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Abstract: We modify the global Skorokhod topology, on the space of cadlag paths, by localising
with respect to space variable, in order to include the eventual explosions. The tightness of
families of probability measures on the paths space endowed with this local Skorokhod topology
is studied and a characterization of Aldous type is obtained. The local and global Skorokhod
topologies are compared by using a time change transformation. A number of results in the paper
should play an important role when studying Lévy-type processes with unbounded coefficients
by martingale problem approach.
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1 Introduction

The study of cadlag Lévy-type processes has been an important challenge during the
last twenty years. This was due to the fact that phenomena like jumps and unbounded
coefficients of characteristic exponent (or symbol) should be taken in consideration in
order to get more realistic models.

To perform a systematic study of this kind of trajectories one needs, on one hand, to
consider the space of cadlag paths with some appropriate topologies, e.g. Skorokhod’s
topologies. On the other hand it was a very useful observation that a unified manner
to tackle a lot of questions about large classes of processes is the martingale problem
approach. Identifying tightness is an important step when studying sequences of distri-
butions of processes solving associated martingale problems and the Aldous criterion is
one of the most employed.

The martingale problem approach was used for several situations: diffusion processes,
stochastic differential equations driven by Brownian motion, Lévy processes, Poisson
random measures (see, for instance, Stroock [Str75], Stroock and Varadhan [SV06], Kurtz
[Kurld]...). Several technical hypotheses (for instance, entire knowledge of the generator,
bounded coefficients hypothesis, assumptions concerning explosions ...) provide some
limitation on the conclusions of certain results, in particular, on convergence results.



The present paper constitutes our first step in studying Markov processes with ex-
plosion and, in particular in the martingale problem setting. It contains the study of
the so-called local Skorokhod topology and of a time change transformation of cadlag
paths. The detailed study of the martingale problem, of Lévy-type processes and of
some applications will be presented elsewhere (see [GHI1T]).

One of our motivations is that we wonder whether the solution of a well-posed mar-
tingale problem is continuous with respect to the initial distribution? The classical
approach when one needs to take in consideration the explosion of the solution is to
compactify the state space by one point, say A, and to endow the cadlag paths space by
the Skorokhod topology (see for instance Ethier and Kurtz [EK86], Kallenberg [Kal02]).
Unfortunately, this usual topology is not appropriate when we relax hypotheses on the
martingale problem setting.

The most simple example is provided by the differential equation

@y = b(t,x;), t>0, starting from xo € R,

where b : R, x R? — RY is a locally Lipschitz function. The unique maximal solution
exists by setting x; = A, after the explosion time. In general, for some ¢ > 0, the
mapping xg — x is not continuous, and in particular xg — x, is not continuous for the
usual (global) Skorokhod topology. As an illustration, let us consider

iy =(1—-t)x?, t>0, z€cR.

To achieve the continuity of the mapping xy + xo our idea will be to localise the topology
on the paths space, with respect to the time variable but also with respect to the space
variable. More precisely, we need to consider uniform convergence until the exit time
from some compact subset of Ry x R,

We adapt this idea to cadlag paths by following a similar approach as in Billingsley
[Bil99] and we get the local Skorokhod topology which is weaker than the usual (global)
Skorokhod topology. Then we describe the compactness and the tightness in connection
with this topology. Furthermore, we state and prove a slight and new, at our knowledge,
improvement of the Aldous criterion, which becomes an equivalence in our setting.

Another novelty of our paper is the employ of a time change transformation (see for
instance Ethier and Kurtz [EK86], pp. 306-311) to compare the local Skorokhod topology
with the usual (global) Skorokhod topology. Roughly speaking, the time change of the
cadlag path x by the positive continuous function g is (g - x); := z,, with 7 the unique
solution starting from 0 of 7 := g(zr,).

Our paper is organised as follows: the following section is mainly devoted to the
study of the local Skorokhod topology on spaces of cadlag paths: the main result is a
tightness criterion. Properties of the time change mapping, in particular the continuity,
and the connection between the local and global Skorokhod topologies are described in
Section 3. The last section contains technical proofs, based on local Skorokhod metrics,
of results stated in §2.



2 Paths spaces

2.1 Local spaces of cadlag paths

Let S be a locally compact Hausdorff space with countable base. This topological feature
is equivalent with the fact that S could be endowed with a metric which is separable and
have compact balls, so S is a Polish space. Take A ¢ S, and we will denote by S2 > §
the one-point compactification of S, if S is not compact, or the topological sum SLI{A},
if S is compact (so A is an isolated point). Clearly, SA is a compact Hausdorff space
with countable base which could be also endowed with a metric. This latter metric will
be used to construct various useful functions, compact and open subsets.

For any topological space A and any subset B C R, we will denote by C(A, B) the set
of continuous functions from A to B, and by Cy(A, B) its subset of bounded continuous
functions. We will abbreviate C(A) := C(4,R) and Cy(A) := Cp(A,R). All along the
paper we will denote C' € A for a subset C which is compactly embedded in A.

We start with the definition our spaces of trajectories:

Definition 2.1 (Spaces of cadlag paths). Define the space of exploding cadlag paths

0 < Thax < 00,

Dey(S) = 4 2 : [0, Tonax) —+ 5 | 710 € [0 Tmax) 249 = linz,
Vitp € (0, Thmax) Ttg— == gltn 2 exists in S
0

For a path from Dexp(S), 2 : [0, Timax) — S, we will denote £(z) := Tax. We identify
Dexp(S) with a subset of (S2)®+ by using the mapping

AR,

Dexp(5) = (57) with 2z :=A if t>¢(x).

xT — (xt)tzo

We define the local cadlag space as the subspace

Dioc(S) = {:13 € Dexp(5) ’ §(z) € (0,00) and {zs}scg(r) € S Imply Tey)— exists} .
(2.1)
We also introduce the global cadlag space as the subspace of Dy (.5)
D(S) := {z € Dioe(S) | £(z) = 00} C SF+.

We will always denote by X the canonical process on Dexp (), Dioc(S) and D(S) without
danger of confusion. We endow each of Dexp(S), Dioc(S) and D(S) with a o-algebra
F :=0(Xs, 0<s < o0)and a filtration F; := o(X;, 0 < s <t). We will always skip
the argument X for the explosion time (X)) of the canonical process.

The following result provides an useful class of measurable mappings:
Proposition 2.2. Fortyg € Ry, the mapping

Derp(S) x [0,20] — 52
(:L',t) = Tt



is Fry @ B([0, to])-measurable. For ty € R, the set
A= {(fnat) € Deyp(S) x (0, to] ‘ Ty_ exists in SA}

belongs to Fy,— @ B((0,t0]) and the mapping

A - 84
(z,t) — @

is Fio— @ B((0,to])-measurable. For U an open subset of S and for ty € Ry, the set
B = {(2,5,1) € Dep(S) x [0,t0]* | {@u}sntcucov € U}

belongs to Fy,— @ B([0,t9])®? and the mapping
BxCU) — R
t
(z,s,t,h) ~— / h(zy,)du
S

is Fry— @ B([0,10])%? @ B(C(U))-measurable.

Before proving this proposition we state a corollary which give an useful class of
stopping times:

Corollary 2.3. For any (F;)-stopping time 1o, U an open subset of S*, h € C(U,R,)
a continuous function and M : Deyy(S) — [0, 00] a Fry-measurable map, the mapping

t
7= inf {t > 70 | {(Xry, Xo) brp<oct € U o7 / h(Xry, Xs)ds > M}
70

is a (Fy)-stopping time. In particular, £ is a stopping time. Furthermore, if U C S is
an open subset,

Vi=inf{t>0| X, ¢U or X, ¢ U} < ¢ (2.2)
18 a stopping time.

Proof of Corollary[2.3. For each ¢ > 0, using Proposition [2.2] it is straightforward to
obtain that

-1 if g > ¢,
V=< [0 h(Xgy, Xo)ds if 7o <t and {(Xry, Xo) bry<s<t €U,
00 otherwise.

is Fi-measurable. Hence
{r<t}={Y>M}={Y >M}n{n <t} eF,

so T is a (Fy)-stopping time. O



Proof of Proposition 2.3 Let d be a complete metric for the topology of S, note that
A= ﬂ U ﬂ {ag1,02 € [t —96,t) = d(zg,, 2g,) <€}
e€Q 6€Q? q1,q2€Q4+N[0,t0)

so A belongs to Fy,— ® B((0,t0]). It is clear that for each n € N

/ — SA
(z,t) — T4 | e
n+l \fOJ

is Fy,— ® B((0, tp])-measurable, where |r| denotes the integer part of the real number r.
Letting n — oo we obtain that (x,t) — z— is Fy— @ B((0, to])-measurable. The proof
is similar for (z,t) — x;. To prove that B is measurable, let (K,),cn be an increasing
sequence of compact subsets of U such that U = |J,, K. Then

B=J {(®5,t) € Dexp() x [0, t0]* | {wulsntucovi C Ko}
neN

= (z,5,1) € Dexp(S) x [0,20]? | sAt<qg<sVt=z,€ K,},
p q

neNgeQy
q<to

so B € Fi,— @ B([0,t0])®2. To verify the last part, let us note that for n € N* the
mapping from B x C(U)

. 1
sign(t — s) s
(x,s,t,h) — . ZO h(xi%o)]ls/\tgi%o<svt
i

is Fy,— @ B([0,t])®? ® B(C(U))-measurable so, letting n — oo, the same thing is true
for the mapping
BxCU) — R

t
(x,s,t,h) /h(mu)du.

