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Abstract

This note presents an extension to the case of L1 controls of a well-known obstruction to the
controllability of bilinear control systems in infinite dimensional spaces.

1 Introduction

1.1 Bilinear control systems

Let X be a Banach space, A : D(A) → X a linear operator in X with domain D(A), B : X → X a
linear bounded operator and ψ0 an element in X. We consider the following bilinear control system{

ψ̇(t) = Aψ(t) + u(t)Bψ(t),

ψ(0) = ψ0,
(1)

where u : [0,+∞)→ R is a scalar function representing the control.

Assumption 1. The pair (A,B) of linear operators in X satisfies

1) the operator A generates a C0-semigroup of linear bounded operators on X.

2) the operator B is bounded.
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Definition 1. Assume that (A,B) satisfies Assumption 1. Let T > 0. A function ψ : [0, T ] → X is
a mild solution of (1) if for every t in [0, T ],

ψ(t) = etAψ0 +

∫ t

0
e(t−s)ABψ(s)u(s)ds (2)

Equation (2) is often called Duhamel formula.
Existence and uniqueness for equation (1) is given by the following result (see, for instance, Propo-

sition 2.1 and Remark 2.7 in [BMS82]).

Proposition 1. Assume that (A,B) satisfies Assumption 1. Then, for every ψ0 in X, for every u in
L1
loc([0,+∞),R), there exists a unique mild solution t 7→ Υu

t,0ψ0 to the Cauchy problem (1). Moreover,

for every ψ0 in X, the end-point mapping Υ·,0ψ0 : [0,+∞)× L1
loc([0,+∞),R)→ X is continuous.

Definition 2. Assume that (A,B) satisfies Assumption 1 and let U be a subset of L1
loc([0,+∞),R).

For every ψ0 in X, the attainable set from ψ0 with controls in U is defined as

A(ψ0,U) =
⋃
T≥0

⋃
u∈U
{Υu

T,0ψ0}.

Our main result is the following property of the attainable set of system (1) with L1 controls.

Theorem 2. Assume that (A,B) satisfies Assumption 1. Then, for every ψ0 in X, the attainable
set A(ψ0, L

1
loc([0,+∞),R)) from ψ0 with L1

loc controls is contained in a countable union of compacts
subsets of X.

1.2 The Ball–Marsden–Slemrod obstruction

Our main result Theorem 2 is an extension of the well-known Ball–Marsden–Slemrod obstruction to
controllability.

Theorem 3 (Theorem 3.6 in [BMS82]). Assume that (A,B) satisfies Assumption 1. Then, for every
ψ0 in X, the attainable set A(ψ0,∪r>1L

r
loc([0,+∞),R)) from ψ0 with Lrloc controls, r > 1, is contained

in a countable union of compacts subsets of X.

A consequence of Theorem 3 to the framework of the conservative bilinear Schrödinger equation
is given by Turinici.

Theorem 4 (Theorem 1 in [Tur00]). Assume that (A,B) satisfies Assumption 1. Then, for every ψ0

in X, the set ∪α>0αA(ψ0,∪r>1L
r
loc([0,+∞),R)) is contained in a countable union of compacts subsets

of X.

Theorems 2 and 3 are basically empty in the case in which X is finite dimensional, indeed, in this
case, X itself is a countable union of compact sets. On the other hand, when X is infinite dimensional,
these results represent a strong topological obstruction to the exact controllability. Indeed, compact
subsets of an infinite dimensional Banach space have empty interiors and so is a countable union of
closed subsets with empty interiors (as a consequence of Baire Theorem).
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Let us recall briefly the method used in [BMS82] for the proof of Theorem 3. The first step is to
write

A(ψ0,∪r>1L
r
loc([0,+∞),R)) =

⋃
T≥0

⋃
r>1

⋃
u∈Lr([0,T ],R)

{Υu
T,0ψ0}

=
⋃
l∈N

⋃
m∈N

⋃
k∈N

⋃
0≤t≤l

 ⋃
‖u‖

L1+1/m≤k

{Υu
t,0ψ0}

 .

