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Harmonic decompositions of multivariate time series are considered for which we adopt an integral
operator approach with periodic semigroup kernels. Spectral decomposition theorems are derived
that cover the important cases of two-time statistics drawn from a mixing invariant measure.

The corresponding eigenvalues can be grouped per Fourier frequency, and are actually given, at
each frequency, as the singular values of a cross-spectral matrix depending on the data. These eigen-
values obey furthermore a variational principle that allows us to define naturally a multidimensional
power spectrum. The eigenmodes, as far as they are concerned, exhibit a data-adaptive character
manifested in their phase which allows us in turn to define a multidimensional phase spectrum.

The resulting data-adaptive harmonic (DAH) modes allow for reducing the data-driven modeling
effort to elemental models stacked per frequency, only coupled at different frequencies by the same
noise realization. In particular, the DAH decomposition extracts time-dependent coefficients stacked
by Fourier frequency which can be efficiently modeled—provided the decay of temporal correlations
is sufficiently well-resolved—within a class of multilayer stochastic models (MSMs) tailored here on
stochastic Stuart-Landau oscillators.

Applications to the Lorenz 96 model and to a stochastic heat equation driven by a space-time
white noise, are considered. In both cases, the DAH decomposition allows for an extraction of
spatio-temporal modes revealing key features of the dynamics in the embedded phase space. The
multilayer Stuart-Landau models (MSLMs) are shown to successfully model the typical patterns of
the corresponding time-evolving fields, as well as their statistics of occurrence.

PACS numbers: 05.45.-a,89.75.-k
Keywords: Coupled Stuart-Landau oscillators, Hankel Matrices, Integral Operators, Periodic Semigroups,
Phase and power spectra, Spectral Theorems, Stochastic Modeling

I. INTRODUCTION

The success of machine learning algorithms generally
depends on data representation, and it is often hypothe-
sized that this is because different representations can en-
tangle and hide more or less the different explanatory fac-
tors of variations behind the data [1]. To be reasonably
addressed, the problem of finding relevant data-adaptive
basis functions for a successful inverse modeling, must
be considered within a specific domain of applications
[2]. This article is concerned with addressing this prob-
lem for time-evolving datasets produced by a dynamical
system either deterministic or stochastic.

Among the numerous techniques useful for the
data representation or decomposition of time-evolving
datasets, we may distinguish several seminal techniques
like those based on variance’s decomposition such as prin-
cipal component analysis (PCA) [3] and its probabilistic
formulation [4] or nonlinear extensions [5–7]; techniques
using eigenfunctions of Markov matrices reflecting the
(local) geometry and density of the data [8, 9]; or more
recent approaches exploiting the Koopman operator the-
ory [10–12].

These methods often tied to dimensionality reduction,
extract data-adaptive modes that come with reduction
coordinates, which for datasets evolving in time, cor-
respond to time series known as principal components
(PCs) and the like. The effective derivation of reduced
evolution equations to characterize the long-term dynam-

ics of the underlying dynamical system[13] based on these
coordinates, is then a central issue.

For some systems, the form of the master equations,
prior experience, or some underlying physical intuition
may help determine good reduced systems. In some spe-
cial cases, their exact form can even be found rigorously
by adopting, for instance, the Mori-Zwanzig (MZ) pro-
jection approach [14–19] or techniques rooted in the ap-
proximation theory of (stochastic) local invariant mani-
folds; see [20, 21] and references therein. In more complex
cases where a rigorous derivation of the reduced dynamics
is mathematically intractable, or when the master equa-
tions are even not known, a data-driven inverse modeling
approach is often adopted.

Many methods have been proposed in the literature to
address this task, such as those using: nonlinear autore-
gression moving average with exogenous inputs (NAR-
MAX), artificial neural networks (ANNs), stochastic lin-
ear inverse models (LIMs), empirical model reduction
(EMR), and many others; see [22–29] and references
therein. In a data-driven context, the MZ formalism pro-
vides also a theoretical guidance for the determination of
nonlinear ingredients and other dependences on the past;
see [30]. Nevertheless, whether the approach retained
uses an a priori set of predictor functions or allow for
dictionaries of such functions [31], the modeler is often
left, either with an explanatory deficit or with a selec-
tion problem of the appropriate (class of) predictors for
a reliable emulation of the dynamics. In the latter case,
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a certain level of familiarity with the dataset is typically
required to envision the right form of the predictors.

This article proposes to overcome such hurdles for in-
verse modeling, by introducing a data-adaptive spectral
representation of the original data, aimed at providing—
for a broad class of time-evolving datasets—reduction co-
ordinates that can be efficiently modeled within a fam-
ily of stochastic differential equations (SDEs) constituted
from a fixed set of predictor functions; see Sectns. VII
and VIII. Roughly speaking, the proposed modeling ap-
proach operates well for finite multivariate time series for
which decays of correlations are sufficiently well-resolved
for the amount of available data. It covers thus a broad
class of datasets issued from dynamical systems that are
mixing.

The approach adopted in this article for the data rep-
resentation of time-evolving datasets relies on the spec-
tral analysis of integral operators L for which the kernels
are built from periodic semigroups applied to the data’s
correlations. The resulting class of operators constitute
one the two main contributions of this article, and a sub-
stantial portion of the latter is devoted to the analysis of
their spectral properties; see Sectns. II, III, IV, and V.
The other main contribution is concerned with the afore-
mentioned class of SDEs, aimed at the modeling of the
reduction coordinates obtained as projection of the orig-
inal dataset onto the eigenfunctions of L. These SDEs
fall into the class of networks of linearly coupled Stuart-
Landau oscillators [32], that may be embedded within
the class of multilayer stochastic models (MSMs) [30],
allowing thus for the inclusion of memory effects in their
formulation; see Sect. VII.

Another originality of the framework lies in its har-
monic flavor. The framework allows indeed for extract-
ing modes naturally ranked per Fourier frequency, with
reduction coordinates that are, for mixing dynamical sys-
tems, typically narrowband and modulated in amplitude;
see Sect. VII A. The corresponding reduced SDEs are also
organized per Fourier frequency and the modeling of a
specific frequency band is thus naturally made available
and facilitated by the resulting framework.

The article is organized as follows. In Sect. II, we first
recall basic elements of the spectral theory of periodic
semigroups on a Banach space. In Sect. III, this spec-
tral theory is applied to analyze the spectral properties
of a class of integral operators Lφ with periodic kernels
built from periodic semigroups acting on a given (one-
dimensional) data-function φ; see Theorem III.1. The
important case for applications of kernels built from left
circular translation groups is analyzed in Sect. IV. Here,
one recovers the Fourier spectrum (power and phase)
from the spectral elements of Lφ for which the eigenfunc-
tions are phase-shifted sinusoids and their phase relates
to the phase spectrum of φ; see Theorem IV.1. This
representation of the Fourier spectrum via the operator
Lφ allows us to propose in turn an innovative general-
ization for multidimensional signals in Sect. V. There we
show, for multidimensional data, that the eigenvalues of

an operator matrix generalization, L, can be grouped
per Fourier frequency, and are actually given, at each
frequency, as the singular values of a cross-spectral ma-
trix depending on the data; see Theorem V.1. These
eigenvalues obey furthermore a variational principle that
allows us to define naturally a multidimensional power
spectrum; see Remark V.1-(ii). The eigenmodes, as far
as they are concerned, exhibit a data-adaptive character
manifested in their phase which allows us in turn to de-
fine a multidimensional phase spectrum; see (81) below.

In Sect. VI we then consider the case for which φ is—
or a collection of such φ’s are—obtained from lagged cor-
relations estimated from time series issued from a mix-
ing dynamical system. After discussing a natural peri-
odization to apply the theory (see Sect. VI B), we intro-
duce in Sectns. VI C and VI D, the Hankel matrices and
block-Hankel matrices resulting, respectively, from the
discretization of Lφ in the one-dimensional case, and of
L in the multidimensional case. First applications of the
resulting data-adaptive harmonic (DAH) methodology,
are then discussed for analytical examples of modulated
and traveling waves; see Sect. VI E.

In Sect. VII, we introduce the class of MSMs tailored
on stochastic Stuart-Landau oscillators, aimed at the
modeling of the aforementioned reduction coordinates
corresponding here to the projection of the dataset onto
the DAH modes; see Sectns. VII A and VII B. These el-
emental models—the multilayer Stuart-Landau models
(MSLMs)—are stacked per frequency, only coupled at
different frequencies by the same noise realization; see
Sect. VII C. In Sect. VIII, we finally show the flexibility
of the DAH-MSLM modeling approach, by its ability to
provide skilled stochastic inverse models for data issued
either from the nonlinear chaotic Lorenz 96 model, or
a stochastic heat equation driven by a space-time white
noise. Concluding remarks discuss then in Sect. IX di-
rections for future research.

II. SPECTRAL THEORY OF PERIODIC
SEMIGROUPS

Let us first recall the definition of a strongly contin-
uous semigroup also known as C0-semigroup; see [33,
p. 36]. For an introduction to semigroup theory we refer
to [34, 35]. More advanced treatments and applications
of semigroup theory can be found in e.g. [33, 36–38].

Definition II.1 A family (T (t))t≥0 of bounded linear
operators on a Banach space W is called a strongly con-
tinuous (one-parameter) semigroup if

T (t+ s) = T (t)T (s), for all t, s ≥ 0,

T (0) = Id,
(1)

and for every ϕ in W, the orbit

R+ →W
t 7→ T (t)ϕ,

(2)
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is continuous.

The generator A of a strongly continuous semigroup
(T (t))t≥0 is then defined as the operator

A : D(A) ⊂ W →W,

such that

Aϕ = lim
h→0+

1

h

(
T (h)ϕ− ϕ

)
, (3)

for every ϕ in the domain

D(A) := {ϕ ∈ W | lim
h→0+

1

h

(
T (h)ϕ− ϕ

)
exists}. (4)

Our approach rely on the following important charac-
terization of spectral properties of periodic semigroups,
e.g. [33, Chap. IV, Sect. 2.25]. Recall that a strongly
continuous semigroup (T (t))t≥0 is periodic if there ex-
ists t0 > 0 such that T (t0) = Id. The period τ of the
semigroup is then

τ = inf{t0 > 0 : T (t0) = Id}.

Periodic semigroups are always groups with inverses
T (t)−1 = T (nτ − t), for 0 ≤ t ≤ nτ, and the spectrum of
their generators lies always on the imaginary axis, more
precisely we have

Theorem II.1 [33, Chap. IV, Lemma 2.25] Let T (t) be
a strongly continuous τ -periodic semigroup on a Banach
space W, and A its generator, then

σ(A) ⊂ 2πi

τ
· Z,

and the resolvent R(µ,A) (µ ∈ C) of A is given by

R(µ,A) = (1− e−µτ )−1

∫ τ

0

e−µsT (s) ds, µ 6∈ 2πi

τ
· Z

The above representation of the resolvent

R(µ,A) := (A− µId)−1,

shows that the resolvent of the generator of a τ -periodic
semigroup is a meromorphic function having only poles
of maximal order, with poles µn given by

µn =
2iπn

τ
. (5)

The residue of R(µ,A) at the pole µn is given by the
bounded linear operator of W [33, p. 267],

Pn := lim
µ→µn

(µ− µn)R(µ,A) =
1

τ

∫ τ

0

e−µnsT (s) ds. (6)

Hereafter, we denote by L(W) the space of bounded lin-
ear operators of the Banach space W.

From [33, Chap. IV, §1.17], it follows furthermore that
Pn coincides with Πn, the Riesz projector associated with
the pole µn, namely with

Πn := − 1

2iπ

∫
Γc

R(µ,A) dµ, (7)

where Γc denotes a rectifiable closed curve in the com-
plex plane that separates µn from the rest of the poles.
Furthermore the rank of Πn, rg Πn, satisfies

rg Πn = ker(A− µnId),

i.e. the algebraic multiplicity is equal to the geometric
multiplicity. In particular, this implies that the spectrum
σ(A) of A consists of eigenvalues only (i.e. no continuous
spectrum) and that

APn = µnPn. (8)

Recall that for any strongly continuous T (t) with gen-
erator A, for every λ in C, t > 0, and ϕ in D(A), the
following identity holds ([33, Chap. II, Lem. 1.9]):

e−λtT (t)ϕ− ϕ =

∫ t

0

e−λsT (s)(A− λId)ϕds, (9)

which here due to (8) leads to

T (t)Pn = eµntPn, t ≥ 0. (10)

Moreover,

PmPnϕ =
1

τ

∫ τ

0

e−µmsT (s) ds · Pnϕ

=
1

τ

∫ τ

0

e−µmsT (s)Pn ds · ϕ

=
1

τ

∫ τ

0

e(µn−µm)s ds · Pnϕ = 0, for n 6= m.

(11)
With these properties at hand, it is then not difficult

to infer the following useful decomposition result of any
strongly continuous τ -periodic semigroup and of its gen-
erator; see [33, Chap. IV, Thm. 2.27].

