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1. Introduction

Component mode synthesis (CMS) or dynamic substructuring
methods consist in performing the dynamic analysis of structures
by decomposing the structure into substructures and by projecting
the equation of motion of each substructure on a projection basis
to obtain the reduced systems of the substructures before perform-
ing the substructure coupling to obtain the reduced system of the
whole structure. In the classical CMS methods, the substructure
projection basis is composed, on one hand, by the normal modes
of the substructure with various boundary conditions at the
interface, such as fixed interface [18,19,36,39,40], free interface
[3,14,18,20,32,36,37,49,50,61], hybrid interface [20,28,49,73,74],
or loaded interface [6], and on the other hand, by Ritz vectors
derived from the static deformation shapes commonly called the
static modes, such as the constraint modes, the attachment modes,
the residual attachment modes etc. CMS methods have been
described in several text books [5,31,41,52,54], many insights,
variants and improvements have been proposed [1,8,23,26,27,29,
38,42–46,48,56,58–60,64,66,69–71], and CMS methods have been
widely used for a large range of applications [4,7,9,10,15–
17,22,24,30,35,47,51,53,55,62,63,65,67,76–80]. A history, review
and classification of CMS methods can be found in [25].

In the classical CMS methods, the generalized coordinates
associated with the static modes are in most of the cases the
1

displacements at the interface between the substructures, leading
to reduced systems with large size due to the important number of
degrees of freedom (DOF) at the interface. In order to reduce the
number of interface DOF, the CMS methods using interface modes
has first been developed for the fixed interface CMS method
[2,12,13,21] and then extended to the free and hybrid interface
CMS methods [72]. In these methods, the static modes are replaced
by the interface modes, also called the junction modes or the eigen
modes of the Poincaré–Steklov operator, which are the first few
normal modes of the whole structure after performing the Guyan
static condensation [33] to the interface between the substruc-
tures. The interface displacements associated with the static
modes in the classical CMS methods are then replaced by a few
generalized coordinates associated with the interface modes. Alter-
native approaches for reducing the interface DOF were also pro-
posed in [2,11,21,34].

Although the CMS methods using interface modes produce re-
duced systems with very small size, one drawback is that all the
interface DOF are removed from the reduced system. The presence
of a part of the interface DOF in the reduced system is however
sometimes desirable and even essential, either because these
DOF are not numerous and they can provide quick and useful infor-
mation, or because one needs to deal directly with them while
solving the reduced system, for example to impose prescribed mo-
tions or to take into account local non-linearities such as contact,
friction or free-play. The aim of this paper, which is a continuation
of the work in [72], is to develop new CMS methods using partial
interface modes which fix this drawback. These methods allow at
the same time an important reduction of the number of the
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interface DOF like in the CMS methods using interface modes, and
the conservation of some interface DOF in the reduced system like
in the classical CMS methods. To reach this aim, the approach in
this work is that, instead of computing the interface modes, the lat-
ter are approximated by applying a second level CMS method on
Guyan’s reduced system resulting from the static condensation of
the whole structure to the interface between the substructures.
The DOF of Guyan’s reduced system are partitioned into two sets
containing respectively the interface DOF to be eliminated and
those to be kept in the final reduced system, the former being con-
sidered as the interior DOF and the latter as the interface DOF in
the second level CMS method. The choice of the kept interface
DOF depends on the need of the user to keep them in the reduced
system. The partial interface modes are defined as a first few nor-
mal modes of Guyan’s reduced system in which some of the kept
interface DOF can be clamped, depending upon which CMS meth-
od, i.e. with fixed, free or hybrid interface, is applied to Guyan’s re-
duced system. The partial interface modes are completed with the
static modes of Guyan’s reduced system, whose associated general-
ized coordinates are precisely the kept interface DOF, and together
they replace the interface modes or the substructure static modes
in the projection basis. The classical methods and the methods
using interface modes are particular cases of the new methods
using partial interface modes, the former are obtained when all
the interface DOF are kept, and the latter when all the interface
DOF are eliminated.

