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Abstract: Biogeochemical simulation models are important tools for 

describing and quantifying the contribution of agricultural systems to C 

sequestration and GHG source/sink status. The abundance of simulation 

tools developed over recent decades, however, creates a difficulty 

because predictions from different models show large variability. 

Discrepancies between the conclusions of different modelling studies are 

often ascribed to differences in the physical and biogeochemical 

processes incorporated in equations of C and N cycles and their 

interactions. Here we review the literature to determine the state-of-

the-art in modelling agricultural (crop and grassland) systems. In order 

to carry out this study, we selected the range of biogeochemical models 

used by the CN-MIP consortium of FACCE-JPI (http://www.faccejpi.com): 

APSIM, CERES-EGC, DayCent, DNDC, DSSAT, EPIC, PaSim, RothC and STICS. In 

our analysis, these models were assessed for the quality and 

comprehensiveness of underlying processes related to pedo-climatic 

conditions and management practices, but also with respect to time and 

space of application, and for their accuracy in multiple contexts. 

Overall, it emerged that there is a possible impact of ill-defined pedo-

climatic conditions in the unsatisfactory performance of the models 

(45.9%), followed by limitations in the algorithms simulating the effects 

of management practices (33.8%). The multiplicity of scales in both time 

and space is a fundamental feature, which explains the remaining 

weaknesses (i.e. 20.3%). Innovative aspects have been identified for 

future development of C and N models. They include the explicit 

representation of soil microbial biomass to drive soil organic matter 

turnover, the effect of N shortage on SOM decomposition, the improvements 

related to the production and consumption of gases and an adequate 

simulations of gas transport in soil. On these bases, the assessment of 

trends and gaps in the modelling approaches currently employed to 



represent biogeochemical cycles in crop and grassland systems appears an 

essential step for future research. 

 

Response to Reviewers: Revision 2 

 

Reviewer #3: The authors provide a thorough review of models for modeling 

C and N cycling in agronomic systems. The review is interest and 

informative, especially with regards to highlighted discrepancies in 

modeling capacity and accuracy. This research is important for modeling 

GHG, and impacts of management practices on agricultural output of GHG. 

Especially useful is the identification of shortcoming and potential 

sources of error in the models tested. The manuscript should be published 

after (very) minor revision. Minor suggested changes: 

 

1. Line 58: and an adequate simulation of gas 

Response to Reviewer comment No. 1: Modified as suggested. 

 

2. line 58: Given these conditions, the assessment 

Response to Reviewer comment No. 2: Modified as suggested. 

 

3. Line 83-84: that C and nitrogen (N) cycling strongly depend on  

Response to Reviewer comment No. 3: Modified as suggested. 

 

4. Line 102: even when models are run under the same conditions of 

Response to Reviewer comment No. 4: Modified as suggested. 

 

5. Line 150: carbon dioxide (CO2), and nitrate (NO3)) 

Response to Reviewer comment No. 5: Modified as suggested. 

 

6. Line 191: adequate options and parameters values allows to simulate 

simulation of a wide 

Response to Reviewer comment No. 6: Modified as suggested. 

 

7. Line 193: It allows considering consideration of the effect 

Response to Reviewer comment No. 7: Modified as suggested. 

 

8. Line 211: Then, in theat level 2 

Response to Reviewer comment No. 8: Modified as suggested. 

 

9. Line 218: knowledge on of the 

Response to Reviewer comment No. 9: Modified as suggested. 

 

10. line 275: of N in the soil profile 

Response to Reviewer comment No. 10: Modified as suggested. 

 

11. line 293-4: Reference evapotranspiration is accounted bycalculated 

using the Penman-Monteith (56%), or Penman and Priestley-Taylor (44%) 

equations. 

Response to Reviewer comment No. 11: Modified as suggested. 

 

12. Line 311-13: In general from our analysis indicated emerged that 

the three main processes belonging to the general class of GHG emissions 

and other fluxes are almost fully simulated by the considered models. 

Merge single-sentence paragraphs into larger paragraphs throughout 

results. 

Response to Reviewer comment No. 12: Modified in the text: (see 

L:315:318: “For better assessing how C and N cycles are involved in the 

simulation of GHG emissions and other fluxes within several models, three 



main processes were identified (Table S4, see supplementary material). 

Overall, our analysis indicates that these three main processes are 

almost fully simulated by the considered models”). 

 

13. Line 314: In the main process called CO2 the The most important C-

fluxes from the ecosystems were considered in the main process called 

"CO2". 

Response to Reviewer comment No. 13: Modified as suggested. 

 

14. Line 364: e.g. STICS accounts for burial through tillage 

Response to Reviewer comment No. 14: Modified as suggested. 

 

15. Line 393: such as patterns of air temperature, precipitation, solar 

radiation, also and including 

Response to Reviewer comment No. 15: Modified as suggested. 

 

16. Line 427: i.e. under- or over-estimation 

Response to Reviewer comment No. 16: Modified as suggested. 

 

17. Line 432: anaerobic conditions, e.g. Bollmann 

Response to Reviewer comment No. 17: Modified as suggested. 

 

18. Line 461: The Amount amount of bound enzymes increases with the 

increasing layer charge of 

Response to Reviewer comment No. 18: Modified as suggested. 

 

19. Line 466: affects the amount of soil enzymes 

Response to Reviewer comment No. 19: Modified as suggested. 

 

20. Line 467: At leastAnd finally, the increase. Throughout, change 

"fine texture soil" to "fine textured soil" 

Response to Reviewer comment No. 20: Modified as suggested. 

 

21. Line 502: due to different types of 

Response to Reviewer comment No. 21: Modified as suggested. 

 

22. Line 529: the models subroutines 

Response to Reviewer comment No. 22: Modified as suggested. 

 

23. Line 531: the fact that the model 

Response to Reviewer comment No. 23: Modified as suggested. 

 

24. Line 605: underestimation of particulate organic C 

Response to Reviewer comment No. 24: Modified as suggested. 

 

25. Line 607: fertilization and tillage, which were probably the most 

commonly simulated 

Response to Reviewer comment No. 25: Modified as suggested. 

 

26. Lines 619-20: related to the ecosystem and climate,  which makinges 

it difficult to define the parameter which most strongly 

Response to Reviewer comment No. 26: Modified as suggested. 

 

27. Lines 627-8: rice cultivation being too low (i.e. effect of 

waterlogged soil not included in RothC) being too low 

Response to Reviewer comment No. 27: Modified as suggested. 

 

28. Line 643: ones where they have been previously 



Response to Reviewer comment No. 28: Modified as suggested. 

 

29. Line 656: with the results of Li et al. (2005), 

Response to Reviewer comment No. 29: Modified as suggested. 

 

30. Line 680: agriculture fits 

Response to Reviewer comment No. 30: Modified as suggested. 

 

31. Line 693: physics, and the interface between the two that 

Response to Reviewer comment No. 31: Modified as suggested. 

 

32. Line 749: to optimize resources 

Response to Reviewer comment No. 32: Modified as suggested. 

 

33. Several places: correct spelling of vermiculite  

Response to Reviewer comment No. 33: Corrected 

 

34. Line 834: should take into account for ions interactions 

Response to Reviewer comment No. 34: Modified as suggested. 

 

35. Lines 858-861: For the N cycle, the main limitations inherent in 

model structure were found under different pedo-climatic conditions 

(51.7%), whilst for the scale of application the major weaknesses were 

due to different pedo-climatic conditions (20.4%). Consider rewrite - 

it's a bit cumbersome as written. 

Response to Reviewer comment No. 35: Modified in the text: (see 

L:865:867: “For both the N-cycle modelling and scale of application, the 

main limitations were found in the response to different pedo-climatic 

conditions (51.1% and 20.2%, respectively). 

 

  

Reviewer #4: This manuscript is trying to present a comprehensive 

analysis of the strengths and weaknesses of existing state-of-the-art 

agro-ecosystems models in terms of simulating C and N fluxes. Such an 

effort is timely and is expected to contribute to further activities 

intended to improve agro-ecosystem models to address climate change 

challenges. I understand that the authors have to review numerous 

literatures. Here I would like to point out several minor inaccuracies 

that I hope the authors will fix before acceptance for publication. My 

specific comments are as follows: 

1. Page 1 line 46, instead of citing "www.faccejpi.com", better to 

cite other literature that focuses on describing the CN-MIP. 

Response to Reviewer comment No. 1: We thank the reviewer for the 

comment. We changed the website address, which now specifically targets 

to the CN-MIP project. The project being ongoing, peer-review literature 

has not yet been published from CN-MIP. The current paper is the first 

main contribution. 

 

2. Page 2 line 60: "appears an essential step for future research". 

"appears to be …" is better. 

Response to Reviewer comment No. 2: Modified as suggested. 

 

3. page 18 line 575: "… soil capacity to transform crop residue in 

SOC" is confusing. 

Response to Reviewer comment No. 3: The sentence has been rewritten (see: 

L593:594). 

 



4. Page 6 lines 181-185, the description of EPIC does not reflect the 

state-of-the-art of its development in C-N cycling. Please consider 

changes according to the following information. 

a) The latest public version of EPIC is 1102. This version is not 

available on the website at epicapex.tamu.edu, but is available by 

contacting Jimmy Williams and has already been widely used in the USDA 

CEAP projects and numerous papers (e.g. Izaurralde et al. 2006; Zhang et 

al. 2015).  

b) EPIC can simulate more than 100 crops and grasses. 

c) The development of EPIC CN algorithms is closely tied to the 

ongoing soil and water assessment tool (SWAT; Arnold et al. 1998) 

development efforts as described in Zhang et al. (2013). The agro-

ecosystem module within the SWAT model is based on EPIC and provides 

updates back to EPIC. Therefore, I suggest using EPIC/SWAT as one model, 

instead of only mentioning EPIC. 

d) Recent development of EPIC/SWAT (Yang et al. 2017) enables 

simulation of "N2O losses from nitrification" and "Denitrification: 

N2/N2O ratio". So please change this in table 4.  

e) relevant references are as follows: 

 Arnold, J. G., R. Srinivasan, R. S. Muttiah, and J. R. Willianms. 1998. 

Large area hydrologic modeling and assessment part 1: model development. 

Journal of the American Water Resources Association 34:73-89. 

Yang, Q., X. Zhang, M. Abraha, S. Del Grosso, G. P. Robertson, and J. 

Chen. 2017. Enhancing the soil and water assessment tool model for 

simulating N2O emissions of three agricultural systems. Ecosystem Health 

and Sustainability 3(2):e01259. doi: 10.1002/ehs2.1259  

Zhang, X., Izaurralde, R.C., Arnold, J.G., Williams, J.R. and Srinivasan, 

R., 2013. Modifying the Soil and Water Assessment Tool to simulate 

cropland carbon flux: Model development and initial evaluation. Science 

of the Total Environment, 463, pp.810-822. 

Zhang, X., Izaurralde, R.C., Manowitz, D.H., Sahajpal, R., West, T.O., 

Thomson, A.M., Xu, M., Zhao, K., LeDuc, S.D. and Williams, J.R., 2015. 

Regional scale cropland carbon budgets: Evaluating a geospatial 

agricultural modeling system using inventory data. Environmental 

Modelling & Software, 63, pp.199-216. 

Izaurralde, R.C., Williams, J.R., McGill, W.B., Rosenberg, N.J. and 

Jakas, M.Q., 2006. Simulating soil C dynamics with EPIC: Model 

description and testing against long-term data. Ecological Modelling, 

192(3), pp.362-384. 

Response to Reviewer comment No. 4: We thank the reviewer for these 

comments. We modified the text (see L176-183: “EPIC (Environmental Policy 

Integrated Climate) (Williams, 1995, Izaurralde et al., 2012) can 

simulate about 130 crop and grass species through its plant growth model, 

which uses unique parameter values for each species. It can predict 

changes in soil, water, nutrient, pesticide movements, and yields as a 

consequence of management decisions. It also assesses water quality, N 

and C cycling, climate change impacts, and the effects of atmospheric 

CO2. Moreover, novel algorithms were recently implemented (Izaurralde et 

al., 2012) to improve the simulation of C and N transformations, gas (O2, 

CO2, and N2O) and solute (NO3-, NO2-) movement, and ecosystem C balance 

and fluxes (Izaurralde et al., 2012)") and the tables (see Table 4, 5, 6 

and 7) according to the information received by the EPIC development 

team. 

For the comment at point C, we consider the use of the notation EPIC/SWAT 

not appropriate in this case for several reasons. As stated in lines 108-

116 of the manuscript, we examined I this study the nine models used 

within the research project CN-MIP. Only EPIC, and not SWAT, was used 

within this research project. It is certainly true that EPIC and SWAT 



share several algorithms and subroutines. However, the two models cannot 

be unambiguously associated because EPIC is a field scale model, while 

SWAT is a watershed model. In particular, EPIC simulates with a higher 

level of detail the crop growth and some soil processes and dynamics. 

Because of these differences, the two models produce different results 

with the same inputs. EPIC and SWAT developing people at Blackland 

Research Station in Temple, TX (USA), with whom we have interacted prior 

to revising the manuscript, agree on dealing with EPIC and SWAT as 

distinct models. This means that the use of EPIC/SWAT is not appropriate. 

For the comment at point E, SWAT not being part of this exercise, and 

based on our previous comment, we consider the first three references in 

list suggested by the reviewer as not applicable to this study. We have 

included the fourth reference suggested because it supports our analysis, 

which has also implied to modify the results. The last suggested citation 

was already included in the previously submitted manuscript. 

 

5. For DOC simulation, I think DayCent can do it. Please double check 

and revise this information in Table 4.  

Response to Reviewer comment No. 5: We thank the reviewer for the 

comment. The information reported in table 4 has been modified 

accordingly. 

 



November 29
th

, 2016 

 

Dear Editor, 

 

We would like to submit the enclosed manuscript entitled “Review and analysis of strengths 

and weaknesses of agro-ecosystem models for simulating C and N fluxes”, which we wish to 

be considered for publication in Science of the Total Environment. 

 

This is a review paper analysing strengths and weaknesses of simulation models commonly 

used to simulate C and N fluxes in crop and grassland systems. The content of the paper 

mostly reflects the experience of the consortium (bringing together 10 organizations from six 

countries) and the evaluation conducted in the ongoing project “C and N models 

intercomparison and improvement to assess management options for GHG mitigation in agro-

systems worldwide” (CN-MIP, 2014-2017), established within the Joint Programming 

Initiative on Agriculture, Food Security and Climate Change (FACCE-JPI, 

http://www.faccejpi.com). The study assesses several processes linking soil, vegetation and 

atmosphere compartments (in interaction with farming practices), and provides an insight on 

some recent research progresses in the field of biogeochemistry that could inform further 

model developments 

 

The authors believe the paper fits into the journal’s scope and aim, and would be of interest 

for journal’s readership. They would thus value and feel privileged to receive feedback from 

your journal.  

The authors declare that they have no conflict of interest. The authors also acknowledge that 

the content of the manuscript has not been published previously nor is being considered for 

publication elsewhere. 

 

Sincerely, 

The authors 

Cover Letter

http://www.faccejpi.com/


Revision 1 

 

Reviewer #1: This review study performed by Brilli et al. is comprehensive and systematic. In the 

manuscript, the authors compared nine agricultural models that can simulate C and N cycling, the 

underlying processes, abilities, and limitations of different models were analyzed and discussed, 

and also some perspectives on model development are given. The manuscript is written well and 

informative, and is acceptable by the journal of Science of the Total Environment. However, some 

minor revisions are needed, especially the format, as listed below. 

 

1. Abstract, the full name of each abbreviation should be given, such as "C", "GHG", "SOM", 

etc. 

Modified as suggested. 

 

2. The section 2.1 is some information on background, so I suggest integrate these two 

paragraphs  into the introduction section. While, the section 3.1 is the method you used to 

analyze different models, so it would be better to move this part to approaches section. 

We agree with these suggestions. Parts of sub-section 2.1. have been integrated into the 

Introduction section. Sub-section 3.1. has been moved to the Modelling approach section 

(Section 2), and has become Sub-section 2.2.   

 

3. Line 148, change "Tab." to "Table", and the same for all the text. 

Modified as suggested. 

 

4. Line 157, add the full name to each abbreviation when it used first, and then use the 

abbreviation in the follow text. For example, line 163 "NPP" and "NEE"; line 427, "WFPS" 

should be given in line 394; line 439 "BD" should be given in line 393; line 469, the 

abbreviation of "SOM" has been given in line 88. Line 624 "GHG" has been given in line65. 

Please check the whole text carefully. 

Modified as suggested. 

 

5. Line 248, the supplementary tables should be named as Table S1, S2, … S5. 

Modified as suggested. 

 

6. Line 316-317, why use capital letters for "Gross Primary Production" and others? 

Modified as suggested (with lower-case letters). 

 

7. Line 325-330, I suggest use "CO2" rather than "CO2-GHG", and use "Non CO2-Gas" instead 

of  "Non CO2-GHG" because N2 and NH3 are not GHG. 

Modified as suggested. 

 

8. Line 448, set "2" as subscript. 

Modified as suggested. 

 

9. Line 477, not only archaea but also bacteria and fungi can carry out nitrification. 

Added to the text. 

 

10. Line 477-487, heterotrophic nitrification has been demonstrated to widely occur in terrestrial 

ecosystems, including cropland and grassland (Chen et al., 2015). Heterotrophic nitrification 

is a different process from autotrophic nitrification. Has this process been included in these 

nine models? 

Responses to Reviewers Comments



Chen, Z.M., Ding, W.X., Xu, Y.H., Müller, C., Rütting, T., Yu, H.Y., Fan, J.L., Zhang, J.B., 

Zhu, T.B., 2015. Importance of heterotrophic nitrification and dissimilatory nitrate reduction 

to ammonium in a cropland soil: Evidences from a 15N tracing study to literature synthesis. 

Soil Biology and Biochemistry 91, 65-75. 

We thank the reviewer for this comment. In our analysis we considered the process of 

nitrification without discerning if it was from autotrophs or heterotrophs, since none of the 

models reported in the paper is able to make it. 

 

11. Line 484, moisture is an important factors influencing nitrification rate. 

The authors agree. Moisture has also been mentioned in the text 

 

12. Line 508-509, C/N is one of the major factors, so add largely before "depends on". Change 

"plant residues" to "organic materials". 

Modified as suggested (L:502-507 in the revised text). 

 

13. Line 509-513, it has been found that the composition of organic materials rather than a 

simple indicator of C/N (Bonanomi et al., 2013). Is there any model considering the 

composition or structure of SOM? 

Bonanomi, G., Incerti, G., Giannino, F., Mingo, A., Lanzotti, V., Mazzoleni, S., 2013. Litter 

quality assessed by solid state 13C NMR spectroscopy predicts decay rate better than C/N 

and lignin/N ratios. Soil Biology and Biochemistry 56, 40-48. 

We thank the reviewer for this comment. Biogeochemical processes are hard to be 

reproduced and their representation is often simpler than reality. As far as nitrification, we 

did not consider the composition of organic materials since the nine models used are mainly 

based on C/N ratios without distinct differences between organic components. However, this 

could be another point which could be treated by future modelling works. 

 

14. Line 579-582, this sentence is confusing. Do you mean "compared with conventional tillage, 

no/reduced tillage may lead to …"? Generally, we compared conservation tillage with 

conventional tillage. 

The authors agree. The sentence has been rewritten accordingly. 

 

15. Section 5, this section mainly focuses on SOM decomposition, how about model 

development in N transformation and management which are also major aspects in this 

review?  

We thank the reviewer for the suggestion. We acknowledge in the text the importance of N 

transformation and management, as well as plant-soil interactions (several references have 

been added. See L:690-692) without developing them, which would have excessively 

expanded the text. As specified in the text, in this section we made a choice to focus soil 

biology and soil physics for the reasons explained in L:693-702  

 

16. Line 673-678, some other important areas also generally not have been considered in the 

current models, such as the microbial traits, including the abundance, community structure 

and function, the plant-soil interaction and the feedback of ecosystem process to climate 

change. Particularly, the ignored microbial characteristic is an important cause of the 

discrepancies of model results.   

We thank the reviewer for the suggestion. We have added a short paragraph concerning the 

inclusion of microbial traits in models at the end of the section relative to soil microbial 

biomass representation in models (L:729-736 in the revised text). As above, we 

acknowledge that other suggested areas are important without developing them, which 

would have made the text too heavy. 



 

17. Table 7 is too large and there are too many references, move Table 7 and the involved 

references to supplementary material. 

The authors believe Table 7 should be in the main text as it provides accurate information, 

which is essential to the rationale of the paper.  

 

18. The references need to be carefully formatted. The issue number is presented in some 

reference but not all. Delete the issue number. List all the author names of each reference. 

The initials of the titles should be in low case except the first word (such as line 959-961, 

1341-1343, etc.). Carefully check all the superscripts and subscripts (such as line 903, 906, 

1033, 1037, 1041, 1136, 1273, 1364, 1496, 1499, etc.). 

The format of references was corrected. 

 

 

Reviewer #2:  

 

1. Page 4, Line 112: The word "… improvement …" should be changed to "… improving …" 

Modified as suggested. 

 

2. Page 4, line 126. (Graux et al., 2013). In the "References" section the "et al" should be 

replaced with names of other contributors.  

Done. 

 

3. Page 4, Lines 127-18: In other places such as: (Palosuo et al., 2011, Rotter et al., 2012, 

Asseng et al., 2013, Sándor et al., 2016) references are not fully cited in the "References" 

section. Apparently, these authors have used this format throughout this manuscript. This 

approach makes it somewhat more time consuming to keep track of works of other 

contributors when searching databases available on the Internet.  

The reference section has been improved by adding the names of all co-authors to multi-

author papers in the list. 

 

4. Page 5, line 134: "… understanding grounded in state-of-the art knowledge." "When the 

phrase (state of the art) is used as a noun it is not hyphenated. It is hyphenated when it is 

used as an adjective. Adjective Example: I like your state-of the-art technology. Noun 

Example: The technology is state of the art." 

Modified as suggested. 

 

5. Page 5, line 147: "… (Tab. 1)…" Is this abbreviation for the word "Table" permitted? The 

same format follows later in this manuscript. Even in the captions of table the word "Table" 

is abbreviated to "Tab." 

The word “Tab.” has been changed to “Table” in the whole text and caption. 

 

6. Page 5, line 156: "… agriculture activity…" should read, "agricultural activity…" 

Modified as suggested. 

 

7. Page 6, line 163: "… model allows to simulate also…" Revise this please… 

Modified in the text (i.e. Also, the model can simulate…). 

 

8. Page 6, line 173: "… integrates…" should be changed to, "… integrate…"  

Modified as suggested. 

 



9. Page 5, line 181: "… model which…" should be changed to, "… model, which…" 

Modified as suggested. 

 

10. Page 5, line 189: "viii)  RothC…" should be changed to, "viii) RothC…" 

The formatting does not allow this change. 

 

11. Page 6, line 194: "… model which…" should be changed to, "… model, which…" 

Modified as suggested. 

 

12. Page 7, line 197: "It allows to consider the…" should be changed to, "It allows considering 

the..." 

Modified as suggested. 

 

13. Page 7, line 215. Reference has been made to Table 2 but in Table 2, the parameter (*NA) 

has been defined as "Not information available." The proper word is "No," i.e.: "No 

information is available." This applies to other tables. By the way, "NA" should be defined 

clearly within the text of the manuscript and/or in the caption for all tables.  

Modified as suggested.  

 

14. In Table 3, column 2: The number in the parentheses should be defined.  

We thank the reviewer for this comment. Numbers in brackets have been detailed in the 

figure caption of the text. 

 

15. Page 7, line 25: "… (Tab. 2a-e in supplementary material)." I did not find this information. 

Please clarify.  

We referred to the five tables in supplementary material. Sentence has been rewritten as 

follows: (Tables S1-5 in supplementary material). 

 

16. Page 8, line 245: "… longer term…" could be changed to "… longer-term…" 

Modified as suggested. 

 

17. Page 8, line 247. I could not find Table 3a. 

“Table 3a” has been modified to “Table S1”. It can be found in supplementary material. 

 

18. Page 9, line 268. I could not find Table 3b.  

“Table 3b” has been modified to “Table S2”. It can be found in supplementary material. 

 

19. Page 9, line 273: "The water transport calculation scheme in soil is mainly described by the 

capacity (or tipping bucket) approach (78%)."  This needs to be rewritten. Perhaps: The soil 

water balance is primarily described by estimation of soil water availability through adding 

daily rainfall and subtracting transpiration, evaporation and runoff from an estimated 

maximum soil water holding capacity. The curious readers perhaps find the works by Paul et 

al. (2003) and Weiskittel et al. (2010)...  

We thank the reviewer for this comment. We gave now a better description of the soil water 

balance (L:269-274 in the revised text). 

 

20. Page 9, line 276: "… or/and…" should be changed to "… and/or…" 

Modified as suggested. 

 

21. Page 9, line 283. I could not find (Tab. 3c).  

“Table 3c” has been modified to “Table S3”. It can be found in supplementary material. 



 

22. Page 10, line 309. Could not find Table 3d. 

“Table 3d” has been modified to “Table S4”. It can be found in supplementary material. 

 

23. Page 11, line 358. Could not find Table 3e. 

“Table 3e” has been modified to “Table S5”. It can be found in supplementary material. 

 

24. Page 13, lines 401 to 410: The "scale of application" should better defined. Authors' 

definition is not clear.  

We added in the text (L:396-400 in the revised text) “The scale of application refers to the 

influence on the model performances of the data types used. They may go from high-

frequency measurements specific to the study site, which have been collected experimentally 

within carefully designed plans, to low-frequency data which have been administratively 

aggregated at a coarse spatial resolution (e.g. regional or national summaries)”.  

 

25. Page 13, line 417: "… features…" could be changed to properties. 

Modified as suggested 

 

26. Page 14, line 447. Make sure N2O is correctly typed.  

Done 

 

27. Page 14, line 456: It is true that in soils rich in expanding pedogenic 2:1 phyllosilicates 

some organic molecules penetrate between the layers are as such fixed and are less 

susceptible to decomposition through soil enzyme activities. Additionally, however, soil 

enzyme activities are reduced by association of enzymes' active sites with such 

phyllosilicates resulting in reduced decomposition of organic matter. Lack of oxygen in 

clayey soils also negatively affects amount of soil enzymes through reduction in the number 

of enzyme-producing microorganisms. Note that a soil can have a clayey texture but 

different types of clay have different effect on SOC decomposition. In other words, soil 

enzyme activities are reduced more significantly in a soil that is montmorillonitic than a soil 

that is kaolinitic. The increase in temperature expected to increase the rate of microbial and 

biochemical reactions in the pedosphere but only at the upper part of the A horizon if soil is 

highly montmorillonitic. For reference, look at work by Tabatabai, Bayan and Eivazi, 

among others.  

We thank the reviewer for the comment. We have added a paragraph concerning the 

response of enzyme activities in different soil types. (L:459-471 in the revised text): “In 

addition, a relevant fraction of microbial extracellular enzymes is adsorbed by external and 

internal surfaces of clay size particles of soil phyllosilicate minerals (Burns et al., 2013). 