Theorem II.2 Let T (t) be a strongly continuous τ -
periodic semigroup on a Banach space W, and A its gen-
erator, then

T (t)ϕ =
∑
m∈Z

eµmtPmϕ, ϕ ∈ D(A). (12)

and

Aϕ =
∑
m∈Z

µmPmϕ, ϕ ∈ D(A2). (13)
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III. SPECTRAL THEORY OF INTEGRAL
OPERATORS WITH PERIODIC SEMIGROUP

KERNELS

Let us introduce the one-dimensional torus T :=
R/(τZ) which we define by identifying points in R that
differ by nτ for some n in Z. We denote by L2(T) the
space of complex-valued measurable functions on R that
are τ -periodic, and square-integrable with respect to an
arbitrary reference interval of length τ , I = [α, α+ τ ] for
some α in R. We endow L2(T) with the natural inner
product

〈f, g〉 =
1

τ

∫
T
f(r)g(r) dr, f, g ∈ L2(T). (14)

Here the integral over T is the integral with respect to r
taken over any interval of length τ . In what follows, we
indeed often identify T with its interval representation I,
making precise the distinction when necessary.

Given a τ -periodic C0-semigroup T (t) acting on a func-
tion spaceW intersecting the set of τ -periodic functions,
and a τ -periodic function φ in W, our goal is to analyze
the spectral property of the following operator:

Lφ[Ψ](r) :=
1

τ

∫
T
[T (r)φ](s)Ψ(s) ds, Ψ ∈ L2(T). (15)

In practice the space W may differ from L2(T) (by re-
quiring for instance other regularities on φ), but to sim-
plify the presentation we restrict ourselves to the case

W = L2(T).

The following lemma results directly from the theory
of integral operators

Lemma III.1 Assume φ lies in L2(T) and let T (t) be a
τ -periodic C0-semigroup on L2(T). If

(A1) (r, s) 7→ [T (r)φ](s) belongs to L2(T× T),

then the operator Lφ defined by (15), maps L2(T) into
L2(T) and is compact. If furthermore

(A2) [T (r)φ](s) = [T (s)φ](r),

then the operator Lφ is self-adjoint.

Proof. The proof is standard and consists of noting that
under the integrability condition (A1), the operator Lφ
is a Hilbert-Schmidt operator on L2(T) and thus com-
pact; see, e.g. [39, Thm. 6.12] or [40, Chap. 16,Theorem
3]. Finally, condition (A2) allows us to write

〈Lφ[Ψ],Ψ〉 =

∫
T

∫
T
[T (r)φ](s)Ψ(s)Ψ(r) dsdr

=

∫
T

∫
T
[T (s)φ](r)Ψ(r)Ψ(s) dsdr

= 〈Lφ[Ψ],Ψ〉,

(16)

which shows that 〈Lφ[Ψ],Ψ〉 lies in R for any Ψ in L2(T),
and thus Lφ is self-adjoint.

As a consequence of the spectral theorem for self-
adjoint compact operators we have the following theorem,
in which either J = {1, ..., N} with N = dim(rg(Lφ)) if
Lφ has finite rank, or J = N otherwise.

Theorem III.1 Let Lφ defined in (15), with T (t) and
φ satisfying the assumptions of Lemma III.1 including
(A1) and (A2). Then 0 is an eigenvalue of Lφ and
there exist:

(a) countably many nonzero real numbers {λn}n∈J ei-
ther finitely many, or such that λn → 0 if infinitely
many, and

(b) an orthonormal basis {En}n∈J of cl(rg(Lφ)), the
topological closure of the range of Lφ in L2(T),

for which

Lφ[Ψ] =
∑
n∈J

λn〈Ψ, En〉En. (17)

Each λn is an eigenvalue and each En is an eigenfunc-
tion.

Due to the convergence to zero, we usually order the
eigenvalues λn in decreasing order according to absolute
value:

|λ1| ≥ |λ2| ≥ · · · . (18)

The multiplicity of a given eigenvalue λ is the number of
times it is repeated in the list of eigenvalues given above,
or, equivalently, it is the dimension of the λ-eigenspace
ker(Lφ − λId). The multiplicity of any given eigenvalue
is finite.

So far, we have applied classical results from the theory
of integral operators to deal with the spectral properties
of Lφ. We can derive furthermore a key identity satisfied
by the eigenfunctions of Lφ (see (21) below), by exploit-
ing the spectral theory of periodic semigroups recalled in
Sect. II and requiring more regularity on φ.

For that purpose, we focus here on the spectral proper-
ties of Lφ in L2

R(T), i.e. the subspace of L2(T) constituted
by real-valued functions. We have then the following re-
sult concerning the spectral elements of Lφ in L2

R(T), for
which we make use of the following version of the Fourier

transform Ψ̂ of a function Ψ in L2(T):

Ψ̂(f) :=

∫
T

Ψ(s)e−2iπfs ds, f ∈ R. (19)

Theorem III.2 Assume φ lies in D(A), the generator of
a τ -periodic C0-semigroup T (t) on L2(T). Assume that
(A1) and (A2) hold. Assume

(A3) there exists an orthogonal basis {en} of L2(T) for
which Pn defined in (6) is rank-one, i.e.

Pnf = 〈f, en〉en. (20)
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Let us denote by En an eigenfunction of Lφ in L2
R(T)

associated with an eigenvalue λn, then for any frequency
fk = k/τ , we have

λnÊn(fk) = 〈φ, ek〉〈ek, En〉. (21)

Proof. Let us consider an eigenfunction En associated
with an eigenvalue λn of the operator Lφ given in (15).
Then the identity (12) of Theorem II.2 gives:

τλne
−µkrEn(r) =

∫
T
e−µkrT (r)φ(s)En(s) ds,

=
∑
m∈Z

e(µm−µk)r

∫
T
(Pmφ)(s)En(s) ds,

(22)
which due to (5) leads, by integration in the r-variable,
to

τλn

∫
T
e−µkrEn(r) dr =

∫
T
(Pkφ)(s)En(s) ds. (23)

The latter identity gives (21) by applying (19) with f =
k/τ , combined with Assumption (A3) and the definition
of the inner product 〈·, ·〉 in (14), recalling that En is
real-valued.

Remark III.1 Under the conditions of Theorem III.1,
one has furthermore

λ1 = sup
Ψ∈W,Ψ6≡0

〈LφΨ,Ψ〉
|Ψ|2L2

, (24)

with W = L2(T), e.g. [39, Prop. 6.9].
We can actually have a variational characterization

of any eigenvalue of the self-adjoint compact operator
Lφ by relying on the Courant-Fischer min-max princi-
ple; see [39, Problem 37] and [41]. However since the
operator Lφ is not positive, the Courant-Fischer min-
max principle needs to be amended. The positive eigen-
values of Lφ listed in decreasing order and denoted by
0 ≤ · · · ≤ λ+

2 ≤ λ
+
1 , satisfy thus the relationships

λ+
k+1 = min

V
codim(V )=k

max
Ψ∈V
Ψ6=0

〈LφΨ,Ψ〉
|Ψ|2L2

, k ≥ 0. (25)

That is, the max is taken over a linear subspace V ⊂ W
of co-dimension k, and the min is taken over all such
subspaces. Moreover, the minimum is attained on the
subspace

V = span{E+
1 , · · · , E

+
k }
⊥, (26)

where E+
j denotes the eigenfunction associated with a

positive eigenvalue λ+
j .

Similarly, for 0 ≥ · · · ≥ λ−2 ≥ λ
−
1 we have

λ−k+1 = max
V

codim(V )=k

min
Ψ∈V
Ψ6=0

〈LφΨ,Ψ〉
|Ψ|2L2

. (27)

with the maximum attained for

V = span{E−1 , · · · , E
−
k }
⊥, (28)

where E−j denotes the eigenfunction associated with a

negative eigenvalue λ−j . Such min-max characterizations
of eigenvalues of Lφ-like operators is made more explicit
in Sect. V for the multidimensional case; see Remark
V.1-(ii) below.

IV. THE CASE OF KERNELS FROM LEFT
CIRCULAR TRANSLATION GROUPS

Let g be a τ -periodic continuous differentiable function
g such that g′/g ∈ L∞, and φ in L2(T). Let us consider

Aϕ =
dϕ

ds
+
g′

g
ϕ, (29)

whose domain is given by:

D(A) :=
{
ϕ ∈ L2(T) : ϕ ∈ AC(T),

dϕ

ds
+
g′

g
ϕ ∈ L2(T)

}
,

(30)
where AC(T) denotes the collection of absolutely contin-
uous functions on T.

Then an adaptation of the arguments of [42, Lem. 3.5]
shows that A generates a weighted left translation semi-
group S(t) on L2(T). The corresponding operator Lφ is
then given by

Lφ[Ψ](r) =
1

τ

∫
T

g(s+ r)

g(s)
φ(s+ r)Ψ(s) ds.

By assumptions on g and φ, assumption (A1) is satis-
fied and Lφ is compact; see Lemma III.1. If g and φ are
furthermore real-valued, then assumption (A2) is satis-
fied and thus Lφ is self-adjoint as well; see again Lemma
III.1.

An analysis of the resolvent of A reveals that the corre-
sponding operators Pn defined in (6) are each rank-one,
and that the En’s are real. Theorem III.2 can be thus
applied here when φ lies in D(A). Instead of providing
a proof of this statement in this rather general setting,
we focus on an important special case for applications,
namely the case in which g ≡ 1, i.e. the case of the left
circular translation group T (t) defined by

T (t)φ(s) = φ(t+ s), mod (τ). (31)

We have in this case

Lφ[Ψ](r) =
1

τ

∫
T
φ(s+ r)Ψ(s) ds, (32)

and the corresponding Fredholm integral equation of the
second kind[43] possesses explicit solutions such as de-
scribed by the following theorem. These solutions pro-
vide actually a spectral representation of the Fourier
transform in terms of both its power and phase spectra.
This is the object of the next Theorem.
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Theorem IV.1 Let A be the generator of the left circu-
lar group (T (t))t∈R on L2(T) defined by (31). Assume
φ to be a real-valued function that lies in D(A) given by
(30) with g ≡ 1. Then the eigenvalues of the operator
Lφ are real-valued, form a discrete set {λk}, where k in
Z characterizes the Fourier frequency 2iπk/τ . More pre-
cisely, to each frequency fk = k

τ , corresponds an eigen-
value λk such that ∣∣λk∣∣ =

∣∣φ̂(fk)
∣∣. (33)

Furthermore the corresponding eigenfunctions in L2
R(T)

are given by

Ek(t) =
√

2 cos(2πfkt+ θk), (34)

with{
θk = − 1

2 arg φ̂(fk), mod
(
2π
)

if λk ≥ 0,

θk = − 1
2 arg φ̂(fk) + π

2 , mod
(
2π
)

if λk < 0,

(35)
where arg(z) denotes the principal value[44] of the argu-
ment of the complex number z.

Remark IV.1 The eigenfunctions are thus phase-shifted
sinusoids, for which the phase θk relates to the phase
spectrum of the data φ. The eigenvalues provide the
power spectrum. So far, for a one-dimensional signal φ,
one can recover the Fourier spectrum (power and phase)
from the spectral elements of Lφ. The operator represen-
tation of the Fourier spectrum via the operator Lφ allows
us to propose an innovative generalization for multidi-
mensional signals (see Sect. V) turns out to be particu-
larly useful for the inverse stochastic-dynamic modeling
of spatio-temporal scalar fields; see Sectns. VII and VIII.

Proof. As explained above, assumptions (A1) and (A2)
are satisfied. Let us now check assumption (A3) of The-
orem III.2. For that let us determine the resolvent of the
generator A of the left circular group (T (t))t∈R defined
by (31). Note that the operator A is the differentiation
operator defined in (29) with g ≡ 1.

The resolvent R(λ,A) of A exists for all λ 6∈
{0,±iω1,±iω2, · · · }, with ωk = 2πk/τ , and is obtained
by solving the differential equation

λu− u̇ = ψ, ψ ∈ L2(T). (36)

The variation-of-constant formula gives

u(s) = eλ(s−t)u(t)−
∫ s

t

eλ(s−r)ψ(r) dr. (37)

Taking s = t+ τ , and requiring u(t+ τ) = u(t), we get

(1− eλτ )u(t) = −
∫ t+τ

t

eλ(t+τ−r)f(r) dr. (38)

The factor on the left hand side is invertible if and only
if λ does not coincide with 2πin/τ . In such a case,

u(t) = (1− e−λτ )−1

∫ t+τ

t

eλ(t−r)ψ(r) dr

= (1− e−λτ )−1

∫ τ

0

e−λτψ(t+ r) dr.

(39)

The right-hand side of this formula maps L2(T) into the
Sobolev space W 1,2(T).

Now let p be arbitrary in Z and let us take ψ(r) :=
eiωpr. Then

u(t) = eiωpt(1− e−λτ )−1

∫ τ

0

e(iωp−λ)r dr

=
(e(iωp−λ)τ − 1)

1− e−λτ
eiωpt

iωp − λ
= − eiωpt

iωp − λ
,

(40)

since ωpτ ∈ 2πZ, by definition. Thus by expanding now
any arbitrary Ψ in L2(T) into its Fourier expansion, we
get

R(λ,A)ψ =

∞∑
p=−∞

ψ̂(fp)

iωp − λ
eiωpθ, (41)

with fp = p/τ .
Therefore the residue Pk at the pole µk = iωk (see (6))

is given, for any k in Z, by

Pkψ(t) = ψ̂(fk)eiωkt, (42)

and the assumption (A3) of Theorem III.2 is satisfied
with ek(t) = eiωkt.