Hence it is sufficient to prove that, for every (l,m, k) in N3, the set

Al,m,k =
⋃

0≤t≤l

 ⋃
‖u‖

L1+1/m≤k

{Υu
t,0ψ0}


has compact closure in X. To this end, one considers a sequence (ψn)n∈N in Al,m,k, associated with
a sequence of times (tn)n∈N in [0, l] and a sequence of controls (un)n∈N in the ball of radius k of
L1+1/m([0,+∞),R). By compactness of [0, l], up to extraction, one can assume that (tn)n∈N tends
to t∞ in [0, l]. By Banach–Alaoglu–Bourbaki Theorem, the balls of L1+1/m([0,+∞),R) are weakly
(sequentially) compact and, hence, up to extraction, one can assume that (un)n∈N converges weakly
in L1+1/m([0,+∞),R) to some u∞. The hard point of the proof (Lemma 3.7 in [BMS82]) is then to
show that Υun

tn,0
ψ0 tends to Υu∞

t∞,0 as n tends to infinity.
A crucial point in the proof of Theorem 3 given in [BMS82] is the fact that the closed balls of Lp,

p > 1 are weakly sequentially compact. This is no longer true for the balls of L1, and this prevents a
direct extension of the proof of Theorem 3 to the proof of Theorem 2.

1.3 Content

In this note we present a simple and short proof of Theorem 2. However, historical reasons have made
different communities use incompatible terminologies and, in order to avoid ambiguities, we present
in Section 2 a quick reminder of basic facts in Banach topologies. Section 3 gives a short introduction
to the classical Dyson expansion (Section 3.1) and the proof of an instrumental compactness property
(Section 3.2). We conclude in Section 4 with the proof of Theorem 2.

2 Basic facts on the topology in Banach spaces

2.1 Notations

The Banach space X is endowed with norm ‖·‖. For every ψc in X and every r > 0, BX(ψc, r) denotes
the ball of center ψc and of radius r:

BX(ψc, r) = {ψ ∈ X|‖ψ − ψc‖ < r}.

In the following, all we need to know about generators of C0-semigroup is the classical result stated
in Proposition 5 (see Chapter VII of [HP57]).

Proposition 5. Assume that A generates a C0-semigroup. Then there exist M,ω > 0 such that
‖eAt‖ ≤Meωt for every t ≥ 0.
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2.2 Compact subset of Banach spaces

Definition 3. Let X be a Banach space and Y be a subset of X. A family (Oi)i∈I is an open cover
of Y if Oi is open in X for every i in I and Y ⊂ ∪i∈IOi.

Definition 4. Let X be a Banach space. A subset Y of X is said to be compact if from any open
cover of Y , it is possible to extract a finite cover of Y .

Definition 5. Let X be a Banach space. A subset Y of X is said to be sequentially compact if from
any sequence (ψn)n∈N taking value in Y , it is possible to extract a subsequence (ψφ(n))n∈N converging
in Y .

Definition 6. Let X be a Banach space. A subset Y of X is said to be totally bounded if for every
ε > 0, there exist N ∈ N and a finite family (xi)1≤i≤N in X such that

Y ⊂
N⋃
i=1

BX(xi, ε).

Proposition 6. Let X be a Banach space. For every subset Y of X, the following assertions are
equivalent:

1. Y is compact.

2. Y is sequentially compact.

3. Y is complete and totally bounded.

4. Y is closed and totally bounded.

Proposition 7. Let X be a Banach space, N in N and (Yi)1≤i≤N a finite family of compact subsets
of X. Then, the finite sum

N∑
i=1

Yi = {y1 + y2 + . . .+ yN | yi ∈ Yi, i = 1, . . . , N}

is compact as well.

Proposition 8. Let X be a Banach space, N in N and (Yi)1≤i≤N a finite family of totally bounded
subsets of X. Then, the finite sum

N∑
i=1

Yi = {y1 + y2 + . . .+ yN | yi ∈ Yi, i = 1, . . . , N}

is totally bounded as well.

Proposition 9. Let X be a Banach space, T > 0 and (A,B) satisfies Assumption 1. Define the
mapping

F : [0, T ]× [0, T ]×X → X

(s, t, ψ) 7→ e|t−s|ABψ

Then, for every totally bounded subset Y of X, the set F ([0, T ]× [0, T ]×Y ) is totally bounded as well.