Amount of bound enzymes increases with increasing layer charge of phyllosilicates 

(montmorillonite > illite > kaolinite) (Bayan and Eivazi, 1999). Sorption causes 

conformational changes of enzymes’ active sites, and in turn reduces or even suppresses the 

activity of enzymes (Bayan and Eivazi, 1999, Burns et al., 2013). Moreover, anaerobic 

conditions, that are expected to occur mostly in finer texture soils, also negatively affects 

amount of soil enzymes through reduction in the number of enzyme-producing 

microorganisms (Inglett et al., 2005). At least, the increase of clay content affects soil 

aggregation, indirectly affecting SOC through the creation of macro-aggregates that can 

physically protect organic matter molecules from further microbial mineralization (Rice, 

2002, Plante et al., 2006). Thus, an overall reduction in SOM turnover in fine texture soils is 

expected due to reduced substrate availability and overall microbial activity.” 

 

28. Page 14, lines 461 and 462: Rewrite starting with, "…, thus…" 



The sentence has been rewritten: (L:472-474 in the revised text) “However, the effect of 

texture on SOC decomposition is controversial. For instance, for 10 sites in Canada (
13

C-

labelled study) Gregorich et al. (2016) found that temperature (neither soil texture nor other 

soil properties) was the only driver of decomposition”. 

 

29. Page 15, line 496 and 497: "… whilst soils with high organic matter content (high dissolved 

organic C) and anaerobic conditions…" Here, it appears that these authors equate the high 

organic matter content to high level of dissolved organic C in the soil solution. This is not 

necessarily correct.  When it comes to decomposition of soil organic matter, the role of soil 

enzymes cannot be underestimated.  

To avoid any ambiguities, we delated the sentence within brackets (i.e. high dissolved 

organic C).  

 

30. Caption for Table 17: "… has been considered." Should read, "… have been considered." 

Modified as suggested. 

 

31. Page 19, line 609: "… infuences" should be changed to "influences" 

Done. 

 

32. Page 19, line 614: "… disturbances which…" change to, "… disturbances, which…" 

Modified as suggested. 

 

33. Page 20, line 646: change "… 1 day …" to, "… 1-day…) 

Modified as suggested. 

 

34. Page 20, line 648: Change "… soil which…" to, "… soil, which…" 

Modified as suggested. 

 

35. Page 22, lines 721 to 735: The argument regarding CUE and NUE must involve soil enzyme 

activities. Without reference to enzymes involved in mineralization of N and C in the SOM, 

the discussion becomes highly speculative. 

We agree with the reviewer. We have added a short paragraph in the revised text (L:747-

757) about the effect of soil enzyme activities on CUE and NUE. 

 

36. Page 23, line 761: "… SOM in soil…" change to, "… SOM…" 

Modified as suggested. 

 

37. Page 23, line 766 and page 25, line 836: Please check O2 to make sure it is not O3.  

Modified as suggested. 

 

38. Page 24, line 782: "… soil ammonium concentration are accurately…" Change to, "… soil 

ammonium concentration be accurately…". 

Modified as suggested. 

 

39. Page 24, lines 780 to 794. The research on NH4+ fixation has been done. If the soil is 

vermiculitic (includes vermiculite or Al-interlayered vermiculite) NH4+, having an ionic 

radius similar to K+ will be fixed in the interlayer spaces of vermiculite. Upon drying of 

such pedogenic clay size vermiculite, the fixation become more permanent as the 

vermiculate structure collapses to that of muscovite. Authors should search the literature to 

find proper references… A good place to start might be to look at the book: Methods of Soil 



Analysis: Physical and Mineralogical Methods. ISBN-13: 978-0891180883 - ISBN-10: 

0891180885  

We have added a short paragraph in the revised text (L:814-837) explaining the theory of 

ion (ammonium) fixation by 2:1 clay minerals. However we did not address all aspects 

related to fixation and release, directing interested readers to the reviews by Nõmmik and 

Vahtras (1982) and Nieder et al. (2011). 

 

40. Page 25, lines 825 to 827: "Although the above reported weaknesses were already known 

due to a wide number of published studies, in the present analysis we have tried to relate 

them to their causes in the view of using them as an effective basis for improving current 

modelling approaches.". I find some of the explanations to be limited in scope. Please see 

comments above.  

We agree with the reviewer. Based on both reviewers' comments we provided better 

explanation in several parts of the (revised) text about soil physical and biological processes 

(see responses to above comments). These explanations would hopefully result in an 

improvement of the text. Highlighting the complexity of physical, chemical and biological 

processes, we emphasize how they are difficult to be reproduced within process-based 

models. The added text mostly indicate as these processes should be described in more 

detail into models in order to increase the reliability of outputs. 

  



Revision 2 

 

Reviewer #3: The authors provide a thorough review of models for modeling C and N cycling in 

agronomic systems. The review is interest and informative, especially with regards to highlighted 

discrepancies in modeling capacity and accuracy. This research is important for modeling GHG, 

and impacts of management practices on agricultural output of GHG. Especially useful is the 

identification of shortcoming and potential sources of error in the models tested. The manuscript 

should be published after (very) minor revision. Minor suggested changes: 

 

1. Line 58: and an adequate simulation of gas 

Modified as suggested. 

 

2. line 58: Given these conditions, the assessment 

Modified as suggested. 

 

3. Line 83-84: that C and nitrogen (N) cycling strongly depend on  

Modified as suggested. 

 

4. Line 102: even when models are run under the same conditions of 

Modified as suggested. 

 

5. Line 150: carbon dioxide (CO2), and nitrate (NO3)) 

Modified as suggested. 

 

6. Line 191: adequate options and parameters values allows to simulate simulation of a wide 

Modified as suggested. 

 

7. Line 193: It allows considering consideration of the effect 

Modified as suggested. 

 

8. Line 211: Then, in theat level 2 

Modified as suggested. 

 

9. Line 218: knowledge on of the 

Modified as suggested. 

 

10. line 275: of N in the soil profile 

Modified as suggested. 

 

11. line 293-4: Reference evapotranspiration is accounted bycalculated using the Penman-

Monteith (56%), or Penman and Priestley-Taylor (44%) equations. 

Modified as suggested. 

 

12. Line 311-13: In general from our analysis indicated emerged that the three main processes 

belonging to the general class of GHG emissions and other fluxes are almost fully simulated 

by the considered models. Merge single-sentence paragraphs into larger paragraphs 

throughout results. 

Modified in the text: (see L:315:318: “For better assessing how C and N cycles are involved 

in the simulation of GHG emissions and other fluxes within several models, three main 

processes were identified (Table S4, see supplementary material). Overall, our analysis 



indicates that these three main processes are almost fully simulated by the considered 

models”). 

 

13. Line 314: In the main process called CO2 the The most important C-fluxes from the 

ecosystems were considered in the main process called "CO2". 

Modified as suggested. 

 

14. Line 364: e.g. STICS accounts for burial through tillage 

Modified as suggested. 

 

15. Line 393: such as patterns of air temperature, precipitation, solar radiation, also and 

including 

Modified as suggested. 

 

16. Line 427: i.e. under- or over-estimation 

Modified as suggested. 

 

17. Line 432: anaerobic conditions, e.g. Bollmann 

Modified as suggested. 

 

18. Line 461: The Amount amount of bound enzymes increases with the increasing layer charge 

of 

Modified as suggested. 

 

19. Line 466: affects the amount of soil enzymes 

Modified as suggested. 

 

20. Line 467: At leastAnd finally, the increase. Throughout, change "fine texture soil" to "fine 

textured soil" 

Modified as suggested. 

 

21. Line 502: due to different types of 

Modified as suggested. 

 

22. Line 529: the models subroutines 

Modified as suggested. 

 

23. Line 531: the fact that the model 

Modified as suggested. 

 

24. Line 605: underestimation of particulate organic C 

Modified as suggested. 

 

25. Line 607: fertilization and tillage, which were probably the most commonly simulated 

Modified as suggested. 

 

26. Lines 619-20: related to the ecosystem and climate,  which makinges it difficult to define the 

parameter which most strongly 

Modified as suggested. 



 

27. Lines 627-8: rice cultivation being too low (i.e. effect of waterlogged soil not included in 

RothC) being too low 

Modified as suggested. 

 

28. Line 643: ones where they have been previously 

Modified as suggested. 

 

29. Line 656: with the results of Li et al. (2005), 

Modified as suggested. 

 

30. Line 680: agriculture fits 

Modified as suggested. 

 

31. Line 693: physics, and the interface between the two that 

Modified as suggested. 

 

32. Line 749: to optimize resources 

Modified as suggested. 

 

33. Several places: correct spelling of vermiculite  

Corrected 

 

34. Line 834: should take into account for ions interactions 

Modified as suggested. 

 

35. Lines 858-861: For the N cycle, the main limitations inherent in model structure were found 

under different pedo-climatic conditions (51.7%), whilst for the scale of application the 

major weaknesses were due to different pedo-climatic conditions (20.4%). Consider rewrite 

- it's a bit cumbersome as written. 

Modified in the text: (see L:865:867: “For both the N-cycle modelling and scale of 

application, the main limitations were found in the response to different pedo-climatic 

conditions (51.1% and 20.2%, respectively). 

 

  



Reviewer #4: This manuscript is trying to present a comprehensive analysis of the strengths and 

weaknesses of existing state-of-the-art agro-ecosystems models in terms of simulating C and N 

fluxes. Such an effort is timely and is expected to contribute to further activities intended to 

improve agro-ecosystem models to address climate change challenges. I understand that the authors 

have to review numerous literatures. Here I would like to point out several minor inaccuracies that I 

hope the authors will fix before acceptance for publication. My specific comments are as follows: 

1. Page 1 line 46, instead of citing "www.faccejpi.com", better to cite other literature that 

focuses on describing the CN-MIP. 

We thank the reviewer for the comment. We changed the website address, which now 

specifically targets to the CN-MIP project. The project being ongoing, peer-review literature 

has not yet been published from CN-MIP. The current paper is the first main contribution. 

 

2. Page 2 line 60: "appears an essential step for future research". "appears to be …" is better. 

Modified as suggested. 

 

3. page 18 line 575: "… soil capacity to transform crop residue in SOC" is confusing. 

The sentence has been rewritten (see: L593:594). 

 

4. Page 6 lines 181-185, the description of EPIC does not reflect the state-of-the-art of its 

development in C-N cycling. Please consider changes according to the following 

information. 

a) The latest public version of EPIC is 1102. This version is not available on the 

website at epicapex.tamu.edu, but is available by contacting Jimmy Williams and has 

already been widely used in the USDA CEAP projects and numerous papers (e.g. 

Izaurralde et al. 2006; Zhang et al. 2015).  

b) EPIC can simulate more than 100 crops and grasses. 

c) The development of EPIC CN algorithms is closely tied to the ongoing soil and 

water assessment tool (SWAT; Arnold et al. 1998) development efforts as described 

in Zhang et al. (2013). The agro-ecosystem module within the SWAT model is based 

on EPIC and provides updates back to EPIC. Therefore, I suggest using 

EPIC/SWAT as one model, instead of only mentioning EPIC. 

d) Recent development of EPIC/SWAT (Yang et al. 2017) enables simulation of "N2O 

losses from nitrification" and "Denitrification: N2/N2O ratio". So please change this 

in table 4.  

e) relevant references are as follows: 

 Arnold, J. G., R. Srinivasan, R. S. Muttiah, and J. R. Willianms. 1998. Large area 

hydrologic modeling and assessment part 1: model development. Journal of the 

American Water Resources Association 34:73-89. 

Yang, Q., X. Zhang, M. Abraha, S. Del Grosso, G. P. Robertson, and J. Chen. 2017. 

Enhancing the soil and water assessment tool model for simulating N2O emissions 

of three agricultural systems. Ecosystem Health and Sustainability 3(2):e01259. doi: 

10.1002/ehs2.1259  

Zhang, X., Izaurralde, R.C., Arnold, J.G., Williams, J.R. and Srinivasan, R., 2013. 

Modifying the Soil and Water Assessment Tool to simulate cropland carbon flux: 



Model development and initial evaluation. Science of the Total Environment, 463, 

pp.810-822. 

Zhang, X., Izaurralde, R.C., Manowitz, D.H., Sahajpal, R., West, T.O., Thomson, 

A.M., Xu, M., Zhao, K., LeDuc, S.D. and Williams, J.R., 2015. Regional scale 

cropland carbon budgets: Evaluating a geospatial agricultural modeling system using 

inventory data. Environmental Modelling & Software, 63, pp.199-216. 

Izaurralde, R.C., Williams, J.R., McGill, W.B., Rosenberg, N.J. and Jakas, M.Q., 

2006. Simulating soil C dynamics with EPIC: Model description and testing against 

long-term data. Ecological Modelling, 192(3), pp.362-384. 

We thank the reviewer for these comments. We modified the text (see L176-183: “EPIC 

(Environmental Policy Integrated Climate) (Williams, 1995, Izaurralde et al., 2012) can 

simulate about 130 crop and grass species through its plant growth model, which uses unique 

parameter values for each species. It can predict changes in soil, water, nutrient, pesticide 

movements, and yields as a consequence of management decisions. It also assesses water 

quality, N and C cycling, climate change impacts, and the effects of atmospheric CO2. 

Moreover, novel algorithms were recently implemented (Izaurralde et al., 2012) to improve 

the simulation of C and N transformations, gas (O2, CO2, and N2O) and solute (NO3
-
, NO2

-
) 

movement, and ecosystem C balance and fluxes (Izaurralde et al., 2012)") and the tables (see 

Table 4, 5, 6 and 7) according to the information received by the EPIC development team. 

For the comment at point C, we consider the use of the notation EPIC/SWAT not appropriate 

in this case for several reasons. As stated in lines 108-116 of the manuscript, we examined I 

this study the nine models used within the research project CN-MIP. Only EPIC, and not 

SWAT, was used within this research project. It is certainly true that EPIC and SWAT share 

several algorithms and subroutines. However, the two models cannot be unambiguously 

associated because EPIC is a field scale model, while SWAT is a watershed model. In 

particular, EPIC simulates with a higher level of detail the crop growth and some soil 

processes and dynamics. Because of these differences, the two models produce different 

results with the same inputs. EPIC and SWAT developing people at Blackland Research 

Station in Temple, TX (USA), with whom we have interacted prior to revising the 

manuscript, agree on dealing with EPIC and SWAT as distinct models. This means that the 

use of EPIC/SWAT is not appropriate. 

For the comment at point E, SWAT not being part of this exercise, and based on our previous 

comment, we consider the first three references in list suggested by the reviewer as not 

applicable to this study. We have included the fourth reference suggested because it supports 

our analysis, which has also implied to modify the results. The last suggested citation was 

already included in the previously submitted manuscript. 

 

5. For DOC simulation, I think DayCent can do it. Please double check and revise this 

information in Table 4.  

We thank the reviewer for the comment. The information reported in table 4 has been 

modified accordingly. 
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 35 

Abstract 36 

Biogeochemical simulation models are important tools for describing and quantifying the 37 

contribution of agricultural systems to carbon sequestration and greenhouse gas source/sink 38 

status. The abundance of simulation tools developed over recent decades, however, creates a 39 

difficulty because predictions from different models show large variability. Discrepancies 40 

between the conclusions of different modelling studies are often ascribed to differences in the 41 

physical and biogeochemical processes incorporated in equations of carbon and nitrogen 42 

cycles and their interactions. Here we review the literature to determine the state-of-the-art in 43 

modelling agricultural (crop and grassland) systems. In order to carry out this study, we 44 

selected the range of biogeochemical models used by the CN-MIP consortium of FACCE-JPI 45 

(https://www6.inra.fr/cnmip/Project): APSIM, CERES-EGC, DayCent, DNDC, DSSAT, 46 

EPIC, PaSim, RothC and STICS. In our analysis, these models were assessed for the quality 47 

and comprehensiveness of underlying processes related to pedo-climatic conditions and 48 

management practices, but also with respect to time and space of application, and for their 49 

accuracy in multiple contexts. Overall, it emerged that there is a possible impact of ill-defined 50 

pedo-climatic conditions in the unsatisfactory performance of the models (45.9%), followed 51 

by limitations in the algorithms simulating the effects of management practices (33.8%). The 52 

multiplicity of scales in both time and space is a fundamental feature, which explains the 53 

remaining weaknesses (i.e. 20.3%). Innovative aspects have been identified for future 54 

development of carbon and nitrogen models. They include the explicit representation of soil 55 

microbial biomass to drive soil organic matter turnover, the effect of nitrogen shortage on soil 56 

organic matter decomposition, the improvements related to the production and consumption 57 

of gases and an adequate simulation of gas transport in soil. Given these conditions, the 58 

assessment of trends and gaps in the modelling approaches currently employed to represent 59 

biogeochemical cycles in crop and grassland systems appears to be an essential step for future 60 

research. 61 

 62 

Keywords: Biogeochemical models, C cycle, N cycle, management, pedo-climate 63 

64 

https://www6.inra.fr/cnmip/Project
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1. Introduction 65 

The sensitivity of soil carbon (C) stocks and greenhouse gas (GHG) emissions to 66 

climate and management practices demands a comprehensive methodology for effective 67 

policy analyses (Li et al., 1994). Enhancing soil C sequestration and reducing GHG emissions 68 

from agricultural soils are key objectives for reducing the climate impact of food production 69 

and they strongly depend on agricultural practices such as crop residue return, soil tillage 70 

modalities, and enhanced nitrogen (N) fertilization management. Whether C return to soils 71 

appear as a main controlling factor, in some cases (e.g. dry climates) reduced tillage may also 72 

be an effective measure for enhancing C sequestration (e.g. Chatskikh et al., 2008; Powlson et 73 

al., 2012). To avoid pollution swapping, assessments of the potential to reduce climate impact 74 

should also include other impacts such as nitrate (NO3
-
) leaching into groundwater, ammonia 75 

volatilization and soil erosion, which can also be reduced, for example, by increasing the use 76 

of grazed pastures in dairy farms (Rotz et al., 2009, Peyraud, 2011). In addition, it is 77 

important to consider the interactions on the hundred-year timescale of soil C equilibration 78 

(Lardy et al., 2011) and the relatively more rapid changes induced by agricultural practices 79 

(Angers et al., 1995). It is likely that most agricultural soils are not in equilibrium with respect 80 

to C storage and have the greatest potential for short-term C losses or gains, while they may 81 

also be sensitive to the effects of long-term, climate-driven processes (Wutzler and 82 

Reichstein, 2007). It is also important to recall that C and nitrogen (N) cycling strongly 83 

depend on interactions among plant growth processes, soil water dynamics and soil N 84 

dynamics that are highly non-linear and thus difficult to predict with simple approaches. 85 

Process-based ecosystem models take the approach of simulating underlying 86 

biogeochemical processes, such as plant photosynthesis and respiration, using mathematical 87 

equations that determine the allocation of C from atmospheric CO2 into biomass down to the 88 

soil organic matter (SOM). A relatively complete suite of biogeochemical processes (e.g. 89 

plant growth, organic matter decomposition, fermentation, ammonia volatilisation, 90 

nitrification and denitrification) is generally embedded in these models, enabling computation 91 

of transport and transformations in plant–soil ecosystems. Sub-models are designed to interact 92 

with each other to describe cycles of water, C and N for target ecosystems, thus any change in 93 

the environmental factors collectively affect a group of biogeochemical reactions. Extensively 94 

tested biogeochemical models (with the coupled C-N cycling) are effective tools for 95 

examining the magnitude and spatial-temporal patterns of C and N fluxes, and play an 96 

important role in designing specific policies appropriate to the soils, climate, and agricultural 97 

conditions of a location or region. In recent decades, these tools have also been used for 98 
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assessing the expected impacts of future climate, as represented by several climate change 99 

scenarios (Graux et al., 2013). However, results of state-of the-art terrestrial biogeochemical 100 

models, describing the contribution of agricultural systems to C sequestration and GHG 101 

source/sink status, may diverge significantly even when models are run under the same 102 

conditions of climate, soil and management (Palosuo et al., 2011, Rotter et al., 2012, Asseng 103 

et al., 2013, Sándor et al., 2016; Sandor et al., 2017). Such differences between model results 104 

are often attributed to physical and biogeochemical processes being inadequately resolved 105 

and, for these models, the improvement of algorithms and structure is recommended beyond 106 

parameter optimization (Tian et al., 2011, Lu and Tian, 2013). 107 

It is the goal of this paper to examine the strengths and weaknesses of nine crop and 108 

grassland models that incorporate C and N fluxes into biogeochemical frameworks and fully 109 

assess C and GHG dynamics in agricultural soils. These models are commonly applied 110 

worldwide and are used to simulate biogeochemical and related outputs by the project “C and 111 

N models intercomparison and improvement to assess management options for GHG 112 

mitigation in agro-systems worldwide” (CN-MIP, 2014-2017), established within the Joint 113 

Programming Initiative on Agriculture, Food Security and Climate Change (FACCE-JPI, 114 

http://www.faccejpi.com), which brings together 10 organizations from six countries. With 115 

this analysis we are not arguing against the quality of models. While highlighting weaknesses 116 

and limits of current modelling approaches as documented in several published studies, we 117 

intend to offer a general overview as a basis for new ways of improving current modelling 118 

approaches.  119 

The following rationale has been used in the organization of this article. We first present 120 

the conceptual basis of the models analysed and the approach used for gaining insight into 121 

their compositional sub-systems. Section 3 presents results of the approach used. Section 4 122 

reports on the documented performance of biogeochemical models against data, and discuss 123 

their relative strengths and weaknesses. Section 5 presents an outlook on recent research 124 

developments and future approaches. In Section 6, remarks are made concerning the bearing 125 

of the findings on a wider interpretation of biogeochemical modelling. 126 

 127 

2. Modelling approaches 128 

2.1. The CN-MIP models 129 

The nine models considered for the CN-MIP exercise are process-based models mainly 130 

developed for crop or grassland ecosystems. They attempt to reproduce the most relevant 131 

ecological and physiological process through a theoretical understanding grounded in state of 132 

http://www.faccejpi.com/
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the art knowledge. In this way, they reproduce specific agro-ecological dynamics under 133 

prescribed conditions of climate, soil and management, thanks to the concepts and 134 

relationships that interlink entities of the real world. Most models represent plant phenology 135 

and yield-formation processes, together with functional processes at the basis of SOM (Soil 136 

Organic Matter) turnover, gas exchange at the soil-plant-atmosphere interface and soil water 137 

dynamics. 138 

The nine models analysed for this intercomparison are: APSIM, CERES-EGC, DayCent, 139 

DNDC, DSSAT, EPIC, PaSim, RothC and STICS (Table 1). Below, a brief description of each 140 

model is provided. 141 

i) APSIM (The Agricultural Production Systems sIMulator) (Keating et al., 2003; 142 

Holzworth et al., 2014) simulates several systems through the interaction among plants, 143 

animals, soil, climate and management. The model allows the analysis of the whole-farm 144 

system, including crop and pasture sequences and rotations, and livestock. 145 

ii) CERES-EGC (Crop Environment REsource Synthesis - Environnement et Grandes 146 

Cultures) (Gabrielle et al., 1995) simulates the biogeochemical cycles of water, C and N in 147 

agro-ecosystems. The model predicts crop production and the environmental impacts related 148 

to the agricultural activity (e.g. nitrous oxide (N2O), nitrogen oxide (NO), ammonia (NH3), 149 

carbon dioxide (CO2), and nitrate (NO3)) based on management for a wide range of arable 150 

crops (e.g. wheat, barley, maize, sorghum, sunflower, pea, sugar-beet, oilseed rape and 151 

miscanthus). Crop-specific modules include approaches for plant growth and development, 152 

coupled to a generic soil sub-model. 153 

iii) DayCent (Parton et al., 1994) is a biogeochemical model able to simulate crop growth, 154 

soil C dynamics, N leaching, gaseous emissions (e.g. N2O, NO, nitrogen (N2), NH3, methane 155 

(CH4) and CO2) and C fluxes - e.g. net primary production (NPP), net ecosystem exchange 156 

(NEE) - in crop fields, grassland, forest, and savanna ecosystems. Also, the model can 157 

simulate several management practices (i.e. fertilization, tillage, pruning, cutting, grazing, 158 

etc.) as well as specific external disturbances (i.e. fires). 159 

iv) DNDC (DeNitrification-DeComposition) (Li et al., 1992a) simulates C and N 160 

biogeochemistry in agro-ecosystems. The model predicts crop growth, soil regimes (i.e. 161 

temperature and moisture), soil C dynamics, N leaching, and trace gases emissions (e.g. N2O, 162 

NO, N2, NH3, CH4 and CO2). The model was expanded in 2012 to include biophysical 163 

processes in whole-farm systems (Li et al., 2012). 164 

v) DSSAT (Decision Support System For Agrotechnology Transfer) (IBSNAT, 165 

1993, Tsuji, 1998, Uehara, 1998 and Jones et al., 1998), was originally developed to facilitate 166 

http://www.sciencedirect.com/science/article/pii/S0167880909001996#bib22
http://www.sciencedirect.com/science/article/pii/S1161030102001077#BIB82
http://www.sciencedirect.com/science/article/pii/S1161030102001077#BIB82
http://www.sciencedirect.com/science/article/pii/S1161030102001077#BIB192
http://www.sciencedirect.com/science/article/pii/S1161030102001077#BIB197
http://www.sciencedirect.com/science/article/pii/S1161030102001077#BIB94
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the application of crop models in a systems approach to agronomic research. DSSAT ver. 4.6 167 

(i.e. cropping system model, CSM) and its crop simulation models integrate the effects of soil, 168 

crop phenotype, weather and management options. DSSAT includes improved application 169 

programs for seasonal, spatial, sequence and crop rotation analyses that assess the economic 170 

risks and environmental impacts associated with irrigation, fertilizer and nutrient 171 

management, climate variability, climate change, soil carbon sequestration, and precision 172 

management. The model can predict crop yield, resource dynamics such as for water, N and 173 

C, environmental impact (i.e. N leaching), evapotranspiration and soil organic matter (SOM) 174 

accumulation. 175 

vi) EPIC (Environmental Policy Integrated Climate) (Williams, 1995, Izaurralde et al., 176 

2012) can simulate about 130 crop and grass species through its plant growth model, which 177 

uses unique parameter values for each species. It can predict changes in soil, water, nutrient, 178 

pesticide movements, and yields as a consequence of management decisions. It also assesses 179 

water quality, N and C cycling, climate change impacts, and the effects of atmospheric CO2. 180 

Moreover, novel algorithms were recently implemented (Izaurralde et al., 2012) to improve 181 

the simulation of C and N transformations, gas (O2, CO2, and N2O) and solute (NO3
-
, NO2