The identity (21) becomes in this case

λkÊk(fk) = φ̂(fk)Êk(fk). (43)

Taking the modulus on both sides of (43) gives

|λk| = |φ̂(fk)|. (44)

Let us seek solutions to (43) under the form

Ek(t) = cos

(
2πfkt+ θk

)
= cos

(
2πfk

(
t− θk

2πfk

))
.

(45)

Now by using the Fourier time-shift property, i.e. that
the Fourier transform of x(t− θk) is given by x̂(f)e2πifθ,
we obtain from the Fourier transform of cos(2πfkt) that

Êk(f) =
1

2
δ(f − fk) exp

(
− ifθk

fk

)
+

1

2
δ(f + fk) exp

(
− ifθk

fk

)
.

(46)

and

Êk(fk) =
1

2
exp

(
− iθk

)
. (47)
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With this expression substituted into (43), one finds

λk = φ̂(fk) exp

(
2iθk

)
, (48)

and since λk is real, necessarily:{
θk = − 1

2 arg φ̂(fk), mod
(
2π
)

if λk ≥ 0,

θk = − 1
2 arg φ̂(fk) + π

2 , mod
(
2π
)

if λk < 0,

(49)

Finally, the factor
√

2 comes as a normalization constant
of Ek, for the norm subordinated to the inner product
(14).

Remark IV.2

(i) The negative part of the spectrum of Lφ comes with
eigenmodes of sine-type, namely if λk < 0 then

Ek(t) = cos
(
ωkt−

1

2
arg φ̂(fk) +

π

2

)
= sin

(
ωkt−

1

2
arg φ̂(fk)

)
.

(50)

(ii) Sometimes instead of (35), we will make use of the
following equivalent expression of the phase spec-
trum in terms of the eigenmodes of Lφ, namely

arg φ̂(fk) = arg

(
λkÊk(fk)

)
− arg

(
Êk(fk)

)
, mod (2π).

(51)
The latter identity is a direct consequence of
Eq. (43).

(iii) If τ is a positive integer N , then the spectrum of
Lφ is finite and given by

σ(Lφ) =

{∣∣φ̂(fk)
∣∣ : k ∈ {0, · · · , N − 1}

}
. (52)

V. MULTIDIMENSIONAL GENERALIZATION

In this section we consider a block operator matrix
generalization of what precedes. We assume that we are
given a collection {φi,j(t), 1 ≤ i, j ≤ d} of τ -periodic
functions in L2(T). Examples of such functions for the
spectral analysis of e.g. spatio-temporal fields is discussed
in Sect. VI D below.

For the moment, let us consider the following operator

matrix L defined for each u in
(
L2(T)

)d
by:

Lu :=
(
M1Ψ1, · · · ,MdΨd

)
,

u = (Ψ1, · · · ,Ψd) ∈
(
L2(T)

)d
,

(53)

with

MpΨp :=

p−1∑
q=1

Lφq,p(Ψq) +

d∑
q=p

Lφp,q (Ψq), 1 ≤ p ≤ d,

(54)
where each Lφi,j is given by (32). We have then the
following Lemma.

Lemma V.1 The operator L is self-adjoint and compact

on X :=
(
L2(T)

)d
endowed with the inner product given

for any u = (Ψ1, · · · ,Ψd) and v = (v1, · · · , vd) in X by

〈u, v〉X :=

d∑
n=1

〈Ψn, vn〉 = τ−1
d∑

n=1

∫
T

Ψn(r)vn(r) dr.

(55)

Proof. Since for each p, q in {1, · · · , d}, the function φp,q

lies in L2(T) by assumption, each operator Lφp,q given
by (32) is compact (see Sect. IV), and thus each oper-
ator Mp is a (real-valued) compact operator on L2(T),
as the finite sum of compact operators. The operator
L is then compact on X as the finite cartesian product
of compact operators, for X endowed with the product
topology induced by the inner product (55).

The self-adjoint property of L results from its defini-
tion. Indeed,

〈Lu, u〉X =

d∑
p=1

〈 p−1∑
q=1

Lφq,p(Ψq) +

d∑
q=p

Lφp,q (Ψq),Ψp

〉
,

(56)
which, after similar manipulations as in (16), leads to,

〈Lu, u〉X=

d∑
p=1

( p−1∑
q=1

〈Lφq,p(Ψp),Ψq〉+
d∑
q=p

〈Lφp,q (Ψp),Ψq〉
)

=

d∑
q=1

( q−1∑
p=1

〈Lφp,q (Ψp),Ψq〉+
d∑
p=q

〈Lφq,p(Ψp),Ψq〉
)

= 〈Lu, u〉X .
(57)

We are now in position to formulate the main result
that extends Theorem IV.1 to the multidimensional case.
For that purpose, we introduce for each frequency fk =
k/τ , the d × d symmetrized cross-spectral matrix
Φ(fk) whose entries are given by

Φkp,q =

{
φ̂p,q(fk) if q ≥ p,
φ̂q,p(fk) if q < p.

(58)

The next theorem shows that the spectrum of the oper-
ator L relates naturally to the symmetrized cross-spectral
matrix Φ(f). At every frequency line, the singular values
of Φ(f) gives actually d pairs of eigenvalues of L, and as
f is varied one recovers the full spectrum of L[45].
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Theorem V.1 Let A be the generator of the left circular
group (T (t))t∈R on L2(T) defined by (31). Assume that
each φp,q is a real-valued function lying in D(A) given by
(30) with g ≡ 1. Then the eigenvalues of the operator L
defined in (53), are real-valued, form a discrete set {λn}
that possesses the following characterization.

For each frequency fk 6= 0, one can extract 2d eigenval-
ues (counting multiplicities) from the set {λn}, d positive
and d negative ones that satisfy the following property.

(S) For each pair of negative-positive eigenvalues de-
noted by (λp−(fk), λp+(fk)), there exists a singular
value σp(fk) of Φ(fk) such that

λp+(fk) = −λp−(fk) = σp(fk), 1 ≤ p ≤ d. (59)

Furthermore the eigenfunctions Wk of L in
(
L2
R(T)

)d
possess the following representation

Wk = (Ek1 , · · · , Ekd )tr, (60)

with

Ekp (t) = Bkp cos(2πfkt+ θkp), Bkp , θ
k
p ∈ R,

with fk =
k

τ
, k ∈ Z, p ∈ {1, · · · , d}.

(61)

Finally, introducing the notations,

φ̂a,b(fk) = Xk
abe

iαk
ab , with Xk

ab = |φ̂a,b(fk)|, (62)

the amplitudes Bkp and angles θkp satisfy for each fre-
quency fk and each p in {1, · · · , d}, the relation

Bkpλ
p
+(fk) =

p−1∑
q=1

BkqX
k
qpe

i(θkp+θkq +αk
qp)+

d∑
q=p

BkqX
k
pqe

i(θkp+θkq +αk
pq).

(63)

Proof. Step 1. We first start with the derivation of an
analogue of Eq. (43) in the multdimensional case consid-
ered here. The resulting extension of (43) is key to the
derivation of the main properties of the spectral elements
of the block operator matrix L defined by (53)-(54).

For that purpose, let us consider Wk in
(
L2
R(T)

)d
under

the form given in (60) with the Ekp to be determined.
Due to the operator matrix form of L given by (53)-(54),
the eigenvalue problem LWn = λWn can be equivalently
rewritten as

p−1∑
q=1

Lφq,p(Ekq ) +

d∑
q=p

Lφp,q (Ekq ) = λkE
k
p , p ∈ {1, · · · , d}.

(64)
Let p be fixed in {1, · · · , d} and k be in Z. By repro-

ducing the arguments of the proof of Theorem III.2, we

have:

λ

∫
T
e−µkrEnp (r) dr =

p−1∑
q=1

∫
T
(Pkφ

q,p)(s)Enq (s) ds

+

d∑
q=p

∫
T
(Pkφ

p,q)(s)Enq (s) ds.

(65)
Here again Pk denotes the residue of the resolvent R(ξ, A)
of A at the pole µk = 2πik/τ , and is given thus by

Pk = lim
ξ→µk

(ξ − µk)R(ξ, A).

Now let us recall the expression of the resolvent of
R(λ,A) derived in the proof of Theorem IV.1. Namely,
R(ξ, A) exists for all ξ 6∈ {0,±iω1,±iω2, · · · }, with ωk =
2πk/τ , and is given for ψ in L2(T) by

R(ξ, A)ψ =

∞∑
p=−∞

ψ̂(fp)

iωp − ξ
eiωpθ. (66)

Therefore Pk is given by

Pkψ(t) = ψ̂(fk)eiωkt, (67)

and thus from (65) we obtain, since Enq (t) is a real-valued

function (since Wn lies in
(
L2
R(T)

)d
),

λÊnp (fk) =

p−1∑
q=1

φ̂q,p(fk)Ênq (fk) +

d∑
q=p

φ̂p,q(fk)Ênq (fk),

(68)
i.e. the aforementioned extension of (43) to the multidi-
mensional case.

Seeking solutions to Eq. (68) of the form (61), and
recalling that

Ênp (f) =
1

2
δ(f − fn) exp

(
−
ifθnp
fn

)
+

1

2
δ(f + fn) exp

(
−
ifθnp
fn

)
.

(69)

(see also (46)), we conclude that

(Ênp (fk) 6= 0 and Ênq (fk) 6= 0) ⇐⇒ (k = n). (70)

We consider thus k = n, hereafter. Replacing λp+ by λ in
Eq. (63) for a moment, it is easy to see that Eq. (63) is a
direct consequence of Eq. (68). The former is indeed ob-
tained by taking the real and imaginary parts of Eq. (68)
(in which Ekp is given by (61)) and forming the complex
exponentials by summation. To complete the proof, we
are thus left with the proof of property (S) which we deal
with next.

Step 2. Note first that the symmetrized cross-spectral
matrix Φ(fk) whose entries are defined in (58), is complex
and symmetric. The Autonne-Takagi factorization (see
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[46, Chap. VIII, Théorème 92] and [47]) applied to Φ(fk)
ensures thus the existence of a unitary matrix Uk such
that

Φ(fk) = UkΣkU
T
k . (71)

where Σk = diag{σ1(fk), · · · , σd(fk)} is a diagonal ma-
trix with real and nonnegative entries. These entries are
the singular values of Φ(f) at the frequency f = fk.

In particular, denoting by U∗ the conjugate transpose
of U , we have

Φ(fk)Φ(fk) = UkΣUTk UΣkU
∗
k

= UkΣ2U∗k ,
(72)

and therefore the matrix Φ(fk)Φ(fk) is positive semi-
definite, and its eigenvalues are given by the σj(fk)2,
1 ≤ j ≤ d.

On the other hand, Eq. (68) may be rewritten using
(60) as

λŴk(fk) = Φ(fk)Ŵk(fk) (73)

which leads to

Φ(fk)Φ(fk)Ŵk(fk) = Φ(fk)(Φ(fk)Ŵk(fk))

= λΦ(fk)Ŵk(fk)

= λ2Ŵk(fk),

(74)

and thus λ2 is an eigenvalue of Φ(fk)Φ(fk).
To summarize, λ is (up to a sign) the square root of

an eigenvalue of Φ(fk)Φ(fk) and is thus also a singular
value σj(fk) of Φ(fk), up to a sign. Now since k = n in
Eq. (68) (see step 1), there is for each frequency fk, d
relations (68), one for each p. Considering the positive
and negative eigenvalues that coexist at each frequency
fk 6= 0, we may infer thus (59).

Remark V.1

(i) It should be noted that an SVD of Φ(fk) is not au-
tomatically its Autonne-Takagi factorization. The
proof of the Autonne-Takagi factorization provides
the details of how an SVD of a complex symmetric
matrix can be turned into a symmetric SVD; see
the proof of [48, Theorem 3.1].

(ii) It is also worth mentioning that due to a general
result dealing with the characterization of singular
values of complex symmetric matrices [49], the sin-
gular values of Φ(fk) possess a variational charac-
terization in terms of the quadratic form

Q(x) := Re (xTΦ(fk)x), x ∈ Cd. (75)

In particular by application of [49, Corollary 5] and
Theorem V.1, we obtain for 0 ≤ p < d the follow-
ing variational characterization by maximizing over
real subspaces, namely

max
V

dimR(V )=k+1

min
x∈V
‖x‖=1

Re (xTΦ(fk)x) = λ1+p
+ (fk), (76)

and

max
V

codimR(V )=k

min
x∈V
‖x‖=1

Re (xTΦ(fk)x) = λ1+p
− (fk). (77)

Theorem V.1 and Remark V.1-(ii) ensure that the
eigenvalues of the operator L (at the frequency f = fk)
relate naturally to an energy via the quadratic form
Q given in (75). Contrarily to the one-dimensional case
(see (35)) and as (63) shows, the θkp ’s do not relate
trivially to the multidimensional phase information con-
tained in symmetrized cross-spectral matrix Φ(fk).