We end this section by recalling the definition of a Markov family:

Definition 2.4 (Markov family). Let (G¢):>0 be a filtration containing (F3)¢>0. A family
of probability measures (P,)scs € P(Dexp(S))? is called (Gt);-Markov if

a) for any B € F: a — P,(B) is measurable,

b) for any a € S: Po(Xo=1a) =1,

c) forany a € S, B € F and tg € Ryt Py ((X¢g4¢)t € B | Gry) = Px, (B), Pg-almost
surely, where P A is the unique element of P(Dexp(S)) such that Pa({ =0) = 1.

If the last property is also satisfied by replacing ¢y with any (G;);-stopping time, the
family of probability measures is called (G;);-strong Markov.

Remark 2.5. 1) If G; = F; we just say that the family is (strong) Markov.
2) If v is a measure on S* we set P, := [P,v(da). Then the distribution of X, under
P, is v, and P, satisfies the (strong) Markov property. O



2.2 Local Skorokhod topology

To simplify some statements, in this section we will consider a metric d on S. However,
we will prove that the construction does not depend on a particular choice of d.

To describe the convergence of a sequence (z*)reny C Dioe(S) for our topology on
Dioc(S), we need to introduce the following two spaces: we denote by A the space of
increasing bijections from Ry to R4, and by A C A the space of increasing bijections A
with A and A\~! locally Lipschitz. For A € A and ¢ € R, we denote

A —id|; := sup |As —s| = A1 —id]|x,. (2.3)
0<s<t

For A € A, let A € L¢® (ds) be the density of dA with respect to the Lebesgue measure.

loc
This density is non-negative and locally bounded below, and for ¢ € R, denote

di;t
1 S
(%)
The proofs of the following theorems use the strategy developed in §12, pp. 121-137
from [Bil99], and are postponed to Section

log LQ ~ A
S9 — 81

I log}\||t = eSSSUPogsgtH log}\5|] = sup
0<s1<52<t

At

Theorem 2.6 (Local Skorokhod topology). There exists a unique Polish topology on
Dioe(S), called the local Skorokhod topology, such that a sequence (z*)ren converges to
for this topology if and only if there exists a sequence (\¥)pen in A such that

e cither {(r) < o0 and {Ts}sce(z) € S: )\]g(m) < &(a®) for k large enough and

sup d(:cs,az’;\k) — 0, xl;k — A, || log ).‘kHE(r) — 0, ask — oo,

s<&(z) &(@)

o or {(z) = 00 or {Ts}scg(n) € S: for all t < &(x), for k large enough M < g(aF)
and

sup d(xs, xlf\k) — 0, | log A¥|l; — 0,  as k — oo.
s<t s

The local Skorokhod topology does not depend on the metric d, but only on the topology
of S. Moreover the Borel o-algebra B(D,.(S)) coincides with the o-algebra F.

Theorem 2.7. The local Skorokhod topology is also described by a similar characterisa-
tion with \* € A and ||log \¥|| replaced, respectively, by \¥ € A and | \F — id||.

Remark 2.8. These convergence conditions may be summarised as: a sequence (zy)g
converges to x for the local Skorokhod topology if and only if there exists a sequence
(AF)g in A satisfying that for any ¢+ € Ry such that {z;}s<; € S, for k large enough
A < ¢(2%) and

sup d(zs,xik) — 0, $l>€\f — zy,  |[logA\¥||y — 0, as k — oo. O
s<t °



We point out that the topology on Di,.(S) does not depend on the metric d of S
and this is a consequence of the fact that two metrics on a compact set are uniformly
equivalent (cf. Lemma[4.3|below). We recover the classical Skorokhod topology on D(S),
which is described, for instance, in §16 pp. 166-179 from [Bil99].

Corollary 2.9 (Global Skorokhod topology). The trace topology from Dy,.(S) to D(S)
will be called the global Skorokhod topology. It is a Polish topology and a sequence (z*)y
converges to = for this topology if and only if there exists a sequence (N¥)y in A such
that for allt >0

supd(:cs,xlf\k) — 0, [log \¥||l; — 0, as k — oo.

s<t s

Once again the global Skorokhod topology does not depend on the metric d, but only on
the topology of S. Moreover the Borel o-algebra B(D(S)) coincides with F.

Proof. The only thing to prove is the fact that this topology is Polish. This is true
because

D(S) = [ {z € Dioc(S) | &(z) > n},

neN

so D(S) is a countable intersection of open subsets of D¢ (S). O

Remark 2.10. Again, as in Theorem the global Skorokhod topology can be de-
scribed by the similar characterisation with A\¥ € A replaced by A € A and ||log A\¥|| by
|AF —id||. O

Remark 2.11. 1) We may also recover the Skorokhod topology on the set of cadlag
paths from [0,¢] to S, ID([0,t],S). Let S LI{A} be the topological space such that A is
an isolated point. The Skorokhod topology on D([0,¢],S) is the pullback topology by
the injective mapping with closed range

D([0,¢],S) D(SU{A}) xS
- . rs ifs<t .
A ifs>t ) T
2) To get a topology on Deyxp,(.S), we may proceed as follows: if d is a metric on S, then

the topology on Deyp(.S) is the pullback topology by the injective mapping with closed
range

Dexp(s) — D]OC(S X R-l—)

T — (:rs, SUPy, > (J(xu» A)+u— S>_1>0§s<§(x) '

It can be proved that it is a Polish topology and a sequence (x*); converges to z for this
topology if and only if there exists a sequence (A\*), in A such that for all ¢ < &(x), for
k large enough A\F < ¢(2%) and

sup d(zs, v5,) — 0, ||log My — 0, ask— oo,
s<t s



and if {(z) < 0o and {s}sc¢n) € S

x];k — A, ask — oo.

£(@)
O

We are now interested to characterise the sets of D, (S) which are compact and also
to obtain a criterion for the tightness of a subset of probability measures in P (Djo¢(S)).
For z € Dexp(S), t > 0, K C S compact and 0 > 0, define

NeN 0=ty<--- <ty <&(x)
w£7K7x(6) := inf sup d(zs,,xs,) | (tn,xey) €10,1] x K . (24)

0<i<N ; C bt
ti<s1,50<tis1 VO<i< N: tig1 —t; > 0

We give some properties of w’.
Proposition 2.12.
i) Consider x € Degy(S). Then x belongs to Dyo.(S) if and only if

Vt >0, VK C S compact, w; . (9) P 0.
B —

it) For allt >0, K C S compact and 6 > 0, the mapping

Die(S) — [0, 400]
z = wlg,K,x<6)

1S Upper semi-continuous

Proof. Suppose that x € Dy.(S) and let ¢ > 0 and a compact K C S be. There exists
T < &(x) such that (T,z7) € [0,t] x K and the limit x7_ exists in S. Let € > 0 be
arbitrary and consider I the set of times s < T for which there exists a subdivision

O=ty< - <ty =s

such that
sup  d(xs,,Ts,) < €.
0<i<N
t;<s1,52<t;y1
It’s clear that I is an interval of [0,7] containing 0: set ¢* := sup /. Since there is

existence of the limit z;+_, then t* € I, and, since x is right-continuous, t* = T". Hence
T € I and there exists 6 > 0 such that w; ;- ,(d) <e.
Conversely, let’s take 2 € Dexp(S) such that {(z) < 00, {7s}s<¢(x) € S and

Vt >0, VK C S compact, wj () P 0.
B —



We need to prove that the limit z¢(,)_ exists in S. Let y1,y2 be any two limits points of
Ts, as s — {(x). We will prove that y; = y2. Let € > 0 be arbitrary . By taking t = (=)

and K = {z4}, <¢(x) 10 (2.4) there exists a subdivision

O=ty< - <ty=Ex)

such that
sup d(zs,,xs,) < €.
0<i<N
t;<s1,52<t;41

Replacing in the latter inequality the two sub-sequences tending toward y;, y2, we can
deduce that d(y1,y2) < €, and letting e — 0 we get y1 = yo.

Let (z%)r C Dioe(S) be such that ¥ converges to z € Djoe(S) and let (A\F)x C A be
such in Theorem We need to prove that

lim sup wy e 1 (0) < wp g, (9)-
k—o0

We can suppose that w,i, k.z(0) < o0o. Let € > 0 be arbitrary and consider a subdivision
0=ty < - <ty <{(x) such that

/
Sup  d(we,sy) < o (0) +
0<i<N
t;i<s1,52<t;y1

tiv1 > ti+ 0 and (tn,24y) € [0,t] x K. If ty = &(z) and {@s}sce(z) € S, then we can
find £y such that ty_1 + 0 < ty < &(x) and L ¢ K. We can suppose, possibly by
replacing tx by ¢y, that

ty = &(v) implies {xs}oce(m) € 5.