-
) 182 

movement, and ecosystem C balance and fluxes (Izaurralde et al., 2012). 183 

vii) PaSim (Pasture Simulation model) (Riedo et al., 1998) is a process-based, grassland-184 

specific ecosystem model that simulates grassland and pasture productivity and GHG 185 

emissions to the atmosphere. The model consists of sub-models for grass, animals, 186 

microclimate, soil biology, soil physics and management. 187 

viii) RothC (Rothamsted Carbon model) (Coleman and Jenkinson, 1999) is a 188 

specific tool for the assessment of organic C turnover in non-waterlogged topsoil. The model 189 

allows for the effects of soil type, temperature, moisture content and plant cover on the 190 

turnover process. 191 

ix) STICS (Simulateur mulTIdiscplinaire pour les Cultures Standard) (Brisson et al., 1998) 192 

is a soil-crop model, which is built on a generic framework for plant description. Within this 193 

framework, the selection of adequate options and parameters values allows the simulation of a 194 

wide range of plants, from annual crops to perennial grasses or trees. The model simulates 195 

plant growth as well as water, C and N fluxes. It allows consideration of the effect of a large 196 

range of management options on agronomic (biomass or grain productivity and quality) and 197 

environmental (C and N storage, nitrate leaching, N2O emissions) outputs. 198 

Most of the models included in this review are in active development and use, and this 199 

activity can result in a temporal fluidity of model descriptions. The information provided in 200 
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this section is based on the authors’ knowledge of the state of the models at the beginning of 201 

the project CN-MIP as well as on published material. 202 

 203 

2.2. Model analysis 204 

For reducing the uncertainty in estimating the magnitude and spatial-temporal patterns 205 

of C and N fluxes from several agro-systems (i.e. crops, grassland and livestock), and for 206 

improving the understanding of how these tools work, we analysed the most important 207 

processes and approaches implemented into the models. This analysis was based on a top-208 

down approach focused at gaining insight into compositional sub-systems. On this basis, we 209 

indicated three levels of information containing specific processes/approaches that were sub-210 

divided according to different levels of detail. 211 

The starting point (level 1) was the detection of discrete units considered in agricultural 212 

modelling, which are essential to characterize agricultural systems. In this level, characterized 213 

by the lowest level of detail required for the analysis, we differentiated five general classes 214 

that should be implemented within all biophysical/biogeochemical process-based models for 215 

crops and grasslands. These classes concern ecological and physiological processes, 216 

management options, soil structure, and weather inputs (Table 2). 217 

Then, at the level 2 (intermediate level of detail) specific processes were identified 218 

within each general class (level 2). In this level 20 "main processes" were identified, which 219 

we retained as basic to describe the most important biophysical/biogeochemical dynamics 220 

(Table 3) of each general class indicated in the previous level. 221 

Finally, in the level 3 (highest level of detail) almost 200 modelling approaches (i.e. 222 

methods, options or components), identifying specific dynamics or mechanisms contained 223 

within the previous main processes (supplementary material) were reported (level 3). These 224 

approaches were extrapolated taking into account the current existing knowledge of the 225 

different methods, options and components able to describe the most important 226 

biophysical/biogeochemical dynamics (Tables S1-5 in supplementary material). 227 

There are a number of advantages to such a “top-down” approach. An advantage is the 228 

insight that can be gained from examining the level of detail that each model provides. This in 229 

turn helps in identifying areas in the model structures to establish their reliability and 230 

relevance for intended purposes. Such an approach also helps in tracing possible links with 231 

the basic processes of each model (identification of the strengths and weaknesses) either in 232 

the case of mismatch between model outputs and measurements, or in the case of 233 

disagreement among model results in similar conditions. 234 
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Results reported below were based on the highest level of detail (level 3 – see 235 

supplementary material). 236 

 237 

3. Results 238 

3.1. Meteorological variables 239 

Meteorological inputs strongly influence model outputs since they affect plant growth, 240 

plant development stages, and soil turnover/balances, including flux exchanges at the soil-241 

plant-atmosphere interface. The number and type of climatic variables required by each model 242 

informs us about the relationship between model outputs and climate drivers. In principle, for 243 

the modelling of surface reactions and diffusion of volatile products (e.g. N2O emissions, soil 244 

water content dynamics), the higher the resolution in the climate information (e.g. hourly to 245 

sub-hourly weather inputs), the more accurate the model response is for short-term processes 246 

but the higher the probability that missing data may be present in the weather series used. For 247 

longer-term processes such as soil organic carbon (SOC) decomposition, higher temporal 248 

resolution data may not improve the accuracy of the model response. 249 

From our analysis (Table S1, see supplementary material) we observed that the nine 250 

models involved in CN-MIP mostly use climate inputs at daily resolution (89%), whereas 251 

PaSim uses the hourly time scale (but with an option also available for daily inputs), and 252 

RothC uses a monthly time-step. 253 

The most commonly used meteorological variables are precipitation, air temperature 254 

and wind speed. Concerning air temperature, the daily maximum and minimum air 255 

temperatures are used by almost all models (89%). 256 

Relative humidity (daily mean) and global solar radiation are also used by 67% and 257 

56% of the models, respectively. The atmospheric concentration of CO2 is an optional input 258 

for many models (78%), with the exception of CERES-EGC and RothC. 259 

Finally, only a few models use specific meteorological variables such as cloudiness, 260 

sunshine duration, dew-point temperature and actual vapour pressure. 261 

 262 

3.2. Soil 263 

Similarly to climate inputs, soil characteristics also have a great influence on model 264 

outputs. These characteristics strongly influence crop growth and fluxes related to the gaseous 265 

biogeochemical cycles as water, C and N. Some soil inputs are assumed as constant values 266 

(i.e. parameters), not changing during the simulation. Different soil properties (e.g. texture, 267 

pH, bulk density, etc.) can affect plant growth and the environmental conditions for the 268 
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microbial activity driving the formation and decomposition of SOM and mediating 269 

biochemical processes. 270 

From our analysis (Table S2, see supplementary material), it emerged that soil processes 271 

are mostly calculated based on the differentiation of the soil profile into a sequence of distinct 272 

layers, with generation of outputs for each of these subdivisions. In PaSim model, the whole 273 

soil profile is the basis for the modelling of C dynamics. The soil temperature is calculated 274 

from energy balance (44%) or based on a response function of air temperature (56%). 275 

The soil water balance is mainly simulated by using the ‘tipping bucket’ approach 276 

(78%), in which the soil water availability is accounted for by adding rainfall and subtracting 277 

evapotranspiration and runoff (Weiskittel et al., 2010) from an estimated maximum soil water 278 

holding capacity (which depends on texture and the soil organic matter content). This 279 

approach is also defined "cascading", since it assumes that water can move only downward 280 

through the soil profile, filling up the layers until field capacity is reached. 281 

For the transport and transformation of N in the soil profile, most models estimate pools 282 

and fluxes of NO3-N (78%) and/or NH4-N (89%). 283 

 284 

3.3. Plant ecophysiology and partitioning 285 

Crop and grassland models differ in the algorithms reflecting plant ecophysiology 286 

(growth and development) and partitioning (above and below-ground biomass and yield), 287 

which can lead to differences in simulated yield and total biomass, in turn affecting estimated 288 

C and N fluxes. 289 

In our analysis (Table S3, see supplementary material), almost half of the models 290 

consider the mechanism of C allocation as a function of development stage (56%), whilst 291 

almost all the models take into account C assimilation (89%). The latter is mainly driven by 292 

RUE-type processes (Radiation Use Efficiency) and/or P-R = gross photosynthesis – 293 

respiration-type processes (56%). 294 

Phenology is simulated by almost all models (89%) through the use of growing degree 295 

days (GDD) (89%), whilst photoperiod and vernalization are represented by 56% of the 296 

models. 297 

Leaf area is accounted for by considering the leaf area index (LAI) (89%), whilst the 298 

simulation of the number of leaves and evolution of the specific leaf area are almost ignored. 299 

Reference evapotranspiration is accounted by using Penman-Monteith (56%), Penman 300 

and Priestley–Taylor (44%). 301 
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Root distribution is simulated by 78% of the models, mainly through a linear approach 302 

(56%). 303 

For the most part, models consider a dynamic partitioning of assimilates among plant 304 

organs (78%), based on the age of organs (78%). Within-plant partitioning occurs across 305 

roots, grains, stems and sheaths, and leaf blades, for 89, 78, 78 and 67% of the models, 306 

respectively. 307 

Yield formation is mainly based on partitioning during reproductive stages (67%) and 308 

harvest index-type (44%). The yields mostly simulated are forage (89%), roots and grains 309 

(78%), tubers (67%) and fibre (56%). 310 

The factors limiting plant growth most strongly among the nine models were water 311 

deficit and nitrogen deficiency (88%). 312 

 313 

3.4. GHG emissions and other fluxes 314 

For better assessing how C and N cycles are involved in the simulation of GHG 315 

emissions and other fluxes within several models, three main processes were detected (Table 316 

S4, see supplementary material). Overall, our analysis indicates that these three main 317 

processes are almost fully simulated by the considered models. 318 

The most important C-fluxes from the ecosystems were considered in the main process 319 

called "CO2". More specifically, they include the gross primary production (GPP), NPP, NEE, 320 

the net biome production (NBP) and several types of respiration processes, e.g. ecosystem 321 

respiration (RECO), heterotrophic respiration from both soil and grazing animals, and 322 

autotrophic respiration. 323 

NPP and NEE are the most commonly simulated C-fluxes (67%), followed by GPP 324 

(56%) and RECO (44%), whilst just a few models simulate the NBP. Despite only 44% of the 325 

models taking into account RECO, most of them only consider soil respiration (89%). Plant 326 

respiration is considered by 56% of the models, whilst only 33% of the models take into 327 

account respiration from grazing animals. 328 

Among all of the models analysed only DNDC is able to simulate all the CO2 fluxes 329 

considered. More than 70% of CO2-GHG can be simulated also by APSIM, DayCent and 330 

PaSim. The CO2 simulated by the highest number of models (i.e. six models) are NPP, NEE 331 

and soil respiration. 332 

The main non-CO2 fluxes (for simplicity called non CO2-gas) include CH4, N2O, several 333 

N emissions (i.e. NH3, NOx, N2) and O3. 334 
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N2O emissions are most commonly simulated (78%), followed by NH3 (56%). By 335 

contrast, only a few models generate CH4 and N2 emission outputs (44%) and NOx (33%). 336 

None of the models provide ozone (O3) emissions output. 337 

N2O emissions provided by the models are mostly generated by denitrification and 338 

nitrification (78%), mainly based (i.e. >70% of the models) on a soil N pools (e.g. nitrate 339 

pool, NH4 pool) with soil water and temperature acting as main drivers of change on mineral 340 

N pools. 341 

Among all models analysed DayCent and DNDC were able to simulate all non CO2-gas 342 

considered in our analysis. However, more than 70% of non CO2-gas can be simulated also by 343 

APSIM, PaSim and CERES-EGC. The non CO2-GHG simulated by the highest number of 344 

models (i.e. seven models) was N2O. The models able to simulate the highest number of 345 

variables (i.e. CH4, N2O and N2) were APSIM, DayCent, DNDC and PaSim. 346 

Ten specific N processes were considered in the models: nitrification, denitrification, 347 

volatilization, leaching, symbiotic fixation, assimilation, mineralization, immobilization, plant 348 

uptake, and clay fixation. All these processes were widely simulated (i.e. >70%) by the 349 

models considered in our analyses, with the only exception of clay fixation, that is considered 350 

only by DNDC model. 351 

Among the models analysed, only RothC does not take into account any N process. All 352 

the remaining models are able to simulate each of the N processes considered in our analysis, 353 

with the only exceptions being APSIM, which does not consider NH3 volatilization, and 354 

PaSim and STICS, which only take account of assimilation indirectly (C:N-driven). 355 

 356 

3.5. Management 357 

All models are able to simulate the impact of the most common farming practices (i.e. 358 

harvesting, mowing, fertilization, tillage, irrigation, etc.) on the processes described so far. By 359 

contrast, specific options for grasslands, such as plant use and nutrient returns from grazing 360 

animals (as well as animal performances such as weight growth and milk production) are 361 

simulated by a lower number of models (Table S5, see supplementary material). 362 

Harvesting, cutting, tillage, irrigation and crop rotation are widely simulated (>70% of 363 

models). Moreover, all models simulate fertilization and residue management. Concerning 364 

fertilization, however, only application of mineral N and organic amendments are widely 365 

simulated, while only a few models simulate other types of fertilizer such as phosphorus, 366 

potassium, sulphur and calcium. Similarly, the management of crop residues is based mainly 367 

on their burning or leaving on the ground surface, whilst only 33% of the models also 368 
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consider burial (e.g. STICS accounts for burial through tillage). Among other agricultural 369 

practices, about half of the models consider pruning and water management (i.e. rice), but 370 

only a few consider pesticide application. 371 

The practices considered in the analysis are generally set by users. Some models also 372 

offer options to trigger management events (i.e. fertilization and irrigation) based on changing 373 

conditions during the simulation. 374 

Simulation of grazing, animal performances and nutrient returns were taken into 375 

account as specific options for grasslands. 376 

Concerning grazing, models are for the most part based on user-determined settings 377 

(start and end dates, animal density); some of them also include options related to evolving 378 

conditions (APSIM, EPIC and PaSim), selective grazing (APSIM and PaSim) and trampling 379 

effect (APSIM). 380 

Animal performance simulation is considered by 55% of the models through 381 

simple/static methods (APSIM and EPIC) or detailed/dynamic methods (PaSim), and based 382 

on feeding standards or fill units (APSIM, DNDC and RothC). 383 

Finally, nutrient return was considered by 66% of the models, based on uniform 384 

distribution of returns across the whole field. 385 

CERES-EGC, DSSAT and STICS do not include very specific agricultural options for 386 

grasslands. APSIM is the most detailed model for grasslands. 387 

 388 

4. C and N cycles: performance, strengths and weaknesses 389 

In this section, we provide an overview of the C and N approaches used by the CN-MIP 390 

models (see Table 4 and supplementary), and their performance as documented for a broad 391 

gradient of geographic and climatic conditions, as well as a variety of soil types and 392 

management practices, to gain insight into their main strengths and weaknesses. To do that, 393 

we have summarised the results of 130 published modelling studies (Table 5). 394 

In the analysis of the effects on C and N cycles of pedo-climatic conditions, we 395 

considered variations of soil features such as temperature and moisture, texture, bulk density 396 

(BD), pH, SOC, C and N dynamics and water-filled pore space (WFPS), and climate 397 

conditions such as patterns of air temperature, precipitation, solar radiation, and including 398 

frequency and intensity of extreme events such as floods and drought. Management practices 399 

include changes in agricultural practices such as tillage, fertilization, irrigation, crop variety 400 

on soil and vegetation and, in turn, on C and N cycles. The scale of application refers to the 401 

influence on the model performances of the data types used. They may go from high-402 
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frequency measurements specific to the study site, which have been collected experimentally 403 

within carefully designed plans, to low-frequency data which have been administratively 404 

aggregated at a coarse spatial resolution (e.g. regional or national summaries). 405 

Several types of weaknesses emerged in 95 modelling studies (Table 6), where 406 

criticalities in assessing the impact of pedo-climatic conditions (45.9%) and management 407 

practices (33.8%) on environmental variables are reflected in unsatisfactory model 408 

performances. These latter were mostly related to limitations of model structure with respect 409 

to difficulties of the algorithms in simulating the effects of different management practices on 410 

C and N cycling. By contrast, only a few weaknesses were due to the scale of application, 411 

strictly related to the high variability in time and space of C and N cycles (16.2% and 4.1% 412 

for pedo-climatic conditions and management practices, respectively). For the C cycle, major 413 

limitations of model structure were related to management practices (43.6%), whilst for the 414 

scale of application, the major weaknesses were due to different pedo-climatic conditions 415 

(11.5%). For the N cycle, however, limitations inherent in model structure were predominant 416 

under different pedo-climatic conditions (51.1%), whilst for the scale of application, major 417 

weaknesses were due to different pedo-climatic conditions (20.2%). 418 

 419 

4.1. Model structures and pedo-climatic conditions 420 

Soil properties and climate conditions emerged as important factors for ensuring the 421 

effective representation of outputs (Table 7). While climate issues were mainly related to 422 

precipitation only, pedological factors concerned both the effect of changes of physical 423 

(texture, bulk density and soil hydrologic properties) and chemical (C and N processes) soil 424 

properties on C and N cycles. 425 

Concerning soil physical characteristics, a primary role in modelling issues was played 426 

by the soil water properties. Errors in the simulation of soil water content (SWC) were the 427 

main cause of general discrepancies concerning C and N emissions in many studies (Table 7). 428 

Discrepancies in C and N outputs were also observed under specific soil water conditions 429 

such as the impact of soil freezing and thawing (Li et al., 2010) or soil shrinking and swelling 430 

(Babu et al., 2006). Again, an inappropriate setting of initial state variables determined 431 

discrepancies in N emissions (i.e. under- or over-estimation of N2O emissions peaks, 432 

Gabrielle et al., 2006). Considerable overestimations of N2O emissions were found to be 433 

closely related to overestimation of WFPS. WFPS is indeed one of the most important soil 434 

variables influencing C and N cycles. For instance, microbially-mediated soil respiration and 435 

N cycling processes tend to be higher or lower with increasing soil water content (e.g. 436 
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increased nitrification under aerobic conditions, increased denitrification under anaerobic 437 

conditions, e.g. Bollmann. As WFPS reaches high values, soil respiration tends to decline and 438 

denitrification occurs, resulting in N losses via N2O and N2 emissions. This condition was 439 

observed especially for DayCent (Stehfest and Muller, 2004, Abdalla et al., 2010, Xing et al., 440 

2011, Ryals et al., 2014, 2015) and DNDC (Saggar et al., 2004, Abdalla et al., 2010). Fast 441 

drainage is a particular issue for both the DayCent and DNDC models which drain water in 442 

excess of field capacity immediately. This condition makes these models unable to accurately 443 

predict N emissions at sites that consistently show soil moisture above FC (e.g. Uzoma et al., 444 

2015). 445 

Soil bulk density (BD) was also a source of modelling error in simulating C and N 446 

cycles. For CERES-EGC, Gabrielle et al. (2006) found a discrepancy in N2O emission peaks 447 

due to inappropriate parametrization of soil water retention properties and bulk density from 448 

test site to regional scales. Drouet et al. (2011) confirmed that BD was one of the most 449 

influential factors for N2O emissions in CERES-EGC. The effect of BD increase was also 450 

reported for DayCent by De Gryze et al. (2010) and Abdalla et al. (2009), respectively, which 451 

observed an underestimation of N2O emissions in a conservation tillage treatment due to the 452 

increase in BD, and an associated decrease in pore space over time as DayCent maintains a 453 

steady BD and simulation compaction, while the conservation tilled field site resulted in 454 

increased BD and reduced N2O emissions (Pisante et al., 2015). In fact, most of the selected 455 

models, with the exception of EPIC, DNDC and STICS, do not simulate soil compaction or 456 

loosening, as BD remains constant over time. 457 

Texture was also found to be an influential soil physical characteristic. Congreves et al. 458 

(2016) found an underestimation in NH3 emissions with the DNDC model, which is unable to 459 

simulate a heterogeneous soil profile. Similarly, Gagnon et al. (2016) confirmed that DNDC 460 

does not effectively discriminate across soil textures to simulate soil CO2 respiration. Clay 461 

concentration affects SOC accumulation in different ways. According to some studies 462 

(Nichols, 1984, Burke et al., 1989), SOC increases with increasing clay content due to the 463 

bonds between the surface of clay particles and organic matter that retard the decomposition 464 

process. In addition, a relevant fraction of microbial extracellular enzymes is adsorbed by 465 

external and internal surfaces of clay size particles of soil phyllosilicate minerals (Burns et al., 466 

2013). The amount of bound enzymes increases with the increasing layer charge of 467 

phyllosilicates (montmorillonite > illite > kaolinite) (Bayan and Eivazi, 1999). Sorption 468 

causes conformational changes of enzymes’ active sites, and in turn reduces or even 469 

suppresses the activity of enzymes (Bayan and Eivazi, 1999, Burns et al., 2013). Moreover, 470 
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anaerobic conditions, that are expected to occur mostly in finer texture soils, also negatively 471 

affect the amount of soil enzymes through reduction in the number of enzyme-producing 472 

microorganisms (Inglett et al., 2005). Finally, the increase of clay content affects soil 473 

aggregation, indirectly affecting SOC through the creation of macro-aggregates that can 474 

physically protect organic matter molecules from further microbial mineralization (Rice, 475 

2002, Plante et al., 2006). Thus, an overall reduction in SOM turnover in fine textured soils is 476 

expected due to reduced substrate availability and overall microbial activity. 477 

However, the effect of texture on SOC decomposition is controversial. For instance, for 478 

10 sites in Canada (
13

C-labelled study) Gregorich et al. (2016) found that temperature (neither 479 

soil texture nor other soil properties) was the only driver of decomposition. Furthermore, 480 

texture parametrization is another possible source of error. For instance, Gijsman et al. (2002) 481 

indicated that inaccuracies in soil texture data used as inputs may have affected soil retention 482 

characteristics, thus resulting in discrepancies in SOC and soil mineral N dynamics. 483 

Soil chemical processes are generally similar between the models and all models 484 

considered showed difficulty in reproducing the observed C and N cycles. The processes 485 

influencing SOM in the models include nitrification, denitrification, immobilization and 486 

mineralization. 487 

Discrepancies between modelled and observed data were often related to an 488 

inappropriate SOC content parametrization (Pathak et al., 2005, Calanca et al., 2007, 489 

Causarano et al., 2007, Smith et al., 2012, Gagnon et al., 2016). However, a considerable 490 

source of error was also due to overestimation of SOC content (Abdalla et al., 2010, Gijsman 491 

et al., 2002) or to the rate of soil C decomposition (Snow et al., 1999, De Gryze et al., 2010, 492 

Li et al., 2015). 493 

Nitrification is a two-stage process, performed by different groups of Archaea, bacteria 494 

and fungi, consisting in the oxidation of ammonia or ammonium to nitrite (step 1) followed 495 

by the oxidation of the nitrite to nitrate (step 2). For DayCent, Li et al. (2005) and Del Grosso 496 

et al. (2008) found that overestimation in the nitrification rate was one of the main sources of 497 

error for N emissions estimation. This was also found by Drouet et al. (2011), showing that 498 

discrepancies in N2O emissions simulated by CERES-EGC were due to the high sensitivity of 499 

the model to the maximum rate of nitrification. The nitrification rate, however, is usually 500 

associated with a number of environmental factors including the substrate and oxygen (O2) 501 

concentration, moisture, temperature and pH. For instance, this was observed by Li et al. 502 

(2005), who pointed out that poor simulation of NH4
+
 was caused by the inaccurate regulation 503 

of the effect of temperature on nitrification in DayCent.  504 
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Denitrification is a process where the reduction of soil nitrate to N-containing gases 505 

takes place. The major discrepancies between modelled and observed N emissions were due 506 

to an underestimation of the denitrification rate (Thorburn et al., 2010, Xing et al. 2011, Fitton 507 

et al., 2014a, b). The underestimation of the denitrification rate can be due to different types 508 

of errors. For instance, for APSIM, Thorburn et al. (2010) found the source of error in the 509 

model parametrization, with the default value of denitrification coefficient much lower than 510 

the optimized value. By contrast, Xing et al. (2011) indicated the response of denitrification 511 

rate to soil temperature and moisture (or WFPS) as the main source leading to the 512 

underestimation of denitrification. Generally, denitrification rates have been reported to be 513 

directly proportional to temperature (Seitzinger, 1988), whilst soils with high organic matter 514 

content (high dissolved organic C) and anaerobic conditions (i.e. waterlogged or poorly-515 

drained soils) can more easily favour high denitrification rates. 516 

Another important source of modelling error resulted from the inaccurate estimation of 517 

the immobilization-mineralization processes. N immobilization or mineralization depends on 518 

the C:N ratio of the organic materials. The C:N ratio generally tends to decrease as the 519 

organic matter becomes more decomposed. Inaccurate C:N parametrization can easily lead to 520 

errors in C and N cycle related outputs. For instance, Li et al. (2015) observed for the DSSAT 521 

model that differences between the modelled and measured soil C:N ratios led to SOC 522 

overestimation. In the EPIC model, He et al. (2006) observed that general discrepancies in C 523 

and N dynamics (i.e. lower net N mineralization rate, humification, etc.) were likely due to N 524 

mineralization algorithms which may have underpredicted net N mineralization (NMN) 525 

observable under field conditions. Smith et al. (2008) and Fitton et al. (2014a, b) found that 526 

the underestimation in mineralization rate led to underestimation of N2O emissions. In the 527 

same way, Del Grosso et al. (2010) indicated that overestimation of N2O emissions was due to 528 

N mineralization rates that were too high and too responsive to climate drivers.  529 

Finally, climate conditions influence the C and N outputs in several studies analysed. 530 

Some issues were related to how the climate data have been used. For instance, in APSIM, 531 

Thorburn et al. (2010) found discrepancies in N emissions (i.e. underestimation of 532 

denitrification and N2O peaks) due to the application of spatially averaged rainfall data 533 

instead of the use of specific test-site rainfall data. In other cases, the main issues were due to 534 

the sensitivity of the model subroutines. For instance, Wattenbach et al. (2010) observed 535 

overestimation in NEE peaks in southern European regions due to issues in coupling water 536 

and C-fluxes. These issues were probably caused by the fact that the model was originally 537 

developed to represent conditions typical of Northern regions. Again, Lawton et al. (2006) 538 
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reported overestimation of NEE because of the oversensitivity of PaSim to initial 539 

conditions/winter conditions. Most of the issues related to general discrepancies in simulated 540 

C and N cycles, however, were related to precipitation only (Stehfest and Muller, 2004, 541 

Jarecki et al., 2008, De Gyrze et al., 2010, Ludwig et al., 2011, Lehuger et al., 2014). 542 

Precipitation and the resulting soil water dynamics strongly influence N cycling in terrestrial 543 

ecosystems since it affects both physical transport and N biological transformations by soil 544 

microorganisms (Brooks et al., 1999, Corre et al., 2002, Aranibar et al., 2004). 545 

 546 

4.2. Model structure and management 547 

Management has a great impact on C and N cycles. In biophysical and biogeochemical 548 

models, the correct representation of practices such as fertilization, irrigation and tillage in 549 

crop systems, and cutting and grazing in grassland systems, is needed to ensure the greatest 550 

suitability of outputs. 551 

In the models, fertilization, which influences soil C and N transformations (e.g. 552 

acidification following fertilization) and trace gas emissions, was often not well represented 553 

(Table 7). For DayCent, Fitton et al. (2014a, b) indicated an underestimation of N2O 554 

emissions due to the low sensitivity of the model at low N application rates. In DNDC, 555 

Congreves et al. (2016) found that NH3 emissions were underestimated due to a simple 556 

modelled cascade water flow, which may have limited the ability of the model to simulate 557 

slurry infiltration rates. Also, Causarano et al. (2007) observed general discrepancies in C-558 

dynamics (i.e. overestimation of microbial biomass C and total organic C, underestimation of 559 

particulate organic C), due to inadequate representation of the effects of tillage and manure in 560 

the EPIC model. Another issue related to fertilization was the inability of many models to 561 

replicate the effect of specific types of fertilizer. For instance, using DayCent Stehfest and 562 

Muller (2004) found overestimation of N2O emissions under urine application, where N was 563 

concentrated in small hotspots. For the same model, Ryals et al. (2014 and 2015) 564 

underestimated CO2 emissions since no soil water benefits were provided by adding compost. 565 