This paper is organized as follows: In Section 2, the classical
CMS methods and the methods using interface modes are re-
minded. In Section 3, the new CMS methods using partial interface
modes are presented. Section 4 deals with the case of structures
with cyclic symmetry. In Section 5, the new CMS methods are ap-
plied to compute the eigen frequencies and modes and the fre-
quency response of a tuned and mistuned bladed disk, with
several selections of partial interface modes and kept interface
DOF. They are compared with the whole structure computations
and also with the classical methods and the methods using inter-
face modes.
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Fig. 1. Classical CMS methods.
2. Classical methods and methods using interface modes

2.1. Substructure description, reduced system and coupling

We consider a structure S which is decomposed into ns sub-
structures Sj ðj ¼ 1; . . . ;nsÞ which do not overlap. We denote by LS

the part of S which consists in the frontier between the substruc-
tures and by Lj the frontier of Sj with the adjacent substructures.
LS and Lj will be called the interface of S and Sj. The interface LS

is partitioned into LS
k, the interface DOF to be kept in the final re-

duced coupled system, and LS
e , the interface DOF to be eliminated.

The number of DOF in LS
k is very small compared to the number of

DOF in LS
e. The kept interface LS

k is then partitioned into the fixed
kept interface LS

ck and the free kept interface LS
ak.

For each substructure Sj, the interface Lj is also partitioned into
the fixed interface Lc and the free interface La, thus Lj can be fixed
(La ¼£ and Lc ¼ Lj), free (Lc ¼£ and La ¼ Lj) or hybrid
ðLc – £; La – £; Lj ¼ Lc [ LaÞ, in the latter case Sj is supposed to
be constrained when Lc is fixed. The choice of Lc and La can be dif-
ferent from one substructure to another, and it is completely inde-
pendent of the choice of LS

ck and LS
ak.

The vectors of the physical displacements of S; LS; LS
e; LS

k;

LS
ck; LS

ak; Sj; Lj; Lc and La are respectively xS; xS
L; xS

Le; xS
Lk; xS

Lck;

xS
Lak; x; xL; xLc and xLa. Let us define the boolean matrices PS

Sj
which

restricts xS to x; PL
Lj

which restricts xS
L to xL, and PL; Pc and Pa

which restrict x to xL; xLc and xLa respectively: x ¼ PS
Sj

xS; xL ¼
PL

Lj
xS

L ¼ PLx; xLc ¼ Pcx and xLa ¼ Pax.
2

The equilibrium equation of the isolated substructure Sj is writ-
ten as:

Kxþ C _xþM€x ¼ fe � tPLfL: ð1Þ

K, C and M are the stiffness, damping and mass matrices of Sj; fe are
the external forces applied on Sj and fL are the interface reactions
exerted by Sj on Lj. The left superscript tð Þ denotes the transpose
of a vector or a matrix.

The CMS methods consist in expressing the displacements of
the substructure as a linear combination of the Ritz vectors in a
projection basis Q, i.e. x = Qq, where q is the vector of the general-
ized coordinates. By projecting the equilibrium equation (1) on the
projection basis Q, we obtain a reduced system:
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Fig. 2. CMS methods using interface modes and partial interface modes. ðGÞ is
Guyan’s reduced system Eq. (6).
tQKQqþ tQCQ _qþ tQMQ €q ¼ tQfe � tQ tPLfL: ð2Þ

The coupling of the substructures is fairly simple, it is performed by
using the continuity of the interface displacements and the equilib-
rium of the interface reactions. It corresponds the primal coupling
formulation described in [25] which consists in assembling the sub-
structure reduced matrices to form the reduced matrices of the
whole structure, similarly to the assembly of the elementary matri-
ces in the finite-element procedure. In the assembled reduced
matrices, the substructure reduced matrices are coupled through
the interface generalized coordinates which are at least common
to two substructures, such as the interface displacements or the
generalized coordinates associated with the interface modes or
the partial interface modes.

