flows. FkV l was able to further improve
FV S.

• The fact that we have limit the number of iterations of FkPP and FkFP
routing schemes has an effect on solution improvement. More iterations
would, in general, improve solution at a cost of time performance. In gen-
eral, for both BF and NBF solutions, k-adaptive routing scheme was able
to improve over static.

• For non birfucated flows many instances were not solved within time limit.
Moreover, solution improvement was not as large as in the bifurcated case.
This suggests we need to consider more path flow options for the non bifur-
cated case, and also develop more efficient decomposition algorithms.

Table 5 presents total time for different algorithms running for bifurcated
routing schemes. We have limited our algorithms to 2 iterations for full parti-
tioning and 3 iterations for partial partitioning. There is a number of instances
that do not achieve an optimal solution under the time limit, marked as M .
Table 6 presents a comparison between the two different decomposition algo-
rithms we have used, CPLEX BENDERS and Adapted Benders Decomposi-
tion. They were run for static birfucated partial partition routings. Here we
present total time (TT) and also number of Benders cuts (BC) and cut-set cuts
(CSC) introduced by each algorithm. We duplicate total time (TT) columns
for compact formulation with cut-set and without cut-set inequalities added
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to facilitate comparison between decomposition and non decomposition algo-
rithms. Figure 4 compares algorithms for static birfucated partial partition
routing through a performance profile ([16]). Table 8 summarizes the analysis
we make of Tables 5 and 6 regarding time performance of each algorithm and
routing scheme. We remark that cut-set inequalities are randomly generated
and that can influence results of comparison. We are interesting in verifying
effectiveness of introducing cut-set inequalities to our formulations, the use of
decomposition algorithms, the new Benders functionality of CPLEX 12.7, the
use of partial partitioning and volume versus static partitioning.

Table 8 and further analysis of Tables 5, 6 and Figure 4 indicates:

• Robust cut-sets inequalities were key to reduce branching and provide better
time performance.

• In general, Decomposition provided better time performance when com-
pared to non Decomposition algorithms.

• Figure 4 shows that robust cut-sets inequalities were also key to improve
performance of Decomposition algorithms. It shows also that our Adapted
Benders Decomposition implementation was in general better in perfor-
mance than CPLEX 12.7 Benders Decomposition, even though we did not
implement features as parallel processing of subproblems, as an example.
This is due, in part, to the fact that we have previous knowledge of the prob-
lem. For instance, we make use of intermediary heuristics (upper bounds)
for the master problem. Moreover, CPLEX 12.7 Benders Decomposition
does not allow lazy constraints and we were not able to introduce robust
cut-sets inequalities during branching.

• For Adapted Benders Decomposition the introduction of robust cut-sets
inequalities resulted in a significant reduction in the number of Benders cut,
that are in general more costly to separate (reduction in 7 of 12 instances).

• Although FkPP runs more iterations than FkFP , it runs in less time. In
that sense, and the fact that it delivers comparable solutions, FkPP pre-
sented itself as a good option to FkFP .

• The analyses of routes based on partitioning shows that F2| provided worst
time performance, due to the associated non polynomial binary search al-
gorithm. Based on that and on solution improvement, FkPP and FkFP
turned out to be preferred partitioning based routing schemes.

• As identified above, many non birfucated flows instances were not resolved
within time limit, suggesting the need to develop more efficient decomposi-
tion algorithms.
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Instance | V | | E| | Q | Γ0.25 Γ0.01

abilene 12 15 65 6 19

polska 12 18 66 6 19

pdh 11 34 24 4 12

di-yuan 11 42 22 4 11

nobel-us 14 21 91 7 23

atlanta 15 22 105 7 24

Table 1
Instances Profile

Code Routing Scheme

FstatBF Static BF

FstatNBF Static NBF

FV SBF Volume BF

F2|BF 2 Partitioning BF

FkStPPBF Static Partial Partitioning BF

FkStPPNBF Static Partial Partitioning NBF

FkV lPPBF Volume Partial Partitioning BF

FkStFPBF Static Full Partitioning BF

FkStFPNBF Static Full Partitioning NBF

FkV lFPBF Volume Full Partitioning BF

Table 2
Routing Schemes

• In general, for our instances, FkV l has worse time performance than FkSt,
but provides better bifurcated solutions as we have seen.
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Code Algorithm FstatBF
FkStPPBF