This condition was likely due to the lack of increased modelled decomposition because the 566 

model was not able to increase soil water contents when compost was added. Gu et al. (2014) 567 

overestimated N2O emissions, soil nitrate and ammonia concentrations due to the inability of 568 

DNDC to include canopy interception and foliar N uptake when spraying liquid fertilizer. 569 

Finally, residue management was one of the main weaknesses related to N management 570 

(Cavero et al., 1996, Sleutel et al., 2006, Rampazzo Todorovic et al., 2010, Wang et al., 571 

2013). The amount of N applied with residues depends on the quantity of residues and their N 572 
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concentration. These two factors affect the mineralization-immobilization turnover, whilst 573 

their net balance varies with environmental conditions (mainly soil moisture and temperature) 574 

and the characteristics of the organic matter (i.e. C:N and the decomposition rate). Since 575 

residues directly influence soil C and N processes, residue management in the models resulted 576 

in consistent modelling weaknesses. For instance, Justes et al. (2009) underestimated the N 577 

mineralization in STICS due to inappropriate parametrization of the model (i.e. default values 578 

of the decomposition module were used). In a similar way, Liu et al. (2009) overestimated the 579 

SOC content when stubble (wheat and lupine) was applied due to the use of the conventional 580 

setting of the stubble retention factor in RothC. Using DayCent and DNDC, Smith et al. 581 

(2012) underestimated SOC due to a slight overestimation of residue removal impact. 582 

However, the authors indicated that this could have been partly due to the inherent variability 583 

in SOC measurements. Smith et al. (2012) also found that DNDC tended to underestimate the 584 

rate of SOC change as affected by residue removal at some sites. Using DSSAT, Hartkamp et 585 

al. (2004) overestimated SOC in the crop rotations with N fertilization. This overestimation 586 

was due to inaccurate initial SOC (i.e. overestimated SOC values) which was related to an 587 

overestimation of the biomass incorporated into the soil. Similarly, Wang et al. (2005) 588 

underestimated the SOC content using the EPIC model due to a structural error in 589 

underestimating the return of corn residues. He et al. (2006) found general discrepancies in C 590 

and N dynamics because the EPIC model underestimated the capacity of the soil to transform 591 

crop residues into SOM. 592 

Tillage is one of the agricultural practices most commonly simulated by the models and 593 

an issue in most modelling applications. The use of tillage or reduced tillage can greatly affect 594 

soil properties, and since the models do not adjust some soil properties overtime (such as bulk 595 

density) which results in inaccuracies in simulations. Compared with conventional tillage, 596 

no/reduced tillage may lead to increasing rather than decreasing emissions (e.g. due to higher 597 

density and WFPS, more SOM near the soil surface thus higher denitrification potential, 598 

tendency to acidification and thus lower reduction of N2O to N2, etc.). Identifying 599 

mechanisms which help understand simulate emissions with no tillage is thus a key issue. In 600 

our analysis management effects (i.e. tillage) which influences topsoil erosion emerged as a 601 

point of weakness. This is because many models do not take into account adequately C-losses 602 

due to erosion. For instance, Nieto et al. (2010, 2013) overestimated SOC content using 603 

RothC, whilst Billen et al. (2009) observed general discrepancies in SOC content with EPIC. 604 

Another point of weakness in simulated tillage was the inadequate representation of 605 

changes in soil properties over time. For instance, Luo et al. (2011), using APSIM, 606 
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underestimated SOC decomposition. In this case, whilst tillage may have led to acceleration 607 

in soil C oxidation due to changes in soil environmental parameters (i.e. water retention, 608 

porosity, aeration, etc.), APSIM failed to simulate changes in these soil properties over time, 609 

which is a common issue amongst most models. Similarly, Causarano et al. (2007) found 610 

general discrepancies in C dynamics (i.e. overestimation of microbial biomass C and total 611 

organic C, underestimation of particulate organic C) due to an inadequate reproduction of the 612 

effects of tillage and manure on soil properties. 613 

In addition to fertilization and tillage, which were probably the most commonly 614 

simulated agronomic practices, model weaknesses were found in relation to other practices. 615 

For instance irrigation, especially accompanied by fertilization, was observed to affect 616 

simulated C and N cycles. Jackson et al. (1994) and Cavero et al. (1999) underestimated N 617 

fluxes under irrigated experiments using EPIC. The main source of error was related to an 618 

overestimation of the soil N losses via leaching or denitrification during the irrigated crop 619 

period. Grassland management was also seen to be a possible point of weakness for the 620 

models. For instance, Lawton et al. (2006), Vuichard et al. (2007) and Ma et al. (2015) 621 

observed general discrepancies in C-fluxes (i.e. net ecosystem exchange and ecosystem 622 

respiration) under different grazing intensities using a grassland-specific model (PaSim). As 623 

suggested by Vuichard et al. (2007), a continuous defoliation by grazing is indeed difficult to 624 

account for as a permanent disturbance in the model. The grazing effect, however, is 625 

associated with other parameters related to ecosystem and climate conditions, which makes it 626 

difficult to pinpoint the parameter which most strongly influences the uncertainty of the 627 

model output (Gottschalk et al., 2007). 628 

Finally, model weaknesses also result from management options that are not included. 629 

This type of weakness has emerged in several studies carried out using the RothC model. For 630 

instance Skjemstad et al. (2004) found general discrepancies in C dynamics due to ecosystem 631 

disturbances, which were not included in RothC (i.e. clearing and burning of pulled 632 

vegetation). Shirato and Yokazawa (2005) underestimated SOC content due to the 633 

decomposition rate of SOM under rice cultivation being too low (i.e. effect of waterlogged 634 

soil not included in RothC), and Farina et al. (2013) reported some discrepancies in C-fluxes 635 

when the model simulated rotations that included a fallow period. 636 

 637 

4.3. Time-scale 638 

Biophysical and biogeochemical models enable the estimation of C and N emissions at 639 

various temporal and spatial scales. Compared to the emission factor approaches often used 640 
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by organizations and individuals to calculate GHG emissions for a range of activities, these 641 

tools include the influences of agricultural practices, land-use change and soil properties, and 642 

estimate the influences of weather on emissions over time. 643 

The ability of these models to accurately reproduce detailed dynamics of C and N 644 

emissions depends on the degrees of complexity of the model itself. Current process models, 645 

with high complexity, are able to calculate in detail both C and N emissions due to their 646 

consideration of all soil-plant-atmosphere interactions. These tools are able to provide 647 

reasonable estimates of trace gas emissions from soils, usually for a specific site and at 648 

seasonal or annual time scales. By contrast, however, they are less successful at finer time 649 

resolution (e.g. daily) and on different sites from the ones where they have been previously 650 

calibrated. In our analysis several studies showed weaknesses due to the time-spatial scale 651 

associated with both pedo-climatic conditions and management.  652 

Concerning time-scale weaknesses, Xing et al. (2011) underestimated N2O emissions at 653 

the daily time step using APSIM, while the use of the hourly time step may have likely 654 

improved the estimate of predicted total daily emissions. This is because, in the APSIM 655 

model, as in most models, N2O emissions were released immediately to the atmosphere 656 

without delay upon change in environmental conditions whereas the observations indicated 657 

that there was a 1-10 hour lag between peaks of soil moisture and gaseous emissions. 658 

Similarly, Lehuger et al. (2011) using CERES-EGC indicated an overestimation in N2O 659 

emissions, probably due to a possible time lag between the production of gaseous N2O in the 660 

soil and its emission to the atmosphere. Also, several studies carried out using DayCent 661 

(Parton et al., 2001, Del Grosso et al., 2005, 2010) observed some discrepancies in simulated 662 

N emissions due to time-lag. This was found to agree with the results of Li et al. (2005), 663 

which indicated that DayCent often has a 1-day lag before emissions occur. In all these cases, 664 

the use of hourly time step may result in better predictions especially in conjunction with the 665 

addition of a description of gas diffusion into soil, which could result in a delay between N2O 666 

production and emission. 667 

Concerning spatial-scale weaknesses, Gabrielle et al. (2006) found discrepancies in N2O 668 

emission peaks using CERES-EGC. This was probably due to soil property parametrization 669 

(i.e. soil water retention properties and bulk density) which may have led to differences in N 670 

outputs from test sites to the regional scale. Using EPIC, general discrepancies in C-fluxes 671 

(i.e. overestimation of microbial biomass C and total organic C, underestimation of particulate 672 

organic C) were likely caused by spatial differences in C fraction due to differing soil 673 

landscapes (Calanca et al., 2007). Schnebelen et al. (2004) overestimated soil N absorption 674 



21 
 

with the STICS model. This was probably due to propagation of errors for continuous 675 

simulations compared to single-year simulations. More specifically, the underestimation of 676 

some parameters in the previous year may have led to errors in the following years. 677 

 678 

5. New developments/future perspectives 679 

In the above analysis, an indication was given of models’ predictive strength, while also 680 

hinting at possible limitations in the underlying hypotheses from the literature in the cases 681 

where discrepancies between model and observation occurred. Despite this extensive analysis, 682 

knowledge of basic mechanisms driving C and N cycles in agricultural systems is still far 683 

from complete and key questions remain, including: what exactly triggers the cascade of 684 

events that finally lead to biological responses? How to differentiate between causes and 685 

consequences? How does the knowledge derived from system observations relate to 686 

mechanistic events? How does the current knowledge on C and N cycling in agriculture fit 687 

with available mechanistic representations? Discrepancies between model outputs and 688 

observations can be ascribed to a wide diversity of causes, without any real tendency to 689 

associate them with one or another cause. The analysis reported in this work suggested 690 

however three (quite large) areas of interest for possible improvements of C and N models: i) 691 

soil biology, comprising SOM heterogeneity, decomposition kinetics, and N immobilization; 692 

ii) soil physics, including the representation of soil physical properties and the simulation of 693 

its effects on reaction rates; and iii) soil management, which indirectly affect soil processes by 694 

modifying soil physical, chemical and biological properties. 695 

Based on the main issues found in our analysis, despite recognizing the importance of 696 

soil management (Andales et al., 2000), N transformations (Heinen, 2006, Congreves et al., 697 

2016), and plant-soil interactions (Kuzyakov, 2002, Roose and Schnepf, 2008, Kuzyakov and 698 

Xu, 2013), here we focus on some innovative aspects related to soil biology and soil physics, 699 

and the interface between the two that requires attention (Blagodatsky and Smith, 2012). This 700 

choice is justified in that development of robust predictive frameworks is critical to managing 701 

soil biology and its essential functions and services (Thrall et al., 2011). They can help 702 

disentangling the causal links between soil biology and structure, physical-chemical factors 703 

and ecological processes (e.g. nutrient cycling, soil C sequestration) that contribute to plant 704 

community development and function. In addition, how soil communities respond to and 705 

impact on plant succession (e.g. via regulatory networks that respond to the availability of 706 

fixed N) may be important for predicting the role of plant–soil feedbacks in determining the 707 
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dynamics of soil microbial communities and the impact of anthropogenic disturbance on soil 708 

diversity and function. 709 

Soil microbial biomass (SMB) is generally only implicitly modelled by representing it 710 

as a C pool not affecting substrate decomposition directly (Manzoni and Porporato, 2009). 711 

Approaches of this type mostly implement solutions that are biologically meaningful (e.g. 712 

representing realistically SOM turnover) and computationally tractable within a simulation 713 

(i.e. with reduced overall complexity of the full model and a limited number of free 714 

parameters to be tuned), which make them suitable for analyses in long-term studies 715 

(Manzoni and Porporato, 2009, Sierra et al., 2015a). In recent years, researchers have 716 

advocated a representation of SOM turnover driven by SMB to gain insight into decomposing 717 

SOM-SMB interactions (Schimel and Weintraub, 2003, Lawrence et al., 2009, Blagodatsky et 718 

al., 2010, Schmidt et al., 2011). For C and N substrates, concentration constraints driven by 719 

microbial allocation patterns could thus be represented in novel biogeochemical models based 720 

on microbial physiology (Allison et al., 2014). In this way, models based on microbial 721 

biomass-driven SOM decomposition are promising to provide a realistic simulation of SOM 722 

turnover in relation to changes in environmental conditions compared to existing models that 723 

do not explicitly simulate SMB (Lawrence et al., 2009, Allison et al., 2010, Conant et al., 724 

2011, Sierra et al., 2015b). It is quite common to use classical enzymatic kinetics like 725 

Michaelis-Menten or Monod-type kinetics to implement substrate-SMB co-limitation 726 

(Blagodatsky and Richter, 1998, Hadas et al., 1998, Wutzler and Reichstein, 2013, Cavalli et 727 

al., 2016), even if simpler decomposition kinetics have also been proposed (Manzoni and 728 

Porporato, 2007, Withmore, 2007, Wutzler and Reichstein, 2008). Conversely, more general 729 

model formulations are described in Neill and Gignoux (2006) and Neill and Guenet (2010) to 730 

simulate microbial growth in soil accounting for both positive and negative priming effects. 731 

The priming effect is defined as any change (positive or negative) of native SOM 732 

decomposition rate following the addition of exogenous organic matter or nutrients, compared 733 

to no addition (Fontaine et al., 2007, Kuzyakov et al., 2000, Kuzyakov, 2010, Chen et al., 734 

2014, Perveen et al., 2014). 735 

Even in models with explicit SMB, microbial community is usually simulated with one 736 

or few pools, each representing microorganisms belonging to a different functional group 737 

(Moorhead and Sinsabaugh, 2006). However, further model developments could be achieved 738 

if diversity in soil microbial traits is included in the model, allowing microorganisms with 739 

optimal strategies to outperform other microorganisms with less favorable traits in a given 740 

environment (Allison et al., 2012, 2014). In such models, genomic and metagenomics data 741 
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can be integrated with other sources of information to define distributions of microbial traits 742 

that are used to characterize the microbial community (Vereeken et al., 2016). 743 

Another important aspect regarding SOM turnover is the effect of N shortage on SOM 744 

decomposition. Soil microorganisms are characterised by a narrow range of variation in their 745 

C to N ratio (Cleveland and Liptzin, 2007, Xu et al., 2013); thus, they can be approximately 746 

considered homeostatic (i.e. they do not change markedly their C to N ratio according to 747 

substrate C to N ratio). Mechanisms of adaptation to stoichiometric imbalances between 748 

substrates and SMB were reviewed in detail by Mooshammer et al. (2014a). One postulated 749 

mechanism of adaptation regards the variation of microbial C use efficiency (CUE, defined as 750 

the ratio between newly-formed biomass C and decomposed C) and of N use efficiency 751 

(NUE, defined similarly to CUE) to accommodate for excess or deficit of C or N (Manzoni et 752 

al., 2012, Sinsabaugh et al., 2013, Mooshammer et al., 2014b, Jeyer et al., 2016).  753 

Soil organic matter decomposition is operated mostly by the activity of extracellular 754 

enzymes (Burns et al., 2013), and any cost associated with the production of enzymes 755 

decreases CUE (Manzoni et al., 2012). Microorganisms evolved to optimize resource 756 

allocation for the synthesis of exoenzymes in response to environmental and physiological 757 

factors (Allison et al., 2011). According to Sinsabaugh and Follstad Shah (2012) and 758 

Sinsabaugh et al. (2016) CUE and NUE are both related to the activities of C and N acquiring 759 

exoenzymes (measured as potential activities of β-1,4-glucosidase, and β-1,4-N-760 

acetylglucosaminidase and leucine aminopeptidase, respectively). Thus, variations in CUE 761 

and NUE arise because SMB regulates exoenzyme production (in terms of amounts and type 762 

of synthetized enzymes) to attenuate the differences between their growth requirements and 763 

available resources (Sinsabaugh et al., 2016). 764 

Another mechanism of CUE regulation by SMB when SOM decomposition is N-limited 765 

is overflow metabolism (Russel and Cook, 1995): excess C is excreted as extracellular C 766 

compounds (like polysaccharides) (Hadas et al., 1998, Cavalli et al., 2016), or lost as CO2 767 

(Schimel and Weintraub, 2003, Neill and Gignoux, 2006). Conversely, when N is in excess 768 

relative to C (decomposition is limited by C availability), net N mineralisation occurs. Models 769 

usually implement N deficit effects on SOM decomposition with the N inhibition hypothesis 770 

(Manzoni and Porporato, 2009), that is, SOM turnover is reduced according to N availability, 771 

and thus CUE does not change. Alternatively, other models (Izaurralde et al., 2006, 772 

Withmore, 2007) allow SMB to vary its C to N ratio according to stoichiometric imbalances, 773 

and thus they consider SMB as non-homeostatic. 774 
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Decomposition of SOM in soil occurs at microsites showing varying N availability 775 

(Schimel and Bennett, 2004). This is caused by heterogeneity of both SOM and of soil 776 

physical properties (Schmidt et al., 2011). Thus, N is supposed to flow from micro-sites 777 

showing net N mineralisation to others showing net N immobilisation (Schimel and Bennett, 778 

2004). Mathematically, the heterogeneity of SOM decomposition in a first approximation can 779 

be simulated considering that not all organic N in substrates is available to SMB, according to 780 

the parallel hypothesis (Manzoni and Porporato, 2007). The use of a simple lumped SOM 781 

model, based on the parallel approach, was shown to provide almost similar results to the 782 

same model structure that explicitly took into account the heterogeneity of soil 783 

decomposition, and in which all organic N in substrates was available to decomposers, 784 

according to a direct assimilation pathway (Manzoni et al., 2008). 785 

The heterogeneity of SOM is simulated with models that comprise several pools of 786 

different decomposability (Nicolardot et al., 2001, Manzoni and Porporato, 2009, Sierra et al., 787 

2011, Sierra and Müller, 2015). In many models, decomposition constants of model pools 788 

incorporate intrinsic chemical recalcitrance of SOM, and availability of SOM to decomposers 789 

(Nicolardot et al., 2001, Sierra and Müller, 2015). However, it was recently emphasised that 790 

chemically-labile (or high-quality, and thus potentially easily-degradable) molecules can 791 

persist in soil for a long time due to constraints on their microbial decomposition not related 792 

to intrinsic chemical characteristics (Kleber, 2010, Marschner et al., 2008): biology of 793 

decomposers, abiotic reactions and desorption, environmental variables and physicochemical 794 

stabilisation processes (Ekschmitt et al., 2005, Kemmit et al., 2008, Kleber et al., 2011, 795 

Schmidt et al., 2011, Dungait et al., 2012). Regarding SOM physical and chemical 796 

stabilisation, models that explicitly represent protected and unprotected SOM pools of similar 797 

chemical characteristics (Kuka et al., 2007) allow separating intrinsic recalcitrance (substrate 798 

quality) from availability, and thus enable simulating long-term stabilisation of chemically 799 

easily-decomposable high-quality SOM (Dungait et al., 2012). In addition, more sophisticated 800 

and realistic approaches to simulate soil physicochemical heterogeneity, and thus variability 801 

of SOM decomposition, were implemented in SOM models that represent soil as 3D structure 802 

in which decomposition takes place (Garnier et al., 2008, Masse et al., 2007, Monga et al., 803 

2009, 2014). 804 

Improving soil biology aspects related to the production and consumption of gases (O2, 805 

CO2, CH4, N2O, and N2) will improve the simulation of soil gas concentrations. However, this 806 

is not sufficient to achieve proper simulations of GHG emissions, as accounting for gas 807 

transport through the soil profile is also important. As pointed out by Blagodatsky and Smith 808 
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(2012), it is necessary to find the right balance in complexity between biological and soil 809 

physical simulations. For example, the higher soil tortuosity the higher the N2/N2O ratio, 810 

because N2O has more possibilities to be reduced when the escape pathway from the N2O 811 

production sites to the atmosphere (and thus its diffusion time) is longer. Adequate simulation 812 

of gas transport in soil can be achieved using mechanistic models based on water, heat, and 813 

gas transport equations, and gas-liquid phase exchange. A further connection among soil 814 

biology and soil physics research will be to simulate SOM turnover and gas production, 815 

consumption, and transport in a 3D soil structure using the concepts presented above, so as to 816 

achieve a more realistic representation of environmental effects (soil temperature and 817 

moisture), especially in the context of climate change. 818 

One final observation is that all of the model improvements presented above require 819 

adequate simulation of initial conditions of inorganic N availability. Thus, it is mandatory that 820 

all processes affecting soil ammonium concentration be accurately simulated. Among these, 821 

ammonium fixation in non-exchangeable form by clay minerals in fine-textured soils can play 822 

a central role in determining the availability of N for microorganisms. Research on cation 823 

exchange in soil demonstrated that monovalent cations with low hydration energy and ionic 824 

radius that fits the ditrigonal cavities of the basal oxygen planes of 2:1 clay minerals are 825 

selectively sorbed at frayed edges of illite (partially weathered micas) and vermiculite, and at 826 

interlayer positions of vermiculite (Sawhney, 1972). Sorption of NH4
+
 (like K

+
, Rb

+
, and Cs

+
) 827 

in such exchange sites causes interlayer dehydration and layer collapse (Nieder et al., 2011). 828 

Such ions are strongly held against replacement by other cations and are termed fixed. After 829 

its application to soil with fertilisers, a relevant fraction of ammonium can be very rapidly 830 

(hours or days) fixed by clay minerals (Nõmmik, 1957) and is very slowly released during the 831 

following weeks or months (Steffens and Sparks, 1997). This fraction of applied N is thus not 832 

immediately available for nitrification, microbial immobilisation, and plant uptake. For a 833 

comprehensive survey of the factors influencing ammonium fixation / release readers can 834 

refer to reviews by Nõmmik & Vahtras (1982) and Nieder et al. (2011). 835 

Despite its importance, ammonium fixation / release is not commonly simulated by 836 

crop/grassland system and SOM models. The rapid fixation can be simulated with well-837 

known isotherms, which represent the static adsorption of an ion onto a surface (Cameron and 838 

Kowalenko, 1976, Cavalli et al., 2015) as a function of ion concentration. However, 839 

ammonium exchange reactions in soil are affected by the presence of other cations (such as 840 

K
+
 and Ca

2+
), and thus models should take into account for ion interactions (Bradbury and 841 

Baeyens, 2000; Evangelou and Lumbanraja, 2002). Research is needed to estimate model 842 
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parameters depending on soil characteristics (such as type of clay, potassium concentration, 843 

and soil water content) and to simulate ammonium release over time. 844 

 845 

6. Summary and concluding remarks 846 

At present, process-based biogeochemical models represent a valuable tool for 847 

examining the magnitude and spatial-temporal patterns of C and N fluxes in terrestrial 848 

biosphere dynamics. Our analysis shows that there is still great divergence between models in 849 

the simulation of C sequestration and GHG source/sink status, in relation to a different 850 

interpretation of physical and biogeochemical processes. 851 

Representative works have been summarized to provide a general overview of the state-852 

of the-art of models, and to allow process-based models (the nine identified in this study) to 853 

be compared and selected for the simulation of C and N cycles in crop and grassland systems. 854 

We classified models into categories according to three levels of knowledge: five general 855 

classes (level 1), 20 main processes (level 2), and 196 methods/options/components (level 3), 856 

and then we assessed the tools in terms of the comprehensiveness of processes related to 857 

pedo-climatic and management options, and their accuracy in a variety of contexts. 858 

This review highlighted strengths and weaknesses of the models analysed. Essentially, 859 

they involve limitations in simulating the effects of pedo-climatic conditions (45.9%) and 860 

different management practices (33.8%). Other weaknesses (i.e. 20.3%) were due to the scale 861 

of application in time and space. 862 

The major limitations of model structure related to C-cycles were observed under 863 

management practices (43.6%), whilst for the scale of application the major weaknesses were 864 

due to different pedo-climatic conditions (11.5%). For both the N-cycle modelling and scale 865 

of application, the main limitations were found in the response to different pedo-climatic 866 

conditions (51.1% and 20.2%, respectively). 867 

All the models considered here showed positive and negative features and none may 868 

necessarily be ideal in any particular circumstance. If the model chosen is not able to 869 

reproduce the output required, two or more of these models may be combined to derive upper 870 

and lower values for all simulated outputs. Moreover, a decision about which model or 871 

models to use should be seen as dynamic, not static. As conditions change, or if one model 872 

proves unsuccessful, they can be adapted or replaced with other, more suitable, models.  873 

Although the above reported weaknesses were already known due to a wide number of 874 

published studies, in the present analysis we have tried to relate them to their causes in the 875 

view of using them as an effective basis for improving current modelling approaches. 876 
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Although different avenues could be considered to improve models (e.g. Coucheney et al., 877 

2015), mainly depending on the purpose of modelling, to overcome the reported limitations 878 

and account for the effect of multiple disturbances (i.e. pedo-climatic conditions, management 879 

practices, scale of analysis) affecting basic processes, as well as to simplify the decision of 880 

which model to choose to understand mechanistically specific study-contexts and to make 881 

detailed predictions in a large diversity of situations, some innovative aspects should be 882 

considered in the modelling work. Among these, we target the representation of SOM 883 

turnover driven by SMB, the effect of N shortage on SOM decomposition, improvement 884 

related to the production and consumption of gases (O2, CO2, CH4, N2O, and N2), adequate 885 

simulations of gas transport in soil, the use of a 3D soil structure in order to achieve a more 886 

realistic representation of environmental effects (soil temperature and moisture), especially in 887 

the context of climate change. 888 

Model improvement thus implies extending the existing body of knowledge on 889 

ecological and biogeochemical concepts, to allow them to be incorporated using novel 890 

approaches, thus improving the representation of the dynamics of the ecosystems, and the 891 

related advantages for stakeholders. 892 

893 
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 35 

Abstract 36 

Biogeochemical simulation models are important tools for describing and quantifying the 37 

contribution of agricultural systems to C sequestration and GHG source/sink status. The 38 

abundance of simulation tools developed over recent decades, however, creates a difficulty 39 

because predictions from different models show large variability. Discrepancies between the 40 

conclusions of different modelling studies are often ascribed to differences in the physical and 41 

biogeochemical processes incorporated in equations of C and N cycles and their interactions. 42 

Here we review the literature to determine the state-of-the-art in modelling agricultural (crop 43 

and grassland) systems. In order to carry out this study, we selected the range of 44 

biogeochemical models used by the CN-MIP consortium of FACCE-JPI 45 

(http://www.faccejpi.com): APSIM, CERES-EGC, DayCent, DNDC, DSSAT, EPIC, PaSim, 46 