2.2. Classical CMS methods

In the classical hybrid interface methods using attachment
modes [28,72,74], the displacements of Sj are expressed as
(Fig. 1c):

x ¼ ðU�W0a
aUÞlþ ðWc �W0a

aWcÞxLc þW0axLa

¼ U0lþW0cxLc þW0axLa; ð3Þ

where the left superscripts að Þ ¼ Pað Þ and cð Þ ¼ Pcð Þ denote the
restrictions to the free interface La and the fixed interface Lc; U
are the hybrid interface normal modes of Sj, i.e. with Lc fixed and
La free; Wc are the constraint modes obtained by imposing unit
displacements on Lc and with La free; Wa are the attachment modes
obtained by applying opposite of unit forces on La and with Lc fixed;
W0a ¼ Wa

aW�1
a are the normalized attachment modes; W0c ¼ Wc�

W0a
aWc are the homogenized constraint modes; and U0 ¼ U�W0a

aU
are the homogenized normal modes. We have: aW0a ¼ I, cW0a ¼ 0;
aW0c ¼ 0; cW0c ¼ I; aU0 ¼ 0 and cU0 ¼ 0.

The Craig and Bampton (CB) classical fixed interface method
[19] (Fig. 1a) is a particular case of Eq. (3) in which Wa and W0a do
not exist, U0 ¼ U are the fixed interface normal modes, and
W0c ¼ Wc ¼ WC , where WC are the constraint modes of the CB
method.

The classical free interface method using the attachment modes
[36,74] (Fig. 1b) is also a particular case of Eq. (3) in which Wc and
W0c do not exist, U are the free interface normal modes. For uncon-
strained substructures, the rigid body modes should be included in
U, and a special treatment should be used when computing Wa,
which consists in balancing the applied unit forces with the inertia
forces and in orthogonalizing the static solutions to the rigid body
modes [72].

It has been showed in [72] that in the hybrid interface methods,
the Ritz vectors ½W0c;W

0
a� associated with the interface displace-

ments in Eq. (3) are exactly the constraint modes WC of the CB
method. In the free interface method, W0a are equal to WC for con-
strained substructures, while for unconstrained substructures a
variant can be obtained by replacing W0a by WC . By using this variant
of the free interface method, Eq. (3) can be written for the three
types of interface as:

x ¼ U0lþWCxL: ð4Þ

The reduced system Eq. (2) is obtained by projecting Eq. (1) on the
projection basis Q ¼ ½U0;WC �, the unknowns are the modal coordi-
nates l and the interface displacements xL, and the substructure
coupling is performed through xL.

Some variants [49,61,73,74] use the residual attachment modes
War ¼ Wa þUðtUKUÞ�1taU instead of the attachment modes.
Although the attachment modes and the residual attachment
modes should theoretically give the same results since the two sets
½U;Wa� and ½U;War � span the same subspace, the redundant
contribution of U in Wa being simply removed in War , it is easier
3

to compute Wa than War , and the inversion of aWar for obtaining
W0ar is subjected to numerical problems since the terms of aWar

are very small when the number of the normal modes retained
in U is important. Moreover, contrarily to the attachment modes,
the residual attachment modes do not satisfy the relationships
W0ar ¼ WC for the free interface method and ½W0c;W

0
ar � ¼ WC for the

hybrid interface method.

2.3. CMS methods using interface modes

At the whole structure level, the displacements of S are ex-
pressed from Eq. (4) as:

xS ¼ US0lS þWS
CxS

L; ð5Þ

where the homogenized normal modes US0 and the constraint
modes WS

C of S are the extensions of the substructure homogenized
normal modes U0 and constraint modes WC to S by completing with
zeros on the other substructures. WS

C are also the global constraint
modes of S obtained by imposing unit displacements on LS.



In order to reduce the number of interface DOF, the constraint
modes WS

C in Eq. (5) are replaced by the interface modes which
are obtained by performing Guyan’s static condensation of the
whole structure S on the interface LS, i.e. by expressing the dis-
placements of S as xS ¼ WS

CxS
L. By projecting the free equation of

motion of S on WS
C , we obtain Guyan’s reduced system:

KS
LXS

L ¼MS
LXS

LX
2
L ; ð6Þ

with KS
L ¼ tWS

CKSWS
C and MS

L ¼ tWS
CMSWS

C ; KS and MS being the stiff-
ness and mass matrices of S.

