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INTRODUCTION

In recent years, the control of multiple vehicles has attracted increasing attention from scholars around the world, owing to its potential applications whether in the military or civilian fields and by the fact that many benefits can be obtained when a single complicated vehicle is equivalently replaced by multiple yet simpler vehicles. To tackle this issue, two approaches are commonly adopted in literature, the first denoted centralized approach [START_REF]Flight formation control[END_REF] [START_REF] Chiaramonti | Formation control laws for autonomous flight vehicles[END_REF] which is a direct extension of the traditional single-vehicle control is based on the assumption that a central station controls a whole group of vehicles. The second approach, called a distributed approach, which is the one considered in this paper does not require a central station for control and allows for a better adaptation to many physical constraints such as limited resources, short chains of wireless communication and autonomy problems [START_REF] Olfati-Saber | Flocking for multi-agent dynamic systems: Algorithms and theory[END_REF] [START_REF] Park | Cucker-Smale flocking with inter-particle bonding forces[END_REF]. The recent results in this area are categorized into several directions, such as consensus (synchronization [START_REF] Li | Consensus of multiagent systems and synchronization of complex networks: a unified viewpoint[END_REF] [START_REF] Schenato | Average TimeSynch: A consensus-based protocol for clock synchronization in wireless sensor networks[END_REF], rendezvous [START_REF] Corts | Robust rendezvous for mobile autonomous agents via proximity graphs in arbitrary dimensions[END_REF][8] [START_REF] Hui | Finite-time rendezvous algorithms for mobile autonomous agents[END_REF]), formation control and flocking [START_REF] Reynolds | Flocks, herds and schools: A distributed behavioral model[END_REF]- [START_REF] Belkadi | Robust flocking con-trol design for a fleet of autonomous agents[END_REF], optimization [START_REF] Nedic | Distributed subgradient methods for multi-agent optimization[END_REF] [START_REF] Rabbat | Distributed optimization in sensor networks[END_REF], and task assignment [START_REF] Michael | Distributed multi-robot task assignment and formation control[END_REF] [START_REF] Berman | Optimized stochastic policies for task allocation in swarms of robots[END_REF].
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In the operation of Unmanned Aerial Vehicles (UAVs), the ability to coordinate their trajectories in a multiple vehicle system is vital to carry out different type of missions. In this paper, the issue of trajectory planning is addressed for UAVs operating in a hostile environment. Specifically, the objective is to get a set of UAVs to fly on a 2D plane while converging to a predefined spatial configuration around a target point while ensuring collision and obstacle avoidance between team members. The approach is formulated as a distributed optimization problem. Each UAV is equipped with an independent optimization algorithm which, by minimizing a cost function for each UAV allows the fleet to reach the defined objectives. This distributed planning path was introduced in previous works [START_REF] Belkadi | UAVs team flight training based on a virtual leader: Application to a fleet of Quadrirotors[END_REF] [START_REF] Belkadi | UAVs fleet control design using distributed particle swarm optimization: A leaderless approach[END_REF]. In order to assume an on-line approach, it is necessary to consider an efficient optimization algorithm in terms of resource or time consuming for an embedded system. One of the best performing algorithms in this area is the Particle Swarm Optimization algorithm (PSO) [START_REF] Kennedy | Swarm intelligence[END_REF]. The PSO has demonstrated optimal performance by minimum search term with a minimum calculation time and a relatively easy implementation. In [START_REF] Eberhart | A new optimizer using particle swarm theory[END_REF] authors reported that PSO algorithm could yield significant improvement in solving Trajectory Planning Problem (TPP) and in [START_REF] Guo | Trajectory planning of redundant robot manipulators using QPSO algorithm[END_REF] authors introduced Quantum-PSO (QPSO) to design a collision-free trajectory for planar redundant manipulator. In [START_REF] Chyan | Obstacle avoidance control of redundant robots using variants of particle swarm optimization[END_REF] four variants of Particle Swarm Optimization are proposed to solve the obstacle avoidance control problem of redundant robots.

The rest of paper is organized as follows. The details of the problem formulation are discussed in Section 2. In Section 3, we present the proposed distributed path planning solution. Then, Section 4 illustrates the performance of the method based on various experiments. Finally, a conclusion and perspectives are presented in the last section.