Nevertheless, the relation (68) allows us to extract a
useful phase information from Φ(fk) by noting that (pro-
vided that Bkp 6= 0)

λp+(fk)Êkp (fk)(Êkp (fk))−1 = φ̂p,p(fk) +Rp(fk), (78)

with

Rp(fk) =

p−1∑
q=1

φ̂q,p(fk)γkpq +

d∑
q=p+1

φ̂p,q(fk)γkpq, (79)

and γkpq := Êkq (fk)(Êkp (fk))−1. Obviously a similar rela-

tion holds for λp−(fk) (involving the appropriate Ekp ).
By taking the argument on both sides of (78), we ob-

tain (up to a multiple of 2π)

arg(λp+(fk)Êkp (fk))

− arg(Êkp (fk)) = arg

(
φ̂p,p(fk) +Rp(fk)

)
.

(80)
We denote by ηp+(fk) the LHS of (80).

On the other hand (69) gives Êkp (k) = exp
(
− iθkp

)
/2,

which leads to

2θkp = ηp+(fk) = arg

(
φ̂p,p(fk) +Rp(fk)

)
. (81)

We understand thus that ηp+(fk) gives (twice) the

phase shift, θkp , contained in the eigenfunctions (see (61)),
and provides also a measure about the perturbation
brought by the “cross-functions” φp,q (p 6= q)—as encap-
sulated into Rp(fk)—to the phase spectrum associated

with φp,p when considered as isolated (i.e. arg(φ̂p,p(fk))).
This perturbation is dependent on the eigenfunctions

of the operator L as the expression of Rp(fk) given in
(79), shows. When Rp(fk) = 0, on recovers the phase
spectrum of φp,p as in the unidimensional case; see Re-
mark VI.2-(iii). In what follows, we will look at the quan-
tities, λp+(fk) and ηp+(fk) (resp. ηp+(fk)) as fk is varied;
the former providing, in the multidimensional case, a no-
tion of power spectrum (as associated with the form Q)
and the latter a notion of (perturbed) phase spectrum.

The next section focuses on the important case for ap-
plications in which the functions φp,q are built from cor-
relation functions and for which these notions of power
and phase spectra are further detailed through numerical
computations and examples.
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VI. APPLICATION TO TIME SERIES:
DATA-ADAPTIVE HARMONIC (DAH)

SPECTRA

To simplify the presentation, we consider throughout
this section a finite-dimensional Euclidean space H.

A. Correlation functions

In the case of a deterministic flow (St)t≥0 acting on
H and having an ergodic invariant measure µ supported
by an attractor A [50, 51], let us recall that the corre-
lation function ρf,g(t) associated with two (sufficiently
smoothed) observables f, g : H → R, is given by

ρf,g(t) =

∫
H
f(x)g(Stx) dµ, t ≥ 0, x ∈ H. (82)

In the case of an ergodic stochastic system, the correla-
tion function is given by

ρf,g(t) =

∫
H
f(x)Ptg(x) dµ, t ≥ 0, x ∈ H, (83)

where (Pt)t≥0 denotes the Markov semigroup possessing
µ as (unique) ergodic invariant measure [52]. In each
case, the function ρf,g(t) is called a correlation func-
tion subordinated to the observables f and g. Depend-
ing on these observables, various higher-order moment
statistics can be considered.

In the deterministic setting, if µ is a Sinäı-Ruelle-
Bowen measure [50, 51, 53], ρf,g(t) corresponds to the
more familiar cross-correlation coefficient at lag t (for
the observables f and g) which takes then the equivalent
form [54]

ρf,g(t) = lim
T→∞

1

T

∫ T

0

f(Ssx)g(St+sx) ds, (84)

for almost every x in the basin attraction of A [51].
For an ergodic stochastic system, it takes the form

ρf,g(t) = lim
T→∞

1

T

∫ T

0

f(Xx
t )g(Xx

t+s) ds, (85)

P-almost surely and for every x in H, when e.g. the
Markov semigroup Pt associated with the Markov pro-
cess Xx

t is strong Feller and irreducible; see [52].

B. Periodized correlation functions, and associated
semigroup kernels

We place ourselves in one of the working framework
described in the previous subsection—i.e. either stochas-
tic or deterministic—and apply the theory of Section IV
to φ(t) = ρf,g(t) for a choice of two observables, f and g.
Note that if one chooses f = g, one recovers the famil-
iar notion of lagged autocorrelation of e.g. the univariate

time series t 7−→ f(Stx). For this reason, we will some-
times, when f 6= g, name ρf,g(t) as a cross-correlation
function, to emphasize the difference with the notion of
autocorrelation.

Obviously, the main assumption on which the the-
ory of Sections III and IV relies on, is the periodicity
of φ(t) which is not guaranteed in practice, except for
periodic trajectories of course. However, motivated by
physical applications, we are interested with mixing sys-
tems, i.e. systems for which a decay of correlations takes
place. For stochastic (resp. deterministic) systems that
are mixing, see e.g. [52] (resp. [51, 54]) and references
therein.

For such systems, one should in practice choose τ large
enough so that the decay of correlations has been suffi-
ciently well-resolved. To apply the theory one needs then
to periodize φ(t), and the resulting periodization ϕ plays
a role in the definition of the operator Lϕ. To understand
it, let us consider an interval I = [α, α+ τ ] with α in R.
We define

ϕ(t) :=


φ(t), t ∈ [α, α+ τ),

φ(t− nτ), t ∈ [α+ nτ, α+ (n+ 1)τ), n ∈ Z+
∗

φ(t+ nτ), t ∈ (α+ (n− 1)τ, α+ nτ ], n ∈ Z−∗ .
(86)

The left circular shift T (t) defined in (31) applied to ϕ
gives thus the following expression in terms of φ, for r
lying in the interval I

T (r)ϕ(s) :=

{
φ(r + s), s ∈ [α, α+ τ − r),

φ(r + s− τ), s ∈ [α+ τ − r, α+ τ).

(87)
In other words the kernel of the integral operator Lϕ is
modified compared with its expression given in (32).

As a choice of the base interval I representing T, a
reasonable one consists of taking α = −τ/2 i.e.

I =

[
− τ

2
,
τ

2

]
. (88)

This choice as a representation of T relies in part on the
symmetry of φ(t) = ρf,g(t), i.e. ρf,g(t) = ρf,g(−t). Thus
φ(−τ/2) = φ(τ/2). Other choices, like α = 0, results—
due to the assumed decay of correlations—with “jumps”
that occur at the junctions points in the periodization of
φ given in (86).

These jumps do not constitute however an obstruction
to apply the theory. Theorem IV.1 allows indeed for a
discontinuity of this type for ϕ used in the definition of
Lϕ. The reason is tied to the characterization of D(A)
given in (30) (withg ≡ 1) that shows that a function ϕ
with a discontinuity is allowed, as long as ϕ defined in
(86) is absolutely continuous and ϕ′ lies in L2(T).

In Sect. VI D below, we consider the choice of the base
interval I given by (88) in the case of a multidimensional
DAH spectrum obtained from a collection of correlation
functions. We turn next to the case I = [0, τ ], i.e. α = 0,
for which the theory allows to recover instructive results
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from the literature on Hankel matrices. In that respect
we address first the discretization of the operator Lϕ.

C. DAH spectrum from a single correlation
function: discretization

Given a uniform partition t0 = 0 < · · · < tN−1 < τ =
tN , we consider the family of functions

χj(s) :=

{
1, s ∈ [tj , tj+1),

0, else.
0 ≤ j ≤ N − 1. (89)

We simply denote by ρ, the correlation function ρf,g.
By the definition (87) of the left circular shift acting on
the periodization ϕ in (86) (with α = 0), we have from
(32),

Lϕ(Ψ)(r) =
1

τ

(∫ τ−r

0

ρ(s+ r)Ψ(s) ds

+

∫ τ

τ−r
ρ(r + s− τ)Ψ(s) ds

)
.

(90)

Now let us approximate ρ by a piecewise constant func-
tion f , as follows

f(s) = ρ(tj), if s ∈ [tj , tj+1). (91)

Take tj = jδτ with δτ = τ/N , then

Lϕ[χj ](r) ≈
δτ

τ
ρ((j + k)δτ) mod (τ), if r ∈ [tk, tk+1).

(92)
Denoting ρ(lδ) by ρl, the operator Lϕ can be thus ap-
proximated by the following Hankel N ×N matrix

H =
1

N



ρ0 ρ1 ρ2 · · · ρN−1

ρ1 ρ2 ρ3 . .
.

ρ0

ρ2

... . .
.

. .
.

ρ1

... . .
.

. .
.

. .
. ...

ρN−1 ρ0 ρ1 . . . ρN−2


. (93)

Without any surprise, H is a left circulant matrix, that
we denote sometimes as

H = l-circ(ρ0, ρ1, · · · , ρN−1), (94)

or in other words, the rows of H are obtained by suc-
cessive shifts to the left of one position starting from the
row r = (ρ0, ρ1, · · · , ρN−1) as a first row.

Let T be the right circulant matrix which has the
same first row than the left circulant matrix H. Then
T is Toeplitz and H = PT for the permutation matrix
P = 1⊕Jn−1, where JN−1 is the reversal (N−1)×(N−1)
matrix obtained by flipping the (N − 1)× (N − 1) iden-
tity matrix IN−1 from left to right. Hence H and T

have identical singular values. However, circulant matri-
ces and real anticirculant matrices (which are also real
symmetric) are normal matrices, so they can be unitar-
ily diagonalized and their singular values are the moduli
of their eigenvalues. Therefore, the eigenvalues H and
T have identical moduli. Finally, since real anticirculant
matrices are real symmetric, H has real eigenvalues.

The spectral theory of circulant matrices is well es-
tablished although somehow scattered in the literature;
see e.g. [55–57]. The inherent periodicity of circulant
matrices relates them to Fourier analysis and group the-
ory. In contrast to the aforementioned standard circulant
Toeplitz matrix T arising in Fourier analysis (see e.g. [58,
Def. 5.12]), the left-circulant matrix H is not diagonal-
ized by the unitary Fourier matrix [57, Theorem 3.5] and,
as Proposition VI.1 summarizes, its eigenvectors depend
actually on the data and more exactly relate to the phase
spectrum as a counterpart of Theorem IV.1 and a conse-
quence of formula (43).

Let us introduce the Fourier frequency ωk = 2πk/N ,
and the periodogram of {ρj}, namely

IN (ωk) :=
1

N

∣∣∣N−1∑
j=0

ρje
−ijωk

∣∣∣2, 0 ≤ k ≤ N − 1, (95)

with i2 = −1.
We have then

Proposition VI.1 The eigenvalues {λk}k∈{0,...,N−1} of
the Hankel matrix H given by (93) can be arranged in
terms of Fourier frequencies so that

λ0 = N−1
N−1∑
n=0

ρn,

λN
2

= N−1
N−1∑
n=0

(−1)nρn, if N is even,

(96)

and for 1 ≤ k ≤
[
N−1

2

]
,

λk = −λN−k = N−1/2
√
IN (ωk), (97)

where [x] denotes the largest integer less than or equal to
x.

Furthermore, for each pair (λk, λN−k) corresponding
thus to a Fourier frequency ωk = 2πk/N , the correspond-
ing pair of eigenvectors (vk, vN−k) satisfies

arg(ρ̂(ωk)) = arg(λj v̂j(ωk))− arg(v̂j(ωk)),

with j ∈ {k,N − k}, 1 ≤ k ≤
[N − 1

2

]
,

(98)

where û(ω) denotes the discrete Fourier transform—
assessed at the frequency ω—of a vector u.

Proof. For a proof of (96)-(97) we refer to [56, Lemma
1]. The identity (98) is the analogue of (51) in the dis-
crete setting.
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In what follows the eigenvalues of the matrix H when
ranked from the lowest to the highest resolved frequency,
form what we call the DAH power spectrum. The
DAH phase spectrum is formed by the phase of the
corresponding eigenvectors, also ranked per frequency.
Whereas, due to Proposition VI.1, these concepts coin-
cide for one-dimensional signals with the standard no-
tions of power and phase spectra (see also Remark VI.2-
(ii) below), their multidimensional generalization follow-
ing Sect. V and applied to a collection of cross-correlation
functions, lead to more subtle but still useful interpreta-
tions. This generalization is discussed in in further details
in Section VI D below.

Remark VI.1 Let us introduce the standard cyclic per-
mutation matrix,

K :=



0 1 · · · 0 0

0 0
. . .

... 0

0 0
. . . 1

...
...

. . .
. . . 0 1

1 · · · 0 0 0


. (99)

Then H is naturally associated with the Krylov space
K(K, ρ) generated by the matrix K given by (99) and
the vector ρ = (ρ0, · · · , ρN−1)tr, namely

K(K, ρ) = span(ρ,Kρ,K2ρ, · · · ,KN−1ρ). (100)

Indeed, the j-th column of H is exactly given by Kj−1ρ.

Remark VI.2

(i) Proposition VI.1 remains valid when other base in-
tervals I than [0, τ ] are used. The modification con-
sists essentially of replacing accordingly the sum-
mation bounds in the definition of the periodogram
IN given by (95).

(ii) Let t 7→ Xx
t denote a stochastic process emanating

from x in H := Rq (q > 1) and generated by a sys-
tem of SDEs. Given two observables f, g : H → R,

and recalling that ρ denotes the correlation func-
tion ρf,g given by (83), we infer from the formula
(97) that the λk’s provide the (one-sided) cross-
power spectrum, Γf,g, of the real-valued stochas-
tic processes t 7→ f(Xx

t ) and t 7→ g(Xx
t ).