RothC and STICS. In our analysis, these models were assessed for the quality and 47 

comprehensiveness of underlying processes related to pedo-climatic conditions and 48 

management practices, but also with respect to time and space of application, and for their 49 

accuracy in multiple contexts. Overall, it emerged that there is a possible impact of ill-defined 50 

pedo-climatic conditions in the unsatisfactory performance of the models (46.2%), followed 51 

by limitations in the algorithms simulating the effects of management practices (33.1%). The 52 

multiplicity of scales in both time and space is a fundamental feature, which explains the 53 

remaining weaknesses (i.e. 20.7%). Innovative aspects have been identified for future 54 

development of C and N models. They include the explicit representation of soil microbial 55 

biomass to drive soil organic matter turnover, the effect of N shortage on SOM 56 

decomposition, the improvements related to the production and consumption of gases and an 57 

adequate simulations of gas transport in soil. On these bases, the assessment of trends and 58 

gaps in the modelling approaches currently employed to represent biogeochemical cycles in 59 

crop and grassland systems appears an essential step for future research. 60 

 61 

Keywords: Biogeochemical models, C cycle, N cycle, management, pedo-climate 62 

63 
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1. Introduction 64 

The sensitivity of soil carbon (C) stocks and greenhouse gas (GHG) emissions to 65 

climate and management practices demands a comprehensive methodology for effective 66 

policy analyses (Li et al., 1994). Enhancing soil C sequestration and reducing GHG emissions 67 

from agricultural soils are key objectives for reducing the climate impact of food production 68 

and they strongly depend on agricultural practices such as crop residue return, soil tillage 69 

modalities, and enhanced nitrogen (N) fertilization management. Whether C return to soils 70 

appear as a main controlling factor, in some cases (e.g. dry climates) reduced tillage may also 71 

be an effective measure for enhancing C sequestration (e.g. Chatskikh et al., 2008; Powlson et 72 

al., 2012). To avoid pollution swapping, assessments of the potential to reduce climate impact 73 

should also include other impacts such as nitrate (NO3
-
) leaching into groundwater, ammonia 74 

volatilization and soil erosion, which can also be reduced, for example, by increasing the use 75 

of grazed pastures in dairy farms (Rotz et al., 2009, Peyraud, 2011). In addition, it is 76 

important to consider the interactions on the hundred-year timescale of soil C equilibration 77 

(Lardy et al., 2011) and the relatively more rapid changes induced by agricultural practices 78 

(Angers et al., 1995). It is likely that most agricultural soils are not in equilibrium with respect 79 

to C storage and have the greatest potential for short-term C losses or gains, while they may 80 

also be sensitive to the effects of long-term, climate-driven processes (Wutzler and 81 

Reichstein, 2007). It is also important to recall that C and nitrogen (N) cycling strongly 82 

depends on interactions among plant growth processes, soil water dynamics and soil N 83 

dynamics that are highly non-linear and thus difficult to predict with simple approaches. 84 

Process-based ecosystem models take the approach of simulating underlying 85 

biogeochemical processes, such as plant photosynthesis and respiration, using mathematical 86 

equations that determine the allocation of C from atmospheric CO2 into biomass down to the 87 

soil organic matter (SOM). A relatively complete suite of biogeochemical processes (e.g. 88 

plant growth, organic matter decomposition, fermentation, ammonia volatilisation, 89 

nitrification and denitrification) is generally embedded in these models, enabling computation 90 

of transport and transformations in plant–soil ecosystems. Sub-models are designed to interact 91 

with each other to describe cycles of water, C and N for target ecosystems, thus any change in 92 

the environmental factors collectively affect a group of biogeochemical reactions. Extensively 93 

tested biogeochemical models (with the coupled C-N cycling) are effective tools for 94 

examining the magnitude and spatial-temporal patterns of C and N fluxes, and play an 95 

important role in designing specific policies appropriate to the soils, climate, and agricultural 96 

conditions of a location or region. However, results of state-of the-art terrestrial 97 
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biogeochemical models, describing the contribution of agricultural systems to C sequestration 98 

and GHG source/sink status, may diverge significantly. Such differences between model 99 

results are often attributed to physical and biogeochemical processes being inadequately 100 

resolved and, for these models, the improvement of algorithms and structure is recommended 101 

beyond parameter optimization (Tian et al., 2011, Lu and Tian, 2013). 102 

It is the goal of this paper to examine the strengths and weaknesses of nine crop and 103 

grassland models that incorporate C and N fluxes into biogeochemical frameworks and fully 104 

assess C and GHG dynamics in agricultural soils. These models are commonly applied 105 

worldwide and are used to simulate biogeochemical and related outputs by the project “C and 106 

N models intercomparison and improvement to assess management options for GHG 107 

mitigation in agro-systems worldwide” (CN-MIP, 2014-2017), established within the Joint 108 

Programming Initiative on Agriculture, Food Security and Climate Change (FACCE-JPI, 109 

http://www.faccejpi.com), which brings together 10 organizations from six countries. With 110 

this analysis we are not arguing against the quality of models. While highlighting weaknesses 111 

and limits of current modelling approaches as documented in several published studies, we 112 

intend to offer a general overview as a basis for new ways of improvement current modelling 113 

approaches.  114 

The following rationale has been used in the organization of this article. We first present 115 

the conceptual basis and the equations of the modelling approaches examined (Section 2). 116 

Section 3 reports on the documented performance of biogeochemical models against data, and 117 

discuss their relative strengths and weaknesses. Section 4 presents an outlook on recent 118 

research developments and future approaches. In Section 5, remarks are made concerning the 119 

bearing of the findings on a wider interpretation of biogeochemical modelling. 120 

 121 

2. Modelling approaches 122 

2.1. Basic model assumptions 123 

Biophysical and biogeochemical models are widely applied for studying crop and 124 

grassland productivity and GHG emissions in agricultural systems worldwide. In recent 125 

decades, these tools have also been used for assessing the expected impacts of future climate, 126 

as represented by several climate change scenarios (Graux et al., 2013). According to several 127 

studies, however (Palosuo et al., 2011, Rotter et al., 2012, Asseng et al., 2013, Sándor et al., 128 

2016), key model limitations have been identified, and different models have been found to 129 

provide different results when run in the same conditions of climate, soil and management. 130 

http://www.faccejpi.com/
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More specifically, a typical process can be described by using different approaches, thus 131 

resulting in different final outputs. 132 

All the models selected within CN-MIP are process-based models. They attempt to 133 

reproduce the most relevant ecological and physiological process through a theoretical 134 

understanding grounded in state-of-the art knowledge. In this way, they reproduce specific 135 

agro-ecological dynamics under prescribed conditions of climate, soil and management, 136 

thanks to the concepts and relationships that interlink entities of the real world. Most models 137 

represent plant phenology and yield-formation processes, together with functional processes 138 

at the basis of SOM (Soil Organic Matter) turnover, gas exchange at the soil-plant-atmosphere 139 

interface and soil water dynamics. 140 

 141 

2.2. The CN-MIP models 142 

The nine models considered for the CN-MIP exercise were mainly developed for crop 143 

or grassland ecosystems. These models were chosen since they are able to simulate GHG 144 

emissions under several management options. We were able to assess their ability to represent 145 

the GHG emission mitigation by modelling a variety of land management practices.  The nine 146 

models analysed for this intercomparison are: APSIM, CERES-EGC, DayCent, DNDC, 147 

DSSAT, EPIC, PaSim, RothC and STICS (Tab. 1). Below, a brief description of each model is 148 

provided. 149 

i) APSIM (The Agricultural Production Systems sIMulator) (Keating et al., 2003) 150 

simulates several systems through the interaction among plants, animals, soil, climate and 151 

management. The model allows the analysis of the whole-farm system, including crop and 152 

pasture sequences and rotations, and livestock. 153 

ii) CERES-EGC (Crop Environment REsource Synthesis - Environnement et Grandes 154 

Cultures) (Gabrielle et al., 1995) simulates the biogeochemical cycles of water, C and N in 155 

agro-ecosystems. The model predicts crop production and the environmental impacts related 156 

to the agriculture activity (e.g. N2O, NO, NH3, CO2, NO3) based on management for a wide 157 

range of arable crops (e.g. wheat, barley, maize, sorghum, sunflower, pea, sugar-beet, oilseed 158 

rape and miscantus). Crop-specific modules include approaches for plant growth and 159 

development, coupled to a generic soil sub-model. 160 

iii) DayCent (Parton et al., 1994) is a biogeochemical model able to simulate crop growth, 161 

soil C dynamics, N leaching, gaseous emissions (e.g. N2O, NO, N2, NH3, CH4 and CO2) and 162 

C fluxes (e.g. NPP, NEE) in crop fields, grasslands, forests, and savanna ecosystems. The 163 
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model allows to simulate also several management practices (i.e. fertilization, tillage, pruning, 164 

cutting, grazing, etc.) as well as specific external disturbances (i.e. fires). 165 

iv) DNDC (DeNitrification-DeComposition) (Li et al., 1992a) simulates C and N 166 

biogeochemistry in agro-ecosystems. The model predicts crop growth, soil regimes (i.e. 167 

temperature and moisture), soil C dynamics, N leaching, and trace gases emissions (e.g. N2O, 168 

NO, N2, NH3, CH4 and CO2). The model was expanded in 2012 to include biophysical 169 

processes in whole-farm systems (Li et al., 2012). 170 

v) DSSAT (Decision Support System For Agrotechnology Transfer) (IBSNAT, 171 

1993, Tsuji, 1998, Uehara, 1998 and Jones et al., 1998), was originally developed to facilitate 172 

the application of crop models in a systems approach to agronomic research. DSSAT ver. 4.6 173 

(i.e. cropping system model, CSM) and its crop simulation models integrates the effects of 174 

soil, crop phenotype, weather and management options. DSSAT includes improved 175 

application programs for seasonal, spatial, sequence and crop rotation analyses that assess the 176 

economic risks and environmental impacts associated with irrigation, fertilizer and nutrient 177 

management, climate variability, climate change, soil carbon sequestration, and precision 178 

management. The model can predict crop yield, resource dynamics such as for water, N and 179 

C, environmental impact (i.e. N leaching), evapotranspiration and SOM accumulation. 180 

vi) EPIC (Environmental Policy Integrated Climate) (Williams, 1995) can simulate about 181 

80 crops through its crop growth model which uses unique parameter values for each crop. It 182 

can predict changes in soil, water, nutrient, pesticide movements, and crop yields due to 183 

effects of management decisions. Moreover, it can also assess water quality, N and C cycling, 184 

climate change impacts, and the effects of atmospheric CO2. 185 

vii)  PaSim (Pasture Simulation model) (Riedo et al., 1998) is a process-based, grassland-186 

specific ecosystem model that simulates grassland and pasture productivity and GHG 187 

emissions to the atmosphere. The model consists of sub-models for grass, animals, 188 

microclimate, soil biology, soil physics and management. 189 

viii) RothC (Rothamsted Carbon model) (Coleman and Jenkinson, 1999) is a 190 

specific tool for the assessment of organic C turnover in non-waterlogged topsoil. The model 191 

allows for the effects of soil type, temperature, moisture content and plant cover on the 192 

turnover process. 193 

ix) STICS (Simulateur mulTIdiscplinaire pour les Cultures Standard) (Brisson et al., 1998) 194 

is a soil-crop model which is built on a generic framework for plant description. Within this 195 

framework, the selection of adequate options and parameters values allows to simulate a wide 196 

range of plants, from annual crops to perennial grasses or trees. The model simulates plant 197 

http://www.sciencedirect.com/science/article/pii/S0167880909001996#bib22
http://www.sciencedirect.com/science/article/pii/S1161030102001077#BIB82
http://www.sciencedirect.com/science/article/pii/S1161030102001077#BIB82
http://www.sciencedirect.com/science/article/pii/S1161030102001077#BIB192
http://www.sciencedirect.com/science/article/pii/S1161030102001077#BIB197
http://www.sciencedirect.com/science/article/pii/S1161030102001077#BIB94
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growth as well as water, C and N fluxes. It allows to consider the effect of a large range of 198 

management options on agronomic (biomass or grain productivity and quality) and 199 

environmental (C and N storage, nitrate leaching, N2O emissions) outputs. 200 

 201 

3. Results 202 

3.1. Model analysis 203 

For reducing the uncertainty in estimating the magnitude and spatial-temporal patterns 204 

of C and N fluxes from several agro-systems (i.e. crops, grassland and livestock), and for 205 

improving the understanding of how these tools work, we analysed the most important 206 

processes and approaches implemented into the models. This analysis was based on a top-207 

down approach focused at gaining insight into compositional sub-systems. On this basis, we 208 

indicated three levels of information containing specific processes/approaches that were sub-209 

divided according to different levels of detail.  210 

The starting point (level 1) was the detection of discrete units considered in agricultural 211 

modelling, which are essential to characterize agricultural systems. In this level, characterized 212 

by the lowest level of detail required for the analysis, we differentiated five general classes 213 

that should be implemented within all biophysical/biogeochemical process-based models for 214 

crops and grasslands. These classes concern ecological and physiological processes, 215 

management options, soil structure, and weather inputs (Tab. 2). 216 

Then, in the level 2 (intermediate level of detail) specific processes were identified 217 

within each general class (level 2). In this level 20 "main processes" were identified, which 218 

we retained as basic to describe the most important biophysical/biogeochemical dynamics 219 

(Tab. 3) of each general class indicated in the previous level. 220 

Finally, in the level 3 (highest level of detail) almost 200 modelling approaches (i.e. 221 

methods, options or components), identifying specific dynamics or mechanisms contained 222 

within the previous main processes (supplementary material) were reported (level 3). These 223 

approaches were extrapolated taking into account the current existing knowledge on the 224 

different methods, options and components able to describe the most important 225 

biophysical/biogeochemical dynamics (Tab. 3a-e in supplementary material). 226 

There are a number of advantages to such a “top-down” approach. An advantage is the 227 

insight that can be gained from examining the level of detail that each model provides. This in 228 

turn helps in identifying areas in the model structures to establish their reliability and 229 

relevance for intended purposes. Such an approach also helps in tracing possible links with 230 

the basic processes of each model (identification of the strengths and weaknesses) either in 231 
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the case of mismatch between model outputs and measurements, or in the case of 232 

disagreement among model results in similar conditions. 233 

Results reported below were based on the highest level of detail (level 3 – see 234 

supplementary material). 235 

 236 

3.1.1. Meteorological variables 237 

Meteorological inputs strongly influence model outputs since they affect plant growth, 238 

plant development stages, and soil turnover/balances, including flux exchanges at the soil-239 

plant-atmosphere interface. The number and type of climatic variables required by each model 240 

informs us about the relationship between model outputs and climate drivers. In principle, for 241 

the modelling of surface reactions and diffusion of volatile products (e.g. N2O emissions, soil 242 

water content dynamics), the higher the resolution in the climate information (e.g. hourly to 243 

sub-hourly weather inputs), the more accurate the model response is for short-term processes 244 

but the higher the probability that missing data may be present in the weather series used. For 245 

longer term processes such as soil organic carbon (SOC) decomposition, higher temporal 246 

resolution data may not improve the accuracy of the model response. 247 

From our analysis (Tab. 3a, see supplementary material) we observed that the nine 248 

models involved in CN-MIP mostly use climate inputs at daily resolution (89%), whereas 249 

PaSim uses the hourly time scale (but with an option also available for daily inputs), and 250 

RothC uses a monthly time-step. 251 

The most commonly used meteorological variables are precipitation, air temperature 252 

and wind speed. Concerning air temperature, the daily maximum and minimum air 253 

temperatures are used by almost all models (89%). 254 

Relative humidity (daily mean) and global solar radiation are also used by 67% and 255 

56% of the models, respectively. The atmospheric concentration of CO2 is an optional input 256 

for many models (78%), with the exception of CERES-EGC and RothC. 257 

Finally, only a few models use specific meteorological variables such as cloudiness, 258 

sunshine duration, dew-point temperature and actual vapour pressure. 259 

 260 

3.1.2. Soil 261 

Similarly to climate inputs, soil characteristics also have a great influence on model 262 

outputs. These characteristics strongly influence crop growth and fluxes related to the gaseous 263 

biogeochemical cycles as water, C and N. Some soil inputs are assumed as constant values 264 

(i.e. parameters), not changing during the simulation. Different soil properties (e.g. texture, 265 
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pH, bulk density, etc.) can affect plant growth and the environmental conditions for the 266 

microbial activity driving the formation and decomposition of SOM and mediating 267 

biochemical processes. 268 

From our analysis (Tab. 3b, see supplementary material), it emerged that soil processes 269 

are mostly calculated based on the differentiation of the soil profile into a sequence of distinct 270 

layers, with generation of outputs for each of these subdivisions. In PaSim model, the whole 271 

soil profile is the basis for the modelling of C dynamics. The soil temperature is calculated 272 

from energy balance (44%) or based on a response function of air temperature (56%). 273 

The water transport calculation scheme in soil is mainly described by the capacity (or 274 

tipping bucket) approach (78%). 275 

For the transport and transformation of N in soil profile, most models estimate pools 276 

and fluxes of NO3-N (78%) or/and NH4-N (89%).  277 

 278 

3.1.3. Plant ecophysiology and partitioning 279 

Crop and grassland models differ in the algorithms reflecting plant ecophysiology 280 

(growth and development) and partitioning (above and below-ground biomass and yield), 281 

which can lead to differences in simulated yield and total biomass, in turn affecting estimated 282 

C and N fluxes. 283 

In our analysis (Tab. 3c, see supplementary material), almost half of the models 284 

consider the mechanism of C allocation as a function of development stage (56%), whilst 285 

almost all the models take into account C assimilation (89%). The latter is mainly driven by 286 

RUE-type processes (Radiation Use Efficiency) and/or P-R = gross photosynthesis – 287 

respiration-type processes (56%). 288 

Phenology is simulated by almost all models (89%) through the use of growing degree 289 

days (GDD) (89%), whilst photoperiod and vernalization are represented by 56% of the 290 

models. 291 

Leaf area is accounted for by considering the leaf area index (LAI) (89%), whilst the 292 

simulation of the number of leaves and evolution of the specific leaf area are almost ignored. 293 

Reference evapotranspiration is accounted by Penman-Monteith (56%), Penman and 294 

Priestley–Taylor (44%). 295 

Root distribution is simulated by 78% of the models, mainly through a linear approach 296 

(56%). 297 

For the most part, models consider a dynamic partitioning of assimilates among plant 298 

organs (78%), based on the age of organs (78%). Within-plant partitioning occurs across 299 
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roots, grains, stems and sheaths, and leaf blades, for 89, 78, 78 and 67% of the models, 300 

respectively. 301 

Yield formation is mainly based on partitioning during reproductive stages (67%) and 302 

harvest index-type (44%). The yields mostly simulated are forage (89%), roots and grains 303 

(78%), tubers (67%) and fibre (56%). 304 

The factors limiting plant growth most strongly among the nine models were water 305 

deficit and nitrogen deficiency (88%). 306 

 307 

3.1.4. GHG emissions and other fluxes 308 

For better assessing how C and N cycles were involved in terms of GHG emissions and 309 

processes within several models, three main processes were detected (Tab. 3d, see 310 

supplementary material). 311 

In general from our analysis emerged that the three main processes belonging to the 312 

general class of GHG emissions and other fluxes are almost fully simulated by the considered 313 

models. 314 

In the main process called CO2-GHG the most important C-fluxes from the ecosystems 315 

were considered. More specifically, they include the Gross Primary Production (GPP), the Net 316 

Primary Production (NPP), the Net Ecosystem Exchange (NEE), the Net Biome Production 317 

(NBP) and several types of respiration processes (i.e. Ecosystem respiration or RECO), 318 

heterotrophic respiration from both soil and grazing animals, and autotrophic respiration. 319 

NPP and NEE are the most commonly simulated C-fluxes (67%), followed by GPP 320 

(56%) and RECO (44%), whilst just a few models simulate the NBP. Despite only 44% of the 321 

models taking into account RECO, most of them only consider soil respiration (89%). Plant 322 

respiration is considered by 56% of the models, whilst only 33% of the models take into 323 

account respiration from grazing animals. 324 

Among all of the models analysed only DNDC is able to simulate all the CO2-GHG 325 

fluxes considered. More than 70% of CO2-GHG can be simulated also by APSIM, DayCent 326 

and PaSim. The CO2-GHG simulated by the highest number of models (i.e. six models) are 327 

NPP, NEE and soil respiration. 328 

The main non-CO2 fluxes (for simplicity called Non CO2-GHG) include CH4, N2O, 329 

several N emissions (i.e. NH3, NOx, N2) and O3. 330 

N2O emissions are most commonly simulated (78%), followed by NH3 (56%). By 331 

contrast, only a few models generate CH4 and N2 emission outputs (44%) and NOx (33%). 332 

None of the models provide O3 emissions output. 333 
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N2O emissions provided by the models are mostly generated by denitrification and 334 

nitrification (78%), mainly based (i.e. >70% of the models) on a soil N pools (e.g. nitrate 335 

pool, NH4 pool) with soil water and temperature acting as main drivers of change on mineral 336 

N pools. 337 

Among all models analysed DayCent and DNDC were able to simulate all non CO2-338 

GHG considered in our analysis. However, more than 70% of non CO2-GHG can be 339 

simulated also by APSIM, PaSim and CERES-EGC. The non CO2-GHG simulated by the 340 

highest number of models (i.e. seven models) was N2O. The models able to simulate the 341 

highest number of variables (i.e. CH4, N2O and N2) were APSIM, DayCent, DNDC and 342 

PaSim. 343 

Ten specific N processes were considered in the models: nitrification, denitrification, 344 

volatilization, leaching, symbiotic fixation, assimilation, mineralization, immobilization, plant 345 

uptake, and clay fixation. All these processes were widely simulated (i.e. >70 %) by the 346 

models considered in our analyses, with the only exception of clay fixation, that is considered 347 

only by DNDC model. 348 

Among the models analysed, only RothC does not take into account any N process. All 349 

the remaining models are able to simulate each of the N processes considered in our analysis, 350 

with the only exceptions being APSIM, which does not consider NH3 volatilization, and 351 

PaSim and STICS, which only take account of assimilation indirectly (C:N-driven). 352 

 353 

3.1.5. Management 354 

All models are able to simulate the impact of the most common farming practices (i.e. 355 

harvesting, mowing, fertilization, tillage, irrigation, etc.) on the processes described so far. By 356 

contrast, specific options for grasslands, such as plant use and nutrient returns from grazing 357 

animals (as well as animal performances such as weight growth and milk production) are 358 

simulated by a lower number of models (Tab. 3e, see supplementary material). 359 

Harvesting, cutting, tillage, irrigation and crop rotation are widely simulated (>70% of 360 

models). Moreover, all models simulate fertilization and residue management. Concerning 361 

fertilization, however, only application of mineral N and organic amendments are widely 362 

simulated, while only a few models simulate other types of fertilizer such as phosphorus, 363 

potassium, sulphur and calcium. Similarly, the management of crop residues is based mainly 364 

on their burning or leaving on the ground surface, whilst only 33% of the models also 365 

consider burial (e.g. STICS accounts burial through tillage). Among other agricultural 366 
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practices, about half of the models consider pruning and water management (i.e. rice), but 367 

only a few consider pesticide application. 368 

The practices considered in the analysis are generally set by users. Some models also 369 

offer options to trigger management events (i.e. fertilization and irrigation) based on changing 370 

conditions during the simulation. 371 

Simulation of grazing, animal performances and nutrient returns were taken into 372 

account as specific options for grasslands. 373 

Concerning grazing, models are for the most part based on user-determined settings 374 

(start and end dates, animal density); some of them also include options related to evolving 375 

conditions (APSIM, EPIC and PaSim), selective grazing (APSIM and PaSim) and trampling 376 

effect (APSIM).  377 

Animal performance simulation is considered by 55% of the models through 378 

simple/static methods (APSIM and EPIC) or detailed/dynamic methods (PaSim), and based 379 

on feeding standards or fill units (APSIM, DNDC and RothC). 380 

Finally, nutrient return was considered by 66% of the models, based on uniform 381 

distribution of returns across the whole field. 382 

CERES-EGC, DSSAT and STICS do not include very specific agricultural options for 383 

grasslands. APSIM is the most detailed model for grasslands. 384 

 385 

4. C and N cycles: performance, strengths and weaknesses 386 

In this section, we provide an overview of the C and N approaches used by the CN-MIP 387 

models (see Tab. 4 and supplementary), and their performance as documented for a broad 388 

gradient of geographic and climatic conditions, as well as a variety of soil types and 389 

management practices, to gain insight into their main strengths and weaknesses. To do that, 390 

we have summarised the results of 130 published modelling studies (Tab. 5). 391 

In the analysis of the effects on C and N cycles of pedo-climatic conditions, we 392 

considered variations of soil features such as temperature and moisture, texture, bulk density, 393 

pH, SOC, C and N dynamics and water-filled pore space, and climate conditions such as 394 

patterns of air temperature, precipitation, solar radiation, also including frequency and 395 

intensity of extreme events such as floods and drought. Management practices include 396 

changes in agricultural practices such as tillage, fertilization, irrigation, crop variety on soil 397 

and vegetation and, in turn, on C and N cycles. 398 

Several types of weaknesses emerged in 94 modelling studies (Tab. 6), where 399 

criticalities in assessing the impact of pedo-climatic conditions (46.2%) and management 400 
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practices (33.1%) on environmental variables are reflected in unsatisfactory model 401 

performances. These latter were mostly related to limitations of model structure with respect 402 

to difficulties of the algorithms in simulating the effects of different management practices on 403 

C and N cycling. By contrast, only a few weaknesses were due to the scale of application, 404 

strictly related to the high variability in time and space of C and N cycles (16.5% and 4.2% 405 

for pedo-climatic conditions and management practices, respectively). For the C cycle, major 406 

limitations of model structure were related to management practices (43.4%), whilst for the 407 

scale of application, the major weaknesses were due to different pedo-climatic conditions 408 

(11.8%). For the N cycle, however, limitations inherent in model structure were predominant 409 

under different pedo-climatic conditions (51.7%), whilst for the scale of application, major 410 

weaknesses were due to different pedo-climatic conditions (20.4%). 411 

 412 

4.1. Model structures and pedo-climatic conditions 413 

Soil properties and climate conditions emerged as important factors for ensuring the 414 

effective representation of outputs (Tab. 7). While climate issues were mainly related to 415 

precipitation only, pedological factors concerned both the effect of changes of physical 416 

(texture, bulk density and soil hydrologic properties) and chemical (C and N processes) soil 417 

features on C and N cycles. 418 

Concerning soil physical characteristics, a primary role in modelling issues was played 419 

by the soil water properties. Errors in the simulation of soil water content (SWC) were the 420 

main cause of general discrepancies concerning C and N emissions in many studies (Tab. 7). 421 

Discrepancies in C and N outputs were also observed under specific soil water conditions 422 

such as the impact of soil freezing and thawing (Li et al., 2010) or soil shrinking and swelling 423 

(Babu et al., 2006). Again, an inappropriate setting of initial state variables determined 424 

discrepancies in N emissions (i.e. under- overestimation of N2O emissions peaks, Gabrielle et 425 

al., 2006). Considerable overestimations of N2O emissions were found to be closely related to 426 

overestimation of water-filled pore space (WFPS). WFPS is indeed one of the most important 427 

soil variables influencing C and N cycles. For instance, microbially-mediated soil respiration 428 

and N cycling processes tend to be higher or lower with increasing soil water content (e.g. 429 

increased nitrification under aerobic conditions, increased denitrification under anaerobic 430 

conditions, e.g. Bollmann, 1988). As WFPS reaches high values, soil respiration tends to 431 

decline and denitrification occurs, resulting in N losses via N2O and N2 emissions. This 432 

condition was observed especially for DayCent (Stehfest and Muller, 2004, Abdalla et al., 433 