PRELIMINARIES AND PROBLEM STATEMENT

In general, an agent refers to a dynamic system. In this paper, the term 'agent' is interchangeable with "quadrotor", which corresponding non-linear dynamics. Each agent is described in the state space as follows:

Ẋi (t) = f (X i , U i ) (1) where X i (t) ∈ R m and U i (t) ∈ R k : m, k ∈ N A fleet
consists of a set of agents N = 1, ..., n where n is the number of quadrotors. Information exchange among agents is modeled by an undirected graphs. Let describe system by a weighted graph G(N, ϵ(t), A(t)) where N = 1, ..., n and ϵ(t) ∈ N × N are the set of nodes and the set of arcs respectively of the graph G and A(t) a matrix of M n (R) of elements in R as a ij (t) > 0 if : (j, i) ∈ ϵ(t). At each sample, i is an incoming neighbor of j and j is an outgoing neighbor of i. G is assumed to be an undirected graph such as :

∀(i, j) ∈ ϵ(t) ⇒ (j, i) ∈ ϵ(t). In this case, matrix A(t) is symmetrical with a ij (t) = a ji (t).
First of all, let us define for each i node a set of neighbors Ξ i (t) such that:

Ξ i (t) = {j ∈ N : ∥x j (t) -x i (t)∥ ≤ l} (2) where l defines the scope of the neighborhood and Ξ i (t) is called the metrical neighborhood of the agent i.

Influence between agents is represented by a ij (t) elements of the matrix A(t) such that:

a ij (t) = 1 + exp ( c -d ij (t) σ ) (3) 
The value of the a ij (t) function depends on the difference between d ij (t) the distance between two agents i and j with the safety distance c (where c > l), and it is all the greater when a ij (t) < c and converges to the value 1 when 

d ij (t) >> c
∂(t) = ∂ d (4) 
(2) Collisions between interaction agents are avoided ∀i, j ∈ N, i ̸ = j :

∥x i (t) -x j (t)∥ > c (5) (3

) Ensuring the obstacle avoidance

The issue is formulated as an online optimization problem where by minimizing a certain cost function it can control a fleet of UAVs. A distributed planning path strategy based on Particle Swarm Optimization (PSO) algorithm is implemented to achieve this goal and was introduced in our previous work [18][19]. In this paper, experimental tests are carried out to consolidate the theoretical part and at the same time adjustments are added to the optimization block. This includes the main contribution of this paper with obstacle avoidance part included in the control of the fleet.

CONTROLLERS DESIGN

Definition of the cost function

In order to define in deep the developed method, let us consider a fleet of n UAVs (of the quadrotor type) operating in the R 2 space. This multiple rotary wing UAV has four motors arranged in the form of a cross of equal sizes. Its structure offers it the advantage of vertical take off and landing, and the possibility of stationary flights.

At first, let us define a cost function Λ i (t) for each U AV i such that:

Λ i (t) = ρ ( ∥P d -[x i (t) + h]∥ -d d ip ) + q ∑ j=1 a ij (t) ( ∥x j (t) -[x i (t) + h]∥ -d d ij )
)

+ m ∑ k=1 Obs ik (t) (6) 
with i ̸ = j, q = card(Ξ(t)), h ∈ R 2 , and ρ >> 1, d d ip representing the desired distance between U AV i and target point with m the number of obstacles detected by the ith UAV.

The main goal is to find the best vector h for each agent i minimizing the cost function Λ i (t) such that:

∀i ∈ N : lim t→∞ Λ i (t) = 0 ⇒ lim t→∞ ∂(t) = ∂ d (7)
The reference trajectory at time t + τ for the agent i will then be:

Y id (t + τ ) = Y i (t) + h (8)
The ρ coefficient in the cost function should be larger than 1. This choice is due to the fact that we favor each agent i position that tends to be in the direction of the target point P d . During the evolution of the agents in R 2 space, noncollision of the agents should be ensured. This constraint is introduced in the cost function Λ i (t) through function a ij (t) which is all the greater when d ij (t) < c and converges to the value 1 when a ij (t) >> c. So, each agent i is more likely to favor the values of h which avoids the need for the distances d ij (t) < c and minimizes the cost function Λ i (t), thanks to the PSO algorithm.

To take into account obstacle avoidance in the fleet control strategy, an additional term is introduced into the cost function such that:

Obs ik (t) = exp   c - ( ∥x kobs (t) -[x i (t) + h]∥) ) σ   (9)
The value of the Obs ik (t) function also depends on the difference between the distance between agent i and obstacle k with the safety distance c, and it converges to zero when the distance is much greater than the safety distance. It is assumed that the obstacle positions are unknown and are detected at a distance d obs .

The algorithm 1 shows, in more detail, the most important steps considered in the proposed strategy to manage the fleet of UAVs. 

x id (t + τ ) = x i (t) + h x y id (t + τ ) = y i (t) + h y end if until End of experimentation

Definition of the control law

In order to validate the proposed PSO algorithm in real UAVs, an appropriate position control law needs to be selected such that the Y id (8) is correctly followed.