The DAH eigenvectors provide furthermore the
(one-sided) cross phase spectrum via the for-
mula (98), in the sense that

Γf,g(ωk) =
√
N
∣∣λj∣∣ exp

(
arg(λj v̂j(ωk))− arg(v̂j(ωk))

)
,

with j ∈ {k,N − k}, 1 ≤ k ≤
[N − 1

2

]
.

(101)

D. Multidimensional DAH spectrum from a
collection of correlation functions

Given a base interval I to be [α, α + τ ], one considers
the periodization ϕf,g = ϕ given in (86) for φ = ρf,g,
with ρf,g denoting a correlation function given either by
(84) or by (85), depending on the context.

The operator Lφ defined in (32) becomes then

Lϕf,g (Ψ)(r) =
1

τ

(∫ α+τ−r

α

ρf,g(s+ r)Ψ(s) ds

+

∫ α+τ

α+τ−r
ρf,g(r + s− τ)Ψ(s) ds

)
,

(102)
where Ψ is any arbitrary function of L2(T).

By choosing I = [−τ/2, τ/2] (i.e. α = −τ/2), a uni-
form partition

−τ
2

= t−M+1 ≤ · · · ≤ t−1 ≤ t0 = 0,

0 ≤ t1 ≤ · · · ≤ tM−1 ≤
τ

2
= tM ,

(103)

and elementary functions such as in (89), each operator
Lϕi,j is approximated by the following Hankel (2M−1)×
(2M − 1) matrix

H(i,j) =



ρ
(i,j)
−M+1 ρ

(i,j)
−M+2 · · · ρ

(i,j)
0 ρ

(i,j)
1 · · · ρ

(i,j)
M−1

ρ
(i,j)
−M+2

. .
.

. .
.

. .
.

. .
.

. .
.
ρ

(i,j)
−M+1

... . .
.

. .
.

. .
.

. .
.

. .
.
ρ

(i,j)
−M+2

ρ
(i,j)
0

. .
.

. .
.

. .
.

ρ
(i,j)
−M+1

. .
. ...

ρ
(i,j)
1

. .
.

. .
.

. .
.

ρ
(i,j)
−M+2

. .
.

ρ
(i,j)
0

... ρ
(i,j)
M−1 ρ

(i,j)
−M+1

. .
.

. .
.

. .
. ...

ρ
(i,j)
M−1 ρ

(i,j)
−M+1 ρ

(i,j)
−M+2 . . . ρ

(i,j)
0 · · · ρ

(i,j)
M−2


. (104)

The operator L defined in (53)-(54)—in which each op- erator Lφp,q therein is replaced by Lϕp,q given in (102)
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above—is then approximated by the following block-
Hankel matrix C formed by d2 blocks, C(i,j), each of size
(2M − 1)× (2M − 1) and given as follows

C(i,j) = H(i,j), if i ≤ j,
C(i,j) = H(j,i), if j < i,

(105)

for (i, j) in {1, · · · , d}2.
Hereafter we use M ′ = 2M−1 for concision, reindexing

possibly from 1 to M ′ the string {−M + 1, · · · ,M − 1}.
By construction and in agreement with Lemma V.1, the
matrix C is real symmetric, not circulant with each block
that is Hankel.

Since the matrix C is the discretization of the oper-
ator L (defined in (53)-(54) and in which each opera-
tor Lφp,q therein is replaced by Lϕp,q given in (102)),
Theorem V.1 is enlightening concerning the spectrum of
C. In particular the eigenvalues of C relate according to
(59) to the singular values of the symmetrized cross-
spectral matrix Φδ(fk) whose entries are still given by

(58) except that φ̂p,q(fk) is obtained here as the dis-
crete Fourier transform (evaluated at the frequency fk)
of the correlation function ρp,q(t), after its periodisation
following Sect. VI B.

As noted earlier for the operator L and applied here
to the matrix C, Theorem V.1 and Remark V.1-(ii) en-
sure that the eigenvalues of C relate naturally to the
quadratic form Qδ given by

Qδ(x) := Re (xTΦδ(fk)x), x ∈ Cd, (106)

via the variational principle given in (76)-(77), in which
Φδ(fk) replaces Φ(fk). The eigenvalues of C convey thus
also an idea of energy distribution per frequency, as mea-
sured with the quadratic form Qδ.

Grouping per frequency the absolute value of the eigen-
values of the matrix C, and displaying those eigenval-
ues from the lowest to the highest resolved frequency,
we obtain what we call the multidimensional DAH
power spectrum, omitting the adjective “multidimen-
sional” when this is clear from the context.

The multidimensional DAH phase spectrum
is obtained by grouping per frequency the ηp+(fk)
(resp. ηp−(fk)) as discussed at the end of Sect. V. Note
that in practice, the ηp+(fk) (resp. ηp−(fk)) are calculated

by evaluating the LHS of (80) in which Ekp is replaced by
the p-th “snippet” of size d, extracted from an eigenvector
(still denoted by) Wk of C. In applications, the eigenvec-
tors of C are called the DAH modes (DAHMs), and
the Ekp are called DAHM snippets; see also Appendix
A.

Given a d-dimensional time series X(t) from which
the matrix C is formed, we will also pay attention to
another important quantity, namely the DAH coeffi-
cients (DAHCs) obtained by projection of X(t) onto
the DAHMs; see Appendix A for more details. These
DAHCs play an important role in Section VII concerned
with inverse modeling.

For the moment, we turn next to basic examples in
order to illustrates the notions of power and phase spec-
tra, as well DAHMs and DAHCs to help build up first
intuitions.

E. DAH spectrum of traveling waves with
modulated wavelength

We consider the following one-dimensional time-
periodic scalar field, given for x in [0, L] and t > 0 by

q(x, t) = Re

(
exp

(
i
(
k(x)x− ωct

)))
, (107)

with a wave length k(x) depending on the spatial loca-
tion. Given a uniform discretization [0, L] by Nx points
for a mesh size δx, we choose hereafter k(x) to be given
according to

k(x) =
x

δx
− pα, α =

Nx
m
, 1 ≤ m ≤ Nx. (108)

Here p denotes the integer for which the quotient x/(αδx)
is within the roundoff error of that integer. The param-
eter ωc is the Fourier frequency given by

ωc = 2π
(l − 1)

K ′
,

with K ′ = 2K − 1 and 1 ≤ l ≤M ′. For the experiments
reported below, we set L = 5π, Nx = 42, K = 15, l = 3
and m = 19. For simplicity, a time-stepping, δt = 1, is
chosen to discretize the time-variable t in (107). The re-
sulting patterns are shown in Fig. 1-(a). As a benchmark,
a traveling wave with k(x) replaced by its mean value k,
is shown in Fig. 1-(b). The effect of k(x) is thus to distort
a spatial cosine wave, cos(kx−ωct), by introducing some
local oscillations occurring at scales smaller than 1/k.

Compared to the case of a pure traveling wave shown in
Fig. 1-(b), some channels in Fig. 1-(a) still exhibit collec-
tively some traveling wave patterns (between e.g. x ≈ 14
and x = 5π), while others exhibit now standing-like
waves patterns as it can be observed between x ≈ 4 and
x ≈ 7.

The corresponding DAH power spectrum and DAH
phase spectrum are shown in Fig. 2-(a) and Fig. 2-(b),
respectively. Their computations has been obtained by
diagonalizing the matrix C given in (105) and following
the procedure described in Sect. VI D, in which the cross
correlations are estimated from q(xj , tn) obtained from
(107), with xj = (j − 1)L/Nx, 1 ≤ j ≤ Nx, and tn = n,
for 0 ≤ n ≤ 3 × 103. The corresponding DAHMs and
DAHCs are shown in Fig. 4.

1. DAH power spectrum and DAHMs

We first comment on the DAH power spectrum and
DAHMs. The main noticeable feature of the DAH power
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(a) Modulated wave

(b) Travelling wave

FIG. 1: Spatio-temporal fields. Panel (a) shows a time
evolution of q(x, t) with modulated wave lengths k(x) given by

(108). Panel (b) shows that obtained replacing k(x) by its mean
value k; see text for more details.

spectrum shown in Fig. 2-(a) (resp. Fig. 3-(a)) is the pres-
ence of a peak located at the (temporal) frequency close
to fc = ωc/(2π) (due to our discretization), the charac-
teristic frequency of the spatio-temporal field q(x, t) given
by (107) (resp. (107) with k(x) replaced by k). Recall-
ing the variational characterization of the eigenvalues of
C, one has thus here an illustration of the relevance of
the energy Qδ given by (106) for indicating the presence
of a dominant oscillation; the latter being expressed by
the presence of a dominant pair of eigenvalues (i.e. with
the highest max-min for Qδ; see Remark V.1-(ii)) at that
frequency.

This dominant pair of eigenvalues come with an en-
ergetic oscillatory pair of DAHCs as shown in the panel
located at the intersection of the bottom row and third
column of Fig. 4 (resp. Fig. 5) for f = 0.071 ≈ ωc/(2π);
compare with the DAHCs of the third column for other
frequencies.

For the modulated-wave case, the mixture of
traveling/standing-like wave patterns as well as the local
small-scale oscillations are outstandingly well captured,
at each frequency f 6= 0, by the pair of DAHMs associ-
ated with the pair of dominant eigenvalues; see first and
second column of Fig. 4. We emphasize indeed that this
mixture of patterns present in the field q(x, t) shown in
Fig. 1-(a), is not only found for the (few) mode(s) asso-
ciated with the DAHCs of largest variance(s), but rather

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Frequency

10-2

10-1

100

101

102

103

(a) DAH power spectrum

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Frequency

0

2

(b) DAH phase spectrum

FIG. 2: Multidimensional DAH power and phase
spectra. The DAH spectra shown here are those associated with

the modulated wave shown in Fig. 1-(a). We chose M = 43 to
estimate the cross correlations and form the corresponding matrix
C given in (105). Each non-zero frequency is associated with 42
eigenpairs that correspond to the total of d = Nx = 42 channels

used to generate the field q(x, t) from (107).

is distributed across a broad frequency band of Fourier
frequencies f .

Noticeably, these patterns scale with the frequency: at
each frequency f , the pair of dominant DAHMs exhibit
the same patterns that repeat with a 1/f -temporal pe-
riodicity; see 1st and 2nd columns of Fig. 4. The same
elemental spatial pattern is thus repeated for a pair of
(dominant) DAHMs across the frequencies.

The same feature is observed in the case of a pure trav-
eling wave shown in Fig. 1-(b). Here again, the (domi-
nant) DAHMs capture the dominant pattern displayed
by the field q(x, t) across a broad range of frequencies;
see 1st and 2nd columns of Fig. 5.

Such a scaling property (in time)—of the principal pat-
tern contained in the original dataset—as revealed by the
dominant pairs of DAHM across the frequencies, is in
sharp contrast with other modes that would be obtained
by techniques relying on a decomposition of the variance.

Such methods applied to q(x, t) would obviously iden-
tify another type of leading modes that would cap-
ture most of the variance, without however displaying
a scaled-version of the dominant pattern across the fre-
quencies, in particular for the modes that capture a small
fraction of the variance. The third columns of Fig. 4 and
Fig. 5 show to the contrary that even for pairs of DAHMs
associated with DAHCs of small amplitude, these modes
exhibit the dominant pattern, repeated at the associated
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frequency f ; see the cases f = 0.024 and f = 0.048 in
the 1st and 2nd columns of Fig. 4 or Fig. 5.

2. DAH phase spectrum

We comment now the DAH phase spectra shown in
Fig. 2-(b) and Fig. 3-(b). In both cases, the most striking
feature about these phase spectra is the distinction ap-
pearing in their shape by comparing the frequency band
0 < f < fc with f > fc. For f > fc one can indeed
distinguish that all the lines converge towards a single
point as one approaches the Nyquist frequency fN .

By relying on the discussion conducted at the end of
Section V, this convergence corresponds to a convergence
of the ηp+(f) towards a same value, expressing thus a form
of phase synchronization between the channels of a
DAHM as f → fN , by recalling (81) and (61).

One could think that such a phase synchronization
revealed by the DAH phase spectrum is limited to the
case of pure or modulated traveling waves, but actually,
several conducted experiments on other spatio-temporal
fields issued from various dynamical systems (not shown),
seem to indicate that this feature occurs for a broad set of
deterministic dynamics, including chaotic ones; see also
Section VIII A 2 below. Roughly speaking, the poor res-
olution that comes with the Nyquist frequency explains
that differences between the phases across the channels—
subtle by nature—must vanish as f → fN . However,
here lies maybe the most useful aspect of the DAH phase
spectrum. As we will see in Sect. VIII B 2, dataset issued
from a stochastic system does not share this convergence
property of the phases across the channels of a DAHM,
as f → fN . The DAH phase spectrum appears thus to
be a useful diagnostic tool to distinguish between spatio-
temporal deterministic or stochastic dynamics.

