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Abstract

This paper presents a computational approach for transferring principles of hu-
man motor control to humanoid robots. A neurobiological model, stating that
the energy of motoneurons is minimized and that dynamic and static efforts are
processed separately, is considered. This paradigm is used to produce humanoid
robots reaching movements obeying the rules of human kinematics. A nonlinear
programming problem is solved to determine optimal trajectories. The optimal
movements are then encoded by using a basis of motor primitives determined by
principal component analysis. Finally, generalization to new movements is ob-
tained by solving of a low-dimensional optimization problem in the operational
space.

Keywords: human motor control, motor primitives, humanoid robot, nonlinear
programming, optimization.

1. Introduction

Even though today’s humanoid robots roughly have the same shape as hu-
mans, they are strongly different in their mechanical structure, their sensing and
actuation capabilities and the way they process data. However, despite these dif-
ferences, we want to show in this paper that it is possible to make these machines
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move in a human-like way by applying computational principles of human motor
control. We focus on the control of reaching movements, which is the topic of an
extensive literature in computational neurosciences [39].

In humans, the question is to determine how the central nervous system (CNS)
processes to control the arm muscles in order to drive the hand to a given target
position. As initially pointed out by Bernstein [3], the difficulty of this question
comes from the fact that, due to the numerous degrees of freedom (DoF) of the
arm and the important number of muscles involved in the reaching movement, the
system is highly redundant with respect to the task. As a consequence, infinitely
many control can be used to perform the reaching movement. The question is then
to determine how the CNS process to choose one specific control solution.

In humanoid robotics, as the arm joints are usually driven by DC motors, the
redundancy does not yet concern muscle actuation but the redundancy still exists
at the kinematic and the dynamic level. Indeed, only 3DoF are necessary for
positioning the hand at the target position whereas the robot arm usually includes
at least 6 DoF. The question is then do determine how to control these joints in
order to make the humanoid robot move in a human-like way.

To answer this question different kinds of biologically inspired approaches
have so far been proposed in robotics. Some authors made a special effort to re-
produce the mechanical musculoskeletal structure of the human arm and develop
control strategies involving the dynamics of internal forces [42], or replicate bi-
ological patterns of muscle activity [32]. Khatib et al. [23] used a prioritized
task-level control framework to generate whole-body movements with a dynamic
musculoskeletal model of human. Based on simulations performed with this ap-
proach they suggested that human postural motion minimize a muscle effort po-
tential. Other authors tried to characterize trajectories by minimizing a particular
cost function such as variance [40], torque [27], jerk [38], or energy [1]. A tra-
jectory generation method based on a neural time-base generator was proposed
in [43] to reproduce constrained reaching movements having human-like velocity
profiles for rehabilitation. A biologically inspired hybrid robot controller allow-
ing to regulate the movement both in the joint space and in the Cartesian space
was proposed in [19] for executing reaching movements. This concept of multi-
referential controller was more recently improved in two directions by Pattacini et
al. [34]. These authors replaced the vector integration to endpoint (VITE) model
with a bio-inspired generation scheme to obtain trajectories with minimum-jerk
profile, and used an interior point optimization technique to solve the inverse kine-
matics under contraints. This approach was successfully experiments on the iCub
to execute reaching movements having the main characteristics of human move-
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ments. Finally, motion capture and retargeting techniques were used by numerous
authors to execute human-like motions [26], [35], [13]. However, beyond imita-
tion, the application of biological motor principles seems to be a way to produce
canonical movements in any situation.

In this paper we consider a new approach based on a recent computational
theory of motor control [14], [15]. We propose to apply this theory, which can
accurately account for kinematics, kinetics, muscular, neural, and stochastic char-
acteristics of redundant movements, to control the humanoid robot HRP-2. The
approach is grounded on the idea that the CNS processes dynamic efforts (iner-
tial, velocity dependent) and static efforts (elastic, gravitational) separately, and
that the energy of motoneurons is continuously minimized during motion. In or-
der to apply these principles to the control of HRP-2, a global model is considered,
which contains the dynamics of the six degrees-of-freedom (DoF) robot arm and
includes, for each DoF, an additional filter simulating the dynamics of a pair of
virtual antagonist muscles. The computation of optimal trajectories is based on
nonlinear programming. A direct transcription method is used to transform the
original problem into a discretized version that is solved by using the interior
point method implemented in the Ipopt software [52]. We show that the robot arm
movements obtained with this approach exhibit the main kinematic features of
human motions, namely: quasi rectilinear hand trajectories and bell-shaped single
peak velocity profiles.

The strengths and weaknesses of the method are then considered in the mid-
term outcome analysis section. Though the method allows to generate human-like
reaching movements in a canonical way, the high computational time is pointed
out as an important drawback of the method. Indeed, several minutes are nec-
essary to compute certain movements. To cope with this problem, we show in
the second part of the paper that the theory of motor primitives can be applied
to reduce the computation time. This theory, which is one of the most impor-
tant in motor control neurosciences, conjectures that, instead of recomputing each
time a complex optimization problem, the CNS uses a finite basis of functions
to generate movements [37, 29, 8, 50]. In order to develop a sufficiently generic
method we based our study on two databases of movement. The first one was ob-
tained from simulation by applying Guigon’s model [14] on the dynamic model of
HRP2’s arm. The second database was obtained by recording the reaching move-
ments of different human subjects by using a motion capture system. From both
databases, primitives are extracted by using principal component analysis (PCA).
The reconstruction process, which enables to express each movement as a linear
combination of these primitives, is analyzed. We prove that twenty primitives al-



low to represent the movements of both databases with a very good accuracy. An
original generalization method is then proposed to generate new movements from
this basis of primitives. The method consists in solving a low-dimensional mini-
mization problem to determine the weighting coefficients for which the movement
approaches the minimum-jerk trajectory with the best precision. Depending on the
number of primitives, the computation-time and the precision of the reconstruc-
tion processes, are discussed. We show that the use of motor primitives allows to
strongly reduce the computation time of trajectories. Examples of reaching move-
ments computed with this method and executed on HRP-2 are finally presented.