Hence, for k large enough, )\fN < &(2F) and

sup d(ws,xlj’\k) — 0, ac];k — Tty INF —id|sy — 0, as k— oco.
s<tn N
We deduce that, for k large enough, we have 0 = )\fo < - k < E(xF), MF > )\k +4,
()\tN, ) ¢ [0,t] x K, and moreover,
sup d(x';’l,x’;z) < sup  d(xg,Ts,) + 2 sup d(xs,:r/\k)
0<i<N 0<i<N s<ty
AE <sl,52<,\t o 1 <s1,82<tit+1

< wLK,z((S) +e+2sup d(ms,x];k) k—) wth(5) + €.

s<tn
Therefore
lim sup wt Kok (0) < wi k. (0) €,
k—o0
and we conclude by letting € — 0. O



We can give now a characterisation of the relative compactness for the local Sko-
rokhod topology:

Theorem 2.13 (Compact sets of Dioc(5)). For any subset D C Dy,c(S), D is relatively
compact if and only if

Vt >0, K C S compact, supwj j,(6) — 0. (2.5)
zeD 6—0

The proof follows the strategy developed in §12 pp. 121-137 from [Bil99] and it is
postponed to Section [4]
We conclude this section with a version of the Aldous criterion of tightness:

Proposition 2.14 (Aldous criterion). Let P be a subset of P (Dio.(S)). If for allt >0,
e >0, and an open subset U € S, we have:

inf su su P <m=EordX,,X;,)1 >e)—0
FCPPePRF T1§IT)2 (Tl m=4 ( w TQ) <y = ) 50
72§(71+5)/\t/\TU

then P is tight. Here the infimum is taken on all finite subsets F' C P and the supremum
1s taken on all stopping times ;.

In fact we will state and prove an improvement of the Aldous criterion which becomes
an equivalence:

Theorem 2.15 (Tightness for Dy.(S)). For any subset P C P (Dyye(S)), the following
assertions are equivalent:

1. P s tight,
2. forallt >0, e>0 and K a compact set we have

P (w, d)>e) —0
E}g) (wt,K,X( )_5) o0

3. for allt >0, e >0, and open subset U € S we have:

ale, t,U,0) := sup sup P(R>¢e) — 0,

PecP T1<12<T3 0—0
T3<(T1+HO)ALATY

where the supremum is taken on T; stopping times and with

d(XTleTQ)/\d(XTzaXTs) if0<7'1<7'2<7'3<£,
Ad( Xy, X)) Nd( X7y, Xry) if0< T =72 <73 <,
R d( X+, X5,) fO=T<m<for0<m <m<13=¢,
o d(XT2—7XT2) if0<71:TQ<T3:§7
0 ifmm=€&o0r0<mn <19 =r3,
o0 if0=T1<T2=§.

10



Remark 2.16. 1) If d is obtained from a metric on S®, then if ¢ < d(A,U) the
expression of a(e,t, U, d) may be simplified as follows:

a(e,t,U,d) = sup sup P(R>¢) — 0,

PeP  7mi<m<t3 6—0
3< (1) AtATY

where the supremum is taken on 7; stopping times and with

N d(Xr, X)) Ad(Xry, Xpy) i 0 <1 < 7o,
R := d(XTQ,,XTQ)/\d(Xm,XTS) if 0 <71 = o,
d(Xr, Xo,) it 0= 7.

2) It is straightforward to verify that a subset D C ID(S) is relatively compact for ID(S)
if and only if D is relatively compact for Dj,.(S) and

Vt>0, {zs|xeD, s<t}ebs.

Hence we may recover the classical characterisation of compact sets of D(S) and the
classical Aldous criterion. Moreover we may obtain a version of Theorem for D(S).
3) The difficult part of Theorem is the implication |3={2 and its proof is adapted
from the proof of Theorem 16.10 pp. 178-179 from [Bil99]. Roughly speaking the
assertion [3 uses
wi(8) == sup d(zs,, Tsy) Nd(xsy, Tsy),

51<s2<s3<s1+0

while the Aldous criterion uses

Wa:((;) = sup d($51,$52)-
51<82<51+6

The term d(X,,—, X,) appears because, in contrary to the deterministic case, some
stopping time may not be approximate by the left. We refer to the proof of Theorem
12.4 pp. 132-133 from [Bil99] for the relation between w” and w’. O

Proof of Theorem [2.15,

Let n > 0 be and consider (¢,),>1 a sequence of times tending to infinity and
(Kyn)n>1 an increasing sequence of compact subsets of S such that S = J,, K,. For
n > 1 define §,, such that

sup P (W), g, x(0n) 2 n7") <277,
Pep

Set
D :={Vn e N*, w,ﬁmeX(én) < n_l}.

By Theorem D is relatively compact and moreover

sup P (D) < ) 27" =1,
PepP n>1

11



so P is tight.
1=13| Let £, > 0 be arbitrary. There exists a compact set D C Djo(S) such that

sup P(D°) <.
PeP

By Theorem there exists § > 0 such that

D c {w;ax(&) < e}

Since for all 71 < 70 <73 < (11 +0) At ATY we have

{w:t,U,X(é) <e} C{R < e},

we conclude that
sup sup P(R>¢)<n.
PcP T1<712<T3
T3<(T1+HS)AEATY

3=12|For all £ > 0, ¢t > 0 and open subset U € S, up to consider 7; := 7; A (11 + ) AtATY
we we have a new expression of «(e,t,U,0):

ale,t,U,6) =sup sup P(R>e, m<(n+0)AtATY) — 0. (2.6)
PeP ri<m<m< 6—0

Consider g9 > 0, t > 0 and K a compact subset of §. We need to prove that

. /
Il,relgjp(wt,K,X((s) <o) 0 L.

Choose 0 < e1 < €0/4 such that
U:={yeS|dy,K)<e} €S
For n € N and ¢ > 0, define inductively the stopping times (see Corollary
70 := 0,
75 = inf {s > Tn\ d(Xr,, Xo) V d(Xr,, Xoo) 2 e} At +2) ATV,
To+l 1= Tty

It is clear that 7° increases to 7,41 when ¢ increases to 1. If we choose 0 < g2 < €1,
then for all P € P,

limsupP(X;, € K, 7, <&, d(Xr,,X7:) <o, 7, <t +1) (2.7)
E—E1
e<el

E—E]
e<el

<P <limsup{XTn eK, 7, <& d(X,,, Xre) <eg, 7, <t 1}> =P(0) =0.
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Forall P € P, § <1 and 0 < € < &1 we have using the expression with stopping
times 0 < 75 < 75
P(Xo€ K, 15 <6)=P(Xo € K, X;z & B(Xo,e2), 75 <96)
+P(Xo € K, 75 <&, d(Xo,Xrz) <2, 75 <)
< a(eg, t+2,U,0)
+P(Xo € K, 75 <&, d(Xo,Xrg) <e2, 15 <t+1),

so letting € — €1, since 75 T 71, by (2.7) we obtain
P(Xo e K, 11 <0) < ale, t+2,U,9). (2.8)

ForallP e P,§ <1,n € Nand0 < e < e we have also using the expression (2.6)) with
stopping times 7, < 77 < Tpy1 and 7, < 7 <75

P(Tn-‘rl <t XTn7XTn+1 €K, Terl —Tp < 5)
<P(X;, €K, 1, <& d( X5, Xr:) <e2, 7, <t+1)
+P(Xrp €K, oy <& d(Xryyy, Xre, ) <62, T St+1)

n

+ P<Tn+1 < t’ XT"’XTn—O-l € K7 d(XTn7XTfL) > €2,

S
d(XTfL)XTn+1) 2 5277_714»1 - T’I’L S (S)
+ P<Tn+1 <t XTn’XTnH € K, d(XTmXTﬁ) > €2, XTEH ¢ B(Xn’i’ %)7

Trg1l — Tn < 5)
<P(X,, €K, 7, <& d(X;,,Xre) <eg, 7, <t +1)
FP(X,,, €K, o <& d(Xp ), Xoe ) <eg, T <t 1)

Tn+19 “XTp g

+2a (%,Hz,aa) ,
so letting € — €1, since 75 | T Ty 42, by (2.7) we obtain
P(rner <, Xo,, X € K, Tosz — 70 < 6) < 20 (%Qt t2.U5).  (29)

Forall P e P, 6 <1,n € N*and 0 < € < g1 we can write using the expression (2.6))
with stopping times 7, < 7, < 7,

P(r, <t, X;, € K, dX;,—,X.,) >¢e2, T, —Tn <)
<PX;, €K, 1, <& d(Xr,,Xr:) <e2, 7, <t+1)
+P(r, <t, X5, € K, d(X;,-,X;,) > €2, Xoe € B(X;,,€2), 75, — Ty <0)
SP(X,, €K, 1, <& d( Xy, X)) <ea, 7, <t 4+ 1)+ (et +2,U,6),
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so letting € — €1, since 77 T Th41, by we obtain
P(r, <t, X;, € K, d(X;,—,X:,) > €2, Tng1 —Tn <0) < a(e2, t+2,U,6). (2.10)
Let m € 2N and 0 < ¢’ <1 be such that m > 2¢/6" and denote the event
A={rp, <tandVn<m, X, € K}.