The interface modes are the eigen vectors XS
L of Guyan’s reduced

system Eq. (6). The structure interface modes US
L are the approxi-

mated normal modes of S obtained by the expansion of XS
L to S

using WS
C , and the substructure interface modes UL of Sj are the

restriction of US
L to Sj (Fig. 2a):

US
L ¼ WS

CXS
L and UL ¼ PS

Sj
US

L ¼ WC
jXS

L; ð7Þ

where the left superscript jð Þ ¼ PL
Lj
ð Þ denotes the restriction to the

interface Lj.
In practice, the interface modes are computed by projecting the

stiffness and mass matrices of Sj on WC and then by assembling the
resulting reduced matrices to obtain the reduced system Eq. (6),
like in the CB method but without the normal modes U. Since
the whole set of all the structure interface modes US

L and the struc-
ture constraint modes WS

C span the same subspace, a truncation of
the subspace spanned by WS

C is obtained by keeping among the
solutions of Eq. (6) only the few interface modes XS

L , US
L and UL cor-

responding to the lowest frequencies in XL.
The CMS method using interface modes [12,21,72] consists in

replacing the constraint modes WS
C by the interface modes US

L in
Eq. (5), which is the same as replacing the constraint modes WC

by the interface modes UL in Eq. (4). The physical displacements
of Sj are expressed as:

x ¼ U0lþULlL: ð8Þ

The generalized coordinates lL are not associated with any particu-
lar substructure, they are in contrary common to all the substruc-
tures. The reduced system of Sj is obtained by projecting Eq. (1)
on the projection basis Q ¼ ½U0;UL� and the substructure coupling
is performed through the interface coordinates lL. Eq. (8) provides
reduced coupled systems with a much smaller size than Eqs. (3)
and (4), which however do not contain any interface displacements
of xL and xS

L.
3. CMS methods using partial interface modes

In the classical CMS methods or the methods using interface
modes, the interface displacements xS

L are either kept or eliminated
in their totality in the final reduced coupled system. If we want to
keep the displacements of the interface LS

k and eliminate those of
LS

e , the idea is to replace the interface modes by another set of vec-
tors whose some of the associated generalized coordinates are pre-
cisely the displacements xS

Lk of LS
k. To this aim, we consider Guyan’s

reduced system Eq. (6) as the free equation of motion of a structure
whose DOF are the displacements xS

L of LS. We can then apply again
a second level CMS method to Eq. (6) by considering LS

e as the inte-
rior DOF and LS

k as the interface DOF. The partial interface modes
are the normal modes of Eq. (6) which are possibly clamped at a
part of the kept interface LS

k, depending upon which CMS method,
i.e. with fixed, free or hybrid interface, is applied to Eq. (6). These
partial interface modes are completed with the static modes of
Eq. (6) associated with LS

k, both sets are then expanded to the whole
structure and then restricted to the substructures in order to form
the projection basis of the substructure displacements. This
4

approach is similar to the Ritz reduction of junction coordinates
described in [21], where the Ritz vectors were however not speci-
fied in the general case and they were obtained from analytical
functions in an application.

For instance, if the hybrid interface method given in Eq. (3) is
applied to Guyan’s reduced system Eq. (6), the kept interface LS

k

is partitioned into the fixed kept interface LS
ck and the free kept

interface LS
ak. The hybrid partial interface modes XS

P are the normal
modes of Guyan’s reduced system Eq. (6) with hybrid interface, i.e.
with LS

ck fixed and LS
ak free, while the constraint modes XS

ck of Eq. (6)
are obtained by imposing unit displacements on LS

ck and with LS
ak

free, and the attachment modes XS
ak of Eq. (6) are obtained by

applying opposite of unit forces on LS
ak and with LS

ck fixed
(Fig. 2d). Similarly to Eq. (3), the interface modes XS

L of Eq. (6) are
then expressed as:

XS
L ¼ XS0

P Bþ XS0
ck

ckXS
L þ XS0

ak
akXS

L; ð9Þ

where the superscripts kð Þ; ckð Þ and akð Þ denote the restrictions to
Ls

k; LS
ck and LS

ak; B are the generalized coordinates; XS0
ak ¼ XS

akðakXS
akÞ
�1

are the normalized attachment modes; XS0
P ¼ XS

P � XS0
ak

akXS
P are the

homogenized partial interface modes, i.e. the homogenized hybrid
interface normal modes; and XS0

ck ¼ XS
ck � XS0

ak
akXS

ck are the homo-
genized constraint modes of Eq. (6). Since kXS0

P ¼ 0; ckXS0
ck ¼ I;

akXS0
ck ¼ 0; ckXS0

ak ¼ 0 and akXS0
ak ¼ I, it is clear that the generalized

coordinates associated with XS0
ck and XS0

ak in Eq. (9) are the restric-
tions ckXS

L and akXS
L of XS

L to LS
ck and LS

ak respectively.
In order to build the reduced systems of the susbstructures, we

only need the homogenized partial interface modes U0P , the
homogenized constraint modes W0ck and the normalized attach-
ment modes W0ak of Sj. They are obtained in the same way as in
Eq. (7), by the expansion using WS