2. The biological principles of motor control

Breakthroughs into the understanding of motor functions have generally been
brought about by computational studies that disclose functioning principles inde-
pendent of brain structures or neural processes. The model proposed by Guigon
et al. [14], [15] provides a unified account of motor behavior by making the hy-
pothesis that motor control is mainly governed by the following four principles.

Separation principle: There is a substantial experimental evidence to sup-
port the idea that static and dynamics forces are processed separately by the
CNS. Psychophysical studies have shown that velocity profiles remain unchanged
when moving in a known constant or elastic force field, but that they are in gen-
eral modified by time and amplitude scaling in velocity-dependent and inertial
fields [36]. EMG studies have revealed additive velocity-independent, tonic and
velocity-dependent, phasic components which have been related to the generation
of anti-gravity torques and dynamic torques, respectively [53]. A similar additive
combination between tonic and phasic activity was observed in neurons of primate
motor cortex [20]. Finally, experiments have shown that the terminal posture of
3D redundant movements is independent of velocity [30]. As the relative contri-
bution of anti-gravity and dynamic torques varies with velocity, optimization of
the total torque pattern would predict variations of terminal posture with veloc-
ity. This result suggests that dynamic forces are optimized independently of static
forces.

Optimal feedback control principle: The CNS processes an optimal control of
dynamic forces that is appropriate for an online regulation of movements. Though
optimal control has been repeatedly used to account for many aspects of motor
control, e.g. trajectory formation, muscular redundancy, postural control, loco-
motion, etc. [11], [51], [16], it has rarely been applied to the case of nonlinear
redundant systems [47]. The difficulty is to account for the simultaneous con-
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trol of posture and movement. Most studies did not consider the case of static
forces due to the difficulties to solve optimal control problems in the presence
of gravitational forces [45]. When a movement consists of a transition between
two equilibrium postures, the boundary conditions of the optimal control problem
should specify terminal equilibrium signals, e.g. muscle forces which compen-
sate for applied static (elastic, gravitational) forces. The idea to add to the cost
function a term which enforces given initial and final equilibrium postures should
lead to solutions which depend on the level and nature of the static forces [16]. In
contrast, the previously introduced separation principle provides a way to apply
optimal feedback control to kinematic redundancy problems with static forces, as
there is no a priori specification of the final posture of the limb.

Maximum efficiency: The energy of the signals of motoneurons, that eventu-
ally generate the dynamic forces, is continuously minimized along the motion.
The system attempts to reach the goal with zero error and minimal control sig-
nals. Note that, compared to other cost functions encountered in the motor control
literature (jerk [11], torque change [51], variance [16], energy [1], etc.) this cost
function is easily measurable by the CNS. Furthermore, the constraint functions
used in this model are the initial and final boundary conditions that lead to an
univocal description of motor control, contrary to models involving related cost
function such as error/effort minimization [47].

Constant effort principle : The idea of motor behavior being associated with
the minimum of a cost function is appropriate when both movement amplitude
and duration are specified. Otherwise, infinitely slow/fast or infinitely short/long
movements could result. The constant effort principle states that a given set of
instruction is equivalent to a level of effort. For these instructions, movements of
different amplitudes, directions, or against different loads are executed with the
same effort.

Modeling studies dealing with 3D movements are rare [48], [6], and address
only the kinematic level (trajectory formation). The main interest of the present
approach is to consider optimization directly at the level of motor commands,
which provides a proper predictive account of motor control [47, 14, 15].

3. Model and Problem Statement

The separation principle stated in the preceding section can be easily applied
to control robots such as HRP-2, in which each joint is independently regulated to
a reference angular value. Indeed, thanks to the robustness of the low-level control



of each joint we can make the hypothesis that static forces are exactly counterbal-
anced. The synthesis of a controller can then be obtained by disregarding static
effects. In this way, the optimization problem can be solved on the basis of a sim-
plified model describing the phasic component only. In order to implement this
strategy on the robot, we developed a global model that contains the dynamics of
the n = 6 DoF arm and includes, for each DoF, the dynamics of the neuromus-
cular system associated to a pair of virtual antagonist muscles. In this way, the
considered system input is the vector of signals of the virtual motoneurons. Each
muscle i (1 <i < 2n) is controlled by a motoneuron and, according to [18], the
set constituted by the motoneuron and the muscle (neuromuscular system) can be
described by a second-order low-pass filter having the neural control signal u; as
input and the muscular force F; as output, according to the following scheme

v(dej/dt) = —ei+u;
v(da;/dt) = —a;+e; (D
F = n(a),

where v is a time constant. The function 1 (used to express the fact that a muscle
exerts a pulling force only) is defined by n(z) = z if z > 0; otherwise, 1(z) =
0. The variables ¢; and a; correspond to excitation and activation parameters'
respectively. As 1(z) is not differentiable at the origin, it can be replaced by the
function z — log[1.0 + exp(kz)]/x, with k¥ > 0. Torques 7; were calculated at
each DoF from the difference between the forces generated by antagonist muscles
scaled by a coefficient 7, (in meters), as described in (2).

T = W(Fak—1 — Fax), k=1,...,n. (2)

The robotics arm of HRP-2 (see figure 1) has six DoF: three at the shoulder, two
at the elbow and one at the hand (see [22] for details), the grasping DoF of the
hand being not considered here. We used the Lagrangian approach to express

hrp2 %p&_meca .png

Figure 1: Humanoid robot HRP-2 and its mechanical structure.