VII. INVERSE STOCHASTIC MULTILAYER
STUART-LANDAU MODELS

A. Preliminaries

Let X(t) = (X1(t), · · · , Xd(t)) be a d-dimensional time
series from which the operator L defined in (53)-(54) is
built from the cross-correlation functions ρi,j(t), after
(possible) periodization such as described in Sect. VI B.
We adopt the notations of Theorem V.1 and form the
following time-continuous version of the DAHC associ-
ated with an eigenfunction Wk (see (A1) in Appendix
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(a) DAH power spectrum
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(b) DAH phase spectrum

FIG. 3: Multidimensional DAH power and phase
spectra. The DAH spectra shown here are those associated with
the pure traveling wave shown in Fig. 1-(b). We chose M = 43 to
estimate the cross correlations and form the corresponding matrix

C given in (105). The DAH power spectrum and DAH phase
spectrum are obtained as described in Sect. VI D.

A), namely

ξk(t) :=

d∑
p=1

∫
T
Xp(t+ s)Ekp (s) ds

=

d∑
p=1

∫
T
Xp(t+ s)Bkp cos(ωks+ θkp) ds

=

d∑
p=1

∫
T
T (t)Xp(s)B

k
p cos(ωks+ θkp) ds.

(109)

If Xp lies in D(A) given in (30) (with g = 1), then

dT (t)Xp

dt
= AT (t)Xp = T (t)AXp, (110)

see e.g. [35, Chap. II, Lemma 1.3].
In particular

dξk(t)

dt
=

d∑
p=1

∫
T
T (t)

dXp

ds
Bkp cos(ωks+ θkp) ds. (111)

Similarly,

dξ̃k(t)

dt
=

d∑
p=1

∫
T
T (t)

dXp

ds
Bkp sin(ωks+ θkp) ds (112)



16

FIG. 4: DAHMs and DAHCs from the modulated wave
of Fig. 1-(a). Each row of the 1st and 2nd column, shows a pair

of DAHMs at a given frequency such as indicated. There, the
horizontal axes represent the temporal embedding dimension

M ′ = 2M − 1 (here M = 43), while the vertical ones indicate the
spatial channel 1 ≤ k ≤ d; d = Nx = 42. The DAHMs and

DAHCs shown here correspond, for each indicated frequency f , to
the dominant pair of DAH eigenvalues located above f in

Fig. 2-(a).

Thus

dzk(t)

dt
=

d∑
p=1

∫
T
T (t)

dXp

ds
Bkp exp(i(ωks+ θkp)) ds (113)

FIG. 5: DAHMs and DAHCs from the traveling wave of
Fig. 1-(b). Same as in Fig. 4 but for the traveling wave of

Fig. 1-(b). The DAHMs and DAHCs shown here correspond, for
each indicated frequency f , to the dominant pair of DAH

eigenvalues located above f in Fig. 3-(a).

An integration by parts gives

dzk(t)

dt
= −iωk

d∑
p=1

∫
T
T (t)Xp(s)B

k
p exp(i(ωks+ θkp)) ds,

(114)
that is

dzk(t)

dt
= −iωkzk, (115)
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supplemented by initial condition

zk(0) =

d∑
p=1

∫
T
Xp(s)B

k
p exp(i(ωks+ θkp)) ds. (116)

If Xp is not in the domain D(A) (such as for X(t)
issued from a mixing dynamical system) and the base
interval I for T is taken to be [−τ, 0], then boundaries

terms appear and we are left (formally) with

dzk(t)

dt
= −iωkzk+

d∑
p=1

Bkpe
iθkp (Xp(t)−Xp(t−τ)). (117)

An integration of (117) gives

zk(t) = zk(0)e−iωkt+

d∑
p=1

Bkp

∫ t

0

e(−iωk(t−r)+iθkp)(Xp(r)−Xp(r − τ)) dr,

(118)
and thus:

ξk(t) = Re (zk(0)e−iωkt) +

d∑
p=1

Bkp

∫ t

0

cos

(
− ωk(t− r) + θkp

)(
Xp

(
r
)
−Xp

(
r − τ

))
dr. (119)

The boundary terms introduce exogenous forcing from
the time series components, themselves. Due to (119)
the dominant effect is manifested as narrowband (about
the frequency ωk) modulations of amplitude that super-
impose to the pure oscillation Re (zk(0)e−iωkt).

Since pairs of modulated and oscillatory time series (in
phase quadrature and) carried out about one dominant
frequency may be generated by Stuart-Landau (SL)
oscillators [59], we propose closures of Eq. (117) built
from SL oscillators. By closure we mean that we want to
mimic the effects of the term

d∑
p=1

Bkpe
iθkp (Xp(t)−Xp(t− τ)),

in Eq. (117), by means of equations involving only the
zk(t)-variables plus stochastic ingredients to be deter-
mined. In the next section we propose a solution to this
problem exploiting both the properties of DAH spectra
(such as summarized by Theorem V.1) and ideas bor-
rowed from the theory of multilayer stochastic mod-
els (MSMs) for inverse modeling [30].

B. Multilayer Stuart-Landau models

We turn now to the use of DAHMs and DAHCs for
deriving inverse stochastic-dynamic models. The pur-
pose is to show that these objects allows for a reduc-
tion of the data-driven modeling effort to the learning of
elemental MSMs [30] stacked per frequency. These ele-
mental models fall into the class of networks of linearly
coupled Stuart-Landau oscillators [32], that may include
memory terms as described below; see also [60]. In a
certain sense the goal is to show that, given a sequence
(of possibly partial) observations issued from a dynam-

ical model, the DAHCs allow for recasting these obser-
vations so that they can be modeled within a universal
parametric family of simple stochastic models, provided
that, as mentioned earlier, the decay of correlations are
sufficiently well resolved[61]. We refer to Sect. VIII for
examples supporting this statement, and describe here-
after the aforementioned elemental models.

Let (xj , yj) be a pair DAHCs such as shown, for in-
stance, in the third column of Fig. 9 or Fig. 12. Except
at the zero-frequency and as motivated in Sect. VII A
above, DAHCs are typically oscillatory time series that
are narrowband about a dominant frequency f and whose
oscillations are modulated in time. Such a pair of time
series can be reasonably expected to be modeled via non-
linear oscillating systems near a Hopf bifurcation to cap-
ture the frequency f , and subject to noise, to capture
the amplitude modulations; see [59]. We assume that we
have a collection of d such pairs, each associated with the
same frequency f and exhibiting modulations occurring
in different time locations.

If the signal is made of a concatenation of d different
time series such as for the L96 flow, such a pair has a
simple interpretation: it provides the manifestation, in
the time domain, of the frequency f contained in the
system’s flow as captured by the corresponding pair of
DAHMs.

For a narrowband pair of DAHCs, (xj(t), yj(t)), given
at a frequency f 6= 0, we envision thus its modeling by
some stochastic perturbation of a Stuart-Landau model,
namely by

ż = (µ+ iγ)z − (1 + iβ)|z|2z + εt, z ∈ C, (120)

where z(t) = xj(t) + iyj(t), and µ, γ and β are real pa-
rameters to be estimated. The system is here driven by
some “reddish noise,” εt = (εxj , ε

y
j ), to be estimated, also,

from the time history of z(t). The issue is that the pairs,
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when modeled this way, would fail in reproducing the
phase coherences across the channels, that would be con-
tained in the signal such as in the case of a wave propa-
gation for instance. The estimation and simulation of εt
requires thus a special care due to the presence of typical
non-zero cross correlations among the channels.

The MSM framework [30] allows us to address this is-
sue, while keeping the advantages of the modeling frame-
work provided by Eq. (120). It allows, as we will see

in applications (see Sect. VIII), for providing stochastic-
dynamic inverse models able to respect the phase co-
herence of the collective behavior of the DAHC pairs
(xj(t), yj(t)) at a given frequency f 6= 0. In that re-
spect, one proposes to model each such a DAHC pair by
the following type of MSMs, which in the case of two
layers used to model the main noise residual, εt, can be
written as the following system of SDEs:

ẋj = βj(f)xj − αj(f)yj + σj(f)xj(x
2
j + y2

j ) +
∑
i6=j

i∈J (f)

bxij(f)xi +
∑
i6=j

i∈J (f)

axij(f)yi + εxj ,

ẏj = αj(f)xj + βj(f)yj + σj(f)yj(x
2
j + y2

j ) +
∑
i 6=j

i∈J (f)

ayij(f)xi +
∑
i 6=j

i∈J (f)

byij(f)yi + εyj ,

ε̇xj = Kj
11(f)xj +Kj

12(f)yj +M j
11(f)εxj +M j

12(f)εyj + ζxj ,

ε̇yj = Kj
21(f)xj +Kj

22(f)yj +M j
21(f)εxj +M j

22(f)εyj + ζyj ,

ζ̇xj = Lj11(f)xj + Lj12(f)yj + P j11(f)εxj + P j12(f)εyj +N j
11(f)ζxj +N j

12(f)ζyj +

Qj11(f)Ḃj1 +Qj12(f)Ḃj2 +
∑
i 6=j

i∈J (f)

2∑
k=1

Qi1k(f)Ḃik,

ζ̇yj = Lj21(f)xj + Lj22(f)yj + P j21(f)εxj + P j22(f)εyj +N j
21(f)ζxj +N j

22(f)ζyj +

Qj21(f)Ḃj1 +Qj22(f)Ḃj2 +
∑
i 6=j

i∈J (f)

2∑
k=1

Qi2k(f)Ḃik.

(MSLM )

Such a model is named a multilayer stochastic
Stuart-Landau models (MSLM). In (MSLM), the set
J (f) corresponds of the set of indices i in {1, · · · , dM ′}
for which the DAHC pair, (xi, yi), corresponds to a
DAHM pair associated with the frequency f . Note that
by construction the index j belongs to J (f), which con-
sists of d elements; see (59) in Theorem V.1.

The Blk’s with k in {1, 2} and l in J (f) form 2d inde-
pendent Brownian motions. At a given frequency f , the d
pairs are linearly coupled as indicated by the terms in the
summation terms appearing in the xj- and yj-equations.
As depicted in the schematic of Fig. 6, the main and last

layers (here the xj-,yj- and ζ
x/y
j -equations) are the only

layers in which these pairs are explicitly coupled. With-
out these coupling terms, we are left with a collection of d
uncoupled normal forms of a Hopf bifurcation perturbed
by a “reddish” noise, which are the analogue in real do-
main of the aforementioned Stuart-Landau model (120).
The linear coupling at the main level is here aimed to en-
hance some coherence between the stochastic nonlinear
oscillations.

The noise residual (εxj , ε
y
j ) in the main layer of (MSLM)

is modeled in the intermediate layer by means of lin-
ear dependences involving only (εxj , ε

y
j ) on one hand, and

the j-th pair (xj , yj), on the other. The noise residual
(ζxj , ζ

y
j ) of that intermediate layer is then modeled still

via linear dependences that now include this noise itself,
the noise residual of the previous layer, and the DAHC
pair (xj , yj). The terms in the summations appearing in
the ζxj - and ζyj -equations of the last layer involve the other
pairs as mentioned earlier. The presence of such terms is
aimed to take into account—at the noise level—of cross-
correlations between the d DAHC pairs corresponding to
a same frequency. In practice, the corresponding coef-
ficient Qjlk (l, k ∈ {1, 2}, j ∈ {1, · · · , d}) are estimated
from the vector of size 2d formed after the concatenation
of the last level residuals for each pair.

Note that for the frequency f = 0, and as mentioned
in Sect. VI D, there are exactly d DAHMs that are not
paired, and they are modeled by a linear MSM, following
[30]; see also [62, Eq. (9)].

An MSLM is not limited to the two-layer case shown
above for the modeling of the main noise residual (εxj , ε

y
j ).

Following [30], extra layers may be added, with interme-
diate layers that only involve a linear dependence on the
j-th DAHC pair (xj , yj) and on the corresponding noise
residuals from the previous layers. In other words, the ex-
tra layers must respect the overall structure of (MSLM),
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with coupling between the other pairs (associated with
the same frequency f) only present in the main and last
layers. The addition of an extra layer would thus corre-
spond to the addition of another intermediate plane in
the schematic of Fig. 6, with only vertical connections to
the rest of the structure.

The procedure of adding layers is controlled by a stop-
ping criterium as described in [30, Appendix A] which
allows thus, in principle, for a different number of layers
per frequency. In general, the layers with their surrogate
variables, here (εxj , ε

y
j ) and (ζxj , ζ

y
j ), allow for a learning

of the temporal correlations contained in the main noise
residual εt, as well as of its dependences on the history
of (xj(t), yj(t)) often required for an appropriate model-
ing of εt; see [30] for a general discussion on this topic.
Typically, the more layers, the more complex are these
correlations and memory dependences; see [30, Proposi-
tion 3.3], and [30, Sect. 7], [62] for examples. Sections
VIII A 3 and VIII B 3 below, illustrate also this point.

C. Coupling across the frequencies and practical
considerations

As emphasized in (MSLM), the coefficients to be
learned, depend on the frequency f . An MSLM seeks
for the modeling of the DAHC pairs (xj , yj)j∈J (f) asso-
ciated with the frequency f , such as extracted from the
original (or preprocessed[63]) dataset by application of
the DAH decomposition. Once this extraction is com-
puted, an MSLM can be learned in parallel for each fre-
quency of interest, by application of, e.g., simple succes-
sive regressions. In practice, linear constraints must be
incorporated in these regressions such as σj(f) ≤ 0 to
ensure stability, as well as antisymmetry, to estimate the
coefficients βj(f) and αj(f).