FV SBF
FkV lPPBF
FkV lFPBF
FkStFPBF

F2|BF

C Compact reformulation
√ √

-

C+C Compact reformulation + cut-set
√ √

-

DCP CPLEX BENDERS
√

- -

DCP+RC CPLEX BENDERS + root cut-set
√

- -

DBD Adapted Benders Decomposition
√

- -

DBD+C Adapted Benders Decomposition + cut-set
√

- -

TP Two partition - -
√

Table 3
BF Algorithms implemented

Code Algorithm FstatNBF FkPPNBF FkStFPNBF

C Compact reformulation
√ √ √

C+C Compact reformulation + cut-set
√ √ √

Table 4
NBF Algorithms implemented
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Fig. 1. Part 1: Percentage of Solution Improvement over Static BF Routing
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Routing Scheme (all BF) and Algorithm Code

Fstat FV S FkV lPP FkV lFP F2| FkStPP FkStFP

Instance Γ C+C C C C+C C+C C C C+C C+C

abilene
6 2.20 2.52 3.15 2.14 1.62 71.44 11.03 2.84 4.29

19 0.55 1.55 543.30 241.79 473.81 3676.84 352.42 53.25 162.87

polska
6 2.52 8.72 4448.67 2761.89 M M 919.74 409.78 1341.70

19 5.82 7.77 M M M M M M M

pdh
4 5.24 11.89 4728.78 3815.63 292.49 6534.29 M 5572.47 17.88

12 11.55 11.15 M 1742.02 1379.20 M M 3310.10 4336.65

di-yuan
4 0.87 2.42 1648.51 280.80 572.36 6943.07 807.35 152.53 157.43

11 0.09 0.24 69.53 5.82 1.70 7123.09 101.17 9.86 3.81

nobel-us
7 2.72 1.22 7406.52 2252.20 M M 1006.32 455.20 425.03

23 23.09 6.72 M 8838.02 M M M 4916.07 5213.05

atlanta
7 1.85 3.88 1688.62 1531.52 M M 1625.36 1196.10 2034.70

24 8.11 14.95 M M M M M 2979.89 M

Table 5
Bifurcated Flows Total Time Performance (s)
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Algorithms for FkStPPBF

C C+C DCP DCP+RC DBD DBD+C

Instance Γ TT TT TT BC CSC TT BC CSC TT BC CSC TT BC CSC

abilene
6 11.03 2.84 49.38 69 0 199.46 673 24 12.52 549 0 5.40 255 54

19 352.42 53.25 410.09 140 0 M M M 27.72 758 0 10.49 327 47

polska
6 919.74 409.78 461.35 1124 0 261.54 2791 24 626.19 4435 0 1176.53 5536 53

19 M M 1597.32 501 0 976.20 918 24 586.96 2476 0 509.37 1551 63

pdh
4 M 5572.47 2184.11 3294 0 339.46 1571 22 9576.76 9168 0 3933.03 6337 57

12 M 3310.10 265.93 1122 0 101.34 686 22 209.26 5582 0 92.50 2243 57

di-yuan
4 807.35 152.53 125.65 78 0 52.86 169 22 175.77 3740 0 203.15 2487 74

11 101.17 9.86 66.36 18 0 20.83 14 22 67.87 2934 0 22.53 1936 66

nobel-us
7 1006.32 455.20 1496.64 4982 0 389.74 2210 28 3285.77 8534 0 1978.23 6997 58

23 M 4916.07 5911.77 3710 0 1795.92 2805 28 2804.29 6384 0 562.95 3442 56

atlanta
7 1625.36 1196.10 665.17 439 0 309.20 584 30 303.93 3307 0 196.25 2260 30

