
HAL Id: hal-01537841
https://hal.science/hal-01537841

Submitted on 13 Jun 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimization of oriented and parametric cellular
structures by the homogenization method

Perle Geoffroy-Donders, Grégoire Allaire, Julien Cortial, Olivier Pantz

To cite this version:
Perle Geoffroy-Donders, Grégoire Allaire, Julien Cortial, Olivier Pantz. Optimization of oriented and
parametric cellular structures by the homogenization method. 12th World Congress on Structural and
Multidisciplinary Optimization (WCSMO12) , Jun 2017, Braunschweig, Germany. �hal-01537841�

https://hal.science/hal-01537841
https://hal.archives-ouvertes.fr


12th World Congress on Structural and Multidisciplinary Optimization
5th - 9th, June 2017, Braunschweig, Germany

Optimization of oriented and parametric cellular structures by the homogenization
method

Perle Geoffroy-Donders1,2, Grégoire Allaire2, Julien Cortial1, Olivier Pantz3

1 Safran Tech, Safran S.A., Magny-les-Hameaux, France, perle.geoffroy@safrangroup.com, julien.cortial@safrangroup.com
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1. Abstract
We present here a topology optimization method based on a homogenization approach to design oriented and
parametrized cellular structures. The present work deals with 2-D square cells featuring a rectangular hole, be-
cause their structure is close to that of rank-2 sequential laminates, which are optimal for compliance optimization.
For several cells, the value and the parametric sensitivities of their effective elastic tensor can easily be computed,
by the resolution of a cell problem. The obtained results can be used to build a surrogate model for the homogenized
constitutive law. Moreover, we add the local orientation of the cells to our problem. Then, an optimal composite
shape is computed thanks to an alternate directions algorithm. The crucial ingredient of the methodology is the
extraction of a quasi-periodic and additive manufacturable structure from the previously obtained composite shape,
based on the introduction of a space transformation.

2. Keywords: Homogenization, topology optimization, cellular structures, additive manufacturing, elasticity.

3. Introduction
We present here a topology optimization method based on a homogenization approach to design oriented and
parametrized cellular structures. On one hand, for a large class of shape optimization problems, composite struc-
tures, which are mathematically the limits of classical micro-perforated shapes, are known to reach the optimum
[1]. On the other hand, the improvement of additive manufacturing (AM) technologies makes possible to manu-
facture structures with very complex topologies, like periodic cellular structures [14].
The choice of the periodic cells is not trivial and there is a large literature [7] about optimization of periodic cells
to achieve some mechanical properties. However, graded cellular structures can be more efficient than periodic
cellular structures, since mechanical properties can be locally adjusted to the needs. Several approaches have been
explored to optimize such structures. Geihe and al [10] work on the set of square cells with parametrized elliptic
holes and rewrite the topology optimization problem as a parametric one. Other methods are based on the Simpli-
fied Isotropic Material with Penalization (SIMP) method [6]. After the selection of a set of density- parametrized
cells, an optimal density is computed and then is used to define the final design of each cell which composed the
global structure [16]. An alternative consists of optimizing locally the design of each cell, with the constraint that
its density is equal to the previously computed optimal density [12]. Wang and al. [18] present a multiscale design
method : the microstructure of the cells, parametrized by the density, and the macro distribution of material are
both simultaneously optimized.
In the present study, our approach is close to the one developed by Cramer and al. [8, 9], or likewise, by Zhang
and al. [19]. A set of parametrized cells is previously fixed. We introduce their effective elastic properties, which
are computed by homogenization method and which vary smoothly with the design variables. Then an optimal
composite shape, defined by the optimal homogenized fields of parameters is computed thanks to an alternate
directions algorithm. One of the originalities of our work is that we do not consider only the density as design
variables, but more parameters, whose the cell orientation. In that way, we enlarge greatly the set of reachable
elastic tensors.
The main originality of our work is to propose a deshomogenization method, which yields to a smooth and well-
connected structure. Indeed, the question of the connectivity between neighbors cells is crucial. Several methods
have been developed to take account this constraint, during the cell design optimization [20], or during the multi-
scale design optimization [18]. Here, thanks to the design of our cells, we do not face this issue. But our method
is also generalizable to other kind of cells, without any further limitation. Indeed, we compute optimal continuous
fields of design variables (the final size of the cells is not a priori fixed) and the connectivity is ensured by the
smoothness of the design parameters.
Otherwise, to deshomogenize a composite structure with isotropic cells, the direct projection of the optimal density
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on each cell is a natural approach [19]. However, here the optimal cell orientation has to be considered. We intro-
duce a space transformation for this purpose [13]. To prevent a significant distortion of cells during the projection,
we regularize the optimal orientation, so that the previous transformation is conformal (i.e. angle-preserving).
Thus, the respective elastic behaviors of the projected structure and the optimal composite it is based on remain
close to each other.