Then for all 0 < ¢ < m, thanks to (2.9)

200 (82, t +2,U, ¢
E[mz—n\AJz&’Pm-nza'|A>zaf(1— Ll R >>

P(4)
Hence
(m—2)/2 / € /
mo 200 (%, t+2,U,0")
tZE[Tm’A]: zz:% E[T2i+2—7-2i|A]2 2 <1— P(A) 5
SO
200 (%, +2,U,7)
P(A) < 2’ e 2.11
(4) < 1 —2t/(md") ( )
Taking 0 < § < 1 and setting
(TmaXTm S vXTm) ¢ [O,t] X Kerl:
B o Xoe K=m >0,
m0 = VO<n<m-—2, 7pp1 <tand X, , X, ., € K= T2 — 7 >, ’
VO<n<m, m <t X, €K, dX;, -, X:,) >c2=>Tpt1—Th >0
by 28), [@9), @10) and (ZII) we obtain that
200 (2, +2,U,7)
inf P(Bs) > 1— 2 L t+2,U,6
gL, P (Brns) 2 | —otj(mey et 209)
—2(m— 1)« (%,t—f—ZU,é) —ma(eg,t +2,U, ).
Hence
inf P(B 1.
b g P Bma) =5
Recalling that €1 < 4e¢, a straightforward computation gives
Bn,s C {w) g x(0) <o}
We conclude that
inf P(w] ) 1.
fl’Ielp (wt,K,X( ) < €o) 6—_>0>
O
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3 Time change and Skorokhod topologies

3.1 Definition and properties of time change

First we give the definition of the time change mapping (see also §6.1 pp. 306-311 from
[EKS86], §V.26 pp. 175-177 from [RW00)]).

Definition 3.1 (Time Change). Let us introduce
C7Y(S,Ry) :={g: S =R | {g =0} is closed and g is continuous on {g # 0}},

and for g € C79(S,R,), © € Dexp(S) and ¢ € [0, oc] we denote

Edu g {970}
7 (x) :=inf {s > 0| AY(x) > t}, where AJ(z):= { Jo s HEE 0,7 (@)
00

otherwise.

(3.1)
For g € C79(S,R,), we define a time change mapping, which is F-measurable,

G- X1 Dexp(S) — Dexp(S)
x —  g-x,

as follows: for t € Ry

X9 ift> A%, X o exists and belongs to {g = 0},
(g X)e = { X otherwise. (3:2)

For g € C79(S,R,) and P € P(Dexp(S)), we also define g - P the pushforward of P by
T g,

The fact that this mapping is measurable will be proved in the next section.

Remark 3.2. Let us stress that, by using Corollary 7/ is a stopping time and, in
particular
79 =70 —inf{t > 0| g(X,_) A g(Xy) = 0} AE.

The time of explosion of g - X is given by

oo if 79, < & or X¢_ exists and belongs to {g = 0},
Ag otherwise.

5(9‘X)={

Roughly speaking g - X is the solution of (g - X); := XTtg with 77 := g((g - X)¢), on
the time interval [0, 7).

Proposition 3.3.
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1. For U C S an open subset, by identifying
C(U,Ry) = {g € C79(S,R,)|{g #0} C U and g is continuous on U},
the time change mapping

CUR,) % Derp(S) = Dey(S)
(9,x) =g,

is measurable between B(C(U,Ry)) ® F and F.
2. If g1,92 € C70(S,R,) and x € Deyy(S), then g1 - (g2 - ) = (g192) - =
3. If g is bounded and belongs to C7°(S,R,), and x € D(S), then g-x € D(S).
4. Define

C*O(S,Ry) := {g e C7%S,Ry) | VK C S compact, g(K) is bounded}.

If g € 6#)(5, Ry) and x € Dy,.(S), then g - x € Dyye(.5).

5. If g € C79(S,Ry) and (Py)acs is a strong Markov family, then (g - Pg)ecs is
a Markov family. Furthermore, if (Pg)acs is a Fy+-strong Markov family, then
(9 Po)acs is a Fy+-strong Markov family.

Proof. The first point is straightforward by using Proposition while the second point
is a direct consequence of the time change definition and, in particular, of the first part
of (3.2). The third point can be easily deduced because,

5( ) > /OO ds S /‘X’ ds
g-x) > > — =00
o g(zs) ~Jo gl
To prove the fourth point we suppose that {(g-z) < oo and {g - Ts}s<¢(ga) € S- Then
{xs}s<§(r) = {g : $s}s<£(g-x) Y

ds > g(l‘) .
(.fl?s) HgH{~Ts}s<§(l‘)

£(x)
OO>€(9-96)=/0 P

Hence {(z) < oo and so g- Te(gx)— = Te(z)— €xists. In proving the last point, we simplify
the notation by setting 7 := 77. It is straightforward (using especially Proposition
and Corollary [2.3) to obtain the following facts:

e T7; is a stopping time,
e g- X; is Fr,-measurable,

o {g- X1 # X} € Fr,

e g- X # X,, implies g(g- X¢) =0 and (g - X¢45)s>0 is constant,
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e g-X; =X, imply (g- Xt-i—S)SZO =g- (XTH-S)SZO‘

Suppose that (Pg)ees is a (F;)e-strong Markov family, then for any ty € Ry, a € S
and B € F, Ps-a.s.

P ((9- Xigre): € B ’ Fro) =Pa((9- Xtgss)t € B, g+ Xiy = Xr | Fry)
+Po((9- Xegrt)e € B, g+ Xey # Xny | Fry)
=P (9 (Xny+tht € B | Frip) Ligx=xs, )

+Po((9- Xip)i € B | Fry) Lig Xy £ X, )
— Py, (9-X €B)=g-Pyx, (B).

Hence (g Py)aes is a (Fi)i-Markov family. If (P,), is a Fy+-strong Markov family, then
for all (F _+)s-stopping time o,
t

{1, <t} = U {0 <q, 7y <t} eF,
q€Q+

SO T, 18 a Fy+-stopping time. Using the same argument as before we obtain that (g-Pg),
is a Fy+-strong Markov family. O

Another interesting fact is the following:

Theorem 3.4 (Continuity of the time change). Denote by B the set of couples (g, ) €
C70(S, R, ) X Dype(S) such that

2 (x) < €(a) implies [ -2 33)
T5o(Z) < () vmplies / = 00, .
0 9(zs)
and such that
Aggo(x)(x) < 00, Tpg (p)— exists in S and g(T,g (n)—) =0 imply T 9 )— = T19 (5)-
(3.4)

Then the time change
CHOS,R,) X Dipe(S) = Dioe(S)
(9,2) = gT

is continuous on B when we endow respectively 67“)(5’, R ) with the topology of uniform
convergence on compact sets and Dyy.(S) with the local Skorokhod topology. In particular

C(S,R%) x Dye(S)  — Dyoe(S)
(9,2) = g

18 continuous for the topologies of uniform convergence on compact sets and local Sko-
rokhod topology.
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Remark 3.5. 1) It is not difficult to prove that B is the continuity set.

2) If (g,x) € B and h € C*9(S,R,) is such that {h = 0} = {g = 0} and h < Cyg for a
constant C' € Ry, then (h,z) € B. B

3) More generally, let By be the set of (¢g,2) € C7O(S,Ry) x Dy, (S) such that

Tgo(x) < oo =Vt =0, Trg (x)+t = Lrd(a)

Trg (p)— exists in S and g(@,g (1)) = 0= Trg (;)— = g (-
Then
{(9:9-2) | (g,) € CPO(S,Ry) x Dioe(S)} € By C B, (3.5)

4) A similar theorem may be proved for g - X : C7%(S,Ry) X Dexp(S) — Dexp(S) using
the topology described in Remark [2.11] O

To simplify the proof of the theorem we use a technical result containing a construc-
tion of a sequence of bi-Lipschitz bijections (A*)j useful when proving the convergence.
Before stating this result let us note that, for any (g, z) € C79(S,R) x Diye(S) and any

t <74 () such that {zs}s<; € {g # 0}, by using (3.1)), A/ (z) < co.