2010, Xing et al., 2011, Ryals et al., 2014, 2015) and DNDC (Saggar et al., 2004, Abdalla et 434 
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al., 2010). Fast drainage is a particular issue for both the DayCent and DNDC models which 435 

drain water in excess of field capacity immediately. This condition makes these models 436 

unable to accurately predict N emissions at sites that consistently show soil moisture above 437 

FC (e.g. Uzoma et al., 2015). 438 

Soil bulk density (BD) was also a source of modelling error in simulating C and N 439 

cycles. For CERES-EGC, Gabrielle et al. (2006) found a discrepancy in N2O emission peaks 440 

due to inappropriate parametrization of soil water retention properties and bulk density from 441 

test site to regional scales. Drouet et al. (2011) confirmed that BD was one of the most 442 

influential factors for N2O emissions in CERES-EGC. The effect of BD increase was also 443 

reported for DayCent by De Gryze et al. (2010) and Abdalla et al. (2009), respectively, which 444 

observed an underestimation of N2O emissions in a conservation tillage treatment due to the 445 

increase in BD, and an associated decrease in pore space over time as DayCent maintains a 446 

steady BD and  simulation compaction, while the conservation tilled field site resulted in 447 

increased BD and reduced N2O emissions (Pisante et al, 2015). In fact, most of the selected 448 

models, with the exception of EPIC, DNDC and STICS, do not simulate soil compaction or 449 

loosening, as BD remains constant over time. 450 

Texture was also found to be an influential soil physical characteristic. Congreves et al. 451 

(2016) found an underestimation in NH3 emissions with the DNDC model, which is unable to 452 

simulate a heterogeneous soil profile. Similarly, Gagnon et al. (2016) confirmed that DNDC 453 

does not effectively discriminate across soil textures to simulate soil CO2 respiration. Clay 454 

concentration affects SOC accumulation in different ways. According to some studies 455 

(Nichols, 1984, Burke et al., 1989), SOC increases with increasing clay content due to the 456 

bonds between the surface of clay particles and organic matter that retard the decomposition 457 

process. Also, the increase of clay content affects soil aggregation, indirectly affecting SOC 458 

through the creation of macro-aggregates that can physically protect organic matter molecules 459 

from further microbial mineralization (Rice, 2002, Plante et al., 2006). However, a recent 460 

study (Gregorich et al., 2016) indicated that only temperature (not soil texture or other soil 461 

properties) was a driver of decomposition for 10 sites in Canada (
13

C-labelled study), thus 462 

suggesting as the effect of texture on SOC decomposition is controversial. Furthermore, 463 

texture parametrization is another possible source of error. For instance, Gijsman et al. (2002) 464 

indicated that inaccuracies in soil texture data used as inputs may have affected soil retention 465 

characteristics, thus resulting in discrepancies in SOC and soil mineral N dynamics. 466 

Soil chemical processes are generally similar between the models and all models 467 

considered showed difficulty in reproducing the observed C and N cycles. The processes 468 
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influencing soil organic matter (SOM) in the models include nitrification, denitrification, 469 

immobilization and mineralization. 470 

Discrepancies between modelled and observed data were often related to an 471 

inappropriate SOC content parametrization (Pathak et al., 2005, Calanca et al., 2007, 472 

Causarano et al., 2007, Smith et al., 2012, Gagnon et al., 2016). However, a considerable 473 

source of error was also due to overestimation of SOC content (Abdalla et al., 2010, Gijsman 474 

et al., 2002) or to the rate of soil C decomposition (Snow et al., 1999, De Gryze et al., 2010, 475 

Li et al., 2015). 476 

Nitrification is a two-stage process, performed by different groups of Archaea, 477 

consisting in the oxidation of ammonia or ammonium to nitrite (step 1) followed by the 478 

oxidation of the nitrite to nitrate (step 2). For DayCent, Li et al. (2005) and Del Grosso et al. 479 

(2008) found that overestimation in the nitrification rate was one of the main sources of error 480 

for N emissions estimation. This was also found by Drouet et al. (2011), showing that 481 

discrepancies in N2O emissions simulated by CERES-EGC were due to the high sensitivity of 482 

the model to the maximum rate of nitrification. The nitrification rate, however, is usually 483 

associated with a number of environmental factors including the substrate and oxygen 484 

concentration, temperature and pH. For instance, this was observed by Li et al. (2005), who 485 

pointed out that poor simulation of NH4
+
 was caused by the inaccurate regulation of the effect 486 

of temperature on nitrification in DayCent.  487 

Denitrification is a process where the reduction of soil nitrate to N-containing gases 488 

takes place. The major discrepancies between modelled and observed N emissions were due 489 

to an underestimation of the denitrification rate (Thorburn et al., 2010, Xing et al. 2011, Fitton 490 

et al., 2014a, b). The underestimation of the denitrification rate can be due to different type of 491 

errors. For instance, for APSIM, Thorburn et al. (2010) found the source of error in the model 492 

parametrization, with the default value of denitrification coefficient much lower than the 493 

optimized value. By contrast, Xing et al. (2011) indicated the response of denitrification rate 494 

to soil temperature and moisture (or WFPS) as the main source leading to the underestimation 495 

of denitrification. Generally, denitrification rates have been reported to be directly 496 

proportional to temperature (Seitzinger, 1988), whilst soils with high organic matter content 497 

(high dissolved organic C) and anaerobic conditions (i.e. waterlogged or poorly-drained soils) 498 

can more easily favour high denitrification rates. 499 

Another important source of modelling error resulted from the inaccurate estimation of 500 

the immobilization-mineralization processes. In the EPIC model, He et al. (2006) observed 501 

that general discrepancies in C and N dynamics (i.e. lower net N mineralization rate, 502 
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humification, etc.) were likely due to N mineralization algorithms which may have 503 

underpredicted net N mineralization (NMN) observable under field conditions. Smith et al. 504 

(2008) and Fitton et al. (2014a, 2014b) found that the underestimation in mineralization rate 505 

led to underestimation of N2O emissions. In the same way, Del Grosso et al. (2010) indicated 506 

that overestimation of N2O emissions was due to N mineralization rates that were too high 507 

and too responsive to climate drivers. Nitrogen immobilization or mineralization depends on 508 

the C/N ratio of the plant residues. The C/N ratio generally tends to decrease as the organic 509 

matter becomes more decomposed. Erroneous C/N parametrization can easily lead to errors in 510 

C and N cycle related outputs. For instance, Li et al. (2015) observed for the DSSAT model 511 

that differences between the modelled and measured soil C/N ratio led to SOC 512 

overestimation. 513 

Finally, climate conditions influence the C and N outputs in several studies analysed. 514 

Some issues were related to how the climate data have been used. For instance, in APSIM, 515 

Thorburn et al. (2010) found discrepancies in N emissions (i.e. underestimation of 516 

denitrification and N2O peaks) due to the application of spatially averaged rainfall data 517 

instead of the use of specific test-site rainfall data. In other cases, the main issues were due to 518 

the sensitivity of the models subroutines. For instance, Wattenbach et al. (2010) observed 519 

overestimation in NEE peaks in southern European regions due to issues in coupling water 520 

and C-fluxes. These issues were probably caused by the fact the model was developed for 521 

Northern regions. Again, Lawton et al. (2006) reported overestimation of NEE because of the 522 

oversensitivity of PaSim to initial conditions/winter conditions. Most of the issues related to 523 

general discrepancies in simulated C and N cycles, however, were related to precipitation only 524 

(Stehfest and Muller, 2004, Jarecki et al., 2008, De Gyrze et al., 2010, Ludwig et al., 2011, 525 

Lehuger et al., 2014). Precipitation and the resulting soil water dynamics strongly influence N 526 

cycling in terrestrial ecosystems since it affects both physical transport and N biological 527 

transformations by soil microorganisms (Brooks et al., 1999, Corre et al., 2002, Aranibar et 528 

al., 2004). 529 

 530 

4.2. Model structure and management 531 

Management has a great impact on C and N cycles. In biophysical and biogeochemical 532 

models, the correct representation of practices such as fertilization, irrigation and tillage in 533 

crop systems, and cutting and grazing in grassland systems, is needed to ensure the greatest 534 

suitability of outputs. 535 
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In the models, fertilization, which influences soil C and N transformations (e.g. 536 

acidification following fertilization) and trace gas emissions, was often not well represented 537 

(Tab. 7). For DayCent, Fitton et al. (2014a, b) indicated an underestimation of N2O emissions 538 

due to the low sensitivity of the model at low N application rates. In DNDC, Congreves et al. 539 

(2016) found that NH3 emissions were underestimated due to a simple modelled cascade 540 

water flow, which may have limited the ability of the model to simulate slurry infiltration 541 

rates. Also, Causarano et al. (2007) observed general discrepancies in C-dynamics (i.e. 542 

overestimation of microbial biomass C and total organic C, underestimation of particulate 543 

organic C), due to inadequate representation of the effects of tillage and manure in the EPIC 544 

model. Another issue related to fertilization was the inability of many models to replicate the 545 

effect of specific types of fertilizer. For instance, using DayCent Stehfest and Muller (2004) 546 

found overestimation of N2O emissions under urine application, where N was concentrated in 547 

small hotspots. For the same model, Ryals et al. (2014 and 2015) underestimated CO2 548 

emissions since no soil water benefits were provided by adding compost. This condition was 549 

likely due to the lack of increased modelled decomposition because the model was not able to 550 

increase soil water contents when compost was added. Gu et al. (2014) overestimated N2O 551 

emissions, soil nitrate and ammonia concentrations due to the inability of DNDC to include 552 

canopy interception and foliar N uptake when spraying liquid fertilizer. 553 

Finally, residue management was one of the main weaknesses related to N management 554 

(Cavero et al., 1996, Sleutel et al., 2006, Rampazzo Todorovic et al., 2010, Wang et al., 555 

2013). The amount of N applied with residues depends on the quantity of residues and their N 556 

concentration. These two factors affect the mineralization-immobilization turnover, whilst 557 

their net balance varies with environmental conditions (mainly soil moisture and temperature) 558 

and the characteristics of the OM (i.e. C:N and the decomposition rate). Since residues 559 

directly influence soil C and N processes, residue management in the models resulted in 560 

consistent modelling weaknesses. For instance, Justes et al. (2009) underestimated the N 561 

mineralization in STICS due to inappropriate parametrization of the model (i.e. default values 562 

of the decomposition module were used). In a similar way, Liu et al. (2009) overestimated the 563 

SOC content when stubble (wheat and lupine) was applied due to the use of the conventional 564 

setting of the stubble retention factor in RothC. Using DayCent and DNDC, Smith et al. 565 

(2012) underestimated SOC due to a slight overestimation of residue removal impact. 566 

However, the authors indicated that this could have been partly due to the inherent variability 567 

in SOC measurements. Smith et al. (2012) also found that DNDC tended to underestimate the 568 

rate of SOC change as affected by residue removal at some sites. Using DSSAT, Hartkamp et 569 
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al. (2004) overestimated SOC in the crop rotations with N fertilization. This overestimation 570 

was due to inaccurate initial SOC (i.e. overestimated SOC values) which was related to an 571 

overestimation of the biomass incorporated into the soil. Similarly, Wang et al. (2005) 572 

underestimated the SOC content using the EPIC model due to a structural error in 573 

underestimating the return of corn residues. He et al. (2006) found general discrepancies in C 574 

and N dynamics due to underestimation of the soil capacity to transform crop residue in SOC. 575 

Tillage is one of the agricultural practices most commonly simulated by the models and 576 

an issue in most modelling applications. The use of tillage or reduced tillage can greatly affect 577 

soil properties, and since the models don’t adjust some soil properties overtime (such as bulk 578 

density) which results in inaccuracies in simulations. Also, the use of tillage or no/reduced 579 

tillage may lead to increasing rather than decreasing emissions (e.g. due to higher density and 580 

WFPS, more SOM near the soil surface thus higher denitrification potential, tendency to 581 

acidification and thus lower reduction of N2O to N2, etc.). Identifying mechanisms which help 582 

understand simulate emissions with no tillage is thus a key issue. In our analysis management 583 

effects (i.e. tillage) which influences topsoil erosion emerged as a point of weakness. This is 584 

because many models do not take into account adequately C-losses due to erosion. For 585 

instance, Nieto et al. (2010, 2013) overestimated SOC content using RothC, whilst Billen et 586 

al. (2009) observed general discrepancies in SOC content with EPIC. 587 

Another point of weakness in simulated tillage was the inadequate representation of 588 

changes in soil properties over time. For instance, Luo et al. (2011), using APSIM, 589 

underestimated SOC decomposition. In this case, whilst tillage may have led to acceleration 590 

in soil C oxidation due to changes in soil environmental parameters (i.e. water retention, 591 

porosity, aeration, etc.), APSIM failed to simulate changes in these soil properties over time, 592 

which is a common issue amongst most models. Similarly, Causarano et al. (2007) found 593 

general discrepancies in C dynamics (i.e. overestimation of microbial biomass C and total 594 

organic C, underestimation particulate organic C) due to an inadequate reproduction of the 595 

effects of tillage and manure on soil properties. 596 

In addition to fertilization and tillage, probably the most common simulated agronomic 597 

practices, model weaknesses were found in relation to other practices. For instance irrigation, 598 

especially accompanied by fertilization, was observed to affect simulated C and N cycles. 599 

Jackson et al. (1994) and Cavero et al. (1999) underestimated N fluxes under irrigated 600 

experiments using EPIC. The main source of error was related to an overestimation of the soil 601 

N losses via leaching or denitrification during the irrigated crop period. Grassland 602 

management was also seen to be a possible point of weakness for the models. For instance, 603 
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Lawton et al. (2006), Vuichard et al. (2007a) and Ma et al. (2015) observed general 604 

discrepancies in C-fluxes (i.e. net ecosystem exchange and ecosystem respiration) under 605 

different grazing intensities using a grassland-specific model (PaSim). As suggested by 606 

Vuichard et al. (2007a), a continuous defoliation by grazing is indeed difficult to account for 607 

as a permanent disturbance in the model. The grazing effect, however, links with many other 608 

parameters related to the ecosystem and climate which makes it difficult to define the 609 

parameter which most strongly infuences the uncertainty of the model output (Gottschalk et 610 

al., 2007). 611 

Finally, model weaknesses also result from management options that are not included. 612 

This type of weakness has emerged in several studies carried out using the RothC model. For 613 

instance Skjemstad et al. (2004) found general discrepancies in C dynamics due to ecosystem 614 

disturbances which were not included in RothC (i.e. clearing and burning of pulled 615 

vegetation). Shirato and Yokazawa (2005) underestimated SOC content due to the 616 

decomposition rate of SOM under rice cultivation (i.e. effect of waterlogged soil not included 617 

in RothC) being too low, and Farina et al. (2013) reported some discrepancies in C-fluxes 618 

when the model simulated rotations that included a fallow period. 619 

 620 

4.3. Time-scale 621 

Biophysical and biogeochemical models enable the estimation of C and N emissions at 622 

various temporal and spatial scales. Compared to the emission factor approaches often used 623 

by organizations and individuals to calculate greenhouse gas (GHG) emissions for a range of 624 

activities, these tools include the influences of agricultural practices, land-use change, soil 625 

properties and estimate the influences of weather on emissions over time. 626 

The ability of these models to accurately reproduce detailed dynamics of C and N 627 

emissions depends on the degrees of complexity of the model itself. Current process models, 628 

with high complexity, are able to calculate in detail both C and N emissions due to their 629 

consideration of all soil-plant-atmosphere interactions. These tools are able to provide 630 

reasonable estimates of trace gas emissions from soils, usually for a specific site and at 631 

seasonal or annual time scales. By contrast, however, they are less successful at finer time 632 

resolution (e.g. daily) and on different sites from the ones where have been previously 633 

calibrated. In our analysis several studies showed weaknesses due to the time-spatial scale 634 

associated with both pedo-climatic conditions and management.  635 

Concerning time-scale weaknesses, Xing et al. (2011) underestimated N2O emissions at 636 

the daily time step using APSIM, while the use of the hourly time step may have likely 637 



20 
 

improved the estimate of predicted total daily emissions. This is because, in the APSIM 638 

model, as in most models, N2O emissions were released immediately to the atmosphere 639 

without delay upon change in environmental conditions whereas the observations indicated 640 

that there was a 1-10 hour lag between peaks of soil moisture and gaseous emissions. 641 

Similarly, Lehuger et al. (2011) using CERES-EGC indicated an overestimation in N2O 642 

emissions, probably due to a possible time lag between the production of gaseous N2O in the 643 

soil and its emission to the atmosphere. Also, several studies carried out using DayCent 644 

(Parton et al., 2001, Del Grosso et al., 2005, 2010) observed some discrepancies in simulated 645 

N emissions due to time-lag. This was found to agree with Li et al. (2005), which indicated 646 

that DayCent often has a 1 day lag before emissions occur. In all these cases, the use of hourly 647 

time step may result in better predictions especially in conjunction with the addition of a 648 

description of gas diffusion into soil which could result in a delay between N2O production 649 

and emission. 650 

Concerning spatial-scale weaknesses, Gabrielle et al. (2006) found discrepancies in N2O 651 

emission peaks using CERES-EGC. This was probably due to soil property parametrization 652 

(i.e. soil water retention properties and bulk density) which may have led to differences in N 653 

outputs from test sites to the regional scale. Using EPIC, general discrepancies in C-fluxes 654 

(i.e. overestimation of microbial biomass C and total organic C, underestimation of particulate 655 

organic C) were likely caused by spatial differences in C fraction due to differing soil 656 

landscapes (Calanca et al., 2007). Schnebelen et al. (2004) overestimated soil N absorption 657 

with the STICS model. This was probably due to propagation of errors for continuous 658 

simulations compared to single-year simulations. More specifically, the underestimation of 659 

some parameters in the previous year may have led to errors in the following years. 660 

 661 

5. New developments/future perspectives 662 

In the above analysis, an indication was given of models’ predictive strength, while also 663 

hinting at possible limitations in the underlying hypotheses from the literature in the cases 664 

where discrepancies between model and observation occurred. Despite this extensive analysis, 665 

knowledge basic mechanisms driving C and N cycles in agricultural systems is still far from 666 

complete and key questions remain, including: what exactly triggers the cascade of events that 667 

finally lead to biological responses? How to differentiate between causes and consequences? 668 

How does the knowledge derived from system observations relate to mechanistic events? 669 

How does the current knowledge on C and N cycling in agriculture fits with available 670 

mechanistic representations? Discrepancies between model outputs and observations can be 671 
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ascribed to a wide diversity of causes, without any real tendency to associate them with one or 672 

another cause. The analysis reported in this work suggested however three (quite large) areas 673 

of interest for possible improvements of C and N models: i) soil biology, comprising SOM 674 

heterogeneity, decomposition kinetics, and N immobilization; ii) soil physics, including the 675 

representation of soil physical properties and the simulation of its effects on reaction rates; 676 

and iii) soil management, which indirectly affect soil processes by modifying soil physical, 677 

chemical and biological properties. 678 

Based on the main issues found in our analysis, despite recognizing the importance of 679 

soil management, here we focus on some innovative aspects related to soil biology and soil 680 

physics, and interface that requires attention (Blagodatsky and Smith, 2012). This choice is 681 

justified in that development of robust predictive frameworks is critical to managing soil 682 

biology and its essential functions and services (Thrall et al., 2011). They can help 683 

disentangling the causal links between soil biology and structure, physical-chemical factors 684 

and ecological processes (e.g. nutrient cycling, soil C sequestration) that contribute to plant 685 

community development and function. In addition, how soil communities respond to and 686 

impact on plant succession (e.g. via regulatory networks that respond to the availability of 687 

fixed N) may be important for predicting the role of plant–soil feedbacks in determining the 688 

dynamics of soil microbial communities and the impact of anthropogenic disturbance on soil 689 

diversity and function. 690 

Soil microbial biomass (SMB) is generally only implicitly modelled by representing it 691 

as a C pool not affecting substrate decomposition directly (Manzoni and Porporato, 2009). 692 

Approaches of this type mostly implement solutions that are biologically meaningful (e.g. 693 

representing realistically SOM turnover) and computationally tractable within a simulation 694 

(i.e. with reduced overall complexity of the full model and a limited number of free 695 

parameters to be tuned), which make them suitable for analyses in long-term studies 696 

(Manzoni and Porporato, 2009, Sierra et al., 2015a). In recent years, researchers have 697 

advocated a representation of SOM turnover driven by SMB to gain insight into decomposing 698 

SOM-SMB interactions (Schimel and Weintraub, 2003, Lawrence et al., 2009, Blagodatsky et 699 

al., 2010, Schmidt et al., 2011). For C and N substrates, concentration constraints driven by 700 

microbial allocation patterns could thus be represented in novel biogeochemical models based 701 

on microbial physiology (Allison et al., 2014). In this way, models based on microbial 702 

biomass-driven SOM decomposition are promising to provide a realistic simulation of SOM 703 

turnover in relation to changes in environmental conditions compared to existing models that 704 

do not explicitly simulate SMB (Lawrence et al., 2009, Allison et al., 2010, Conant et al., 705 
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2011, Sierra et al., 2015b). It is quite common to use classical enzymatic kinetics like 706 

Michaelis-Menten or Monod-type kinetics to implement substrate-SMB co-limitation 707 

(Blagodatsky and Richter, 1998, Hadas et al., 1998, Wutzler and Reichstein, 2013, Cavalli et 708 

al., 2016), even if simpler decomposition kinetics have also been proposed (Manzoni and 709 

Porporato, 2007, Withmore, 2007, Wutzler and Reichstein, 2008). Conversely, more general 710 

model formulations are described in Neill and Gignoux (2006) and Neill and Guenet (2010) to 711 

simulate microbial growth in soil accounting for both positive and negative priming effects. 712 

The priming effect is defined as any change (positive or negative) of native SOM 713 

decomposition rate following the addition of exogenous organic matter or nutrients, compared 714 

to no addition (Fontaine et al., 2007, Kuzyakov et al., 2000, Kuzyakov, 2010, Chen et al., 715 

2014, Perveen et al., 2014). 716 

Another important aspect regarding SOM turnover is the effect of N shortage on SOM 717 

decomposition. Soil microorganisms are characterised by a narrow range of variation in their 718 

C to N ratio (Cleveland and Liptzin, 2007, Xu et al., 2013); thus, they can be approximately 719 

considered homeostatic (i.e. they do not change markedly their C to N ratio according to 720 

substrate C to N ratio). Mechanisms of adaptation to stoichiometric imbalances between 721 

substrates and SMB were reviewed in detail by Mooshammer et al. (2014a). One postulated 722 

mechanism of adaptation regards the variation of microbial C use efficiency (CUE, defined as 723 

the ratio between newly-formed biomass C and decomposed C) and of N use efficiency 724 

(NUE, defined similarly to CUE) to accommodate for excess or deficit of C or N (Manzoni et 725 

al., 2012, Sinsabaugh et al., 2013, Mooshammer et al., 2014b). According to this hypothesis, 726 

when decomposition is N-limited, excess C is lost through overflow metabolism (Russel and 727 

Cook, 1995), either with the synthesis of extracellular C compounds (as polysaccharides) 728 

(Hadas et al., 1998, Cavalli et al., 2016), or as CO2 (Schimel and Weintraub, 2003, Neill and 729 

Gignoux, 2006). Conversely, when N is in excess (decomposition is limited by C 730 

availability), net N mineralisation occurs. Models usually implement N deficit effects on 731 

SOM decomposition with the N inhibition hypothesis (Manzoni and Porporato, 2009), that is, 732 

SOM turnover is reduced according to N availability, and thus CUE does not change. 733 

Alternatively, other models (Izaurralde et al., 2006, Withmore, 2007) allow SMB to vary its C 734 

to N ratio according to stoichiometric imbalances, and thus they consider SMB as non-735 

homeostatic. 736 

Decomposition of SOM in soil occurs at microsites showing varying N availability 737 

(Schimel and Bennett, 2004). This is caused by heterogeneity of both SOM and of soil 738 

physical properties (Schmidt et al., 2011). Thus, N is supposed to flow from micro-sites 739 
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showing net N mineralisation to others showing net N immobilisation (Schimel and Bennett, 740 

2004). Mathematically, the heterogeneity of SOM decomposition in a first approximation can 741 

be simulated considering that not all organic N in substrates is available to SMB, according to 742 

the parallel hypothesis (Manzoni and Porporato, 2007). The use of a simple lumped SOM 743 

model, based on the parallel approach, was shown to provide almost similar results to the 744 

same model structure that explicitly took into account the heterogeneity of soil 745 

decomposition, and in which all organic N in substrates was available to decomposers, 746 

according to a direct assimilation pathway (Manzoni et al., 2008). 747 

The heterogeneity of SOM is simulated with models that comprise several pools of 748 

different decomposability (Nicolardot et al., 2001, Manzoni and Porporato, 2009, Sierra et al., 749 

2011, Sierra and Müller, 2015). In many models, decomposition constants of model pools 750 

incorporate intrinsic chemical recalcitrance of SOM, and availability of SOM to decomposers 751 

(Nicolardot et al., 2001, Sierra and Müller, 2015). However, it was recently emphasised that 752 

chemically-labile (or high-quality, and thus potentially easily-degradable) molecules can 753 

persist in soil for a long time due to constraints on their microbial decomposition not related 754 

to intrinsic chemical characteristics (Kleber, 2010, Marschner et al., 2008): biology of 755 

decomposers, abiotic reactions and desorption, environmental variables and physicochemical 756 

stabilisation processes (Ekschmitt et al., 2005, Kemmit et al., 2008, Kleber et al., 2011, 757 

Schmidt et al., 2011, Dungait et al., 2012). Regarding SOM physical and chemical 758 

stabilisation, models that explicitly represent protected and unprotected SOM pools of similar 759 

chemical characteristics (Kuka et al., 2007) allow separating intrinsic recalcitrance (substrate 760 

quality) from availability, and thus enable simulating long-term stabilisation of chemically 761 

easily-decomposable high-quality SOM in soil (Dungait et al., 2012). In addition, more 762 

sophisticated and realistic approaches to simulate soil physicochemical heterogeneity, and 763 

thus variability of SOM decomposition, were implemented in SOM models that represent soil 764 

as 3D structure in which decomposition takes place (Garnier et al., 2008, Masse et al., 2007, 765 

Monga et al., 2009, 2014). 766 

Improving soil biology aspects related to the production and consumption of gases (O2, 767 

CO2, CH4, N2O, and N2) will improve the simulation of soil gas concentrations. However, this 768 

is not sufficient to achieve proper simulations of GHG emissions, as accounting for gas 769 

transport through the soil profile is also important. As pointed out by Blagodatsky and Smith 770 