4. Square cells
A classical optimization problem in elasticity involves the minimization of the compliance under a volume con-
straint.
Let D be the optimization domain and Ω ⊂ D the reference configuration of an isotropic elastic body. The struc-
ture Ω is clamped on ΓD ⊂ ∂Ω, and submitted to surface loads g on ΓN ⊂ ∂Ω. Let u be the displacement in the
structure, σ the constraint tensor and A the elastic tensor of the material phase :

div(σ) = 0 in Ω

σ = Ae(u) in Ω

e(u) = 1
2 (∇u+∇uT )

u = 0 on ΓD,
σ ·n = g on ΓN ,
σ ·n = 0 on Γ = ∂Ω\ (ΓD∪ΓN)

(1)

Given V a target value for the volume, we are interested in the following compliance minimization problem :

min
|Ω|=V

ΓD∪ΓN ⊂ ∂Ω

∫
ΓN

g ·uds (2)

Robust approaches, for instance the level-set method [3] or SIMP [6], are really efficient to find an optimal
distribution of material in the design space D. However, they do not consider the option to adapt locally the
microstructure of the medium to design a better performing structure. Indeed, the global optimum is known to
be reached by composite materials, in particular by laminates of rank-2 (respectively rank-3) laminates in 2D
(respectively, in 3D) [1, 4].
Let Gθ be the set of effective elastic tensors for composites structures of density θ (composed of a void phase and
an isotropic elastic phase) and CD be the set of composite designs :

CD = {(θ ,A∗) ∈ L∞(D; [0,1]×M 4
N) |A∗(x) ∈ Gθ(x) a.e. in D}

The optimisation problem could be reformulated as a minimization problem on CD, however this is not appropriate
since the set Gθ is not explicitly known. Thus, we use a subset of Gθ , namely the homogenized elastic tensors of a
particular class of composites. Even if the laminates are known to be optimal and their elastic tensors have explicit
expressions, they are excluded from the admissible set. Indeed they present several scales of material, putting them
out of reach of traditional and additive manufacturing processes. Instead, we retain a simple composite already
used in the seminal paper [5] : square cells with a rectangular central hole (see Fig.1). We will denote them by
Ysq(l1, l2) where l1, l2 ∈ [0;1] are the relative linear dimensions of the hole. The structure of those cells is close to
the one of rank-2 laminates with orthogonal lamination directions, which are optimal for compliance minimization
problems. Moreover, they do not feature several embedded material scales : a structure made of this composite is
more likely to be additive manufacturable. We emphasize the fact that the global optimum can be reached only by
multi-scale design cells [2], and consequently no manufacturable structures.
Because the considered cell is not isotropic, its effective elastic behavior is orientation-dependent. Hence, there

are three optimization variables for the optimization problem (2), namely the functions l1(x), l2(x) ∈ L∞(D, [0;1])
and α(x) ∈ L∞(D,R) the angle of rotation of the cells.
The compliance minimization problem (2) does not consist anymore in capturing an optimal shape Ω, but in find-
ing the most efficient microstructure on the whole domain D, with (ΓN ∪ΓD)⊂ ∂D.
Let Ssq = {(l1, l2,α) ∈ L∞(D, [0;1]2× (R)|

∫
D(1− l1(x)l2(x))dx =V} the set of admissible designs. The minimiza-

tion problem becomes :

min
(l1,l2,α)∈Ssq

∫
ΓN

g ·uds (3)

where u is the solution of (1) with Ω = D and A = A∗.
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Figure 1: Square cell and hole parametrization

5. Homogenized elastic tensor
5.1 Homogenization method
The homogenization method has been used in many scientific disciplines, in particular for shape optimization.
For the sake of completeness and brevity, only a few important results are recalled here, the interested reader will
find more details and proofs in [1]. Let Ω be a periodic medium of period ε , constitued of an isotropic elastic
solid phase, with constant Hooke’s tensor A, and a void phase. The distribution is given through the characterisitic
function χ(y) ∈ L∞