Lemma 3.6. Take a metric d of S. Let x,2F € Dy,o(S) and g, gr € C*O(S,Ry) be such

that (gx, z%) converges to (g,x), as k — oo. Let t < 79 (x) be such that {zs}s<t € {g #
0}. Then

i) there evists a sequence (\F), € AN such that, for k large enough )\Zg(x) < &(gx-2b)
and

Ilog \¥|| =0,  sup d(g @y, gr-2he) =0, gr-akn — 9 T9(z), QS k — 00.
v<AJ(z) Y A ()

it) Moreover, if 7,(x) < &(x) and fOTgO(x)Jr g(dxss) = 00, (A\¥)x may be chosen such that

for any v > 0 and k large enough )\Zg(va < &(g - %) and

lim sup sup d (gk ' xlf\k ) {ws}tgsﬁfé’o(x)> =0.
koo AY(x)<w<AY(z)+v v

We postpone the proof of the lemma and we give the proof of the continuity of time
change:

Proof of Theorem[3.], We remark first that

B = By UByU B3 U By,
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(@) ds
By:= {T&m <&(@), 9(2rg,(r)-) # 0 and /0 g?w ) OO}'

Let z, 2% € Dioe(S) and g, g € C#9(S,R,) be such that (gi, z¥) converge to (g,z) and
(9,x) € B. We need to prove that

Dioe (S
ok D (S)

k—o0

9k

and we will decompose the proof with respect to values of i such that (g, x) € B;.

o If (g,x) € Bi, we use the first part of Lemma for all ¢ < 74 (z). We obtain
that A7(z) < £(g - z). Since Af(z) tends to £(g - x), when ¢ tends to 7L (z), by a
diagonal extraction procedure we deduce (3.6]).

o If (g,x) € By, it suffices to apply the first part of Lemma to t := £(x) and
Al (z) =¢€(g - 2).
e If (g,z) € B, let t < 74 (z) be. Then, by the third part of Lemma [3.6] there exists
A¥ € A such that, for any v > 0, for k large enough, )\]j‘g(x)ﬂ < &(gr - %) and
t

| log A¥|| P 0, limsup sup d(g-xw,gk-mik) <2d ($r§o(x)’ {xs}tgsgrg’o(x)) :
—00 k=00 w<AY(z)+v v

Since x is continuous at 72 (x), we conclude by a diagonal extraction procedure,
by letting ¢ tends to 7, (x) and v — oo.

o If (g,x) € By, let t = 79, (x) be. By the second part of Lemma there exists
\¢ € A such that, for any v > 0, for k large enough )\ZQ(I)H < &(gy - 2¥), and
t

I log}\k|] — 0, sup  d(g - Tw, gk - x’;k) — 0.
k—oo w§A§ (z)+v w’ k—o00

We conclude by a diagonal extraction procedure and letting v — oo.

O]

Proof of Lemma([3.6. Let ¥ € A be as in Theorem and to simplify notations define,
for s >0
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and v := A;. Since Tw =t < &(z) and {zs}s<t € S we have, for k large enough

Xf < &(2%), and HlongHt — 0, sup,; d(zs, k) — 0 and x»];vk — x4, as k — oo.
t

d

Ak

Since {zs}s<t € {g # 0}, we deduce that for k large enough {$§}8<Xk € {gr # 0}.
t

Define then \¥ € A by

A= Ak :/ ggmz’”))j\fwdw if v <,
To 0 gk xr~

Xk
A= if v > .

Since AF < 7% we have
k k k
)‘u < A‘F(fo < g(gk "L )7

now we obtain

Supd(g - 2o, g - aky) = sup d(ar,,ak, ) = supd(as,ak,) — 0,
v<u v v<u Ty s<t s k—oo

gr-ahy =ak, — m=g-a,

Af k—o0
| X gla X
|| log )\k” — esssupvgu log Lkﬂ)) = eSSSHpSSTu log Lfs) k—) 0.
gk(x}’ﬁ ) gk(»’f}g) e

For the second part of the proposition we keep the same construction as previously. For
any v > 0 we have that

r* —inf{t>)\k /t ds >v}/\7’k
)‘ﬁ+v - Ak gk(ajlg) - oo
Using Fatou’s lemma
o (e ) ds L Toot Xkds oot  ds
lim inf o~ = lim inf > / = 00,
koo g ge(@) koo Jeo gr(@) T e glws)

so limsupy_, Tf\“k+ — )\foo < 0. Moreover, for k large enough, T)’fk+ > T)’fk = /\,’f, SO
u+v u+v u

)‘?Hrv < g(gk ’ xk) and

limsup  sup  d (ge- oy, {25 hicocn ) = 0.
k—oo u<w<u+tv w

3.2 Connection between local and global Skorokhod topologies

Generally to take into account the explosion, one considers processes in D(S?), the set
of cadlag processes described in Deﬁnition associated to the space S2, and endowed
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with the global Skorokhod topology (see Corollary . More precisely, the set of cadlag
paths with values in S? is given by

D(SA) _ {J} c (SA)R+ Vi >0, xy = limsu Ts, and }

Vt >0, z4— := limgy x5 exists in SA

A sequence (z*); in D(S?) converges to x for the global Skorokhod topology if and only
if there exists a sequence (\F);, of increasing homeomorphisms on R, such that

Vt >0, lim sup d($s,l‘l§\k) =0 and lim ||A¥ —id|, = 0.
k—o0 s<t s k—ro0

The global Skorokhod topology does not depend on the arbitrary metric d on S2, but
only on the topology on S.

In this section we give the connection between D(S?) with the global Skorokhod
topology and Dy, (S) with the local Skorokhod topology.

We first identify these two measurable subspaces

Dioc(S) ND(S2) = {z € Dioc(S) \ 0 < £(z) < 00 = Tg(y)_ exist in S2)
= {xeD(SA) ‘ vt > 79 xt:A}.

We can summarise our trajectories spaces by

D(S) C Dipe(S) ND(SA)  C Dioe(S) C Dexp(S).
N
D(S4)

Hence Djoe(S) NID(S?) will be endowed with two topologies, the local topology from
Dioe(S) and the global topology from D(S%).

Remark 3.7. 1) On Dy,.(S)NID(S2) the trace topology from Do (S) is weaker than the
trace topology from ID(S?). Eventually, these two topologies coincide on ID(S). Indeed
this is clear using a metric d on S® and the characterisations of topologies given in
Theorem and Corollary The result in Corollary below is a converse sentence

of the present remark.
2) If © € Dyoe(S) ND(S2) then g - 2 is well defined in Dy (S) ND(SA) for

g € Co(S,RY) C {g € C*O(S2 Ry) | g(A) = 0}.
We deduce from Theorem [3.4] and the third point of Remark [3.5] that the mapping

Cp(S,R%) X Dioe(S) ND(SA)  —  Diee(S) ND(SA)
(ga $) = g-x

is continuous between the topology of the uniform convergence and the global Skorokhod
topology. O

21



The following result is stated in a very general form because it will be useful when
studying, for instance, the martingale problems.

Proposition 3.8 (Connection between Dy, (S) and D(S2)). Let S be an arbitrary locally
compact Hausdorff space with countable base and consider

P: S — PDp(S))
a P,

a weakly continuous mapping for the local Skorokhod topology. Then for any open subset
U of S, there exists g € C(S,Ry.) such that {g # 0} =U, for alla € S

g-Pa(0<{<o00= Xe_ emists inU) =1,
and the application

g-P: § — PH0<E<o0= X exists in UY)
a +— qg-Pg

is weakly continuous for the global Skorokhod topology from D(S%).

_ Before giving the proof of Proposition [3-8 we point out a direct application: we take
S :=NU{oo}, U = S and a sequence of Dirac probability measures Py, = 6,4, Poo = d5.
Then we deduce from Proposition [3.8] the following:

Corollary 3.9 (Another description of Dy (S)). Let x,zt, 22, ... € Dy,e(S) be. Then the
sequence ¥ converges to x in Dy,e(S), as k — 0o, if and only if there exists g € C(S, R%)
such that g-x,g-x',g-2%,... € D(S?), and g-z* converges to g-x in D(S?), as k — oco.

We proceed with the proof of Proposition [3.8 and, firstly we state a important result
which will be our main tool:

Lemma 3.10. Let D be a compact subset of Dj,.(S) and U be an open subset of S.
There ezists g € C(S,R4.) such that:

i) {9 #0}=U,
i) for allx € D, (g,z) is in the set B given by (3.3)-(3.4) in Theorem[3.4] and

g-x€{0<§<oo:X§, exz'stsinU}.

i) the trace topologies of Djpe(S) and D(S?) coincide on {g- x|z € D}.