4



Proof. We claim that G : (t, ψ) 7→ etAψ is jointly continuous in its two variables. Indeed, for every
ψ,ψ0 in X, for every t, t0 ≥ 0,

‖etAψ − et0Aψ0‖ ≤ ‖etA(ψ − ψ0)‖+ ‖(etA − et0A)ψ0‖
≤ Meωt‖ψ − ψ0‖+ ‖(etA − et0A)ψ0‖.

This last quantity tends to zero as (t, ψ) tends to (t0, ψ0). As a consequence, F is continuous (as
composition of continuous functions).

If Y is totally bounded, the topological closure Ȳ of Y is compact (because the ambient space X
is complete). Hence [0, T ] × [0, T ] × Ȳ is compact. By continuity, F ([0, T ] × [0, T ] × Ȳ ) is compact,
hence is totally bounded. The set F ([0, T ]× [0, T ]× Y ), which is contained in F ([0, T ]× [0, T ]× Ȳ ),
is, therefore, totally bounded as well.

2.3 Partition of unity in Banach spaces

Definition 7. Let X a Banach space. A family (xi)i∈I of points of X is locally finite if for every x
in X and every R > 0, the cardinality of the set(⋃

i∈I
{xi}

)
∩BX(x,R)

is finite.

Definition 8. Let X be a Banach space, Y be a subset of X, and (Oi)i∈I be an open cover of Y . A
family (φi)i∈I of continuous functions from Y to [0, 1] is called a partition of the unity of Y adapted
to the cover (Oi)i∈I if

(i) for every i ∈ I, φi(x) = 0 for every x /∈ Oi;

(ii)
∑

i∈I φi(x) = 1 for every x ∈ Y .

Proposition 10. Let X be a Banach space, Y a subset of X, δ > 0, (xj)j∈J a locally finite family of
points in Y such that Y ⊂ ∪j∈JBX(xj , δ). Then, there exists (φj)j∈J a partition of the unity adapted
to the open cover (B(xj , 2δ))j∈J of Y .

Moreover, if a family (φj)j∈J is a partition of the unity adapted to the open cover (BX(xj , 2δ))j∈J ,
then for every x in Y , ‖x−

∑
j∈J φj(x)xj‖ ≤ 2δ.

Proof. We first prove the existence of a partition of the unity adapted to the open cover (BX(xj , 2δ))j∈J
of Y . To this end, we define, for every j in J , the continuous functions ϕj : X → [0, 1] by

ϕj(x) = 1, if ‖x− xj‖ < δ,

φj(x) = 2− ‖x− xj‖/δ, if δ ≤ ‖x− xj‖ < 2δ,

ϕj(x) = 0, if 2δ ≤ ‖x− xj‖.

Since the family (xj)j∈J is locally finite, the sum
∑

j∈J ϕj(x) converges for every x in Y . Moreover,
since Y ⊂ ∪j∈JB(xj , δ), the function x 7→

∑
j∈J ϕj(x) does not vanish on Y . For every j0 in J , we

define φj0 by

φj0(x) = ϕj0(x)
1∑

j∈J ϕj(x)
,
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and the family (φj)j∈J is a partition of the unity adapted to the open cover (BX(xj , 2δ))j∈J of Y .
We now prove the second point of Proposition 10. Let (φj)j∈J be a partition of unity of Y adapted

to the cover (BX(xj , 2δ))j∈J . Then, for every x in Y ,∥∥∥∥∥∥x−
∑
j∈J

φj(x)xj

∥∥∥∥∥∥ =

∥∥∥∥∥∥
∑
j∈J

φj(x)x−
∑
j∈J

φj(x)xj

∥∥∥∥∥∥
=

∥∥∥∥∥∥
∑
j∈J

φj(x)(x− xj)

∥∥∥∥∥∥
≤

∑
j∈J

φj(x) ‖x− xj‖ .

By construction, φj(x) = 0 as soon as ‖x− xj‖ ≥ 2δ. Hence,∥∥∥∥∥∥x−
∑
j∈J

φj(x)xj

∥∥∥∥∥∥ ≤ 2δ
∑
j∈J

φj(x) ≤ 2δ,

which concludes the proof.

3 The Dyson expansion

3.1 The Dyson Operators

For every u in L1
loc([0,+∞),R), p ∈ N, and t ≥ 0 we define the linear bounded operator Wp(t, u) :

X → X recursively by

W0(t, u)ψ = e(t−s)Aψ

Wp(t, u)ψ =

∫ t

0
e(t−s)ABWp−1(s, u)ψu(s)ds, for p ≥ 1,

for every ψ in X. We have the following estimate on the norm of the operator.