(2012), it is necessary to find the right balance in complexity between biological and soil 771 

physical simulations. For example, the higher soil tortuosity the higher the N2/N2O ratio, 772 

because N2O has more possibilities to be reduced when the escape pathway from the N2O 773 
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production sites to the atmosphere (and thus its diffusion time) is longer. Adequate simulation 774 

of gas transport in soil can be achieved using mechanistic models based on water, heat, and 775 

gas transport equations, and gas-liquid phase exchange. A further connection among soil 776 

biology and soil physics research will be to simulate SOM turnover and gas production, 777 

consumption, and transport in a 3D soil structure using the concepts presented above, so as to 778 

achieve a more realistic representation of environmental effects (soil temperature and 779 

moisture), especially in the context of climate change. 780 

One final observation is that all of the model improvements presented above require 781 

adequate simulation of initial conditions of inorganic N availability. Thus, it is mandatory that 782 

all processes affecting soil ammonium concentration are accurately simulated. Among these, 783 

ammonium fixation in non-exchangeable form by clay minerals in fine-textured soils is not 784 

frequently considered in modelling practice (Nieder et al., 2011). After its application to soil 785 

with fertilisers, a relevant fraction of ammonium can be very rapidly (hours or days) fixed by 786 

clay minerals (Nõmmik, 1957) in a form that is very slowly released during the following 787 

weeks or months (Steffens and Sparks, 1997). This fraction of applied N is thus not 788 

immediately available for nitrification, microbial immobilisation, and plant uptake. Despite its 789 

importance, ammonium fixation / release is not commonly simulated by crop/grassland 790 

system and SOM models. The rapid fixation can be simulated with well-known isotherms, 791 

which represent the static adsorption of an ion onto a surface (Cameron and Kowalenko, 792 

1976, Cavalli et al., 2015) as a function of ion concentration. Research is needed to estimate 793 

isotherm parameters depending on soil characteristics (such as type of clay, potassium 794 

concentration, and soil water content) and to simulate ammonium release over time. 795 

 796 

6. Summary and concluding remarks 797 

At present, process-based biogeochemical models represent a valuable tool for 798 

examining the magnitude and spatial-temporal patterns of C and N fluxes in terrestrial 799 

biosphere dynamics. Our analysis shows that there is still great divergence between models in 800 

the simulation of C sequestration and GHG source/sink status, in relation to a different 801 

interpretation of physical and biogeochemical processes. 802 

Representative works have been summarized to provide a general overview of the state-803 

of the-art of models, and to allow process-based models (the nine identified in this study) to 804 

be compared and selected for the simulation of C and N cycles in crop and grassland systems. 805 

We classified models into categories according to three levels of knowledge: five general 806 

classes (level 1), 20 main processes (level 2), and 196 methods/options/components (level 3), 807 
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and then we assessed the tools in terms of the comprehensiveness of processes related to 808 

pedo-climatic and management options, and their accuracy in a variety of contexts. 809 

This review highlighted strengths and weaknesses of the models analysed. Essentially, 810 

they involve limitations in simulating the effects of pedo-climatic conditions (46.2%) and 811 

different management practices (33.1%). Other weaknesses (i.e. 20.7%) were due to the scale 812 

of application in time and space. 813 

The major limitations of model structure related to C-cycles were observed under 814 

management practices (43.4%), whilst for the scale of application the major weaknesses were 815 

due to different pedo-climatic conditions (11.8%). For the N cycle, the main limitations 816 

inherent in model structure were found under different pedo-climatic conditions (51.7%), 817 

whilst for the scale of application the major weaknesses were due to different pedo-climatic 818 

conditions (20.4%). 819 

All the models considered here showed positive and negative features and none may 820 

necessarily be ideal in any particular circumstance. If the model chosen is not able to 821 

reproduce the output required, two or more of these models may be combined to derive upper 822 

and lower values for all simulated outputs. Moreover, a decision about which model or 823 

models to use should be seen as dynamic, not static. As conditions change, or if one model 824 

proves unsuccessful, they can be adapted or replaced with other, more suitable, models.  825 

Although the above reported weaknesses were already known due to a wide number of 826 

published studies, in the present analysis we have tried to relate them to their causes in the 827 

view of using them as an effective basis for improving current modelling approaches. 828 

Although different avenues could be considered to improve models (e.g. Coucheney et al., 829 

2015), mainly depending on the purpose of modelling, to overcome the reported limitations 830 

and account for the effect of multiple disturbances (i.e. pedo-climatic conditions, management 831 

practices, scale of analysis) affecting basic processes, as well as to simplify the decision of 832 

which model to choose to understand mechanistically specific study-contexts and to make 833 

detailed predictions in a large diversity of situations, some innovative aspects should be 834 

considered in the modelling work. Among these, we target the representation of SOM 835 

turnover driven by SMB, the effect of N shortage on SOM decomposition, improvement 836 

related to the production and consumption of gases (O2, CO2, CH4, N2O, and N2), adequate 837 

simulations of gas transport in soil, the use of a 3D soil structure in order to achieve a more 838 

realistic representation of environmental effects (soil temperature and moisture), especially in 839 

the context of climate change. 840 
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Model improvement thus implies extending the existing body of knowledge on 841 

ecological and biogeochemical concepts, to allow them to be incorporated using novel 842 

approaches, thus improving the representation of the dynamics of the ecosystems, and the 843 

related advantages for stakeholders. 844 

845 
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Table 1 - The nine biogeochemical models used for the intercomparison. 5 

6 
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General Classes (Lev.1) 
% of models able to simulate at least 1 Main 

process contained within each General Class 

Name of Class 

N° of Main Processes 

contained within each 

General Class 

Able (%) Not able (%) N.A * 

Plant ecophysiology 

and partitioning 
10 100 0 - - - 

Soil 4 100 0 - - - 

Climate 1 100 0 - - - 

Management 2 100 0 - - - 

GHG emissions and 

other fluxes 
3 100 0 - - - 

 8 

 9 

Table 2 - Level 1 of compositional sub-systems: general classes as usually considered in agricultural, 10 

the main processes identified within each general class and the percentage of models able to simulate 11 

at least 1 main process contained within each general class. * No information is available. 12 

13 
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 14 

Main Processes (Lev.2) 

% of models able to simulate at least 

1 methods, options or components 

contained within each Main Processes 

Name of the Main Processes 

N° of methods, options 

or components 

contained within each 

Main Processes 

Able (%) 
Not able 

(%) 
N.A * 

Carbon allocation mechanism 1 55.6 44.4 - - - 

Carbon assimilation 4 88.9 11.1 - - - 

Stomata 3 33.3 66.7 - - - 

Phenology 4 88.9 11.1 - - - 

Leaf area 3 77.8 22.2 - - - 

Reference evapotranspiration 10 88.9 11.1 - - - 

Root distribution 3 77.8 22.2 - - - 

Plant partitioning 9 (2) 88.9 11.1 - - - 

Yield formation 8 88.9 11.1 - - - 

Limiting factors 9 88.9 11.1 - - - 

Soil carbon 8 100 0.0 - - - 

Soil temperature 4 100 0.0 - - - 

Soil water transport 4 100 0.0 - - - 

Soil N transport and transformation 5 88.9 11.1 - - - 

Data input 14 (19) 100 0.0 - - - 

General options 20 (8) 100 0.0 - - - 

Pastures options 3 (12) 66.7 33.3 - - - 

CO2 8 100 0.0 - - - 

Non CO2-gas 6 (19) 88.9 11.1 - - - 

N processes 10 88.9 11.1 - - - 

 15 

Table 3 – Level 2 of compositional sub-systems: the main processes identified within each general 16 

class, the number of methods, options or components contained within each main processes and the 17 

percentage of models able to simulate at least 1 methods, options or components contained within each 18 

main processes. * No information is available. Numbers in brackets represents specific information 19 

related to the modelling approaches (see Tables S1-5). 20 
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 21 

 
APSIM CERES-EGC DayCent DNDC DSSAT EPIC PaSim RothC STICS 

N° of organic 

pools 
7 4 3 6 5 5 5 5 6 

Microbial biomass 
Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Humus Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Added organic 

matter labile 
Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Added organic 

matter 

recalcitrante 

Yes Yes Yes Yes Yes Yes Yes Yes Yes 

DOC No No Yes Yes No Yes No No No 

DON No No No Yes No Yes No No No 

Kinetic of 

conversion of 

organic pools 

Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Kinetic of 

nitrification 
Yes Yes Yes Yes Yes Yes Yes No Yes 

Kinetic of 

nitrification - 

environmental 

factors involved 

Yes Yes Yes Yes Yes Yes Yes No Yes 

N2O losses from 

nitrification 
Yes Yes Yes Yes No Yes * Yes No Yes 

Kinetic of 

denitrification 
Yes Yes Yes Yes Yes Yes Yes No Yes 
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Kinetic of 

denitrification - 

environmental 

factors involved 

Yes Yes Yes Yes Yes Yes Yes No Yes 

Denitrification: 

N2/N2O ratio 
Yes Yes Yes Yes No Yes * Yes No Yes 

Soil physical 

properties 

variation (impact 

on fluxes) 

Yes No No Yes No Yes No No No 

 22 

Table 4 – Overview of the C and N approaches used by the CN-MIP models. * Only in the latest version (EPIC V.1102) 23 
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Model Location Type of environment 
Biogeochemical 

cycles involved  

Type of 

version *  
Reference 

APSIM 

Australia Plantation forestry N O Snow et al. (1999) 

Australia Arable C-N M Thorburn et al. (2010) 

Australia Arable C-N O Huth et al. (2010) 

New Zealand Arable N O Sharp et al. (2011) 

Australia Arable C O Luo et al. (2011) 

Australia Grassland C M Xing et al. (2011) 

New Zealand Grassland N O Giltrap et al. (2015) 

CERES-
EGC 

France Arable N O Gabrielle et al. (2006) 

France Arable C-N O Lehuger et al. (2007) 

France Arable N O/M Rolland et al. (2008) 

France Arable N O Lamboni et al. (2009) 

France Arable N O Rolland et al. (2010) 

France, Germany, 
Switzerland 

Arable C O Wattenbach et al. (2010) 

France Arable/Grassland N O Drouet et al. (2011) 

France, Germany Arable C-N O Lehuger (2011) 

France Arable N O Dufossè et al. (2013) 

France Arable N O Goglio et al. (2013) 

France Arable N O Lehuger et al. (2014) 

France Arable C-N M Noirot-Cosson (2016) 

DayCent 

Germany, USA, Scotland Arable/Grassland N O Parton et al. (1998) 

USA Arable/Grassland C O Del Grosso et al. (2002) 

New Zealand Grassland N O Stehfest and Muller (2004) 

USA Arable N O Del Grosso et al. (2005) 

China Arable N O Li et al. (2005) 

Global Arable C-N O Stehfest et al. (2007) 

Canada Arable N O Smith et al. (2008) 
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USA Arable C-N O Del Grosso et al. (2008) 

USA Arable N O Jarecki et al. (2008) 

USA Arable/tile drained N O David et al. (2009) 

Ireland Grassland N O Abdalla et al. (2010) 

USA Arable C-N O De Gyrze et al. (2010) 

USA Arable N O Del Grosso et al. (2010) 

USA (Incubation exp). - - - - - C-N O/M Li et al. (2010) 

Australia Grassland C-N O Xing et al. (2011) 

USA Switchgrass C O Chamberlain et al. (2011) 

USA Grassland C-N O Hartman et al. (2011) 

Canada/USA Arable C O Smith et al. (2012) 

Canada Arable C-N O Chang et al. (2013) 

Canada Arable N O Sansoulet et al. (2014) 

Australia Arable N ? Scheer et al. (2014) 

UK Arable C-N O Fitton et al. (2014a,b) 

USA Grassland C-N O Ryals et al. (2015) 

USA Switchgrass C-N O Field et al. (2016) 

DNDC 

Costa Rica Bare soil C O Li et al. (1994) 

Europe/Australia Arable/Grassland C O Li et al. (1997) 

UK Grassland N M Brown et al. (2002) 

Canada Arable N O Smith et al. (2002) 

India Paddy soil C-N O Pathak et al. (2003) 

China, Japan, Thailand Paddy soil C-N O Cai et al. (2003) 

New Zealand Grassland N M Saggar et al. (2004) 

USA, China, Germany Arable C-N O Li et al. (2005) 

India Paddy soil C-N M Pathak et al. (2005) 

India Paddy soil C-N O Babu et al. (2006) 

Belgium Arable C O Sleutel et al. (2006) 

USA Arable N O Tomitto et al. (2007) 

Canada Arable N O Smith et al. (2008) 
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China, Japan Rice C M Fumoto et al. (2008) 

Ireland Grassland N O Abdalla et al. (2010) 

China Arable C-N O Li et al. (2010) 

France, Germany, 

Switzerland 
Arable C O Wattenbach et al. (2010) 

Germany Arable N O Ludwig et al. (2011) 

Canada/USA Arable C M Smith et al. (2012) 

France, Germany, Belgium, 

UK, Netherlands, EU-15 
Arable/Grassland N M Leip et al. (2011) 

China Arable N M Wu and Zhang (2014) 

France Arable N O Gu et al. (2014) 

Canada Arable/Grassland N M Uzoma et al. (2015) 

Australia Arable N O Chen et al. (2015) 

USA (Alaska) Peatland C O Deng et al. (2015) 

China Arable C M Yu et al. (2015) 

New Zealand Grassland N M Giltrap et al. (2015) 

China Arable N M Zhang et al. (2015) 

Canada Arable N M Congreves et al. (2016) 

Canada Arable C M Gagnon et al. (2016) 

DSSAT 

UK, Brasil Arable/Bare soil C/N O Gijsman et al. (2002) 

Mexico Arable C M Hartkamp et al. (2004) 

Canada Arable N O Liu et al. (2011) 

Burkina Faso Arable C M Soler et al. (2011) 

Italy Arable C O De Sanctis et al. (2012) 

Spain Arable C/N O 
Soldevilla-Martinez et al. 
(2013) 

China Arable C/N O Yang et al. (2013) 

China Arable C/N O Li et al. (2015) 

Canada Arable C/N O Li et al. (2015) 
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USA Arable N O Prasad et al. (2015) 

EPIC 

USA Arable N O Jackson et al. (1994) 

USA Arable N O Cavero et al. (1996) 

USA Arable N O 
Ramanarayanan et al. 

(1998) 

Canada Arab C-N O Roloff et al. (1998) 

USA Arable N O Cavero et al. (1999) 

Argentina Arable/Grassland N O Bernardos et al. (2001) 

USA Arable N O Chung et al. (2002) 

USA Arable/Grassland C O Potter et al. (2004) 

USA Arab C-N O Wang et al. (2005) 

Lab. Experiment Lab. Experiment C-N O He et al. (2006) 

USA, Canada Arable C-N O Izaurralde et al. (2006) 

USA Arable C O Causarano et al. (2007) 

USA Arable C O Abrahamson et al. (2009) 

Argentina Arable C O Apezteguıa et al. (2009) 

Germany Arable C O Billen et al. (2009) 

Italy Arable C O Farina et al. (2011) 

USA Arable C O Zhang et al. (2015) 

PaSim 

Switzerland Grassland N O Schmid et al. (2001) 

Scotland Grassland N O Riedo et al. (2002) 

Ireland Grassland C O Lawton et al. (2006) 

Hungary, Scotland, Ireland, 
France, Switzerland 

Grassland C-N O Calanca et al. (2007) 

Switzerland, Ireland, France, 

Scotland 
Grassland C O Gottschalk et al. (2007) 

France, Switzerland, Ireland Grassland C O Vuichard et al. (2007a) 

France Grassland C O Aulagnier et al.(2013) 
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France, Germany, Hungary, 

Ireland, Italy, Portugal, 
Spain, Switzerland, The 

Netherlands, UK 

Grassland C O Ma et al. (2015) 

France, Germany, Italy, 

Switzerland 
Grassland C O Sandor et al. (2016) 

RothC 

Czech republic Arable C O Coleman et al. (1997) 

Hungary, Sweden, UK Arable/Grassland C O Falloon and Smith (2002) 

Australia Arable C O Skjemstad et al. (2004) 

Japan Paddy soil C O/M 
Shirato and Yokazawa 

(2005) 

Syria Arable C O/M Jenkinson et al., 2005 

China Arable C O Guo et al. (2007) 

Switzerland Arable/Grassland C O Zimmermann et al. (2007) 

Kenya Arable C O Kamoni et al (2007b) 

Zambia Arable C O Kaonga et al (2008) 

Australia Arable C O Liu et al. (2009) 

Ireland Arable C O Dondini et al. (2009) 

Slovakia Arable/Grassland C O Barancikova et al. (2010) 

Spain Orchard C O Nieto et al. (2010) 

Austria Arable C O 
Rampazzo Todorovic et al. 

(2010) 

Australia Grasslands C O Liu et al. (2011) 

Ireland Grassland C O Xu et al. (2011) 

Mexico Arable/Grassland/Forest/Rangeland C O 
Gonzalez-Molina et al. 
(2011) 

China Arable C O Wang et al. (2013) 

Italy, Spain, Australia, Syria, 

UK 
Arable C O/M Farina et al. (2013) 

STICS 

France Arable N O Schnebelen et al. (2004) 

France Arable N O Corre-Hellou et al. (2009) 
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France Arable C-N O Justes et al. (2009) 

France Arable N O Jego et al. (2012) 

France Arable N O Constantin et al. (2012) 

 24 

Table 5 – Overview of the studies carried out using the CN-MIP models for a broad gradient of 25 

geographic and climatic conditions, as well as a variety of soil types and management practices. * O = 26 

original version; M = modified version.27 
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   N° of weaknesses per each model % of weaknesses per each model 

   C-Cycle N-Cycle C-Cycle  N-Cycle  

Model N° of Ref. Factor of weaknesses Modelling Scale of analysis Modelling Scale of analysis Modelling Scale of analysis Modelling Scale of analysis 

APSIM 6 
Pedo-climatic 0 0 5 1 0.0 0.0 62.5 12.5 

Management 1 0 1 0 12.5 0.0 12.5 0.0 

CERES-EGC 8 
Pedo-climatic 1 0 6 2 7.7 0.0 46.2 15.4 

Management 1 0 3 0 7.7 0.0 23.1 0.0 

DayCent 17 
Pedo-climatic 4 0 14 8 11.8 0.0 41.2 23.5 

Management 3 1 4 0 8.8 2.9 11.8 0.0 

DNDC 23 
Pedo-climatic 10 6 13 6 18.5 11.1 24.1 11.1 

Management 9 3 6 2 16.7 5.6 9.3 3.7 

DSSAT 7 
Pedo-climatic 4 0 2 1 40.0 0.0 20.0 10.0 

Management 2 0 1 0 20.0 0.0 10.0 0.0 

EPIC 13 
Pedo-climatic 3 1 5 1 14.3 4.8 23.8 4.8 

Management 7 0 4 0 33.3 0.0 19 0.0 

PaSim 7 
Pedo-climatic 4 2 2 0 33.3 16.7 16.7 0.0 

Management 2 0 2 0 16.7 0.0 16.7 0.0 

RothC 11 
Pedo-climatic 5 0 0 0 35.7 0.0 0.0 0.0 

Management 9 0 0 0 64.3 0.0 0.0 0.0 

STICS 3 
Pedo-climatic 0 0 1 0 0.0 0.0 20.0 0.0 

Management 0 0 3 1 0.0 0.0 60.0 20.0 

Total 95 
Pedo-climatic 31 9 48 19 18 5.2 27.9 11 

Management 34 4 24 3 19.8 2.3 14 1.7 

 

Table 6 – Number of weaknesses and the relative percentage emerged in 95 modelling studies. Model performances were mainly unsatisfactory due to 

erroneous accounting of pedo-climatic conditions (45.9 %) and management practices (33.8 %). 
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Model Name References  
Factor of 

weaknesses 

C-Cycle C-Cycle N-Cycle N-Cycle 

Type of weaknesses  
Cause of 

weaknesses  
Possible explanation Model 

structure 

Scale of 

analysis  

Model 

structure 

Scale of 

analysis  

APSIM 

Snow et al. (1999) 
Pedo-climatic  0 0 1 0 

Underestimation of soil N 

supply 

Soil properties 

(C) 
Modelling HUM decomposition too slow 

Management  0 0 0 0  - - - -   - - - -   - - - -  

Thorburn et al. (2010)  
Pedo-climatic  0 0 1 0 

General discrepancies 

(Underestimation of 
Denitrification, Unpredicted 

N2O emissions peaks) 

Soil properties 
(N) - Climate  

Model parametrization: Default value of denitrification 

coefficient within the model was much lower than the 

optimized - Errors in rainfall data used (i.e. spatially 

averaged rainfall data were used vs specific test site rainfall 
data) 

Management  0 0 0 0  - - - -   - - - -   - - - -  

Sharp et al. (2011)  
Pedo-climatic  0 0 1 0 

Overestimation of annual 
leaching 

Soil properties 
(N) 

Overestimation of soil solution nitrate concentration 

Management  0 0 0 0  - - - -   - - - -   - - - -  

Xing et al. (2011)  
Pedo-climatic  0 0 1 1 

Underestimation of N2O 

emissions 

Soil properties 

(N) 

Underestimation of denitrification (response of 

denitrification rate to soil temperature and moisture (or 

WFPS) were the two primary factors leading to the 
underestimation of denitrification) 

Management  0 0 0 0  - - - -   - - - -   - - - -  

Luo et al. (2011)  

Pedo-climatic  0 0 0 0  - - - -   - - - -   - - - -  

Management  1 0 0 0 
Underestimation of SOC 

decomposition 

Management 
(Tillage - Crop 

type)  

Tillage: effect on soil features can lead to possible 
acceleration in soil C decomposition due to changes in soil 

environment. Tillage effects in APSIM is very simple and 

could not take in account the real effect on soil - Crop type: 
crop varietal changes could have significant effect on crop 

production and, in turn, on C input. 

Giltrap et al. (2015)  

Pedo-climatic  0 0 1 0 
Under/Overestimation of N2O 

emissions  

Soil properties 

(general) - 
Climate  

Average field soil properties used for running the model 

rather than specific values  

Management  0 0 1 0 
Management 

(Fertilization) 

Fertilization type: urine patches is much more extreme than 

typical fertilization as NH4
+ 

CERES-EGC Gabrielle et al. (2006) 
Pedo-climatic  0 0 0 1 

Under/Overestimation of N2O 

emission peaks  

Soil properties 

(SWD - BD) 

Soil water retention properties and bulk density. Different 

parametrization lead to differences in N outputs from test 
site to regional scale 

Management  0 0 0 0  - - - -   - - - -   - - - -  
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Model Name References  
Factor of 

weaknesses 

C-Cycle C-Cycle N-Cycle N-Cycle 

Type of weaknesses  
Cause of 

weaknesses  
Possible explanation Model 

structure 

Scale of 

analysis  

Model 

structure 

Scale of 

analysis  

Lamboni et al. (2009)  
Pedo-climatic  0 0 1 0 

General discrepancies (N2O 

emissions)  

Soil properties 

(N)  

Sensitivity of N2O emissions: Denitrification, Potential 

denitrification rate, Fraction of denitrified N. 

Management  0 0 0 0  - - - -   - - - -   - - - -  

Wattenbach et al. (2010) 

Pedo-climatic  1 0 0 0 

Overestimation NEE peaks  

Climate  
Climate Model was developed for Northern regions. Main 
issues in Southern regions of Europe. Issues in coupling 

water and carbon fluxes  

Management  1 0 0 0 Phenology 

Possible mismatch due to ecophysiology: overestimation 

NEE peaks and fluxes during senescence and mismatch in 
the cumulative NEE for the year. Poor performance in 

reproducing LE flux 

Drouet et al. (2011)  

Pedo-climatic  0 0 1 0 
General discrepancies (N2O 

emissions)  

Soil properties 

(N - BD)  

Sensitivity of N2O emissions: N2O emissions from 

denitrification; Max. rate of nitrification, Soil Bulk Density 

Management  0 0 1 0 
Management 

(Crop type)  

Sensitivity of N2O emissions: Cropland area (crop variety 

and management) 

Lehuger et al. (2011) 
Pedo-climatic  0 0 1 1 

Overestimation of N2O 
emissions  

Soil properties 
(N)  

N2O emission peak was produced in response of the high 

ammonium content in topsoil - Possible time lag in N2O 

emissions  

Management  0 0 0 0  - - - -   - - - -   - - - -  

Goglio et al. (2013) 

Pedo-climatic  0 0 1 0 

Underestimation of N2O 

emissions peaks 

Climate  Inter-annual variability 

Management  0 0 1 0 

Management 

(Fertilization - 

water 
conservation) 

Legumes incorporation and mulching 

Lehuger et al. (2014)  
Pedo-climatic  0 0 1 0 

General discrepancies (N2O 

emissions) 

Climate 

(Rainfall)  
Rainfall  

Management  0 0 0 0  - - - -   - - - -   - - - -  

Noirot-Cosson (2016) 

Pedo-climatic  0 0 1 0 

Overestimation of mineral N 

Soil properties 
(T - SWD) 

Temperature and water on mineralization dynamics 

Management  0 0 1 0 
Management 

(Fertilization) 
Effect of N fertilizer 

DayCent Parton et al. (2001)  
Pedo-climatic  0 0 1 1 

General discrepancies (N2O and 

NOx emissions) 

Soil properties 

(Texture) 
Texture  

Management  0 0 0 0  - - - -   - - - -   - - - -  



16 
 

Model Name References  
Factor of 

weaknesses 

C-Cycle C-Cycle N-Cycle N-Cycle 

Type of weaknesses  
Cause of 

weaknesses  
Possible explanation Model 

structure 

Scale of 

analysis  

Model 

structure 

Scale of 

analysis  

Stehfest and Muller 
(2004)  

Pedo-climatic  0 0 1 0 
Overestimation of N2O 

emissions 

Soil properties 
(N - WFPS) - 

Climate  

WFPS overestimation and issues in the ratio 

Denitrification/Nitrification - Rainfall 

Management  0 0 1 0 
Management 

(Fertilization) 
Urine application 

Del Grosso et al. (2005)  
Pedo-climatic  0 0 1 1 

General discrepancies (N2O 

emissions) 

Soil properties 
(general) - 

Climate  

Soil properties  

Management  0 0 0 0  - - - -   - - - -   - - - -  

Li et al. (2005) 
Pedo-climatic  0 0 1 1 Underestimation of NH4 

Soil properties 
(N)  

Overestimation nitrification rate and underestimation 
Nitrification (mainly due to temperature effect) 

Management  0 0 0 0  - - - -   - - - -   - - - -  

Smith et al. (2008)  
Pedo-climatic  0 0 1 1 

Underestimation of N2O 
emissions  

Soil properties 
(N - SWD) 

Under prediction of Mineralization and soil properties 
(SWC, soil N and soil ammonium) 

Management  0 0 0 0  - - - -   - - - -   - - - -  

Jarecki et al. (2008) 
Pedo-climatic  0 0 1 0 

Underestimation of N2O 

emissions  

Soil properties 

(N - SWD) - 
Climate  

Soil properties (inorganic N, soil moisture) - Rainfall 

Management  0 0 0 0  - - - -   - - - -   - - - -  

Del Grosso et al. (2008)  
Pedo-climatic  0 0 1 1 

Overestimation of N2O 

emissions 

Soil properties 

(N)  
Nitrification rates too high, NO3 too low, N2O too high. 