Furthemore, if g € C(S,Ry) satisfies i)-i11) and if h € C(S,Ry) is such that {h # 0} = U

and h < Cg with a non-negative constant C, then h also satisfies i)-iii).
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Proof of Proposition . Let (K,,)nen+ be an increasing sequence of compact subset of
S such that S = (J,, Ky, then {Pa}aef( is tight, for all n € N*. So, there exist subsets
D,, C Dyoc(S) which are compacts for the topology of Dj,.(.5), and such that

sup Po(Dy) <
GEIA('n

S|

For any n € N*| let g, be satisfying i)-iii) of Lemma associated to the compact set
D,,. Tt is no difficult to see that there exists g € C(S,Ry) such that {g # 0} = U and
for all n € N*, g < C), g, for non-negative constants C,,. Hence g satisfies i)-iii) for all
D,,, n € N*. Hence for all a € S

9-Po(0<&<o0= X existsin U) >Py( |J D) =1
neN*
Let ag, a € S such that ay k—) a. For n large enough {ay }r C K,,. Then if F is a subset
—00
of {0 < € < 0o = X_ exists in U} which is closed for the topology of D(S?), then
limsupg - Pg, (F) — g - Po(F)

k—o0

1
<limsupP, (X € D,, g- X € F) = P,(X € D,, g-XGF)—i—ﬁ.

k—o0

But thanks to iii) in Lemma {X €D,, g-X € F} is a subset of Dj,(S5) which is
closed for the topology of Dj,.(S). Hence by using the Portmanteau theorem (see for
instance Theorem 2.1 from [Bil99], p. 16)

limsupPg,, (X € Dy, g- X € F) <P (X €Dy, g- X€F)

k—o00
and so letting n — oo
limsup g - Pg, (F) < g- Py (F).

k—o0

By using the Portmanteau theorem, the proof of the proposition is complete, except for
the proof of Lemma O

Proof of Lemma[3.10, Let d be a metric on S2 and denote
Ky :={a€$|da,s"\U)>27"}.
By using Theorem there exists a sequence (1), € (0,1)Y decreasing to 0 such that

SUD Whn (A g-n-2)e 5 (M) < 27777, (3.7)
zeD

Moreover, there exists g € C(S2,[0,1]) such that {g # 0} = U and giKe < 27" .
Let x € D be. We consider the following two situations:
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o If 79,(z) < oo and {zs}, .9, is not a compact of U, take m € N such that
2™ > 19 (x), denote

t := min {s >0 | a5 & Km+1} <714 (x)

and let n > m be such that z; € K, 12\K,11. Using (3.7) there exist t1,ty € Ry
such that ¢t <t <ty <714 (x), ta —t1 > np and x5 € K, for all s € [t1,12). So

2 ds
Ady (x Z/ > 2™,
@2 ) oy

hence letting m goes to infinity
Aigo(x) (z) = oc.
o If 7 () < &(x) and g(w,g (,)—) # 0, then g(z.g (,)) = 0. Let m € N be such that

2m > 14 (z) and {25} <9 (o) C B(A, 2-m=2)¢, Using (3.7), there exist t1,t2 € Ry
such that t; < 74 () < ta < &(x), ta —t1 > Ny and x5 € Ky, for all s € [t1,t2). So

@) +m dg t1tnm  ds
[ e [ e
0 g(xs) t1 g(l‘s)

hence letting m tend to infinity

/Tgo(x)JF ds
= Q.
0 g($s)

Hence we obtain that (g,2) € B and g-x € {0 < { < 0o = X¢_ exists in U} and ii) is
verified.

We proceed by proving iii). Thanks to Remark to get the equivalence of the
topologies it is enough to prove that if ¥,z € D are such that ¢ - z*¥ — g -z for the
topology from Dy, (S) and (g ) < oo, then the convergence also holds for the topology
from D(S?). Let A¥ € A be such that

sup d(g- s, g- :c';k) — 0, || log }\k||£(g,x) — 0, ask— oo
s<&(g-w) )

We may suppose that )\Ij =0, for s > £(g-x). Denote t, := )\]g(g.x) and choose m € N be
such that {g-@s}s<g(ga) € Km and £(g-2) < 2™. Then, for k large enough {g-z%},., €
K, g wfk Z K1 and g, < 2™,

° Eitherg-mfk ¢ U and sog-ac’;“\;c =g'33fk for all s > &(g - ).

o
e Org- :cfk € U and let n > m be such that g - xfk = L9 (ghy € Kp+2\Kpt1. Using
k

B.7), d(zs,af) < 27" ? and so z; € U\K,, for all s € ks (:U’“),T,f;c (z%)+n,]. Hence

Aifk(ﬂfk)Jfﬂn >t + 2", s0d(g-xs,9 - xfk) <272 for all s € [tg, tr + 2"].
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Hence we obtain that for k large enough

sup  d(g-xs,9-25) < sup d(g-ws,g-ah) +27772,
s<(gw)+2m T s<g(gw) :
so letting m goes to the infinity we obtain that ¢ - z* converge to g - = for the global
Skorokhod topology from D(S?). Hence the proof of iii) is done.

Finally, to prove the last part of the lemma let g € C(S,R;) be such that i)-iii) are
satisfied and let h € C(S,R;) be such that {h # 0} = U and h < C'g with a non-negative
constant C'. Thanks to Remark (h,x) belongs to the set B given by —, it
is also clear that h -z € {0 < § < 00 = X¢_ exists in U}. We have that % € Gy(U,RY),
S0 using for S and S?, the bijection

{9-z|lzreD} — {h-z|xe€ D}

T — by
g

is continuous for the topology of Dj,.(S), but also of D(S?). But since {g -z |z € D}
is compact, this application is bi-continuous and we obtain the result. Now the proof of
lemma is complete. O

4 Proofs of main results on local Skorokhod metrics

In this section we will prove Theorem Theorem [2.7] and Theorem by following
the strategy developed in §12, pp. 121-137 from [Bil99]. To construct metrics on D¢ (S),
we will consider a metric d on S. To begin with, we define two families of pseudo-metrics:

Lemma 4.1 (Skorokhod metrics). For 0 <t < oo and K C S a compact subset, the
following two expressions on Deqy(S):

pri(zh, 2?) = in(f supd(ay, @3) VA —id|y,
t;<E(x)  s<ty :
AR, =t v e (d(ah, KO A (E =) 1Ty ceon),
pt7K(x1,x2) = inf  sup d(xi,x?\s) V || log }\‘|t1 VA —id]|y
t;<E(x")  s<ty ; .
ACA Ay =ta N zén{%}é} (d(‘rtiv KN (- ti)+1ti<§(ﬂli))'

define two pseudo-metrics.

Proof. Let us perform the proof for p; i, the proof being similar for p; x. The non-
trivial part is the triangle inequality. Let 2!, 2% 23 € Dexp(S) and € > 0 be then there
are t; < £(x1), to, ty < &(2?), t3 < £(23) and X' € A, A2 € A such that

pric(at, @) + e > sup d(ag,a}y) V [[log Al VAT —id]ly,

s<t 7 c
: v e (A, K A (= )T cq(on)
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oo (@%,2%) + 2 2 sup d(a?, 23) v | log 21k, v 132 — idli
o d(al, Ko A (¢ — 1) 1
v e (Al KA (=111 o)

~

Define 7y := to A ta, t1 = ()\1)7_1, i3 1= /Lf and A := A2 o A\l. Then
2 2

sup d(z, xis) < sup d(z}, xig) + sup d(z?, xig),
S<\t/1 s<t1 s<to

Hog Ally < log X'l + [log A*[lg,, A —id]l; < [IA" —id]e, + [IN* — id]lg,.

Moreover, for instance, if #; # t1, then #; < t; < &(1), to =1y <ty < &(x2) and

d(zl KA (t—T)y < d(al a2 )V [l — Tl +d(a2 K A (t—T)s
1 2

t1 to
< supd(zl, %) VA —idlls, + d(xt%,KC) A(t—1t2)4.
s<t1 s
Hence
purc (et 2%) < prc(at, a?) + prre(a?,2%) + 2,
so letting € — 0, we obtain the triangular inequality. O

We prove that these pseudo-metrics are in somehow equivalent:

Lemma 4.2. Take z,y € Djoo(S), t > 0 and a compact subset K C S, if pr x(x,y) < %

then
pric(@,y) <6 \/puic(e.y) Vol o (Vi (@)

Proof. Let ¢ > 0 be arbitrary. There exist 4 € A and T > 0 such that T < &(z),
pr < &(y) and

Sugd(:ﬂsa yus) \% H:U’ - 1dHT S ﬁt,K(xv y) +e,
s<
d(xr, K)YN(t = T) 1 Apcg(z) < pri(w,y) + &,
d(yuT’ Kc) A (t - MT)+]1-;LT<§(y) < ﬁt,K(CC, y) +e.
Let 6 > 2p k(x,y) + 2¢ be arbitrary, there exist 0 =ty < --- <ty < {(x) such that

sup  d(wsy, Tsy) < Wi e, (0) + €,
0<i<N
ti<si1,52<tiy1
§ < tiy1 —t; <25 and (tn, 2ty ) € [0,t] X K. Set ng := max{0<i< N |t; <T} and
T :=ty,. Define A € A by

Vi S no, )\ti = Ht;,
Vi < mg, A is affine on [t;, tit1],
Vs >T, ds=1.
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Then
[A—=id| = \Sup [, — till < [lp —id]lr < prx(z,y) +e.

<i<ng

For 0 <i < ng we have

Prigs = Pt — gt R 4| 2| p —idllr _ 2pik (2, y) + 2
tiv1 — - 1) - )

<1,

so by the classical estimate:

7]

log(1 < f <1.
[log(1+7)| < | or |r|
we deduce )
Nogill = sup |log e —Hu| o 20ek(@,y) +2
0<i<no tiv1 —ti |~ 0 —2p (v, y) — 2

Since for s < )\%, )\S_ and fg ~1 lies in the same interval [ti,ti+1). Therefore

sup d(zy-1,ys) < sup (d( a1 Ys) + d(xus—l,:n/\s_l)) < Pt g (%, Y) 4 Wi e (0) + 2e.

s<)\~ s<)\~

For the two last terms in p; x we may consider only the case were T #T. If ng = N:

d(zz, K) A (t — T), = 0, otherwise:

d(zz, KA (t = T)g < d(wp, K A (t = T)y + d(zz,27) V (T = T)

< P (T,Y) + wi g, (0) V (20) + 2e.