Once all the resulting (few) MSLM coefficients have
been estimated, the parallelization advantages of the
MSLMs across the frequencies, relies also on its simu-
lation: no need of extra coupling across the frequencies
is indeed needed other than running the MSLMs by the
same noise realization, for each frequency. The simula-
tion procedure can be thus also parallelized at the con-
venience of the modeler to obtain the collective behavior
of the simulated DAHCs. These simulated DAHCs can
be then multiplied with the corresponding DAHMs such
as described in Appendix A, to obtain various possible
frequency-band modeling of the original dataset.

Of course, one condition to the success of the resulting
modeling approach relies on the ability of the DAH de-
composition in extracting modulated DAHC pairs that
come in nearly phase quadrature, and that are narrow-
band in the frequency domain, an MSLM being natu-
rally dedicated to the modeling of such time series. The
tradeoff between a good resolution of the decay of tempo-
ral correlations and the temporal length of the available
dataset, seem to play a key role in that respect. Various
conducted experiments (not shown) have indeed corrob-

FIG. 6: Schematic of Eq. (MSLM) at a given Fourier
frequency f . Each circle represents either a DAHC pair (xj , yj)
or the corresponding pairs of (successive) noise residuals present

in Eq. (MSLM). The vertical or horizontal dashed lines
connecting two pairs indicate the existence of a mutual
dependence between these pairs in the formulation of

Eq. (MSLM).

orated the idea that the DAHC pairs are expected to
be narrowband and to come in nearly phase quadrature
when the decay of temporal correlations has been suffi-
ciently resolved.

In what follows the combination of (i) the extraction
of DAHCs by the DAH method of Sect. VI D, and (ii)
their modeling according the the MSLM approach de-
scribed above, is named a DAH-MSLM modeling. We
present in the next subsections applications to examples
for which this criterion is met and a successful DAH-
MSLM modeling is obtained in each case.

VIII. APPLICATIONS TO INVERSE
STOCHASTIC-DYNAMIC MODELING

We apply hereafter the DAH-MSLM inverse model-
ing approach to two complex flows, obtained respectively
from a chaotic ODE system and an SPDE, with linear
drift.
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(a) L96 model

(b) Stochastic heat equation

FIG. 7: Spatio-temporal fields. Panel (a) shows a time
evolution the Lorenz 96’s flow solving Eqns. (121)-(122), and

panel (b) shows the solution field of the stochastic heat equation
(123). See text for the parameter values and the numerical

schemes.

A. Applications to the Lorenz 96 model

1. The dynamical model

In this section we apply the DAH approach to the so-
called Lorenz 96 (L96) model [64]. The evolution of equa-
tions of the L96 model, in its simplified version[65], is
written as

dXk

dt
= Xk−1(Xk+1 −Xk−2)−Xk + F1, k = 1, · · · ,K,

(121)
supplemented with the boundary conditions

Xk−K = Xk+K = Xk. (122)

In absence of forcing and dissipation, the sum of the
squares of the variables (the energy of the system) is con-
served. This model has become popular as a toy model of
the atmosphere to test various methods in the weather
and climate science as displaying a large set of chaotic
behaviors with various mixing properties, as K and F1 is
varied.

2. DAH spectra, DAHMs and DAHCs

The model is set to a standard chaotic regime cor-
responding to K = 40 and F1 = 6, and is inte-
grated by using a 4th-order Runge-Kutta scheme with
a time step δt = 5 × 10−3. Excluding transient be-
havior and subsampling every 10th time step, we store
N = 11900 time instances of the K-dimensional vector
X(t) = (X1(t), · · · , XK(t)).

As shown in Fig. 7-(a), the L96 flow is dominated
by irregular spatio-temporal traveling wave-like patterns.
We estimated the cross-correlations ρi,j(t) between the
variables Xi(t) and Xj(t) for i, j in {1, · · · , 40}, and
we formed the (2M − 1) × (2M − 1)-matrix C given in
(105), with M = 160. The corresponding absolute values
of its eigenvalues (ranked per frequency)—forming thus
the corresponding DAH power spectrum—are shown in
Fig. 8-(a). The corresponding DAH phase spectrum is
shown in Fig. 8-(b).

Interestingly, these spectra as well the underlying
DAHMs share some common features with those dis-
played in the case of a pure traveling wave shown in
Sectns. VI E 1 and VI E 2. First, the DAHMs shown in
the 1st and 2nd columns of Fig. 9 share clearly common
patterns with those shown in the respective columns of
Fig. 5.

Second, a phase synchronization between the channels
of a DAHM as f approaches the Nyquist frequency, is
also observed in Fig. 8-(b) as in Fig. 3-(b).

Third, this synchronization is in contrast with the dis-
ordered distribution of phases shown in a frequency band
0 < f < fc with fc ≈ 0.1; frequency band for which the
most energetic pair of DAH eigenvalues (for the quadratic
form Qδ) are located; see Fig. 8-(a).

Nevertheless, the DAH power spectrum exhibits much
broader peaks in the case of the L96 flow than in the
case of a pure traveling wave; compare Fig. 8-(a) with
Fig. 3-(a).

Finally, the most noticeable difference is shown by the
DAHCs. Whereas the latter were all periodic in the case
of traveling wave as expected (see (115)), they are—as
predicted by (119)[66]—clearly modulated in amplitude
and narrowband in frequency in the case of the L96 flow;
compare the 3rd column of Fig. 5 with that of Fig. 9.
Furthermore the pairs of DAHCs are typically consti-
tuted by time series (for f 6= 0) that are nearly in phase
quadrature; see the panels corresponding to f = 0.016,
f = 0.031 and f = 0.047 in the 3rd column of Fig. 12. We
are thus in a situation described in Sect. VII B. The next
section addresses the inverse-modeling problem of the
L96 flow, following the approach described in Sect. VII B.

3. DAH-MSLM modeling of the Lorenz 96 model

In this section we report on the inverse modeling skills
obtained by the DAH-MSLM approach of Sect. VII. For
that purpose, the original field obtained by integrating
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FIG. 8: Multidimensional DAH power and phase spectra
for the L96 flow. We chose M = 160 to estimate the cross

correlations and form the corresponding the matrix C given in
(105). The DAH power spectrum and DAH phase spectrum are
obtained as described in Sect. VI D. Each non-zero frequency is

associated with 40 eigenpairs that correspond to the total of
d = K = 40 variables in the L96 model.

Eq. (121) as mentioned above, has been sampled every 10
time steps in time. The frequency band that is modeled is
from f = 0 up to f = 6.29×10−2, which represents a frac-
tion of the variance of 86%, and 20 Fourier frequencies
according to the resolution set by M ′ = 2×160−1 = 319.

The corresponding DAHCs are modeled for each of
these frequencies according to an MSLM of the form
described in VII B, in which the number of layers per
frequency is 11, including the main one. After multipli-
cation by the the corresponding DAHMs, the simulated
DAHCs allow us, as described in Appendix A, to form a
simulated DAH-MSLM field. The resulting field is
shown in Fig. 10 and exhibits striking common features
with the original field, shown on the same figure for a
better comparison.

Interested by the ability of the simulated DAH-MSLM
field to reproduce the time-variability of the L96 flow,
we computed for each of these fields the autocorrelation
function (ACF) (in time) of each channel, followed by
an averaging of the resulting individual ACFs over the
channels. The result is shown in Fig. 14-(a) and as one
can see the ability of the simulated DAH-MSLM field in
reproducing the time-variability of the L96 flow is very
satisfactory, according to this metric.

It should be emphasized that beyond the embedding
window size, here M ′ = 319, these skills deteriorate due
in particular to the periodization involved in the determi-

FIG. 9: DAHMs and DAHCs from the L96 flow. Same as
in Fig. 4 but for the L96 flow shown in Fig. 7-(a). Here

M ′ = 2M − 1 (here M = 160), and d = 40. The DAHMs and
DAHCs shown here correspond, for each indicated frequency f , to

the dominant pair of DAH eigenvalues located above f in
Fig. 8-(a).

nation of the matrix C, as in any other method exploiting
time-embedding techniques.

So far we have been dealing in applications with de-
terministic systems. The next section illustrates that
striking inverse modeling skills can also be achieved by
applying the DAH-MSLM approach for the inverse mod-
eling of stochastic systems, still with the same elemental
MSLMs as described in Sect. VII B.
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FIG. 10: The L96 flow and its simulated DAH-MSLM
field. The L96 flow shown in the top panel corresponds to the
sampling units used at the learning stage, i.e. every 10th time

steps; see text for more details.

B. Applications to a stochastic heat equation

1. The dynamical model

The dataset analyzed hereafter is produced from a
simple stochastic partial differential equation (SPDE),
namely the following stochastic heat equation posed on
the interval [0, L] (L > 0) with periodic boundary condi-
tions:

du(t, x) = (−λu(t, x)+D∂2
xxu(t, x))dt+

√
2λ dW (t, x),

x ∈ TL = R/(LZ).
(123)

Here λ and D are positive parameters, and dW de-
notes a “space-time” white noise process on the circle TL,
roughly speaking a Gaussian random field with spatio-
temporal correlations for t, s ≥ 0, given by

E( dW (t, x) dW (s, y)) = δ0(t− s)δ0(y − x), x, y ∈ TL.

There are (at least) two approaches to frame mathe-
matically the notion of space-time white noise and related
concepts of solutions; see e.g. [67] for a comparison. Both,
the random-field approach based on Green functions [68]
and the functional analysis approach [69] [70], give the
same notion of weak/mild solutions, and stochastic heat
equations such as Eq. (123) serve as a fundamental ob-
ject to study various properties or formulas about such
solutions; see e.g. [71–74].

The functional analysis approach teaches us that the
stochastic process u(t, ·) solving Eq. (123) is actually

an infinite-dimensional Ornstein-Uhlenbeck pro-
cess (OU) in the Hilbert space H = L2(TL); see [71].
Our goal is to analyze the DAH power and phase spec-
tra of the corresponding (random) spatio-temporal field,
u(t, x), and see whether these spectra provide an intuitive
characterization of such an OU process.

For that purpose, we first simulate Eq. (123) as fol-
lows. Over a grid of mesh size δx = L/Nx, the discrete
approximation unj of u(nδt, jδx) is obtained by finite dif-
ferences for which the noise term is approximated at each
time step nδt (via an explicit Euler-Maruyama scheme)

by ξn
√
δt where (ξnj )Nx

j=1 denotes an Nx-dimensional vec-
tor of random variables each drawn independently with
respect to 1 ≤ j ≤ Nx and n (except ξn1 = ξnNx

) from the
standard normal distribution N (0, 1).

We chose Nx = 27, L = 2π, D = 2 × 10−1 and δt =
10−3 for our simulations. The initial data is taken to be

u0(x) = 10−1

√
2

L
cos

(
2πx

L

)
. (124)

Without any surprise, the integration reveals striking dif-
ferences in term of patterns exhibited by the field u(t, x)
compared to those obtained from the nonlinear example
of Section VIII A; compare panel (b) with panel (a) in
Fig. 7.
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FIG. 11: Multidimensional DAH power and phase
spectra of the SPDE flow. We chose M = 80 to estimate the
cross correlations and form the corresponding matrix C given in
(105). The DAH power spectrum and DAH phase spectrum are
obtained as described in Sect. VI D. Each non-zero frequency is

associated with 32 eigenpairs that correspond to the total of
d = 32 spatial channels obtained by coarse-graining the original

dataset as described in text.
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2. DAH spectra, DAHMs and DAHCs

Excluding transient behavior and subsampling every
8δt, we store N = 37500 time instances of the d-
dimensional vector X(t) = (X1(t), · · · , Xd(t)), in which
the Xp’s are also obtained by subsampling every 4δx
the original field (unj ), i.e. here d = 32. The resulting
coarse-grained SPDE field is shown in the top panel of
Fig. 13. We built up the matrix C (105) whose Hankel
blocks are given in (104) with M = 80, and 1 ≤ i, j ≤ d.
Diagonalizing C gives the multidimensional DAH spec-
tra as explained in Sect. VI D. The corresponding DAH
power (resp. DAH phase) spectrum for the coarse-grained
SPDE is shown in Fig. 11-(a) (resp. Fig. 11-(b)).

As it can be observed by comparison with Fig. 8-(a),
the DAH power spectrum shown in Fig. 11-(a) does not
exhibit any broadband peak, and is actually composed
by curves of DAH eigenvalues that each exhibits a decay
from low to high frequencies, reminiscent with that of
a scalar OU process. What is remarkable is that the
DAH power spectrum provides here a multidimensional
picture of what one should expect for an OU process
obtained from a standard 1D Langevin equation, showing
thus here again the relevance of the quadratic formQδ, as
an energy characterizing the distribution of eigenvalues
of C at a given frequency; see again the end of Sect. VI D
and Remark V.1-(ii).