I'The Electromyographic activity (EMG) usually corresponds to 7 (e;)



the equation of dynamics of this rigid, multi-linked, articulated system [41]. The
computation was done through the symbolic calculus tools in Matlab. On this
basis, the equivalent C code was generated for the optimization program described
in section 4. The arm dynamics can be expressed under the usual form

T=M(q)§+N(q,4)q+G(q) 3)

where M is the inertia matrix, N is a nonlinear vector including Coriolis effects,
G is a vector related to gravity efforts, 7 is the torque vector that generates the
movement, ¢, g, § are the vectors of angular position, velocity and acceleration of
successive joints respectively. According to the separation principle, for the com-
putation of optimal trajectories, the term G(g) which corresponds to static efforts
can be removed from (3). So, the relationship between angular accelerations and
torques can be expressed as follows

G=M '(t—Ng) 4)

By gathering the arm dynamics described by (4) with the actuation dynamics as-
sociated to each of the six pairs of virtual muscles described by (1) we obtain a 36
dimensional dynamical system of the form

X = fx(2),u(r)) )
whose state is defined by

_ T

x = (x1,...,x36)
_ . . T
- (QIa---76]6aCI1a---74676117---76112a317---a312)

where ¢y, ...,qg are the joint coordinates, ¢1,...,J¢ are the angular velocities, and
fori=1,...,n, (azi—1,az) and (ep;_1,e;) represent the activation and excitation
parameters respectively, associated to the pair of antagonist muscles correspond-
ing to the ith DoF. The control vector, u = (u1, ...,u12)" is of dimension 2n = 12,
For i = 1,...,n, (u;—1, up;) represent the motoneurons signals associated to the
pair of antagonist muscles corresponding to the ith DoF. Note that the derivatives
of the state variables x; are computed as follows: fori =1,...,6, X; = §; = xj 16,
fori=7,...,12, X; are given by (4) and for i = 13, ...,36, X; are deduced from (1).

Remark 1. The control vector u = (uy, ...,ulz)T is then the input to the global
system that includes, in cascade, the upstreaming low-pass filtering action of the
virtual muscles and the dynamics of the robot arm.
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Given an initial arm configuration x" = x(), at time #,, and a target position of
the hand at time final 7', and according to the optimal feedback control principle
and the maximum efficiency principle, the trajectory of the global system must
minimize the energy of motoneurons along the time interval [fy, 7]. This problem
can be stated as an optimal control problem as follows: find a deterministic control
u(t) ={ui(r)} (1 <i<2n)over [to, T] such that x(¢) is a solution of (5) satisfying
the following boundary conditions

x(tg) = x° and y(x(T)) =0, (6)

while minimizing the quantity

2n T
E= Z/ u? (t)dt (7)
i=1"1

In relation (6), y(x(T')) expresses the constraint on the state at time 7', which
corresponds to the specified final hand position at which ¢(T) = a(T) = e(T) =0.
As explained in the next section, this final condition can be deduced from the
expression of the direct kinematics at time 7. Considering that the robot arm is at
rest at 7y, the initial condition is given by

K = (q(l),...,qg,o,...,O)T (8)

where ¢J, ..., ¢ are the initial angular values of the robot joints at f.

4. Optimization

To solve the two-point boundary-value problem stated by (5), (6), (7) we used
a direct transcription method [5]. Following this approach, the original problem
can be transformed into a discretized version which then can be solved by a large-
sparse NonLinear Programming (NLP) method, such as the interior point method
implemented in the Ipopt software [52]. The main steps of the method are pre-
sented in the sequel, more details can be found in [5].

4.1. Direct Transcription

The first step of the direct transcription approach is to determine the vector of
variables of the corresponding NLP problem. It consists in discretizing the time
interval of movement duration [fo, 7] into m + 1 time-points as follows

h<fhh<h<..<ty=T



At each time-point, the state vector and the control vector are both specified. As a
consequence, the discretized version of the variable vector has the form

T 0 0o .0 0
% = (.xl7...,X36,M1,...7u127

1 1 1 1
.xl, ...,XS671/I1,...,M12,

ey

X e ul s uly) )

where, fori=1,...,36; k=1,...,12 and j =0,....J; x{ and ui are respectively
the state variables and the control inputs at time #;. This vector x includes [ =
(J+1) x (36 + 12) variables.

The next step is to represent the constraints. Here we have two types of con-
straint, one on the dynamics (5) and another one on the y function (6). The de-
scription of variables in (9) conducts to the following trapezoidal representation
of dynamical constraints

j+1 i Wi j+1
x5 x-S+ ) =0

(10)
i=1,..36, j=0,..,J—1

where h/ =t j+1—tj is the duration of the time interval [¢;,¢;11]. So, the number of
dynamical constraints is equal to d = m x 36. The condition y(x(7')) = 0, which
expresses the fact that the hand must reach the target at the final time #t; =T, is
defined by the following equations

’g(x{7x£>x3{axé{axg7xé)_Pmrget =0 (11)
X =0 = .. = X3 =0 (12)

where g is the direct kinematics function which calculates the position of the hand
in Cartesian coordinates from the angular value of each link, and P4 g is the de-
sired target point. The constraints corresponding to the initial boundary conditions
(8) are represented by

o 0_ 0
{ fori=1,...,6, x; =g, (13)

fori=7,..,36, x¥=0

One important advantage of the direct transcription method is that additional con-
straints can be easily taken into account by introducing bounds on the state vari-
ables. For the case of the HRP-2 arm, the angular constraints are as follows

fori=1,..,6, x;<x\x' .. x <% (14)
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Finally, the cost to minimize in (7) can be expressed as a finite sum computed
at all discretized time points

J o
E(x)=Y, Y ()’ (15)

4.2. NLP Solving

By (9)—(15) we have formulated a large-sparse NLP problem from an optimal
control problem, which has the form

min E()) (16)
x<€R!

such that : c(x)

c< <
X< x =<x

where E(x) : Rl — R* is the objective function, and c(y) : R — R? are the
constraint functions. The vectors ¢ and ¢ denote the lower and upper bounds on
the constraints, and the vectors ¥ and ¥ are the bounds on the variables y. For the
considered problem, the vector x is defined by (9), E(x) is given by (15), c(x)
correspond to the functions in (10) and (11), where ¢ = ¢ = 0, and the constraints
on x are represented by (12) and (13).

To solve the NLP problem, we used the Ipopt solver [52], which turned out to
be efficient in terms of accuracy and convergence time. In practice, for the direct
transcription, we took J = 50 or 100 for movements of 1 second and J = 100 or
200 for movements of 2 seconds, that correspond to 2448, 4848 and 9648 variables
respectively.