By using Az = pz, we also have

AYaz, K) N (= Ap)s < d(g, KO A (= T)s + d(wg yu) V |T = piz

< 201k (2,y) + W g0 (0) V (20) + 3e.
Letting € — 0 we obtain that for all 6 > 2p; g (z,y),

2ﬁt,K($7 y)
o — 21515,K (l’, y)

Finally, by taking 0 := /pt k(x,y) we have for p i (z,y) < %

~ 21515 K(x7y)
< (2 / 2 —
pruc(@:y) < (2 (,) + i pea(8) V (20)) V 5=5202

pt,K($7 y) < <25t,K(xa y) + wllf,K,x((S) \% (25)> v

IN

<6- ,OtK(x y)\/wth( ﬁt,K(xvy)>‘

27

( +wtK:):( ﬁt,K(xvy)) v (2 V ﬁt,K(xay))> V6 ﬁt,K(CU,y)
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At this level it can be pointed out that we obtain the definition of the local Skorokhod
topology. Indeed, by using Proposition Lemma and the fact that py xk < prk,
the two families of pseudo-metrics (py k)¢ x and (p: )¢k define the same topology on
Dioc(S), the local Skorokhod topology.

If (Kp)nen is an exhaustive sequence of compact sets of S, then the mapping

Dloc(s)2 — RJr (4 1)
(.’L‘, y) = ZTLEN 2_npn,Kn (.T, y) A1 .

is a metric for the local Skorokhod topology. By using a diagonal extraction procedure,
it is not difficult to prove that a sequence (z*); converges to z for this topology if and
only if there exists a sequence (A¥) in A such that

e cither {(z) < 0o and {Zs}<¢() € S: for k large enough )\k < &(2%) and

sup d(ms,xlf\k) — 0, ZL'I;\;E( ) — A, || log }\k||£($) — 0, as k— oo,

5<¢(z)
® or {(z) = 00 o1 {Ts}sce(z) € St for all t < {(z), for k large enough A< ¢(2%) and

sup d(zs, 25x) — 0, |log \E||l; — 0, as k — oco.
s<t

The local Skorokhod topology can be described by a similar characterisation with \¥ € A
replaced by A¥ € A and respectively, | log A¥|| replaced by [|A — id||. The fact that
the local Skorokhod topology does not depend on the distance d is a consequence of
the following lemma, which states essentially that two metrics on a compact set are
uniformly equivalent:

Lemma 4.3. Let T be a set and x, 2% € ST be such that {x;}ier € S, then

supd(xt,x,’f) — 0, ask— oo,
teT

if and only if
YU C S? open subset containing {(y, Y)tyes, ko Vk > ko, VEeT, (x, xt) eU.

So the topology of the uniform convergence on {33 e st ‘ {z1}ier € S} depends only of
the topology of S.

Proof. Suppose that sup;cr d(x¢, 2F) — 0 as k — oo and take an open subset U C S?
containing {(y,y)}yes. By compactness there exists ¢ > 0 such that

{W1.92) € 8 |1 € {wihs, dyrap) <cf C U,

so for k large enough and for all ¢, (xy, :L't) € U. To get the converse property we use the
fact that {(yl,yg) € S?|d(y1,ye) < 5} is open. O
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In the next lemma we discuss the completeness :

Lemma 4.4. Suppose that (S,d) is complete. Then any sequence ()i, € (Djpe(S9))N
satisfying
VYt >0, VK C S compact, pt,K($k1,$k2) — 0,

kl,kgﬁoo

admits a limit for the local Skorokhod topology.

The proof of this lemma follows the same reasoning as the proof of the triangular
inequality, the proof of Theorem 12.2 pp. 128-129 from [Bil99] and the proof of Theorem
5.6 pp. 121-122 from [EKS86].

Proof. Tt suffices to prove that (z*); have a converging subsequence. By taking, possibly,
a subsequence we can suppose that

vVt > 0, VK C S compact, Z ,Ot,K(xk,ka) < 00. (4.2)
k>0

We split our proof in five steps.
Step 1: we construct a sequence (A\¥), C A. Let u* € A and 3 > 0 be such that for all
t >0 and K C S compact, we have for k large enough
fe < ("), uf <&@,
sup d(af, 1) v [l log il v [l —dll, < 2pusclat, o),

s<tg IUJISC
(d(:vi,Kc) A(t— Zk)+]1tj€<§(mk)) < 2py i (2, 2, )
(d(x‘;;l, KA (t - utﬁknn@kwﬂ)) < 2y e (aF, "),
;
For all £ > 0 define
te =\ ()" oo (T T ), (44)

i>0
so t <t and ,ufk < tgy1. For k,i >0

d k+i—1 k & 4
1og (" oo b ) < 3 [ log il
l=k

) k+i—1
¥ ooy —idly, < D Iuf —idlly,
{=k

and for j >4
[ oot — M oo Rl < [T oo M —d
ktj—1
Y4 .
< > et —idllg
(=k+i
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Using (4.2)) and (4.3) we obtain

¢ . .
Yolut —idlly, <oo, D g ifll; < oo,
>0 >0

k+i—1

so the restriction to [0, x| of continuous functions o---ouF converges uniformly

to a continuous function. Set

Moo= limy oo P oo pF(s),  if s <ty
M=, if s > 1.

Clearly for s < tg, \¥ = \¥*1 o ¥ (s). We have

IN* —id[| <sup [ oo b —id|ly, <3 (|uf —id]fy < oo, (4.5)
\ k ko= Ak d k+i—1 k
[log A% = sup logi < sup [[log (i oo i (),
0<s1<52<tg §2 — 81 >0
-l
<> [log iz, < oo, (4.6)
>k
so A\ e A.

Step 2: we construct a path x € Degy(S). For all k > 0: )\kk = )\ﬁ}fl < )\f,:fl and moreover
t
for all 0 < ky < ky ’

ko—1
k2 )_ ( k1 o,k ) < 2l
sup d( T (yk1) o1 ka1 —Ss<11p d(z; sy oot E supd :1:8, t ).
s<)‘%1 k1 I=F; s<tg

By using (4.2)) and (4.3) we get >=/>0 sup, 7, d(t, xf;{l) < 0. By using the completeness
of (S,d), we deduce that, for each m € N, the sequence 1:](‘3/\k)_1 converges uniformly on
[0, A" ). We can define 2 € Deyp(S) by setting

N k U k
&(x) = klg)go At,  and Vs < (), 5= kli}rgo ey
We see that, for all £ > 0
6 k)T 1,Ts) = Sup d(a:s,:c,\k) Zsupd at x ZH). (4.7)

s<ti >k s<ty

sup d(x
k
S<>\tk

Step 3: we prove that the infimum in (4.4) is a minimum. Suppose that there exists
ko > 0 such that

Vi 0,y < (1) on o (T T )

and we will show that one get a contradiction. Firstly, note that for all £k > ky we
necessarily have u,’fk = tg4+1 and tg < tx so )\,’fk is constant equal to {(z) and furthermore

ko k+l k+1
d(xtk,xtktl) < sup d(m MJ“ ).
S<tk

30



Since Y >0 sup, 7 d(zk, xl’j}fl) < 00, xfk converges to an element a € S. Let € > 0 be

arbitrary such that K := B(a,3¢) C S is compact. Let ki > ko be such that
£
d($1lf€kl 70’) <g, Z p§($)+46,K(xkaxk+1) < 5
k>k1
and such that (4.3) holds for all £ > k; with ¢t = £(x) + 4e. Set
sei= \ (@)oo (W T (T ).
0<i<t

It is clear that s, > t;, and s, is a decreasing sequence converging to tj,, so the set
{€ >0 sy < sg_1} is infinite. Let £ > 0 be such that sy < sy_1 and sy — tg, < &, then

se= (") oo (TN T ).

Therefore
boyae = p oo pbi(sy) < pFr Tt oo Pty + €) (4.8)
k1+4—1 ) ki+4—1 ]
< 3 e —idly ey e < Dt —idlfp 4 A —idly, +E(2) e
i=k1 i=k1
<e@)te+2 Y I —idly <E€@) +e 44 Y peorpannlet 2 ) < 6(a) + 3.
iZkl Z'Zkl

Furthermore #3, 1, < /Jrivl—i_e 1< E(xP+t) and
k1+€—1

fer 0 ~ kil k41
d(x t;ﬁg KON () + de — tk1+€)+]1t~k1+é<g(xk1+e) < 20¢(z) e,k (52T <o,

so by (4.8]

d( k1+[ KC)
tk1+é &
and
ki1+£6—1 '
d(x ]gl},KC) <d(x ﬁ;,xﬁﬁz) + d(xle K¢ < Z sup d(z%, ZJrl) + e < 2e.
Phat by te i=ky s<t;

Hence we have d(a, 2% 1) > ¢ and d(a, xt ) < e. Letting tend ¢ — oo we get a contradic-
tion.
Step 4: firt > 0 and K C S a compact set: we pmve that limg_, o ,otyK(xk,a:) = 0.