# (Y,{0,1}). Let Y = (0,1)N be the rescaled unit periodic cell, where N is the space dimension.
When ε→ 0, the medium can be considered homogeneous, with an effective constant elastic tensor A∗. To compute
this homogenized tensor A∗, we introduce correctors wi j corresponding to the local displacement in the cell Y,
defined for each pair (i, j) ∈ {1, ...,N}2 by the solutions of the following cell problems [1] :{

div(Aχ(ei j + e(wi j))) = 0
y 7→ wi j Y-periodic (4)

where ei j =
1
2 (ei⊗ e j + e j⊗ ei) is a basis of the symmetric tensors of order 2. It can be shown that the tensor A∗

depends on the solutions wi j of the cell problems :

A∗i jkl =
∫

Y
χA(y)A(ei j + e(wi j)) : (ekl + e(wkl))dy ∀i, j,k, l ∈ {1, ..,N} (5)

Because the set of periodic composites is dense in the set of all composites [17], this method can be used to com-
pute the homogenized elastic properties of any composite materials.

5.2 Homogenized elastic tensor of Ysq cells
Thanks to homogenization, the effective elastic tensors A∗(l1, l2) of the cells Ysq can be computed. The considered
cells are orthotropic : A∗ is fully caracterized by only four of its components, namely A∗1111,A

∗
1122,A

∗
2222,A

∗
1212 in

the basis (y1,y2).
Let (l1, l2) be the sizing parameters of the cell Ysq. We solve the three cell problems (4) on Ysq, to determine the
correctors w11,w22,w12. The four independent coefficients of the elastic tensor can be calculated using the equa-
tion (5).

5.3 Parametric sensitivities of the homogenized tensor
Let Ysq, and l1 and l2 its sizing parameters. Let Γint be the internal boundary of Ysq, separated it in two parts
according to the direction of the normal : Γint,m of normal colinear to ym with m ∈ {1,2}, and Γint = Γint,1∪Γint,2.
The derivatives of the homogenized elastic tensor of Ysq with respect to lm is :

∀i, j,k, l ∈ {1,2}
∂A∗i jkl

∂ lm
=−1

2

∫
Γint,m

(A(ei j + e(wi j)) : (ekl + e(wkl)))ds (6)

5.4 Interpolation of the homogenized elastic tensors and its derivatives
Thanks to the previous method, we are able to compute the elastic tensor and its derivatives for any arbitrary set of
sizing parameters (l1, l2), even if we can not establish a closed-form expression when (l1, l2) vary. The proposed
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strategy consists in computing the material properties for a discrete sample of parameters values and using the
collected data to construct a surrogate model for the constitutive law.
The compliance of the cell grows with the size of the hole : the four homogenized coefficients are strictly de-
creasing, with respect to l1 and l2. This property must be preserved during the interpolation of the elastic tensor.
Among the several interpolation methods that were investigated, namely linear interpolation, plines, Kriging, only
the linear interpolation ensures the strict monotonicity of the functions. However, using a linear interpolation,
the derivatives of the tensor with respect to l1 and l2 can not be properly computed directly from the interpolated
coefficients. So the sensitivities have been interpolated separately them likewise. This strategy makes the values of
coefficients and their sensitivities inconsistent. However, in practice, this approximation leads to consistent results
and so is admissible.

5.5. Cell orientation
As mentionned in Section 4, the considered cells are not isotropic but orthotropic, in other words their elastic
behavior depends on their orientation α . Let R(α) be the rotation matrix of angle α , and A∗(l1, l2,α) the effective
elastic tensor of a cell Ysq rotated by the angle α :

A∗i jkl(l1, l2,α) = Rip(α)R jq(α)Rkr(α)Rls(α)A∗pqrs(l1, l2) i, j,k, l, p,q,r,s ∈ {1, ..,N} (7)

Unlike the parameters l1 and l2, the dependency on the orientation α can be written as an explicit expression : the
derivatives of the elastic tensor according to α are also formally known. We notice that a rotation of angle π yields
an equivalent cell : the optimal orientation is so defined modulo π .