5. First simulation results

In order to generate a movement, the algorithm requires as input the initial
angular configuration of the arm, the movement duration, and the position of the
desired target expressed in a system of spherical coordinates (r,0,¢) centered
at the initial hand position. In this definition, r is the movement amplitude, 0
and ¢ are the azimuth and elevation angles respectively. This representation is
well appropriate for the description of movements starting with the same initial
arm configuration and directed toward peripheral hand target positions. The mus-
cle parameters provided to the system were chosen in the same way as in [14]:
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v = 0.05s (time constant of muscle filtering), and k = 10 (force generation charac-
teristics of the muscle). Moreover, according to (2), at each DoF the link between
the force generated by the pair of muscles and the torque is related to a coefficient
Y- The choice of these coefficients is somewhat arbitrary and discussed in [14].
In our program, we did not try to find the best values of 7 for all movements. The
durations of movements were adapted to the robot dynamics, they were a little bit
increased with respect to durations in [14]. Figures 2 and 3 represent the shape of
trajectories of amplitude 25cm and duration 1 second, ending at ten evenly spaced
peripheral hand positions in the frontal andin the sagittal plane respectively. These
target positions correspond to nonsingular configurations of the robot. The initial
configuration of the robot arm is (5°,—15°,30°,—110°,0°,0°). Figure 4 shows

Figure 2: Movements of amplitude r = 25¢m, starting from the same arm configuration, and ending
at ten evenly spaced peripheral targets in the frontal plane. The same color is used to represent the
hand trajectory (left picture) and the corresponding velocity profile (right picture).

Figure 3: Hand movements of amplitude r = 25cm, starting from the same arm configuration,
and ending at ten evenly spaced peripheral targets in the sagittal plane. The same color is used to
represent the hand trajectory (left picture) and the corresponding velocity profile (right picture).

in detail the variation of motion parameters during a simulated movement of the
hand of amplitude r = 25¢m to the direction (0, @) = (—45°,45°). As aresult, it

Figure 4: Evolution of motion parameters during a movement of amplitude » = 25¢m to the direc-
tion (6, ¢) = (—45°,45°). Left up: Cartesian coordinates of the hand; right up: angular trajectory;
left middle: hand trajectory; right middle: hand velocity; left down: control signals; right down:
torques.

is interesting to remark that the robot trajectories obtained through this approach
exhibit the principal characteristics of human motions, as reported in [33], [9],
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[14]. Indeed, the hand trajectories are almost rectilinear and the corresponding
velocity profiles are single-peak and bell-shaped. Figure 5 is from [9]. It shows
two sets of human hand paths starting with the same arm configuration and end-
ing at peripheral targets locations in the sagittal and the frontal plane respectively.
These trajectories look very similar to the ones executed by HRP2, which are rep-
resented in figures 2 and 3. Furthermore, the slight curvature variation associated
to the circular distribution of targets seems to obey the same rule in both cases.
Concerning the accuracy of our result, the average difference between the final
robot hand position and the target is very small, around 1 mm, and the average of
maximum distance to a virtual reference straight line trajectory is about 1 cm.

In order to demonstrate that the control approach is not limited to short mo-
tions, the method has also been tested for movements of amplitude 50 cm with a
duration of 2 seconds. Single-peak bell-shaped velocity curves still occur, though
the trajectory is unsurprisingly more curved (the average distance to the straight
line is about 4 cm). The target-hand distance error at final time is still small, about
I mm. Figure 6 shows two examples of such motions obtained with the simulation
software OpenHRP and figure 7 shows corresponding hand trajectories and veloc-
ities. To simulate motions with OpenHRP, we took the angular trajectory of the
robot joints obtained from the optimization program and then we interpolated it
to determine the input data. The simulator follows this input to display the move-
ment by taking into account the exact parameters of the robot. Such a validation
on OpenHRP guarantees that the movement will be correctly executed by the real
robot.

Finally, to illustrate the generality of the approach, we applied it to generate
upper-body reaching movements. We considered a 7 DoF system including 2
DoF at the torso (yaw and pitch angles) and 5 DoF at the arm (3 at the shoulder,
and 2 at the elbow, the last rotation at the wrist being fixed). The same motion
generation method was applied by considering the dynamical model of the upper
body of the robot. The passage from 6 to 7 DoF induced a significant increase of
the computation time. Figure 8 shows the robot executing a downward reaching
movement by using its upper body joints. Strikingly, when the torso joints are
used, the robot seems to behave more closely like a human. Here again the hand
trajectory is almost straight and the hand velocity curve is bell-shaped. Figure
9 shows the variation of parameters during this movement of the upper-body. It
appears that the highest torques are produced at the torso, more important mass
displacements being actuated by these joints.

In our simulations, a movement generation normally took from 1 to 4 minutes
in the case of the 6 DoF arm, depending on the amplitude of the motion and the
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choice of parameters. Whereas, up to 8 minutes were necessary in the case of the
7DoF upper body model. The program Ipopt converged to satisfy the constraints
with very good accuracy after around 200 to 300 iterations but it did not always
finish properly. This may be due to numerical errors in the calculation of the dy-
namics or to the approximation of the Hessian in the program. This phenomenon
was also pointed out in [28]. Finally, the performance of the program could be
improved by completing the refinement step in the direct transcription approach.
Videos showing different motions of HRP-2 are available at:
http://homepages.laas.fr/taix/neuro/

6. Outcome analysis

This first part of the study shows that the principles of motor control pro-
posed by Guigon et al [14] can be applied to humanoid robot control to generate
reaching movements having the kinematic characteristics of human movements.
Beyond providing a generic method to produce realistic movements, the proposed
approach has two main interests from the control point of view. First, the sep-
aration of dynamic and static efforts simplifies the optimization problem which
leads to the characterization of trajectories. The hypothesis that static gravita-
tional efforts are continuously compensated by the tonic control is particularly
well grounded in the case of robotic systems such as the humanoid HRP2, for
which each joint is individually regulated to a reference value. Second, the redun-
dancy problem can be solved implicitly without solving the inverse kinematics
for the 6 DoF dynamic model of the arm and even for the 7 DoF dynamic model
of the robot upper-body. Thanks to the direct transcription method and the Ipopt
software, which give performance and flexibility to our optimization program, fur-
ther constraints such as bounds on articular joints, or collision avoidance can be
easily added to the program. However, the main drawback of the approach is the
computational cost of the optimization problem resolution. Indeed, depending on
the amplitude of the movement, the computation of an optimal trajectory required
form 1 to 4 minutes for the 6 DoF arm and up to 8 minutes for the 7 DoF model of
the upper-body . The heaviness of this computation constitutes a strong limitation
that prevents the method from being used online to control the robot, in particular
within a feedback process.