Taking k large enough (4.3) holds and by using (4.5 , and (| ,
sup d(a; xk’;) < Zsup d(z’, x ”1 < 22/)”( (b, 2",

5<tk 0>k s<ty 0>k
1IN —idl] < D lluf —idlly <2 prr(af, 2™,
>k >k
[log A¥[| <>~ [llog fi'[lz, <2 prre(af, 2.
0>k 0>k
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Moreover by the previous step we know that the infimum in (4.4]) is a minimum and so,
in the present step, we set

m :=min {£ > k ' (W) oo (W TN E) = t4) €N,
Mi=sup (€2 k | (1) oo (u ™) 7M@) =t} € NU{oo}.

Then

m—1

k l L J4 :
d(xf, KON (t = tr)+ Ly, ceery < Y supd(ag,a,i) v Ipf —id],
=k s<tp

+d(@ K9 A (- fm)+ﬂt~m<£(xm)

<2 Z Pt,K(iBé, $£+1)-
>k

It is clear that )\,’fk =¢(x) if and only if M =oco. If M < o0
d(wye KN (t = A )4 = d(wype , KO A (t = A4

< d(:EIJYJI,KC) A= pia)+ + Y supd(at, H1) Vet —idl,
R 0>M s<tp

<2Y pux(at 2. (4.9)
>k

We have proved that

pt,K(xkv .CC) <2 Z Pt,K(xK: x(—i—l) — 0.
=k k—o0

Step 5: we prove that x € Dy,e(x). Suppose that {(z) < 0o and that {Zs}sce(z) € S. Let
e > 0 be such that K := {y S ‘ d(Y,{Zs}s<e(a)) < 5} is compact and set t = £(z) +«.
By using (4.9) we have, for k large enough,

d(fok,KC) A(t— /\tk)+]1>\k <¢&(z) < 22 Pt,K(JUe,CEZH) <e.

Then £(z) = Af, and we deduce that

d(x 2t — 0
S d(xyas) < g

and that the limit z¢(,)_ exists in S. Therefore x € Dyoc(S) and z* converges to z for
the local Skorokhod topology. O

To prove the separability and the criterion of compactness we will use the following
technical result:
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Lemma 4.5. Let RC S, § >0 and N € N be. Define

ErsN = {ac € Dy,e(S) ‘ &(x) < No, Yk € N, z is a constant in RU {A}
on [k6, (k+1)5)}.

Then for any x € Djye(S)

Pvsac( Ersn) < ((sup d(a, ) + Wiy e () V 0.
ac

Proof. For arbitrary € > 0 , there exist 0 =ty < - -+ < tjy < &(x) such that

sup d(msl ) :ESQ) S waﬁ,K,w(é) + &,
0<i<M
t;i<s1,52<tiy1
such that for all 0 < i < M, tix1 > t; + 0 and (tar, xe,,) € [0, NO] x K. Denote t* :=
min {5 > 0‘5 > N§ or d(xzs, K¢) = 0} <ty and define M := min{0 <i < M | t; > t*}.
Define fﬁ = [%W d where [r] denE‘Ees the smallest integer larger or equal than the real
number r. Moreover, for 0 < i < M define ¢; := L%’J 0 where we recall that || denotes

the integer part of the real number 7, s0 0 =ty < ... < tNM. Finally, we define z € Ep 5 N
by

£(@) =1tg,

V0 <i< M: wechoose Z; in R such that d(z,,7;) < d(7y,, R) +¢,
VO <i< M, Vi <s<tyr: @s:=0y,
and X € A given by

VO<i<M: Ainee = i,
YO <i< M: M\isaffine on [t;, t;41 A t¥],
Vs>t*: Ag=1.

We can write

pno. i (T, ErsN) < pNoi(2,Z) < sup d(xs, Ty,) V [|A —id||

s<t*
< (sup d(a, R) + wy g . (6) + 26) Vo,
acK
so letting € — 0 we obtain the result. O

The separability is an easy consequence:

Lemma 4.6. The local Skorokhod topology on Dy,.(S) is separable.
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Proof. Let R be a countable dense part of S and introduce the countable set

FE = U Ep 1y
n,NeNx

Consider z € Dj(S), t > 0, K C S a compact set and let € > 0 be. We choose n € N*
such that n=! < ¢ and w£+17K7x(n_1) < ¢ and set N := [nt]. We can write

~ ~ 1 1
pLK(w:gR,l,N) < pE7K(x7gR7l7N) < (sup d(CL,R) +w/ﬂ K:p()) V=
n n n acK n oY M n

1 1

< Wi gL (=)V - <e.

We deduce that F is dense, hence D). (.S) is separable. O
We have now all the ingredients to prove the characterisation of the compactness:

Proof of Theorem [2.13, First, notice that, similarly as in the proof of Lemma the
condition is equivalent to: for all ¢ > 0, all compact subset K C S and all open
subset U C S? containing the diagonal {(y,y) ly € 5}7 there exists § > 0 such that for
all z € D there exist 0 =ty < --- <ty < £(x) such that

V0 <i <N, 51,82 € [tistip1), (@s,,%s,) €U,

forall 0 <i < N, tiy1 —t; > 9, and (tn,xey) € [0,t] x K. Hence the condition
is independent to d and we can suppose that (S, d) is complete. Suppose that D satisfy
condition , then, by using Lemma we need to prove that forallt >0, K C S a
compact set and € > 0 arbitrary, D can be recovered by a finite number of p; g-balls of
radius e. Let 0 < < % be such that

6NV supwj g, (V) <€,
zeD

and let 0 < n be such that

sup wllf—i-l,K,m (5) <
zeD

RIS

Since K is compact we can choose a finite set R C S such that

sup d(a, R) <
aeK

N3

take N := [t0~']. Then by using Lemma [4.5]

sup pr. i (%, Ers,n) < sup pns i (T, Ersn) < (Sup d(a, R) + sup wfva,K,x((s)) Vo<n
rzeD rzeD acK zeD

and by using Lemma |4.2

sup py i (2, ER,sn) < 6sup (\/ﬁt,K(ﬂf,gR,a,N) V Wi ¢ o ( ﬁt,K(m,gR,a,N))) <e.

zeD €D
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Since g s n is finite we can conclude that D is relatively compact.

To prove the converse sentence, thanks to the first part of Proposition [2.12]it is enough
to prove that if 2*,z € Dy.(S) with ¥ converging to z, then for all ¢ > 0 and all
compact subset K C 5,

limsupw’ - .(6) — 0.
k—>oop bR ( )6_>0

This is a direct consequence of Proposition Let us stress that although we cite
Theorem in the proof of Proposition [2.12] in reality we only need the sequential
characterisation of the convergence. O

We close this section by the study of the Borel o-algebra B(IDjy(5)).
Lemma 4.7. Borel o-algebra B(D,.(S)) coincides with F.

Proof. Let f € C(S®) and 0 < a < b < oo be. Consider 2* € Dj,.(S) converging to
x € Dioe(S), with £(z) > b, and take \*¥ € A as in Theorem Then for k large enough

bv )\’If < &(2%) and by dominated convergence

b Ak b - b b
| tahas = [T pahas+ [ fahodds+ [ pahas — [
a a a s Ay —0 Ja
Hence the set {x € Dio(S) | b < &(z)} is open and on this set the function

b
x / f(zs)ds
is continuous, so for ¢ > 0 and ¢ > 0 the mapping from Dj,.(S) to R

oo LR Fds, it e < (),
f(A), otherwise,

is measurable for the Borel o-algebra B(Djo.(S)) and, the same is true for the mapping
x +— f(x¢), by taking the limit. Since f is arbitrary, = — x; is also measurable and so
F C B(D]OC(S)).

Conversely, since the space is separable, it is enough to prove that for each 20 €
Dioc(S), t >0, K C S compact and € > 0 there exists V C Djpc(S), F-measurable, such
that

{z € Dioe () ] pric(z,2%) < e} CV C {x € Dioe(S) ] pric(z,a®) < 3e}.  (4.10)
Proposition allows to get the existence of 0 = t§ < --- <t < £(2%) such that

0 .0
sup d(zg,,zg,) < e,
0<i<N
t?§31,52<t?+1
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and (t%,2% ) € [0,t]x € K. If we define

0%
=ty < <ty <&x), M < N such that:
VO<i< M, |t;—t)<e
V=< z € Dio(S) VO <i< M, Vtetitipr), dlag,zh) <2
d(.’[‘?%, KC) VAN (t - t(])W)'f‘]lt(I)V[<§(:CO) < 2¢e
d(gy— K) N d(wy, K) N (E— tM)Jr]ltM<§(x) < 3e
it is straightforward to obtain (4.10). Since
Vo >0, 30=qy <--- <qm <&x)—9, M <N such that:
VO<i<M, |¢—t)]<e+6
V = {2 € Die(S) VO <i< M, Vg€ g+6q1—0], dlzgah) <2
d(:c%)w,Kc) A= 83)+10 ceeoy < 2€
d(l’qM, KC) A (t — QM)+]].qM<£(x) < 3e+0

where ¢, ¢; and § are chosen to be rational, V' belongs F. The proof is now complete. [
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