Management  0 0 0 0  - - - -   - - - -   - - - -  

David et al. (2009) 
Pedo-climatic  0 0 1 1 

Overestimation of N2O 

emissions 

Soil properties 

(general) 
Crop evapotranspiration and the impact of tile drainage 

Management  0 0 0 0  - - - -   - - - -   - - - -  

Li et al. (2010)  
Pedo-climatic  1 0 1 0 

General discrepancies (CO2, N 

mineralization and Nitrification) 

Soil properties 

(SWD) 
Soil moisture 

Management  0 0 0 0  - - - -   - - - -   - - - -  

Abdalla et al. (2010)  

Pedo-climatic  0 0 1 0 
General discrepancies 

(Overestimation N2O emissions, 
underestimation N2O emissions) 

Soil water 

flows (WFPS) 
Overestimation WFPS 

Management  0 0 1 0 

Management 

(Fertilization - 
Crop type) 

Fertilization maintained high mineral N along with 

secondary peaks compared to field data, underestimated 
biomass. 

Del Grosso et al. (2010) Pedo-climatic  0 0 1 1 
Overestimation of N2O 

emissions  

Soil properties 

(N)  

N mineralization rates too high and too responsive to 

climate drivers  
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Model Name References  
Factor of 

weaknesses 

C-Cycle C-Cycle N-Cycle N-Cycle 

Type of weaknesses  
Cause of 

weaknesses  
Possible explanation Model 

structure 

Scale of 

analysis  

Model 

structure 

Scale of 

analysis  

Management  0 0 0 0  - - - -   - - - -   - - - -  

De Gyrze et al. (2010) 

Pedo-climatic  1 0 1 0 

General discrepancies (SOC; 

underestimation N2O emissions) 

Soil properties 

(C - BD - 

texture) - 
Climate  

Texture, decomposition rate, Bulk Density - Rainfall 

Management  1 0 1 0 

Management 

(Tillage - Crop 

type)  

Tillage and cover crop  

Xing et al. (2011) 
Pedo-climatic  1 0 0 0 

General discrepancies (CO2 

emissions) 

Soil properties 
(SWD - 

WFPS) 

Soil moisture variations, high sensitivity to WFPS 

Management  0 0 0 0  - - - -   - - - -   - - - -  

Smith et al. (2012)  

Pedo-climatic  0 0 0 0  - - - -   - - - -   - - - -  

Management  1 1 0 0 Underestimation of SOC  
Management 

(Fertilization) 

Slight overestimation of residue removal impact on SOC 

partly because of the inherent variability in SOC 

measurements and also partly due to 

imperfections in the models themselves 

Scheer et al. (2014) 
Pedo-climatic  0 0 1 1 

General discrepancies 

(Overestimation N2O emissions 

and soil NH4; Underestimation 
NO3 emissions) 

Climate Drying out periods 

Management  0 0 0 0  - - - -   - - - -   - - - -  

Fitton et al. (2014a,b) 

Pedo-climatic  0 0 1 0 
Underestimation of N2O 

emissions 

Soil properties 
(N) - Climate  

N subroutine heavily affected by soil parameters. 

Mineralization and denitrification rates may be too low, 
freeze-thaw fluxes need work - N subroutine heavily 

affected by climate  

Management  0 0 1 0 
Management 

(Fertilization) 
Model sensitive at low N application rates 

Ryals et al. (2014, 2015) 

Pedo-climatic  1 0 0 0 
Underestimation of CO2 

emissions 

Soil properties 
(N - WFPS) 

N mineralization rates may be off, underestimated WFPS 

Management  1 0 0 0 
Management 

(Fertilization) 
No soil water benefits provided by adding of compost 

DNDC 

Smith et al. (2002) 
Pedo-climatic  0 0 1 1 

Overestimation of N2O 

emissions  

Soil properties 

(general) 

Overestimation N2O emissions from shoulder position 

(upper landscape). Inability to characterize differences in 
soil properties and water/nutrient flow for 3-D landscape 

Management  0 0 0 0  - - - -   - - - -   - - - -  

Cai et al. (2003) Pedo-climatic  1 0 1 0 
General discrepancies (CH4, 

N2O and NO emissions) 
Soil properties 

(general) 
Soil properties  
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Model Name References  
Factor of 

weaknesses 

C-Cycle C-Cycle N-Cycle N-Cycle 

Type of weaknesses  
Cause of 

weaknesses  
Possible explanation Model 

structure 

Scale of 

analysis  

Model 

structure 

Scale of 

analysis  

Management  1 0 0 0 
Management 
(Crop type)  

Type of cultivar (crop parameters) - daily timescale 

Pathak et al. (2003)   
Pedo-climatic  1 0 0 0 

Overestimations of CH4 

emissions 

Soil properties 

(N)  
Leaking rate 

Management  0 0 0 0  - - - -   - - - -   - - - -  

Saggar et al. (2004)  
Pedo-climatic  0 0 1 1 

Underestimation of N2O 

emissions 

Soil properties 

(T - SWD) 

 Under prediction of Temperature effect and moisture after 

rainfall (size and timing) 

Management  0 0 0 0  - - - -   - - - -   - - - -  

Pathak et al. (2005)   
Pedo-climatic  1 0 0 0 

Overestimations of CH4 
emissions 

Soil properties 
(C - pH)  

Initial SOC content and soil redox potential 

Management  0 0 0 0  - - - -   - - - -   - - - -  

Babu et al. (2006)   

Pedo-climatic  1 1 0 1 

General discrepancies (CH4 and 

N2O peaks) 

Soil properties 

(SWD) 
Soil shrinking and swelling - daily timescale 

Management  1 0 0 1 
Management 

(Crop type)  

CH4 and N2O peaks not well captured at the beginning and 

end of growing season. Type of cultivar (crop parameters) 

Sleutel et al. (2006)  

Pedo-climatic  1 1 0 0 Under/Overestimation of SOC  
Soil properties 

(general) 
Soil type 

Management  1 0 0 0 Overestimation of SOC 
Management 
(Fertilization) 

 Residues incorporation 

Liu et al. (2006)  

Pedo-climatic  1 1 0 0 

General discrepancies (SOC)  

Climate Spatial heterogeneity in environmental parameters  

Management  1 1 0 0 
Management 

(general) 
Spatial heterogeneity in farm management practices 

Tonitto et al. (2007)  
Pedo-climatic  0 0 1 1 Overestimation of N leaching 

Soil properties 

(N)  

The base DNDC model greatly over predicted N leaching: 
calibration of 4 leaching parameters (within code) was 

required to improve model performance. 

Management  0 0 0 0  - - - -   - - - -   - - - -  

Smith et al. (2008)  

Pedo-climatic  0 0 1 1 
General discrepancies (timing of 

N2O emissions). 
Soil properties 

(N - SWD) 

 Soil water content and soil N underestimated. Too few 

chamber measurements of N2O emissions available for 

detailed temporal testing.   

Management  0 0 1 1 
Underestimation of N2O 

emissions  
Management 
(Fertilization) 

Error in plant N uptake equation. Highest slurry rate  

Fumoto et al. (2008)   

Pedo-climatic  1 1 0 0 

Under/Overestimation of CH4 
emissions  

Soil properties 

(general) 

Soil properties and effect of temperature on Leaf Area 

development 

Management  1 0 0 0 

Management 

(Crop type) - 
Phenology  

Type and stage of cultivar 
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Model Name References  
Factor of 

weaknesses 

C-Cycle C-Cycle N-Cycle N-Cycle 

Type of weaknesses  
Cause of 

weaknesses  
Possible explanation Model 

structure 

Scale of 

analysis  

Model 

structure 

Scale of 

analysis  

Abdalla et al. (2010)   
Pedo-climatic  0 0 1 0 

Overestimation of N2O 
emissions 

Soil properties 
(C - WFPS) 

Overestimation WFPS and SOC content 

Management  0 0 0 0  - - - -   - - - -   - - - -  

Li et al. (2010)  
Pedo-climatic  0 0 1 0 

Underestimation of N2O 

emissions 

Soil properties 

(SWD)  
Impact of soil freezing and thawing 

Management  0 0 0 0  - - - -   - - - -   - - - -  

Wattenbach et al. (2010) 

Pedo-climatic  1 0 0 0 

General discrepancies 

(cumulative NEE and Reco, 

overestimation NEE peaks). 

Climate 
Issues in coupling water and carbon fluxes, air temperature 

(i.e. mild winter) 

Management  1 0 0 0 

Management 
(Fertilization - 

Tillage - Crop 

type) 

Overestimation NEE peaks and general discrepancies at 

senescence and post-harvesting, (cumulative NEE and 
Reco). Crop rotation, fertilization and tillage 

Ludwig et al. (2011)   
Pedo-climatic  0 0 1 0 

Under/Overestimation of N2O 

emissions  

Soil properties 
(general) - 

Climate  

Soil properties - Rainfall 

Management  0 0 0 0  - - - -   - - - -   - - - -  

Leip et al. (2011)  
Pedo-climatic  0 0 1 1 

Under/Overestimation of N2O 

emissions  

Soil properties 

(general) - 

Climate  

Soil properties - Rainfall 

Management  0 0 0 0  - - - -   - - - -   - - - -  

Smith et al. (2012) 

Pedo-climatic  1 1 0 0 

Overestimation of SOC 

following residue removal 

Soil properties 

(C)  

High spatial heterogeneity in SOC measurements. The 
conceptual SOC "passive fraction" may have been set too 

high in DNDC from some locations/soil types.  

Management  1 1 0 0 
Management 

(Fertilization) 

 DNDC tended to underestimate the rate of  decomposition. 

SOC change as affected by residue removal at some sites 

Yu et al. (2015) 

Pedo-climatic  0 0 0 0  - - - -   - - - -   - - - -  

Management  1 0 0 0 

Underestimation of CO2 

emissions and heterotrophic 
respiration  

Phenology 
Use of generalized crop growth curve resulted in 

underestimation of duration of root growth and N uptake  

Uzoma et al. (2015)  

Pedo-climatic  0 0 1 0 
Under/Overestimation of N2O 

emissions  

Soil properties 
(SWD) - 

Climate  

Inability of cascade flow hydrology model to effectively 

simulate water content above field capacity - N2O emissions 

overestimated during alfalfa production and underestimated 
during long periods of episodic rainfall. 

Management  0 0 1 0 Phenology 
Interception and uptake of water by alfalfa was likely 

underestimated.  
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Model Name References  
Factor of 

weaknesses 

C-Cycle C-Cycle N-Cycle N-Cycle 

Type of weaknesses  
Cause of 

weaknesses  
Possible explanation Model 

structure 

Scale of 

analysis  

Model 

structure 

Scale of 

analysis  

Zhang et al. (2015)  

Pedo-climatic  0 0 1 0 
General discrepancies (timing of 

daily N2O and NO emissions)   

Soil properties 

(SWD) 
Soil water content was not well simulated 

Management  0 0 1 0 
Overestimation of N2O and NO 

emissions  

Management 

(Fertilization) 

High fertilizer treatments: Need to better simulate the 

limitation of dissolved organic carbon on denitrification  

Gu et al. (2014) 

Pedo-climatic  0 0 1 0 Overestimation of N2O 
emissions, soil nitrate and 

ammonia concentrations.  

Soil properties 

(N)  

The model had incorrect nitrogen partitioning for urea 

ammonium nitrate applications.  

Management  0 0 1 0 
Management 

(Fertilization) 

Model doesn't include canopy interception and foliar N 

uptake when spraying liquid fertilizer. 

Congreves et al. (2016) 

Pedo-climatic  0 0 1 0 
Underestimation of NH3 

emissions  

Soil properties 

(Texture - 
SWD) 

NH3 emissions were greatly improved for a newly develop 
NH3 sub-model but emissions were still largely 

underestimated for one treatment. The model could not 

simulate a heterogeneous soil profile. 

Management  0 0 1 0 
Management 

(Fertilization) 

Due to simple cascade water flow DNDC had limited ability 

to simulate slurry infiltration rates.  

Gagnon et al. (2016)  

Pedo-climatic  1 1 0 0 

General discrepancies (soil CO2 

respiration).    

Soil properties 

(C - texture) 

Inputs data describing long-term field history was not 
available. Thus the initial assumed fractions of litter, 

humads and humus may have been wrong.   

Management  1 1 0 0 
Management 
(Fertilization) 

DNDC could not simulate the differences in soil CO2 

respiration between soil textures and produced opposite 
values than was observed when N fertilizer was added 

(respiration was increased rather than decreased). DNDC 

does not include soil processes which reduce soil CO2 
respiration after fertilizer addition (these processes are not 

well understood).   

DSSAT 

Gijsman et al. (2002) 
Pedo-climatic  1 0 1 0 

General discrepancies (SOC 
dynamics and soil mineral N) 

Soil properties 
(C - texture)  

 Relative proportion of SOM pools and the rate of some 

pools were not likely to be well simulated. Other factor can 
be that the soil texture data used as inputs for the simulation 

were expressed in ISSS textural units, in which silt is the 2- 

to 20-µm class, while DSSAT use the American unit system 
with silt equals to 2 to 50 µm. This has likely affected also 

soil retention characteristics. 

Management  0 0 0 0  - - - -   - - - -   - - - -  

Liu et al. (2011) 
Pedo-climatic  0 0 1 1 Overestimation of N losses  

Soil properties 

(N - texture) 

Consistently overestimation of nitrate loss from no 
fertilization treatment in long term experimental sites. This 

overestimation may reflect inadequate model representation 

of degraded soil profile for long-term simulations 

Management  0 0 0 0  - - - -   - - - -   - - - -  
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C-Cycle C-Cycle N-Cycle N-Cycle 
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Cause of 
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structure 

Scale of 

analysis  

Model 

structure 

Scale of 

analysis  

Hartkamp et al. (2004) 

Pedo-climatic  0 0 0 0  - - - -   - - - -   - - - -  

Management  1 0 0 0 Overestimation of SOC  
Management 

(Fertilization) 

Fertilization: Overestimation SOC (SOC was overestimated 

in the crop rotations with N fertilization) Initial values for 

SOC not accurately defined. SOC overestimation associated 
to overestimation of the biomass incorporated into the soil. 

In fact, SOC in the fallow quite well simulated. 

De Sanctis et al. (2012) 
Pedo-climatic  1 0 0 0 Underestimation of SOC  

Soil properties 

(SWD)  

The long-term increase of SOC in the top soil layers can 

have a relevant influence on soil hydraulic properties but 
this is not automatically simulated by DSSAT 

Management  0 0 0 0  - - - -   - - - -   - - - -  

Li et al. (2015) 

Pedo-climatic  1 0 0 0 

General discrepancies (SOC) 

Soil properties 
(C) - Climate  

Overestimation of the rate of soil C decomposition and the 
underestimation of the efficiency of conversion of crop 

residue C to soil C set in the model - Soil C decomposition 

rates set in the CENTURY model may be too high for semi-
arid Canadian soils.  

Management  1 0 0 0 
Management 
(Crop type)  

Improvements in the cultivar coefficients are required, in 
fact deviations in straw and root yields were highlighted 

Li et al. (2015) 
Pedo-climatic  1 0 0 0 Overestimation of SOC 

Soil properties 
(C - N)  

Differences between the model soil C/N ratio and the 
measured C/N ratio parameter 

Management  0 0 0 0  - - - -   - - - -   - - - -  

Prasad et al. (2015) 

Pedo-climatic  0 0 0 0  - - - -   - - - -   - - - -  

Management  0 0 1 0 

General discrepancies (leaching 
loss and gaseous loss of N via 

volatilization and 

denitrification).  

Management 

(Fertilization) 
- Phenology  

High soil mineral N concentrations that might have resulted 
from late application of large amounts of N that were not 

utilized by potato plants - During the tuber bulking phase, 

the potato plant slows down N uptake and starts N 
translocation from leaves to tubers. The presence of large 

amount of mineral N might have created hot spot area in the 

potato beds where soil sampling was carried out.  

EPIC 

Jackson et al. (1994) 
Pedo-climatic  0 0 0 0  - - - -   - - - -   - - - -  

Management  0 0 1 0 
Underestimation of soil NO3 

content  
Management 
(Irrigation) 

Leached or denitrified during the irrigated crop period. 

Cavero et al. (1996)  

Pedo-climatic  0 0 0 0  - - - -   - - - -   - - - -  

Management  0 0 1 0 
Overestimation of inorganic N 

concentration 

Management 

(Fertilization) 

Crop residues incorporation (i.e. overestimation N uptake at 

harvest) 

Ramanarayanan et al. 

(1998) 

Pedo-climatic  0 0 1 0 
Overestimation of soil NO3 

content  
Climate Weather condition 

Management  0 0 0 0  - - - -   - - - -   - - - -  
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Model 
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Roloff et al. (1998) 
Pedo-climatic  0 0 1 0 

Underestimation of soil N 

content  

Soil properties 

(N - SWD) 

N transformation, water dynamics and soil water balance 
routine (PET and water distribution within profile) are 

probably the main issues 

Management  0 0 0 0  - - - -   - - - -   - - - -  

Cavero et al. (1999)   

Pedo-climatic  0 0 1 0 

Underestimation of inorganic N 

concentration, N losses  

Soil properties 

(N) 
N distribution in the bed 

Management  0 0 1 0 

Management 

(Fertilization - 

Crop type - 
Irrigation) 

Crop (Access of roots to inorganic N), irrigation 

Chung et al. (2002)   
Pedo-climatic  0 0 1 1 Overestimation NO3–N losses 

Soil properties 

(SWD) - 
Climate  

Simplistic tile drainage routine/lack of a flow component - 

Storm events  

Management  0 0 0 0  - - - -   - - - -   - - - -  

Potter et al. (2004) 

Pedo-climatic  1 0 0 0 

Underestimation of soil C  

Soil properties 

(general) 
Soil properties  

Management  1 0 0 0 
Management 

(Tillage)  

Rate of C losses in tilled management too high or C 

accumulation in grassed area reaching a plateau after 

"quick" increase (possible cause: lack of available N) 

Wang et al. (2005) 
Pedo-climatic  0 0 0 0  - - - -   - - - -   - - - -  

Management  1 0 0 0 Underestimation (SOC content) 
Management 
(Fertilization) 

 Issues in observations and model structural error in 
underestimating the return of corn residues. 

He et al. (2006) 

Pedo-climatic  1 0 1 0 General discrepancies (soil C, 

Overestimation of N 

mineralization) 

Soil properties 

(C)  

Disturbance of the soil sample (consequent increase of 

mineralization) - N mineralization algorithms may 
underpredict Net Nitrogen Mineralization (NMN) 

observable under field conditions - Problem in reproducing 

the lab. Experiment. 

Management  1 0 1 0 
Management 

(Fertilization) 

Underestimation of the soil capacity to transform crop 

residue in SOC 

Causarano et al. (2007)  

Pedo-climatic  0 1 0 0 General discrepancies 

(Overestimation of microbial 

biomass C and total organic C, 

Underestimation particulate 
organic C)  

Soil properties 

(C) 

Spatial differences in C fraction due to differing soil 

landscapes 

Management  1 0 0 0 

Management 

(Fertilization - 
Tillage)  

Tillage and manure effects not adequately simulated by the 

model 

Apezteguıa et al. (2009) 

Pedo-climatic  0 0 0 0  - - - -   - - - -   - - - -  

Management  1 0 0 0 
General discrepancies (SOC 

content) 
Phenology 

Inability of the model to capture the yield trends as well to 

the overestimation of the contribution of monoculture to 

TOC. 

Billen et al. (2009)  Pedo-climatic  0 0 0 0  - - - -   - - - -   - - - -  
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Factor of 

weaknesses 

C-Cycle C-Cycle N-Cycle N-Cycle 

Type of weaknesses  
Cause of 

weaknesses  
Possible explanation Model 

structure 

Scale of 

analysis  

Model 

structure 

Scale of 

analysis  

Management  1 0 0 0 
General discrepancies (SOC 

content) 
Management 

(Tillage)  
Tillage effect  

Zhang et al. (2015) 
Pedo-climatic  1 0 0 0 

General discrepancies 

(differences in the magnitude of 

NPP and NEE, and in the spatial 
pattern of SOC change). 

Soil 

properties-
Climate  

Errors in climate records, inaccurate soil parameters, 

incomplete management information, and interactions 

among these factors, inaccurate representation of crop 
rotations Management  1 0 0 0 Management  

PaSim 

Schmid et al. (2001)   
Pedo-climatic  0 0 1 0 

Underestimation of N2O 
emission peaks 

Climate Wet conditions 

Management  0 0 1 0 Phenology Overestimation transpiration and N uptake by plants;  

Riedo et al. (2002) 

Pedo-climatic  0 0 0 0  - - - -   - - - -   - - - -  

Management  0 0 1 0 
Underestimation of NH3 

emission peaks 

Management 

(Fertilization - 

Cutting) 

Soil ammoniacal nitrogen pool is partitioned between soil 
surface and soil layers  with the NH3 emissions being driven 

by NH4 in the 0-3 mm soil layer. The drawback here is that 

models does not consider the form of N taken up by roots, 
Accordingly high NH4 absorption by plants leads to high 

NH3 emissions and vice versa - explaining some 

discrepancies between simulations and measurements 
during the period after fertilisation 

Lawton et al. (2006)   
Pedo-climatic  1 0 0 0 

Overestimation of NEE  
Climate 

Over prediction of the uptake due to the oversensitivity of 

PaSim to 
initial conditions/winter conditions. 

Management  0 0 0 0 Management Type of management (intensive vs extensive) 

Calanca et al. (2007)  
Pedo-climatic  1 1 1 0 

General discrepancies 

(Under/Overestimation of GPP, 
Reco and N2O emissions; daily 

CO2 emissions)  

Soil properties 
(C - SWD)  

Inappropriate setting of initial parameters, SOM stock 

initialization, over emphatization of water stress effect on 

assimilation  

Management  0 0 0 0  - - - -   - - - -   - - - -  

Vuichard et al. (2007a)  
Pedo-climatic  0 0 0 0  - - - -   - - - -   - - - -  

Management  1 0 0 0 Under/Overestimation of NEE  Management Grazing effect 

Ma et al. (2015)   
Pedo-climatic  1 0 0 0 Under/Overestimation of GPP 

and Reco  

Soil properties 
(T - SWD) 

SWC and soil temperature  

Management  1 0 0 0 Management Type of management (intensive vs extensive) 

Sandor et al. (2016) 
Pedo-climatic  1 1 0 0 General discrepancies (NEE)  

Soil properties 

(T - SWD) 

Improper representation of soil water content and soil 

temperature 

Management  0 0 0 0  - - - -   - - - -   - - - -  

RothC Skjemstad et al. (2004)  Pedo-climatic  0 0 0 0  - - - -   - - - -   - - - -  
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C-Cycle C-Cycle N-Cycle N-Cycle 
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Cause of 
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structure 

Scale of 

analysis  

Model 

structure 

Scale of 

analysis  

Management  1 0 0 0 General discrepancies (C)  Management Disturbances (i.e. clearing and burning of pulled vegetation) 

Shirato and Yokazawa 

(2005)  

Pedo-climatic  0 0 0 0  - - - -   - - - -   - - - -  

Management  1 0 0 0 
Underestimation of SOC 

content 
Management 

Slow decomposition rate of SOM in Rice when submerged 
soils are waterlogged and subjected to anaerobic conditions 

(RothC is not usable for waterlogged soil, Rice) 

Zimmermann et al. 

(2007)  

Pedo-climatic  1 0 0 0 General discrepancies (SOC)  

Soil properties 

(general) - 
Climate  

Soil properties - Air temperature  

Management  0 0 0 0  - - - -   - - - -   - - - -  

Liu et al. (2009) 

Pedo-climatic  0 0 0 0  - - - -   - - - -   - - - -  

Management  1 0 0 0 Overestimation of SOC content 
Management 
(Fertilization) 

Stubble (i.e. using the conventional setting of stubble 
retention factor) 

Rampazzo Todorovic et 
al. (2010) 

Pedo-climatic  1 0 0 0 

General discrepancies (SOC 
content)  

Soil properties 

(general) - 

Climate  

Soil properties  

Management  1 0 0 0 

Management 
(Fertilization - 

Crop type)  

Type of crop and straw 

Nieto et al. (2010)  

Pedo-climatic  0 0 0 0  - - - -   - - - -   - - - -  

Management  1 0 0 0 Overestimation of SOC content 
Management 

(Tillage)  
C losses due to soil erosion 

Xu et al. (2011)  
Pedo-climatic  1 0 0 0 

General discrepancies (SOC 
content)  

Soil properties 

(general) - 

Climate  

Soil properties  

Management  0 0 0 0  - - - -   - - - -   - - - -  

Gonzalez-Molina et al. 

(2011)  

Pedo-climatic  1 0 0 0 

Overestimation of SOC content 

Soil properties 

(general) - 
Climate  

Type of ecosystem (rangelands complexity, erosion, type of 

soil, etc.) 

Management  1 0 0 0 
Management 

(general) 
Residues, overgrazing, etc. 

Nieto et al. (2013)  

Pedo-climatic  0 0 0 0  - - - -   - - - -   - - - -  

Management  1 0 0 0 Overestimation of SOC content 
Management 

(Tillage)  
Tillage (erosion) 

Wang et al. (2013)  

Pedo-climatic  0 0 0 0  - - - -   - - - -   - - - -  

Management  1 0 0 0 Overestimation of SOC content 
Management 

(Fertilization) 
Fertilization (N + straw) 
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structure 
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Farina et al. (2013)  

Pedo-climatic  1 0 0 0 
Under/Overestimation of GPP 

and Reco  

Climate  Dry condition 

Management  1 0 0 0 
Management 

(general) 
Rotation with fallow 

STICS 

Schnebelen et al. (2004)  

Pedo-climatic  0 0 1 0 
Overestimation of soil N 

absorption 

Soil properties 

(general) 

Type of soil (soil lying on cryoturbated material cannot be 

parametrized).  

Management  0 0 1 1 
Management 

(Crop type)  

Type of crop (inadequate predication root density in some 

particular soil i.e. cryot.)  

Justes et al. (2009) 

Pedo-climatic  0 0 0 0  - - - -   - - - -   - - - -  

Management  0 0 1 0 
Underestimation of N 

mineralization 
Management 
(Fertilization) 

Default values of the decomposition module (Analysis on 
25 catch crops residues). 

Constantin et al. (2012)  

Pedo-climatic  0 0 0 0  - - - -   - - - -   - - - -  

Management  0 0 1 0 

General discrepancies (N 
mineralization and organic N 

sequestered in soil) 

Management 

(Fertilization) 

Lack of sensitivity of N uptake to 

N mineralization (lack of synchrony between extra 

mineralization due to catch crops and crop N demand in the 
model). 

 

Table 7 – Analysis of type and cause of modelling weaknesses and the relative possible explanation for single modelling study. For each study, the specific 

factor of weaknesses and the biogeochemical cycle involved (i.e. C or N) have been considered 
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Figure captions 

 

Figure 1 – Top-down approach focused at gaining insight into compositional sub-systems of 

the most important processes and approaches implemented into the 9 biogeochemical models 

used in the analysis. Classification was built according to three levels of detail: i) Low: five 

general classes (level 1); ii) Medium: 20 main processes (level 2); iii) High: 196 approaches 

(methods/options/components, level 3). 
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