This limitation led us to ask whether the information contained in a database
of reaching trajectories could be used to generate, at low cost, new trajectories
still having the kinematic characteristics of human movements. Many special-
ists of motor control in neuroscience agree that the CNS does not solve such a
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complex optimization problem each time it generates a movement. Instead, they
believe that the knowledge acquired during the execution of previous movement
is stored by the brain and used to generate new movements. Among the theo-
ries based on this hypothesis is the theory of motor primitives or synergies. This
theory, which was suggested by biological evidences, conjectures that the CNS
uses a finite set of elementary motor components, called primitives, to generate
movements [37, 29, 8, 50]. At the kinematic level, the primitives are sometimes
described as joint covariations. For example, covariations of ankle, knee and hip
joints during bending movements and walking were described in [2] and [24]. A
similar coactivation between whole-body joints during reaching movements was
reported in [44] and [21]. Motor primitives or synergies were also pointed out at
the muscular level, from EMG measurements. For instance, five muscular syner-
gies involved in postural control were described in [49]. The encoding of motor
primitives was also shown at the neural level. The well known experiment by
Mussa-Ivaldi and Bizzi [29], showing that local stimulations of the spinal chord
induce different leg movements in frogs, is a good illustration of this phenomenon.
Recently, an attempt at modeling these experimental results in the control theory
framework was proposed in [31]. For roboticists, reducing the complexity of con-
trol by using a finite set of movement primitives is a very attractive idea. It offers a
promising alternative to the computation of inverse kinematics and cost minimiza-
tion to cope with the high redundancy of anthropomorphic structures. This idea
has already motivated some applications. Two primitives were used by Hauser
et al. [17], for controlling the balance of a small size humanoid robot. Lim et
al. [25], used Principal Component Analysis (PCA) to extract primitives from the
captured movement of a human arm modeled as 4 DoF chain. These primitives
were used as basis functions for parameterizing new realistic robot movements.
In the study of Chhabra et. al. [7], the authors used a nonnegative matrix factor-
ization method to extract primitives from a database of control signals to control a
2 DoF arm. Interestingly, it was shown that new movements can be learned faster
in the primitive space than in the control space [4]. In order to introduce feedback
in the control, Todorov et al. [46] considered sensorimotor primitives. This kind
of primitive was applied to the control a 2 DoF arm.

Following this trend, the remaining part of the paper presents an original
method for encoding the reaching movements from a small number of motor prim-
itives in order to generate realistic human-like movements at lower computational
cost.
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7. Encoding reaching movements with motor primitives

In order to show that the method is sufficiently general and can be applied both
to simulated movements, computed from Guigon’s model, and to recorded human
movements, two databases of reaching movements were considered.

- The first database was obtained by simulation by applying to the dynamic
model of HRP-2’s arm the principled approach of motor control following the
method described in sections 3 to 5.

- The second database was obtained by recording human movements using
a motion capture system. Arm motions of 3 participants were recorded using
infrared markers attached to the shoulder, the elbow and the wrist. Accuracy of
capture was less than 1mm, with a frequency of 100Hz. Participants were asked to
perform a set of reaching movements while standing up. We considered 32 target
positions, regularly-spaced in two parallel grids located in front of the participant’s
shoulder (voir figure 10). The target was a small ball at the end of a stick that was
manipulated by the experimenter. It was placed at one of the 32 positions. The
participants heard a sound to indicate that they should start moving their hand to
the target. Upon reaching the current target, the next target was randomly chosen
from the other 31 positions, and the experimenter moved the stick to this new
position. Movements were executed until the 32 targets were reached from each
other, giving a total of 993 movements per participant.

The same sequence of task was used for simulating the reaching movements
with the dynamic model of HRP-2, in order to construct the first database. How-
ever, in the case of the robot, a scaling factor was applied to the dimension of the
target setup and its distance to the robot in order to obtain comparable values. For
both the human subjects and the robot, the databases of movements contain the
variation of six joints: three at the shoulder, two at the elbow and one at the wrist.
Note that the remaining DoF of the human arm were not considered for this ap-
plication. In order to simplify the primitive extraction, the robot movements were
all executed with a duration of 1s discretized in 100 time values. In the same way,
the human reaching trajectories were normalized to 1s within the same sampling
of 0.01s. So, for both the robot and the humans, each reaching movement was
described by 600 values encoding the variation of 6 angles.

8. Primitives extraction

We are looking for open-loop primitives with no sensory feedback. In the liter-
ature, such primitives are defined as time functions to be modulated in amplitude
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by weighting coefficients [25], [17], [50]. The most general and simplest way of
modeling the problem is to consider that movements are expressed as linear com-
bination of these primitives. For our problem, each movement of the 6 DoF arm
can be represented by a joint trajectory U (t) € R®. A database of M movements
is then described by a set of such trajectories:

Un(t) = (U1 (2), U2 (t),..Ups(t))T €R®, m=1,....M, t €[0,T].

For this database, the primitive extraction problem is to determine K time-
functions: @ (t) = (Bp1(t), Pra(t), ... Bre(2))T €RS, k=1,....K, t € [0,T], such
that, for all m = 1,...,M, it is possible to determine k real coefficients o, verify-
ing:

K
Un(t) = Y, 0 ®s(t) (17)
k=1
In this expression, the functions ®;(z) represent the expected primitives and
the coefficients o, are weighting the contribution of each primitive @ (z) into
the movement U,,(r). Each ®;(¢) has then the same dimension as U,(t), and
constitutes a particular joint trajectory.

Remark 2. According to the considered definition, each motor primitive is the
kinematic representation of a basic movement. Such primitives can be viewed
as basis functions from which reaching movement can be reconstructed by linear
combination to reach any target position in a region of space. However, it is
important to note that these primitives do not constitute universal units that can
be used to compose any kind of movements.