Proposition 11. For every u in L1
loc([0,+∞),R), p ∈ N, and t ≥ 0

‖Wp(t, u)‖ ≤
Meωt‖B‖p(

∫ t
0 |u(s)|ds)p

p!
.

Proof. We prove the result by induction on p in N. For p = 0 the result clearly follows from Proposi-
tion 5. Assume that the result holds for p ≥ 0. Then, for every ψ in X,

‖Wp+1(t, u)ψ‖ ≤
∫ t

0
e(t−s)ABWp(s, u)ψu(s)ds

≤M
∫ t

0
e(t−s)ω‖B‖

eωs‖B‖p(
∫ s
0 |u(τ)|dτ)p

p!
u(s)ds

≤Meωt‖B‖p+1 (
∫ t
0 |u(τ)|dτ)p+1

(p+ 1)!
.

The last inequality follows from Proposition 5. We conclude the proof by induction on p.
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3.2 A compactness property

Lemma 12. For every j in N, T ≥ 0 and K ≥ 0, and ψ in X the set

WT,K
j = {Wj(t, u)ψ | 0 ≤ t ≤ T, ‖u‖L1 ≤ K}, (3)

is totally bounded

Proof. We prove the result by induction on j in N. For j = 0, consider WT,K
0 = {etAψ, 0 ≤ t ≤ T}

and let (wn)n∈N be a sequence in WT,K
0 . Then there exists a sequence (tn)n∈N such that wn = etnAψ

for every n. Up to extraction limn→∞ tn = t ∈ [0, T ] since [0, T ] is compact. By definition of C0-
semigroup, limn→∞ e

tnAψ = etAψ. This proves that WT,K
0 is sequentially compact, hence compact

and, in particular, totally bounded (Proposition 6).
Assume that, for j ≥ 0, WT,K

j is totally bounded. By Proposition 9, the set

ZT,Kj := {e(t−s)ABψ,ψ ∈W T,K
j , 0 ≤ s ≤ t ≤ T}

⊂ F ([0, T ]2 ×WT,K
j )

is totally bounded as well.
Let ε > 0 be given and define δ = ε

2K+1 > 0. Since ZT,Kj is totally bounded, there exists a finite

family (xi)1≤i≤Nδ in ZT,Kj such that

ZT,Kj ⊂
Nδ⋃
i=1

BX(xi, δ).

Let (φi)≤i≤Nδ be a partition of the unity adapted to the cover ∪Nδi=1B(xi, 2δ) of ZT,Kj . Such a partition

of the unity exists by Proposition 10, and moreover, for every x in ZT,Kj , we have∥∥∥∥∥x−
Nδ∑
i=1

φi(x)xi

∥∥∥∥∥ ≤ 2δ. (4)

Applying the inequality (4) with x = e(t−s)ABWj(s, u)ψ0, we get, for every u in L1 and every (s, t)
such that 0 ≤ s ≤ t, ∥∥∥∥∥e(t−s)ABWj(s, u)ψ0 −

Nδ∑
i=1

φi(e
(t−s)ABWj(s, u)ψ0)xi

∥∥∥∥∥ ≤ 2δ.

Multiplying by u(s) and integrating for s in [0, t], one gets for ‖u‖L1 ≤ K∥∥∥∥∥
∫ t

0
e(t−s)ABWj(s, u)ψ0u(s)ds−

Nδ∑
i=1

∫ t

0
φi(e

(t−s)ABWj(s, u)ψ0)u(s)ds xi

∥∥∥∥∥ ≤ 2δK. (5)

The set
∑Nδ

i=1[0,K]xi is compact by Proposition 7 and, hence, totally bounded. Then there exists a
finite family (yi)1≤i≤N ′

δ
such that

Nδ∑
i=1

[0,K]xi ⊂
N ′
δ⋃

i=1

BX(yi, δ). (6)
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From (5) and (6), one deduces that

WT,K
j+1 ⊂

N ′
δ⋃

i=1

BX(yi, (2K + 1)δ) =

N ′
δ⋃

i=1

BX(yi, ε).

This proves that WT,K
j+1 is totally bounded and concludes the proof.