C of XS0
P ; XS0

ck and XS0
ak to S to obtain

US0
P ; WS0

ck and WS0
ak, and by the restriction of the latter to Sj:

US0
P ¼ WS

CXS0
P ; WS0

ck ¼ WS
CXS0

ck; WS0
ak ¼ WS

CXS0
ak; ð10Þ

U0P ¼ WC
jXS0

P ; W0ck ¼ WC
jXS0

ck; W0ak ¼ WC
jXS0

ak: ð11Þ

Since the expansion using WS
C of LS to the whole structure keeps

the displacements at LS unchanged, we have: kUS0
P ¼

0; ckWS0
ck ¼ I; akWS0

ck ¼ 0; ckWS0
ak ¼ 0 and akWS0

ak ¼ I. From Eqs. (7) and
(9), the interface modes of S and Sj become:

US
L ¼ WS

CXS
L ¼ US0

P BþWS0
ck

ckXS
L þWS0

ak
akXS

L; ð12Þ
UL ¼ WC

jXS
L ¼ U0PBþW0ck

ckXS
L þW0ak

akXS
L: ð13Þ

In practice, the partial interface modes XS
P , the constraint modes XS

ck

and the attachment modes XS
ak of Guyan’s reduced system Eq. (6)

are computed, as well as XS0
P ; XS0

ck and XS0
ak, with a special treatment

for XS
ak if the whole structure is unconstrained. Only U0P; W0ck and

W0ak are then deduced by using Eq. (11).
The CMS method using hybrid partial interface modes consists

in replacing the constraint modes WS
C by the interface modes US

L gi-
ven by Eq. (12) in Eq. (5), which is the same as substituting the
expression Eq. (13) of the interface modes UL in Eq. (8). The dis-
placements of the substructure Sj are expressed as:

x ¼ U0lþU0PlP þW0ckxS
Lck þW0akxS

Lak: ð14Þ

Since kUS0 ¼ 0 and from the above values of US0
P ; WS0

ck and WS0
ak at the

kept interface LS
k; LS

ck and LS
ak, the generalized coordinates associated

with W0ck and W0ak in Eq. (14) are respectively the physical displace-
ments xS

Lck and xS
Lak of the fixed and the free kept interfaces LS

ck and
LS

ak, and they are common to all the substructures (see Remark 1).
The reduced system of Sj is obtained by projecting Eq. (1) on the
projection basis Q ¼ ½U0;U0P ;W

0
ck;W

0
ak�. The substructure coupling is

performed through the interface coordinates lP and the kept inter-
face displacements xS

Lck and xS
Lak, which are now part of the un-

knowns in the reduced coupled system.



Table 1
Formulations of CMS methods.

Number Method Type of interface Formulation

Classical CMS methods, Eq. (3)
1 CB Fixed interface [19] x ¼ UlþWC xL

2 FA Free interface [36] x ¼ U0lþW0axL , with W0a ¼ Wa
aW�1

a and U0 ¼ U�W0a
aU

3 HA Hybrid interface [28] x ¼ U0lþW0cxLc þW0axLa , with W0c ¼ Wc �W0a
aWc

Variants using WC of classical CMS methods, Eq. (4)
4 FA0 Free interface [72] x ¼ U0lþWC xL (identical to FA if constrained substructure)
5 HA0 Hybrid interface [72] x ¼ U0lþWC xL (identical to HA)

CMS methods with interface modes (I), Eq. (8)
6 CBI Fixed interface [12,21] x ¼ UlþULlL