The determination of Eqn. (17) states two problems. The first one is to determine
the number K of primitives that are necessary to reach the expected movement
precision and the second one is to characterize these K primitives. To reduce
the complexity of the control problem, K needs to be as small as possible, com-
pared to the number of parameters necessary to encode the trajectory U,,(¢). For a
continuous-time problem, this number is infinite. However, in practice, the prob-
lem is solved by considering a sampling of the time interval [0, 7] in J elements.
For the considered 6 DoF arm, K needs to be small with respect to the 6J angle
values that encode each movement. In other terms, once the K primitives are de-
termined, it is sufficient to compute K coefficients o, k = 1,..., K, to generate
the movement U,, () over [0, T], instead of 6J variables. The second problem is to
compute the canonical time-functions ®;. Considering the notation of Eqn. (17),
each movement U, and each primitive ®; is defined by a 6 x J matrix as follows:
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1 2 J 2 J
u,lnl u,znl uTl ¢k1 (]),(21 ¢kjl
u u oo u
U, = m2 m2 m2 , D, = ¢k2 ¢k2 ¢k2 (18)

1 2 J 2 J
Upe Ume -+ Ume ¢k6 Pis - D

where, u’j;lh and, (l),gh, h=1,...6,bm=1,...M, j=1,...,J are integers. Using
this notation, the reconstruction error relative to the M movements of the database,
{Un, m=1,...,M} is defined by:

M 6 J . K .
E = E(Cyu, ) = Z Z Z o = Y, Ok 9))° (19)
m=1h=1 j=1 k=1

Solving this problem comes then to determining K primitives, with K as small
as possible, (K << 6J), but sufficiently large to guarantee that the reconstruction
error will be lower than the expected precision threshold. This compromise will
be discussed in the next section. Among the existing techniques that allow to
cope with this kind of problem (see [12] for an overview), Principal Component
Analysis (PCA), is intrinsically well adapted, simple and well-performing. It has
already been used for such data representation problems in neurosciences and in
robotics [2], [44], [37] [25]. In order to apply PCA, it is more convenient to use a
vector notation of data. So, instead of using the matrix notation (Eqn. (18)), each
movement U,,, m = 1,....M, will be described by the following vector expression:

12 Joo1 J 1 J N\T
U = (U1 s Uiy 1 s Uy 1 Uy s Uigd s <5 Uiy -5 Uiy (20)

where, each ufnh, h=1,...,6, j=1,...,J, is the angular value of joint / at time
tj. The M column vectors Uy, of dimension N = 6/ are then gathered to compose
a M x N matrix. The N x N covariance matrix is then computed. The eigenvec-
tors e;, i = 1,...,N and eigenvalues A;, i = 1,...,N of this covariance matrix are
then determined and ordered. Each eigenvalue A; represents the variance of data
in the direction of the corresponding eigenvector ¢;. The larger A;, the more its
associated component ¢; is dominant in the representation of data. The question
is then to determine the number K, such that the first K principal components
ex, k=1,...,K constitute a basis of primitives from which the whole database can
be expressed with the required precision. Recall that each primitive ey, is itself the
representation of a six-joints trajectory. Finally, for each movement U,,, the co-
efficient corresponding to the primitive e is determined by computing the scalar
product between these two vectors: O =< Uy, e >, m=1,... M, k=1,....K.
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Note that the application of PCA requires the data to be centered. This condition
was almost exactly satisfied for each database.

PCA was separately applied to the robot database and the human databases
described in section 7. In each case, we observed that the variance accounted for
(VAF) by the K = 8 first primitives was more than 96%, whereas it was more than
99.5% with the K = 20 first primitives. Using the previously described approach,
we determined the coefficients that enable us to reconstruct the whole set of move-
ments by a linear combination of these primitives. These reconstructed trajectories
were then compared with the original ones. To compute the reconstruction error
for a whole database, we used the Root Mean Squared Error (RMSE) expressed
by:

E
(Mx6xJ)

where, E is defined by Eqn. (19). Figure 11 shows the decay of the RMSE as a
function of the number K of primitives, for each database. The decay rate of the
RMSE is similar for the three human subjects, while it is slightly different for the
robot arm. For human subjects, beyond the first 8 primitives, each addition of a
new primitive induces almost the same error reduction. Whereas, for the robot
model, the important decay rate between the 8th and the 16th primitive shows that
these primitives still contain an important part of information. Interestingly, the
curves corresponding to the human subjects and the robot become roughly par-
allel after the 18th primitive, showing a certain level of similarity between both
databases. Beyond this level, the regular gap between the curves seems to be due
to the difference in the kinematics and the dynamics of the arm structures. As hu-
man subject are taller and heavier than the robot, the effect of inertia and masses
are higher on the human arm than on the robot arm. This might induce a higher
reconstruction error for human movements. In each case, the primitives computed
with PCA enable to represent the original data with a good precision. Depending
on the expected level of precision, the number of primitives can be easily chosen.
For instance, with K = 16 primitives the robot database can be reproduced with
a mean error of 0.02 radians, (1.2°). The same number of primitives enable to
represent the database of subject 1 with a mean error of 0.03 radians, (1.7°). As
an example, Fig. 12 shows two trajectories reconstructed from these primitives
and Fig. 13 shows the first 8 primitives for each database: the robot, subject 1, 2
and 3. The primitives represent the principal variations of the movements, clas-
sified by decreasing order of dominance variance. The first primitives are rather
regular, while the last ones, more oscillatory, enable to capture subtle variations of

RMSE =
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movements. It is interesting to remark in Fig. 13, that the primitives correspond-
ing to the different database are not necessarily similar. This difference is due to
the definition of primitives given by (17). Indeed, according to this relation, each
primitive represents the simultaneous temporal evolution of the six arm joints,
and these six trajectories are weighted by the same coefficient a,;. This choice
is biologically plausible, but leads to a different primitive basis for each database.
Indeed, even though different subjects do the reaching movements in a similar
way, the variations due to each subject may radically modify the expression of
primitives.