3.3 Convergence of the Dyson expansion

Proposition 13. For every u in L1([0,+∞),R), t ≥ 0, and ψ0 ∈ X∥∥Υu
t,0ψ0

∥∥ ≤Meωt‖ψ0‖ exp

(
Meωt‖B‖

∫ t

0
|u(s)|ds

)
Proof. The proof follows the proof of [BMS82, Theorem 2.5]. By Duhamel formula (2) and Proposition
5, ∥∥Υu

t,0ψ0

∥∥ =

∥∥∥∥etAψ0 +

∫ t

0
e(t−s)ABΥu

s,0ψ0u(s)ds

∥∥∥∥ etωψ0

≤Metω‖ψ0‖+

∫ t

0
Meω(t−s)‖B‖

∥∥Υu
s,0ψ0

∥∥u(s)ds,

and the conclusion follows by Gronwall lemma (see [BMS82, Lemma 2.6]).

Proposition 14. For every u in L1([0,+∞),R), p in N, t ≥ 0, and ψ0 in X

lim
p→∞

∥∥∥∥∫ t

0
e(t−s)ABWp(s, t)Υ

u
s,0ψ0u(s)ds

∥∥∥∥ = 0.

Proof. Consider∥∥∥∥∫ t

0
e(t−s)ABWp(s, t)Υ

u
s,0ψ0u(s)ds

∥∥∥∥ ≤ ∫ t

0
‖e(t−s)A‖‖B‖‖Wp(s, t)|Υu

s,0ψ0‖|u(s)|ds

and recall that ‖Wp(s, t)‖ tends to zero as p tends to infinity (Proposition 11).

Proposition 15. For every u in L1
loc([0,+∞),R), p in N, t ≥ 0, and ψ0 in X

Υu
t,0ψ0 =

∞∑
p=0

Wp(t, 0, u)ψ0.

Proof. Applying iteratively p-times Duhamel formula (2), one gets

Υu
t,0ψ0 = etAψ0 +

∫ t

0
e(t−s)ABu(s)Υu

s,0ψ0ds

= etAψ0 +

∫ t

0
e(t−s)ABu(s)esAψ0ds+

∫ t

0
e(t−s)ABW1(s, t)Υ

u
s,0ψ0u(s)u(s)ds

=

p∑
j=1

Wp(t, 0)ψ0 +

∫ t

0
e(t−s)ABWp(s, t)Υ

u
s,0ψ0u(s)ds.
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Hence, for every p ≥ 1,

Υu
t,0ψ0 −

p∑
j=0

Wj(t, 0)ψ0 =

∫ t

0
e(t−s)ABWp(s, t)Υ

u
s,0ψ0u(s)ds

and the result follow from Proposition 14 as p tends to ∞.

4 Proof of Theorem 2

We proceed now to the proof of Theorem 2. First of all, notice that, for every ψ0 in X,

A(ψ0, L
1
loc([0,+∞),R)

=
⋃
l∈N

⋃
m∈N
{Υu

t,0ψ0, ‖u‖L1 ≤ l, 0 ≤ t ≤ m},

and it is enough to prove that, for every l and m in N, the set

{Υu
t,0ψ0, ‖u‖L1 ≤ l, 0 ≤ t ≤ m}

is totally bounded.
Let ε > 0. From the convergence of the Dyson expansion (Proposition 15) and the bound on the

operators Wj (Proposition 11), there exists a integer Nε such that∥∥∥∥∥∥
∑
p≥Nε

Wp(t, u)ψ0

∥∥∥∥∥∥ ≤ ε

2
, (7)

for every t in [0,m] and every u such that ‖u‖L1 ≤ l. For each j = 1, . . . , Nε the sets Wm,l
j , defined

by (3), are totally bounded (Lemma 12), hence their sum

Nε∑
j=0

Wm,l
j

is totally bounded as well (Proposition 8). Hence there exists a family (xi)1≤i≤N1 of points of∑Nε
j=0W

m,l
j such that

Nε∑
j=0

Wm,l
j ⊂

N1⋃
i=1

BX

(
xi,

ε

2

)
. (8)

Gathering (7) and (8), one gets
∞∑
j=0

Wm,l
j ⊂

N1⋃
i=1

BX (xi, ε) ,

which concludes the proof of Theorem 2.
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