The selected scheme is a quaternion-based control, which separates the rotation and translation dynamics. Consider the vehicle's dynamic model as

d dt    p ṗ q ω    =       ṗ q ⊗ bF th m ⊗ q * + g 1 2 q ⊗ ω J -1 (τ -ω × J ω)       (10) 
where p ∈ R 3 and ṗ ∈ R 3 are the vehicle's position and velocity vectors, F th defines the thrust generated by the quadrotor motors and b = [ 0 0 1 ] T its direction, m and g represent the vehicle's mass and gravity vector, respectively, q describes the vehicle's orientation as a quaternion, ω denotes is the angular velocity, J introduces the inertia matrix with respect to the body-fixed frame and τ is the torque vector caused by the action of the motors.

A position law which stabilizes [START_REF] Reynolds | Flocks, herds and schools: A distributed behavioral model[END_REF] to a desired reference is then defined as u pos = -K pos (x pos -x pos d ), [START_REF] Ahn | Oncollisionavoiding initial configurations to cucker-smale type flocking models[END_REF] where x pos = [ p ṗ ] T is the vehicle's translational state vector, K pos ∈ R 3 denotes a diagonal gain matrix with all positive entries, and

x pos d = [ Y d (t) Ẏd (t) ]
T is the desired reference vector, in which Y d (t) is the PSO trajectory computed from equation [START_REF] Su | Rendezvous of multiple mobile agents with preserved network connectivity[END_REF], and its derivate Ẏd (t) = 0 is neglected.

The translational control law is then incorporated using a quaternion attitude trajectory q d as

q ′ = (b • u pos + ||u pos ||) + b × u pos q d = q ′ ||q ′ || F th = ||u p || , ( 12 
)
Then, an attitude control law is defined as:

u = -K att (x att -x att d ) (13 
) where K att ∈ R 3 denotes the control gains, x att = [ (2 ln q) T ω T ] T , and the attitude reference is given by

x att d = [ (2 ln q d ) T ( d dt 2 ln q d ) T ]T
For more details, please refer [START_REF] Carino | Quadrotor quaternion control[END_REF].

PRACTICAL RESULTS

Our proposed algorithm was first introduced on a single quadrotor to validate its feasibility and performance using real time experiments, afterwards, three quadrotor were considered in a simulated environment to corroborate the algorithm's behavior on a fleet.

Firstly, the PSO technique is used by one quadrotor to plan its path required to converge to a desired position. Next, unknown disturbances are added. The PSO algorithm re-computes the required trajectory to recover from the perturbations. Then, obstacles are added such that the quadrotor changes its path to avoid collisions, the location of the obstacles is considered to be known.

finally, three quadrotor are introduced, each one computes its own trajectory such that a uniform fleet is formed around a given target while avoiding collisions amongst each other. This last scenario was validated in a simulated environment.

The simulation parameters considered in this paper are illustrated in Table 1.

ρ σ c d obs 5 0.4 0.8m 3m h xi , h xi τ d d ij d d ∈ [-0.4m, 0.4m] 0.1s 1.732 0 Table 1. PSO considered parameters
The quadrotor used in all the experiments is a Parrot ARDrone2, which firmware was modified to be capable of running our custom code. The framework used in this drone is part of the platforms created by the team of the Heudiasyc Laboratory at the Universit de Technologie de Compigne.

One agent, no obstacles, no disturbances

In this first experiment, three consecutive targets are given to the quadrotor using a ground station. The optimization algorithm computes the desired position taking into account the dynamic constraints of the UAV, since the position is calculated in each iteration, it forms a trajectory which makes the UAV reach the desired point in a smooth manner.

Figure 1 illustrates the desired target points, the computed trajectory, and the real position of the UAV in a 2D space. The trajectory generation and tracking is represented in Figure 2, note that, even if when the target's position changes abruptly, the PSO trajectory converges smoothly to the desired reference. The simulations and experiments can be watched at the following link:

https://www.youtube.com/watch?v=QLRl0Js72L0

One agent with disturbances

To assess the robustness of the trajectory generator, the quadrotor was subjected to external disturbances. Instead of only compensating the increased error, the PSO algorithm re-computes the trajectory to recover from the perturbation.

a) The first experiment considers the same scenario as in section 4.1, but now, a disturbance is added while the UAV is following the trajectory, see Figure 3. Figure 6 illustrates a member of our team displacing the drone to a position far from the desired reference (which was set to [0,0]) with one hand.