It is important to recall that some authors used PCA to extract primitive for
each joint separately [25]. As a consequence, the modulation of primitives is
decoupled. In that case, it was shown that a lower number K of primitives is
sufficient for each link (usually between 2 and 4), but the number of coefficients is
multiplied by N. Thus, if 3 primitives are necessary for each link of a 6 DoF arm,
then 18 primitives will be necessary for representing the arm movements. We also
tested this approach for our problem and we found that the variance accounted
for by 3 primitives on each link was more than 96%. In particular, we found a
similarity between the primitives for the subject and the robot arm. However, there
is no fundamental difference between the two methods of primitive extraction.
The number of variables are almost identical in both cases. Recall that, by looking
for primitives containing the six arm joints, our goal was to capture the joints
co-activation. In this way, we expected to reduce the complexity, increase the
precision of reconstructed movements, and find a basis of primitives well adapted
to generalization. This last step is considered in the next section.

9. Generalization

So far, we have shown that large databases of reaching movements can be ex-
pressed as linear combinations of a small number of primitives. The question is
now to determine if it is possible, from these primitives, to generate new move-
ments having the characteristics of human movements. In other terms, we want to
solve a generalization problem which can be stated as follows: Considering a set
of primitives ®y, given the initial arm configuration and a reaching task defined
by the the target position and the movement duration, determine the coefficients
Q. that allow to express the trajectory as a linear combination of the primitives.

However, recall that the objective is to generate realistic reaching movements
rapidly, without having to solve each time the complex optimization problem de-
scribed in section 4. Our first attempt to solve the generalization problem was to
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apply learning methods in order to characterize fast input-output interface. We
tested different architectures of multi-layer feedforward neural networks which
received as input the six values of initial arm joints, the three Cartesian coordi-
nates of the target and the movement duration, and were expected to give the oy
weighting coefficients of the K primitives as output. For some of these networks,
the learning process on the 993 input-output pairs of each database took several
hours. However, none of them succeeded in characterizing the ¢ in a sufficiently
generic way. In many cases, the reaching error between the final hand position and
the target was too large and the movements were often not realistic. Increasing
the number K of primitives did not improve the quality of the result. It seemed
that the information learned by the networks was not sufficiently rich to capture
the movement characteristics. Furthermore, feedforward neural network does not
seem to be well appropriate to cope with the sensibility of the weighting of mo-
tor primitives. Then, as the learning techniques we considered did not provide us
with satisfying results, we developed an original approach which consists in con-
straining the hand trajectory in the operational space. This method is described in
the following section.

9.1. Method of trajectory constraint in the operational space

We want to determine the weighting coefficient o, to generate new movements
that still have the characteristics of human movements. To this end, we propose
to determine the o for which the hand trajectory approximates at best a reference
trajectory in the Cartesian space [10]. As we know that human trajectories are
almost rectilinear and have bell-shaped velocity profiles, we have chosen to con-
sider the minimum-jerk criterion to compute the reference trajectories. However,
though this criterion can be used to demonstrate the feasibility of the general-
ization process, it is not fully satisfying. Indeed the main limitation is that the
minimum-jerk criterion does not allow to take into account the dynamics of the
controlled object and that it fails to account for some characteristics of reaching
movements such as the slight curvature of the trajectory. We could as well use
any other criteria that provides a more realistic account of experimental observa-
tions in the Cartesian space. The minimum kinetic energy criterion considered by
Biess et al. [6] could be an interesting alternative solution. In order to implement
our reasoning, we formulate an optimization problem whose objective is to char-
acterize the o coefficients that minimize the error between the hand trajectory
and the minimum-jerk curve in the Cartesian space. As before, the time interval
[0,T] is sampled into J elements 0 =1t,..,£; = T. For j = 1,...,J, let us denote by
¢’ = (q].9%,45.4},9%,q%)" the arm configuration at time ¢; and H/ = f(g’) the
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corresponding hand position in the Cartesian space, where f represents the direct
kinematics associated to the 6 DoF arm model. Using this notation, the optimiza-
tion problem can be stated as follows: Given K primitives @y, k =1,...,K, each
one representing a trajectory of the six arm joints, the initial arm configuration
q', and a reaching task defined by the target position Hiarger, find the value of
K real coefficients oy, k = 1,...,K, minimizing the distance E ., defined below
as the sum of the successive gaps between the hand position and the reference
minimum-jerk reference curve computed at each time t;:

jerk - ZHf ijH Htarget)“ (21)

In this expression, 7 is the normalized time and 7; =¢;/T the discrete normalized
value that corresponds to time #; in [0, 7], and g is the time-function representing
the hand position along the reference minimum-jerk trajectory expressed by:

8(T,H' \Hyarger) = H' + (H' — Hygrger) (157* — 67° — 107°), (22)

Recall that, according to the definition of primitives, the angular value q;; of joint
h at time ¢ j, that appears in the above definition, is computed from the relation

qh qh + Zk | akq)kh, where q)kh, j=1,...,J, is the angular value of the Ath joint

of the kth primitive at time ¢;. In this problem, the joint limits on the q;; during the
movement are also considered. They are defined by inequalities of the type:

b<q <w for h=1,.,6, j=1,..J, (23)

where [;, and uy, are respectively the upper and lower bounds of the joint / at 7;.

Note that this problem is different from the one considered in [25]. Here, the
objective is not to minimize a kinematic or dynamic criterion to determine the
control signals, but instead to approximate a reference curve, having the charac-
teristics of the human movement, in the Cartesian space. This problem is also
different from the usual minimum-jerk problem in the sense that the joint trajec-
tory of the arm is directly deduced from the knowledge of the oy, coefficients. No
additional computation is then required to compute the joint trajectories; a step
which usually requires to solve the inverse kinematics problem with the mini-
mization of some additional criterion to cope with redundancy. Furthermore, note
that the generalization problem described by Eqn. (21), (22) and (23) is a simple
optimization problem involving K real variables and 6/ linear constraints, which
can be solved by using standard techniques. In this work, we used the Matlab
fmincon solver. The results are described in the next section.
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Table 1: Mean value of the distance Ej,,x computed over the whole set of new generated move-
ments and corresponding computation time for different values of K

K | Mean value of E},, (cm) | Computation time (s)
6 3.6504 5.5549
8 1.6120 11.1249
10 1.3822 14.1024
12 1.1417 20.5878
14 1.1169 28.3012
16 1.0842 35.5586
18 1.0415 41.1163
20 0.9676 48.6022

9.2. Results

In order to test the proposed generalization approach, a large number of new
movements were generated by considering the model of the robot arm. To this
end, a shift between —10cm and +10cm was applied at random in each direction
of the initial target grid (see Fig. 10) to generate new targets, and angular incre-
ments between —5° and +5° were randomly added to each arm joint to specify
new initial arm configurations. In this way, we generated a new large set of reach-
ing movements with different arm configurations. Note that the largest amplitude
movements were about 1 meter long.