24 M 2979.89 3654.80 296 0 2052.01 168 30 381.03 3359 0 314.24 2957 28

Table 6
Algorithms Time Performance and Number of Cuts for Partial Partitioning and Birfurcated Static Routings
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Routing Number of Cases of Solution Improvement
comparing to Static

Split Scheme Γ0.25 Γ0.01 Total

BF

FV S 6 of 6 4 of 6 10 of 12

F2| 3 of 6 1 of 6 4 of 12

FkStPP 6 of 6 4 of 6 10 of 12

FkStFP 6 of 6 3 of 6 9 of 12

FkV lPP 6 of 6 4 of 6 9 of 12

FkV lFP 6 of 6 4 of 6 4 of 12

NBF
FkStPP 3 of 6 0 of 6 3 of 12

FkStFP 3 of 6 0 of 6 3 of 12

Table 7
Summary for Solution Improvement comparison

37



Comparison Cases compared* Number of better Time Performance

Cut-set versus
Non cut-set

FkStPP C+C ≤ FkStPP C 12 of 12

FkStPP DBD+C ≤ FkStPP DBD 10 of 12

FkStPP DCP+RC ≤ FkStPP DCP 10 of 12

FkV lPP C+C ≤ FkV lPP C 12 of 12

Decomposition versus
Non Decomposition

FkStPP DBD+C ≤ FkStPP C+C 7 of 12

FkStPP DBD ≤ FkStPP C 10 of 12

FkStPP DCP+RC ≤ FkStPP C+C 9 of 12

FkStPP DCP ≤ FkStPP C 9 of 12

Adapted Benders Decomposition versus
CPLEX BENDERS

FkStPP DBD+C ≤ FkStPP DCP 8 of 12

FkStPP DBD+C ≤ FkStPP DCP+RC 6 of 12

FkStPP DBD ≤ FkStPP DCP 7 of 12

Partial versus
Full Partitioning

FkStPP C+C≤ FkStFP C +C 9 of 12

FkV lPP C+C≤ FkV lFP C +C 8 of 12

Static Partitioning versus
Volume Partitioning

FkStFP C+C≤ FkV lFP C+C 9 of 12

FkStPP C+C≤ FkV lPP C +C 8 of 12

* ≤ indicates better than or equal

Table 8
Summary for Bifurcated Flows Time Performance comparison
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8 Conclusions

We have performed a numerical experiment in a search to provide efficient
routings and less conservative solutions to RNL. The k-adaptive routing
scheme was able to provide good solutions and time performance when com-
pared to other partitioning algorithms. In particular, the extension of k-
adaptive volume routing scheme was the routing to provide better solutions
among the routings experimented. The method utilized does suffer of dimen-
sionality issues so that special techniques to control time performance are
fundamental. In fact, the k-adaptive partial partitioning can provide good re-
sults, when compared to full partitioning and have better time performance.
Our results also showed that Benders decomposition can be efficient to speed
up instances.
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[39] Maria Grazia Scutellà. On improving optimal oblivious routing. Oper. Res.
Lett., 37(3):197–200, 2009.

[40] Marco Silva, Michael Poss, and Nelson Maculan. k-Adaptive Routing for the
Robust Network Loading Problem. In accepted INOC2017, 2017.

[41] Mateusz Zotkiewicz and Walid Ben-Ameur. More Adaptive Robust Stable
Routing. In Proceedings of the Global Communications Conference, 2009.
GLOBECOM 2009, Honolulu, Hawaii, USA, 30 November - 4 December 2009,
pages 1–6, 2009.

[42] Mateusz Zotkiewicz and Walid Ben-Ameur. Volume-oriented routing and its
modifications. Telecommunication Systems, 52(2):935–945, 2013.

42


	Introduction
	Uncertainty set
	Routings
	Problem definition
	Iterative Nested Partitioning
	Algorithm improvements
	Implementation and Results
	Conclusions
	References