As another noticeable feature, the phase synchroniza-
tion such as observed on the DAH phase spectra of the
L96 flow and the traveling wave examples, is no longer
present for this stochastic example, and is instead re-
placed in Fig. 11-(b) by the presence of some (vaguely
visible) bands within a diffuse background. Going back
to the interpretation of the phase spectrum discussed at
the end of Sect. V in relation with (81), the presence of
such a diffuse background, even for f approaching the
Nyquist frequency fN , can be attributed to the pres-
ence of non-vanishing cross-spectral terms ρ̂p,q(f) leading
to a non-negligible Rp(f) given in (79). This feature is
consistent with the intuitive idea that the noise-term in
Eq. (123) is white and thus forces evenly the resolved
frequency band. It should be emphasized that such a
feature has been also observed in other conducted exper-
iments on datasets issued from various stochastic systems
driven by a white and additive noise.

Finally, each pair of DAHCs associated with a fre-
quency f (with f 6= 0) is—as for the nonlinear example
of Sect. VIII A—constituted by time series modulated in
amplitude, narrowband about the frequency f , that are
nearly in phase quadrature; see the panels corresponding
to f = 0.013, f = 0.025 and f = 0.038 in the 3rd col-
umn of Fig. 12. We are thus here again in a favorable
situation to apply to these DAHCs the MSLM modeling
framework of Sect. VII B. The next section examine the
corresponding modeling skills.

FIG. 12: DAHMs and DAHCs from the SPDE flow.
Same as in Fig. 4 but for the SPDE flow shown in Fig. 7-(b).

Here M ′ = 2M − 1 (here M = 80), and d = 32. The DAHMs and
DAHCs shown here correspond, for each indicated frequency f , to

the dominant pair of DAH eigenvalues located above f in
Fig. 11-(a).

3. Coarse-grained DAH-MSLM modeling

Recall that the original SPDE field has been sampled
every 8-th time step, and every 4-th spatial increment δx
in space; the resulting coarse-grained field is shown on the
top panel of Fig. 13. The frequency band that is modeled
is from f = 0 up to f = 6.33 × 10−2, which represents
a fraction of the variance of 86%, and corresponds to 10
first Fourier frequencies according to the resolution set
by M ′ = 2× 80− 1 = 159.
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The corresponding DAHCs are here again modeled for
each of these frequencies according to an MSLM of the
form described in Sect. VII B, in which the number of
layers per frequency is 4, including the main one. The
resulting simulated DAH-MSLM field is shown in Fig. 13
and exhibits striking common features with the coarse-
grained SPDE field shown on the same figure.

At a statistical level, the simulated DAH-MSLM field
(red curve in Fig. 15) captures remarkably well the distri-
bution of energy across the spatial scales when compared
with the coarse-grained version of the SPDE field (blue
curve in Fig. 15) from which the parameters the DAH-
MSLM have been estimated. Note that the blue curve
in Fig. 15 shows this energy distribution for the coarse-
grained SPDE field as projected onto the first pairs of
DAHMs corresponding to the first 10 Fourier frequencies.
The black curve shows in the same figure, the energy dis-
tribution for the full coarse-grained SPDE field.

Finally, as in the case of the L96 flow, in order to
assess the ability of the simulated DAH-MSLM field to
reproduce the time-variability contained in the coarse-
grained SPDE field, we computed for each of these fields
the ACFs of each channel, followed by an averaging of
the resulting individual ACFs over the channels. The
result is shown in Fig. 14-(b) and as one can see the
ability of the simulated DAH-MSLM field in reproducing
the (average) decay of correlations is very satisfactory.
Noteworthy is the nearly exponential decay of the later,
as intuitively expected from an infinite-dimensional OU
process.

To summarize, the DAH-MSLM inverse modeling
framework provides here again efficient emulators of the
observed dynamics for many aspects. The most strik-
ing feature of the approach is that either for the lin-
ear stochastic example examined here or the nonlinear
chaotic one of Sect. VIII A, the predictor functions stay
the same, namely the monomials used for the class of
MSLMs described in Sect. VII B. The data-adaptive char-
acter of the DAHMs manifested by the capture of the
phase information contained[75] in the multivariate sig-
nal to be modeled, constitutes a key element for a suc-
cessful modeling. It allows indeed for breaking the signal
into elementary bricks, here the DAHCs, that fall natu-
rally within the MSLM class of models. In other words,
the DAHMs provide a change of basis which transforms
systematically the original dataset into time series gener-
ated by a same class of SDEs, provided the correspond-
ing DAHCs are modulated in amplitude and narrowband
(for f 6= 0). Of course many questions arise, as it did for
many novel mathematical concepts and tools, when first
introduced. The next and final section formulate some
of these.

IX. CONCLUDING REMARKS

Thus, by means of rigorous harmonic analysis tools,
this article provides a natural framework for the repre-

FIG. 13: The stochastic heat flow and its simulated
DAH-MSLM field. The coarse-grained SPDE field shown in
the top panel corresponds to that obtained from sampling units

used for the learning stage, i.e. every 8th time steps and 4th
spatial mesh size, and after projection onto the pairs of DAHMs

corresponding to the first 10 Fourier frequencies; see text for more
details.

sentation of complex time-evolving fields by simple time
series, the DAHCs, suitable for their modeling within
a universal class of models, namely the MSLMs. The
framework opens up several possible directions for fu-
ture research. We outline some of these directions below
and comment on recent achievements obtained on non-
synthetic datasets.

1. The modeling approach described in this article may
benefit from several natural developments. First, terms
of the form γj(f)yj(x

2
j + y2

j ) and γj(f)xj(x
2
j + y2

j ) in the
xj- and yj-equations, respectively, could be incorporated
within the formulation of an MSLM. The introduction
of such nonlinear “twist” terms is in part motivated by
the analysis conducted in [59]. There, it has been indeed
shown that such terms are responsible of certain inter-
actions between the noise and the nonlinear terms that
may be important to resolve. The inclusion of such twist
terms may be thus relevant for the proper modeling of a
DAHC pair, for certain applications.

Also, the driving noise of an MSLM may not be re-
quired to belong to the class of correlated white noise
processes[76] such as in Eq. (MSLM). For instance, an
MSLMs driven by Lévy α-stable processes could be rel-
evant for certain applications such as the modeling of
precipitations in climate [77, 78] and other climate fields
[79].

2. The use of MSLMs may not be limited to the model-
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FIG. 14: Averaged autocorrelation functions: modeling
skills. In each panel the black curve is obtained by computing

the ACFs of each channel of the corresponding dataset, followed
by an averaging of the resulting individual ACFs over the

channels. The red curve is obtained by averaging furthermore
across the realizations of a given DAH-MSLM simulation.

ing of pairs of DAHCs as extracted by DAH. For instance,
other multivariate time series decomposition techniques
such as MSSA [80] extract analogue time series known
as ST-PCs, which when coming in pairs that are nearly
in phase quadrature, could be also efficiently modeled by
an MSLM provided the corresponding pairs are modu-
lated in amplitude while narrowband. We mention that
a similar approach was adopted in [62] for the stochas-
tic modeling of decadal variability in ocean gyres. There
however, the nonlinear coupling within a frequency bin
was absent while linear couplings across the frequencies
(falling within a targeted frequency band) were used to
model the ST-PCs from the dataset considered in [62].

3. Similarly, coupling across frequencies that go be-
yond the driving by the same noise realization may also
be useful to build up MSLMs, in certain cases. The in-
clusion into an MSLM of the contribution of another
frequency g than a frequency f , may be indeed easily
achieved by passing the corresponding terms associated
with g into (MSLM). Of course, as far as the pairs of
DAHCs are sufficiently narrowband, such a coupling may
be superfluous and in such a case, a “same noise real-
ization coupling”—cheaper in terms of coefficients to be
estimated[81]—may be amply sufficient to reach satisfac-
tory modeling skills as shown for the time-evolving fields
of Sect. VIII.
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FIG. 15: Energy spectrum. Distribution of energy across the
spatial scales. The blue curve shows this energy distribution for
the coarse-grained SPDE field as projected onto the first pairs of
DAHMs corresponding to the first 10 Fourier frequencies; see text
for more details. The black curve shows this energy distribution
for the full coarse-grained SPDE field (i.e. without projection).

4. Unlike the synthetic datasets of Sect. VIII, the
DAH-MSLM approach has been applied to various geo-
physical multivariate datasets exhibiting complex pat-
terns, from “real-world applications.” In that respect,
the DAH-MSLM modeling of Arctic sea ice concentra-
tion has been successfully addressed in [82], providing
in particular stable inverse models for much longer time
intervals than their training period (1979-2014), beyond
the end of the 21st century. Interestingly, these mod-
els exhibit an interdecadal variability consistent with
proxy historical records, while reproducing accurately the
(nonlinear) trend contained in the observations; see [82,
Fig. 13].

Prediction experiments using the DAH-MSLM frame-
work have been also recently conducted in [83] for the
Arctic sea ice extent (SIE). Here the forecasts, as it
would be the case for any other dataset, are made for the
DAHCs using the best MSLMs learned during the train-
ing period. As a result, retrospective forecasts show that
the resulting DAH-MSLM modeling is quite skillful in
predicting the September SIE; i.e. for the most challeng-
ing SIE value to forecast. Noteworthy are the real-time
forecasts conducted in 2016 which have shown very com-
petitive skills as documented here: https://www.arcus.

org/sipn/sea-ice-outlook/2016/post-season; see [83] for
more details.

Finally we mention that the DAH-MSLM framework
has been shown to be useful for the data-driven study
of the coupling between the solar wind and the magneto-
sphere as discussed in [84]. This example shows in partic-
ular the relevance of the DAH-MSLM framework to pro-
vide inverse models of externally forced systems, another
important theme for geophysical applications [85, 86].

https://www.arcus.org/sipn/sea-ice-outlook/2016/post-season
https://www.arcus.org/sipn/sea-ice-outlook/2016/post-season
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Appendix A: DAH coefficients (DAHCs) and
frequency band reconstruction

Let us consider a d-dimensional time series X(t) =
(X1(t), · · · , Xd(t)) from which the cross-correlation coef-
ficients ρi,j between the i-th and the j-th channels, have
been estimated. Once the DAHMs have been determined
as eigenvectors of the matrix C defined in (105) (see Sec-
tion VI D), one can use them to determine extract from
X(t) the part of the signal that corresponds to a certain
frequency band [fs, fe]. We describe hereafter how to
proceed to do so.

First, note that one can always project the multidimen-
sional time series X(t) onto the orthogonal set formed by
the DAHMs, Wj , given as

Wj = (Ej1, · · · , E
j
d), j ∈ {1, · · · , dM ′},

where Ejp denotes the M ′-dimensional discrete approxi-
mation of its continuous counterpart given in (61). Some-
times Ejp is called a DAHM snippet or simply a snip-
pet.

After projection onto a DAHM, Wj , one obtains thus
the following DAH coefficients (DAHCs):

ξj(t) =

M ′∑
s=1

d∑
p=1

Xp(t+ s− 1)Ejp(s),

1 ≤ s ≤M ′, 1 ≤ t ≤ N ′ = N −M ′ + 1.
(A1)

Although the DAHCs are not formally orthogonal in
time, our numerical experiments indicate that they

also exhibit a certain phase-quadrature relationship that
seems however to be subordinated to the decay of correla-
tions: roughly speaking, the best the latter are resolved,
the more apparent is the phase-quadrature (not shown);
see also Sect. VII C.

A partial or full (i.e. without loss of variance) recon-
struction of the original data can be then obtained from
the DAHCs. Such a reconstruction is obtained from a
finite convolution between either a subset or the whole
set of DAHCs, and the corresponding Ekp ’s.

More exactly, given a M ′-dimensional DAHM snip-
pet, Ejp(s) (1 ≤ s ≤ M ′), and its corresponding DAHC,
t 7→ ξj(t), one can form the reconstructed component
(RC), Rjp(t), given at time t by

Rjp(t) =
1

Mt

Ut∑
s=Lt

Aj(t− s+ 1)Ejp(s), 1 ≤ s ≤M ′. (A2)

The values of the normalization factor Mt, as well as of
the lower and upper bound of summation Lt and Ut,
differ between the central part of the time series and
its end points, and are given here as for M-SSA; see
[80, Eq. (12)]. Forming the corresponding reconstructed

multivariate time series Rj(t) = (Rj1(t), · · · , Rjd(t)), and
summing over all of the (resolved) j’s allows us to recover
the original multivariate time series X(t). A summation
over a subset of {1, · · · , dM ′} gives a partial reconstruc-
tion of X(t).

Unlike for M-SSA [80] or PCA, such a partial recon-
struction is not necessarily guided by a certain targeted
percentage of the variance of X(t) to be captured, but
can also be performed over a targeted frequency band.
Due to its harmonic flavor, the DAH approach allows us
indeed to consider a notion of harmonic reconstructed
component (HRC) which consists—for a given chan-
nel p—of summing the RCs corresponding to a given fre-
quency fk, namely

Rfkp (t) =
∑

j∈J (fk)

Rjp(t), (A3)

where J (fk) corresponds to the indices j in {1, · · · , dM ′}
for which the DAHM snippet, Ejp(s), is associated with
the frequency fk. We know indeed from Theorem V.1
that there is 2d eigenvalues corresponding to a frequency
fk and as much DAHMs.

In applications, the DAH approach offers thus a way
to determine the contribution within a component Xp(t)
(of the multivariate signal X(t)) of a particular frequency
band If := [fs, fe] by simply adding up the HRCs over
the frequencies lying in If .
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