Observe on figure 7 that the PSO algorithm computes a trajectory to return to the reference target, but since it stays close to the UAV's position, the recovery from the disturbance is smooth.

One agent in the presence of obstacles

In the next experiment, a barrier is considered to be across the path of the quadrotor. When the vehicle approaches near the obstacle, the PSO algorithm adapts the trajectory to avoid a collision, see Figure 8. 

Fleet of three quadrotors

Finally, the PSO algorithm was applied in a fleet of UAVs consisting of three quadrotors in a simulated environment, see Figure 10.

In this simulation, the target point's position P d and the desired configuration for the UAVs from the matrix ∂ d are fixed. The elements d ij (t) are defines such that the desired distance between UAVs is homogeneous, thus arriving to a triangle configuration around the target point. A second simulation was then performed to illustrate the trajectory followed by each agent to arrive to the formation of the fleet. Figure 12 illustrates the path followed by each UAV.

Note the triangular formation of the fleet when the target is reached, and the agents reaction when they come close to each other. An important issue that needs to be addressed in the fleet formation problem is convergence of the distance between agents to a desired value. In this case, an uniform triangular formation is expected with a desired distance of 1m towards the target, thus implying using simple geometry that the distance between agents is d agents = 2(1m) cos(π/6) = 1.732m Fig. 13. Desired distance between agents in a simulated experiment Figure 13 illustrates the convergence of all the distances between agents to the desired value, thus ensuring the fleet formation around the target. It should be noticed that the safety distance of the neighborhood is respected throughout the simulation.

Position in X axis [m]

CONCLUSION

This paper has presented a distributed path planning approach for the control of a fleet of Unmanned Aerial Vehicles. The control objective has been formulated as an optimization problem based on a Particle Swarm Optimization algorithm (PSO). The minimization of a cost function allowed to generate in a distributed way the trajectories of the UAVs which guarantee the control of the fleet. The main advantage of the proposed approach is that it is only dependent on the trajectory generation part and it is independent from the model or from the control law of the UAVs, which makes it easier to use.

Simulation and experiment results have clearly shown that the proposed method is effective for the surface coverage and have also shown a robust approach against the collisions and obstacle avoidance. From those first results, we intend to develop this algorithm more in terms of formalization and implement it soon on control of fleet of real quadrotors in a 3D space. Another perspective would be to adapt the algorithm parameters to consider the case of a moving target.
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 1 Fig. 1. 2D targets, trajectory and drone's position for the first experiment.
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 2 Fig. 2. Target reference, trajectory, and UAV's position for each axis.

Fig. 3 .Fig. 4 .Fig. 5 .

 345 Fig. 3. One of the members of our team pushing the UAV to generate a disturbance in flight experiments.
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 67 Fig.6. A member of our team inducing large perturbations on the quadrotor.
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 8 Fig. 8. Vehicle's trajectory correction to avoid collision with an obstacle.
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 99 Figure 9 illustrates the generation of the trajectory for both x and y axes in the previous scenario, note the corrections made to the trajectory mainly in the y axis to avoid the obstacle.

Fig. 10 .Fig. 11 .

 1011 Fig. 10. Simulated environment for fleet of three dronesThe simulated experiment consisted on a set of four reference points, given to each quadrotor using a ground station. Each quadrotor then computes independently its trajectory taking into account the position of the other agents.A first simulation consisted in initializing the quadrotors in random position, then a sequence of four target points are given at different times. The UAVs then form a fleet around the reference ensuring a safety distance between each other. Figure11represents this behavior.
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 12 Fig. 12. A second simulation shows the trajectory followed by each UAV to converge to the desired formation
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	The sets of elements d ij (t) representing the distances be-
	tween agents forms the matrix ∂(t) at time t, and d d ij the
	desired distances between agents forms the matrix ∂ d . It
	is also assumed that each agent can detect an obstacle at
	a distance l ′ .
	The control objective is then:
	(1) To bring the fleet from an initial geometrical configu-
	ration ∂(t

0 ) to a desired geometrical configuration ∂ d around a target point lim t→+∞

  Minimization of the cost function Λ i (t) by PSO Algorithm . Chose the vector h[h x , h y ] that minimizes the cost function Λ i (t) . Calculate the next position x id and y id at time t + τ :

Algorithm 1 Trajectory generation . Initialize parameters . Define the desired configuration for the UAVs with the matrix ∂ d repeat {at each step time} . Calculate the matrix ∂(t) if ( (∃d ij (t) < c)or(t%τ == 0) ) then . Find all topological neighbors for quadrotor i by set Ξ i (t) . Detect obstacles for quadrotor i .