6. Topology optimization
The optimization problem (3) defined in Section 4 is self-adjoint. The associated Lagrangian is :

L (l1, l2,α,η) =
1
2

∫
Ω

A∗−1(l1, l2,α)σ : σdx+η

∫
Ω

((1− l1l2)−V0)dx (8)

where η is the Lagrange multiplier associated with the volume constraint.
We use the projected gradient algorithm to find a stationary point of (8). The descent directions are given by the
derivatives of L with respect to l1, l2 and α (the projection part comes from the box constraints l1, l2 ∈ [0;1]).
The value of η is updated at each iteration by a dichotomy process, to respect the volume constraint.
In practice, the gradient descent method is not really efficient to compute the optimal orientation. Pedersen proved
that the optimal orientation of an orthotropic cell for a given displacement field is the one where the cell is aligned
with the principal directions of the stress tensor [15]. First, we solve the elasticity problem, which means we
minimize with respect to the stress. Second, for the computed stress field, we update the orientation in order that
the cells are aligned with the principal directions of the stress tensor. We reiterate this process until convergence,
alternating with the usual gradient descent on l1 and l2.
This approach is more efficient that the gradient descent method, especially because the optimal orientation is
exactly known at each iteration. However, for multiple loads cases, the optimal orientation is no longer explictly
defined. Nevertheless, the optimal orientation at one point only depends on the value of the local stress field and is
solution of a one dimensionnal minimization problem.
However, this method can not be straightforwardly generalized to other objective functions. For other objective
functions, like point-wise displacement, there is no such local formulation.

7.Results
7.1. Homogenized elastic tensor
To interpolate the effective elastic tensor, we have to solve the cell problems for differents pairs of sizing parame-
ters (l1, l2). We chose a regular grid of samples : (l1, l2) ∈ {( i

n ,
j
n ) | i, j ∈ {0,1, ..,n}}, with n = 20.

All our computations have been performed with FreeFem++ [11].

7.2. Numerical results of topology optimization
The methodology is applied to the bridge case, see Fig. 2. The width of the design domain is twice its height, a
vertical load is applied on a central segment, and sliding conditions are applied on low external segments (each
segment is 10% of the total length). The constraint volume is 30% of the total available volume. The Lamé coeffi-
cients of the solid material are λ = 7.5 and µ = 5.5.
We run five test cases : in case A, we optimized on the three design variables, while in cases B and C, we opti-
mized respectively only on the dimensions of the holes, and only on the orientation α . Results are summarized
in Table 1. Cases D and E differ from cases A and B because of the constraint l1 = l2 : we restrict the subset
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Table 1: Test Cases

Case Optimization with respect to l1 and l2 Optimization with respect to α Optimal compliance
A local local 3.0622
B local none (α = 0) 3.84386
C none (l1 = l2 =

√
0.7) local 6.61234

D local, with l1 = l2 local 3.66904
E local, with l1 = l2 none (α = 0) 3.99547

of considered cells to square cells with square holes, and consequently the subset of admissible effective elastic
tensors to {A∗|A∗1111 = A∗2222}. Even if those cells are not isotropic, they are less anisotropic due to the fact that
they are symmetric under a π

2 rotation.

???

eee eee
�������� ��������

Figure 2: Bridge load case

The lower compliance is reached when all microstructural parameters are actually used as design variables :
taken separately, the orientation and the sizing parameters of the holes alone do not allow to reach the minimal
compliance. Note that between cases A and B, the compliance improvement is about 25%. The anisotropy of the
cells is efficiently used. This is supported by a comparison of cases A and B with cases D and E : the loss of
anisotropy leads to a suboptimal design. Furthermore, the final compliances in cases B and E differ only by 4%.
Indeed, in those cases, orientation is fixed, so to withstand the load in regions where the principal directions of the
stress tensor are not aligned with the principal axes of the cell, the best option is to have an isotropic material, and
so intermediate densities are unfavourable. This is the only way to maximize the strength of the material in the
directions of the stress. Consequently, the optimal density is automatically penalized to 0 and 1 in large areas, see
Fig. 4, case E leads to similar results.