In order to evaluate the compromise between computation time and distance
to the reference minimum-jerk trajectory, different values of K between 6 and 20
were considered. Table 1 shows the mean value of the distance E .., computed
over the whole set of new generated movements and the corresponding compu-
tation time, for each value of K. Logically, for a higher K the computation time
increases, while the distance to the reference trajectory decreases. It is impor-
tant to recall that the distance E . defined by (21) measures the sum of the gaps
between the hand movement and the reference minimum-jerk trajectory, at each
tj, all along each movement. Figure 14 shows the characteristics of movements
obtained with the robot arm, for K = 6,8, 10, 12,20. Clearly, the hand trajectories
and the velocity curves are not realistic for K = 6 and 8. However, as K increases,
the trajectory becomes straighter and the velocity curve becomes smoother and
more regular. For K = 12 the movement starts being very realistic. The improve-
ment obtained by adding a new primitive is very small. For K = 20 the velocity
profiles are perfectly bell-shaped and the hand trajectories are almost straight with
a continuous weak curvature. Compared to our initial approach presented in sec-
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tion 3 to 5, where reaching trajectories were obtained by minimizing each time
the energy of virtual motoneurons, the computation time was reduced by a factor
six by using the motor primitives. Note that this time could be further reduced by
encoding the algorithm in C++ instead of using Matlab.

10. Conclusion

The interest of applying neurobiological principles to the control of humanoid
robots has been illustrated in the case of reaching movements. Though the me-
chanical structure of today’s humanoid robots strongly differs from the structure
of the human body, applying biological principles provides a canonical way to
generate human-like movements. From a computational point of view, the appli-
cation of such principles is very interesting for roboticists as it provides new strate-
gies for synthesizing the controller. The separation of static and dynamic efforts
strongly simplifies the optimization problem as it removes the difficult boundary
condition. Indeed, the dynamic controller vanishes at the beginning and at the end
of the movement and the compensation of gravity is considered separately. This
hypothesis is well adapted to the control of humanoid robots such as HRP-2, in
which the low-level regulation of joint positions guarantees the compensation of
gravity during reaching movements. It is then possible to focus on the dynamic
part of the control for designing movements resembling those of humans. Another
interesting advantage of the proposed approach is that it does not need the com-
putation of inverse kinematics. As the Jacobian matrix is not square, such an in-
version would require the computation of a generalized inverse and implicitly the
choice of an additional cost function which is unknown. It was pointed out that the
main drawback of the initial optimization approach is the computation time. To
cope with this problem, motor primitives were designed to encode the movements.
Thanks to this strategy it was possible to reduce the computational cost by a factor
six. It turns out that the use of movement primitives coupled with an appropriate
generalization process provides an efficient way to store the complex information
of human movements and quickly generate new trajectories. Although it has been
suggested that the CNS generates movements by solving a complex optimization
problem, such as minimizing the energy of motoneurons, it is likely that the use of
areduced number of canonical synergies allows to simplify the computation. This
study proves that this biological solution can be efficiently transferred to robotics.
In future works, we plan to address the problem of combining such open-loop
primitives to produce more complex whole-body movements.
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move_Flanders.png

Figure 5: Human reaching hand paths as reported by Flanders et al. in [9]. The situation is similar
to the one described in figures 2 and 3: targets are arranged at twenty peripheral positions located
at 30cm from the initial hand location. F, M and L stand for forward, right and left respectively.
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mvt-bras4.png

Figure 6: From left to right : four successive snapshots of a reaching movements of the 6 DoF
arm of HRP-2, simulated with OpenHRP. This movement of amplitude r = 50cm is directed to the
target position (—35°,35°).

Figure 7: Hand trajectories (left image) and velocities (right image) corresponding to the two
reaching movements represented in figure 6.
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Figure 8: From left to right : four successive snapshots of a reaching movement involving the
upper-body joints : 2 DoF at the torso (pitch and yaw) and 5 DoF at the arm.

Figure 9: Variation of parameters during an upper-body reaching movement of the robot of ampli-
tude 50cm, toward the direction (0,¢) = (—45°,45°). Left up: Cartesian coordinates of the hand;
right up: angular trajectory; left down: control signals; right down: torques.

figla.png

figlb.png

figlc.png

Figure 10: (a) Ilustration of the human experiment during successive reaching movements. The
arm segments are in red and examples of hand trajectories are drawn in blue (b) The humanoid
robot HRP-2 (Kawada Industries Inc., Japan). (c) Representation of the 32 target positions on two
parallel virtual grids. These target positions were used to drive the human reaching movements
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fig2.png

Figure 11: Root Mean Square Error between the original trajectories and the reconstructed ones,
as a function of the number of primitives K. The curves corresponding to the three human subject

and the robot arm are represented. In addition, the blue curve represents the mean of the three
human subjects.
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fig3.png

Figure 12: Example of joint trajectories reconstructed from K = 16 primitives. The curves in
the left picture were obtained with the robot database, whereas the curves in the right picture

were obtained with the database of subject 1. The original trajectories are in dotted lines and the
reconstructed trajectories in full line.
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figd.png

Figure 13: Description of the first 8 primitives obtained with PCA on the different databases. From
left to right the column correspond to the robot, subject 1, 2 and 3 respectively. From top to down,
primitives are classified by variance dominance. In each scheme, the abscissa axis represents the
time in seconds and the ordinates represent the joint angles in degrees. A different color is used
for each of the 6 arm joints
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Figure 14: For a same reaching task of amplitude 58cm, description of the movement successively
generated by using an increasing number primitives K = 6, 8, 10, 12, and 20 from top to down.
From left to right, each horizontal set of 4 pictures corresponds to a particular value of K and
represents: the Cartesian hand coordinates, the hand velocity profile, the joint trajectories and the
hand trajectory. The reaching errors in cm are respectively: 4.07, 1.14, 0.36, 0.12 and 0.11.
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