Figure 3: Numeric results for case A : Optimal l1 (a), l2 (b) and density (c)
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Figure 4: Numeric results for case B : Optimal density

8. Projection of the optimal homogenized design
To project our optimal homogenized design, we use the deshomogenization proposed by Pantz and Trabelsi [13].
They introduce the set of Y-periodic open subset of R2 : U#. Let ω : R2 7→ U# and ε ∈ R+∗ a scale parameter.
They can then define a locally periodic composite :

ωε = {x ∈ R2 : x ∈ εω(x)} (9)

First, if we consider the test case B, the orientation is fixed to 0 in D : we can produce a sequence of shapes ωε ,
with ε 7→ 0, where the function ω depends only on l1 and l2. This sequence converges then to the optimal shape.
To take account the local rotation α(x) of the cells, they introduce ϕ : R2 7→ R2 a regular local diffeormorphism
and the sequence of composites :

Ωϕ,ε = {x ∈ D : x ∈ ϕ
−1(εω(x))} (10)

The components of its gradient Dϕ = (u1,u2) have to be colinear respectively to v1 = R(α)e1 and v2 = R(α)e2
where (e1,e2) is the canonical basis of R2 :

u1 = erv1 and u2 = erv2 (11)

with r : R2 7→ R, local dilatation factor. Note that the condition we imposed here means that the diffeomorphism
ϕ preserves locally the angles, since it preserves the orthogonality of the canonical basis : it is a conformal map.
Consequently, the square cells are not too much distorted by the projection, and their effective elastic tensors are
closed to the ones previously computed and used during the optimization process. Moreover, the lower ε is chosen,
the less the cells are deformed and the closer the effective tensors are to computed ones.
Pantz & al. proved that r depends only on v1 and v2 up to a constant :

∇r = (∇∧ v1)v2− (∇∧ v2)v1 (12)

and
∀p : D 7→ R, p = 0 on ∂D,

∫
D

∇r∧∇pdx = 0 (13)

Since v1 = (cos(α),sin(α))T and v2 = (−sin(α),cos(α))T , (11) and (12) we can conclude :

∇r = (−∂α

∂y
,

∂α

∂x
)T and ∆α = 0 (14)

To compute the diffeomorphism ϕ , we first have to regularize the optimized orientation α . In practice, we define a
new optimization problem, similar to the previous one, defined in Section 4. We simply add the constraint ∆α = 0,
and minimize the compliance on the variables l1 and l2. We initialize l1, l2 and α with the optimal fields previously
computed. The constraint is imposed with an Uzawa algorithm. The optimal orientation field (so before regular-
ization) presents a singularity in the center of the low border of D, but in practice, the density is equal to 1 in its
neighborhood, which means the cells are full, hence their orientation is irrelevant. The optimal orientation field
seems also arbitrary in the upper corners, where the density is close to 0. In these areas, it is almost void, so that the
orientation is meaningless as well. Consequently, in the both extreme cases, orientation can be adjusted, without
significantly deteriorating the solution. Indeed, during the regularization phase, orientation is mainly revised in
these three areas, see Fig.5. The singularity is pushed outside the design domain D : there is no problem to apply
the above method. We observe on Fig. 5 a jump of the sign of the orientation, even after the regularization. This
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Figure 5: (left) Optimal orientation - (right) Regularised orientation

Figure 6: Projection of case A optimal design - a) ε = 1, b) ε = 2

is not a theoritical limitation, since the angle α is defined modulo π . We take into account this observation in our
algorithm to compute ϕ by introducing a manifold on which α and α +π coexist and where the diffeomorphism
is defined and continuous.
After the orientation regularization phase, we can compute r up to a constant, which corresponds to a global dila-
tion of the cells, and the diffeomorphism ϕ , also up to a constant corresponding to a phase difference and which
can be chosen to adjust, for example, the symmetry of the projected shape. Projections of the optimal design are
shown on Fig. 6 for two different values of ε . In practice, ε has to be chosen according to the resolution of the
additive manufacturing process.

9. Conlusion and Perspectives
The optimization strategy based on homogenization method developed in the present work allows to design
anisotropic cellular structures. A manufacturable shape is then computed by post-processing the homogenized
optimal results, thanks to the introduction of a diffeomorphism.
However, an additional cleanup step is necessary to improve the final design. For example, low densities could be
penalized where they are not required (here, above the bridge for example). The question of high density is more
complex : we would like to force high densities to 1, in order to limit details too thin for the AM process. But in
3D, we would prefer to exclude high density to avoid any inclusions where some material could be trapped during
the fabrication, like unfused metal powder in selective laser melting (SLM).
Our method can be extended to 3D and to more complex parametrized designs of cells. Hence, the set of reachable
elastic tensors will be greatly enlarged. More results will be available in a future paper.
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