7 FAI Free interface [72] x ¼ U0lþULlL

8 HAI Hybrid interface [72] x ¼ U0lþULlL

CMS methods with fixed partial interface modes (PCB), Eq. (15)
9 CBPCB Fixed interface x ¼ UlþUPlP þWckxS

Lk
10 FAPCB Free interface x ¼ U0lþUPlP þWckxS

Lk
11 HAPCB Hybrid interface x ¼ U0lþUPlP þWckxS

Lk

CMS methods with free partial interface modes (PFA), Eq. (16)
12 CBPFA Fixed interface x ¼ UlþU0PlP þW0akxS

Lk , with U0P ¼ UP �W0ak
akXS

P

13 FAPFA Free interface x ¼ U0lþU0PlP þW0akxS
Lk

14 HAPFA Hybrid interface x ¼ U0lþU0PlP þW0akxS
Lk

CMS methods with hybrid partial interface modes (PHA), Eq. (14)
15 CBPHA Fixed interface x ¼ UlþU0PlP þW0ckxS

Lck þW0akxS
Lak

16 FAPHA Free interface x ¼ U0lþU0PlP þW0ckxS
Lck þW0akxS

Lak
17 HAPHA Hybrid interface x ¼ U0lþU0PlP þW0ckxS

Lck þW0akxS
Lak
If the fixed interface method ðLS
ck ¼ LS

k; LS
ak ¼£Þ or the free

interface method ðLS
ak ¼ LS

k; LS
ck ¼£Þ is applied to Guyan’s reduced

system Eq. (6), we obtain the CMS method using fixed partial inter-
face modes (Fig. 2b) or the CMS method using free partial interface
modes (Fig. 2c). Eq. (14) becomes respectively:

x ¼ U0lþUPlP þWckxS
Lk; ð15Þ

x ¼ U0lþU0PlP þW0akxS
Lk: ð16Þ

Eq. (16) is an improved variant of the CMS method using interface
modes given by Eq. (8), since the free partial interface modes UP

are exactly the interface modes UL, while the attachment modes
Wak represent a static correction to the truncation of the interface
modes. In some cases however, the free partial interface modes
UP are not the same as the interface modes UL, for example when
the cyclic symmetry properties are used in combination with the
CMS methods.

The formulations of all CMS methods are summarized in Table 1.

3.1. Remarks

(1) All the DOF of the kept interface LS
k, i.e. xS

Lk, are involved in
the expressions Eqs. (14)–(16) of the displacements of the
substructure Sj, and not only the DOF of LS

k who belong to
Sj, even when Sj does not contain any DOF of LS

k. Since the
constraint modes WS

ck; Wck and the attachment modes
WS

ak; Wak result from the deformations of the whole structure
S under the solicitations applied or imposed on LS

ck or LS
ak, a

substructure Sj can be deformed even if the solicitations
are not applied or imposed on its interface, except when
all of its interface DOF are fixed like in the constraint modes
WC of the CB method.

(2) The CMS methods using partial interface modes are the gen-
eralization of the classical methods and the methods using
interface modes. Indeed, if all the interface displacements
are eliminated in the reduced system, i.e. LS

k ¼£ and
LS

e ¼ LS, we obtain the methods using interface modes given
by Eq. (8). On the other hand, if all the interface displace-
ments are kept in the reduced system, i.e. LS

k ¼ LS and
LS

e ¼£, we obtain the classical methods given by Eq. (4).
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(3) If all the interface modes or all the partial interface modes of
Guyan reduced system Eq. (6) are kept in XS

L and XS
P , i.e. if no

truncation is made on these sets, the methods using inter-
face modes and partial interface modes should provide the
same results as the classical methods given by Eq. (4). Other-
wise, the methods using interface modes and partial inter-
face modes are less accurate than the classical methods.
With the same number of interface modes and partial inter-
face modes, the latter are expected to provide better results
than the former, since the static modes of Guyan’s reduced
system represent a static correction to the truncation of
the interface modes.

(4) Unlike in the classical Guyan static condensation where the
choice of the master and the slave DOF is made without a
clear criterion, the choice of the kept interface DOF LS

k, and
by consequent of the eliminated interface DOF LS

e , depends
only on the need of the user to keep them in the reduced sys-
tem. The methods using partial interface modes should
therefore be considered as an improvement of the methods
using interface modes which, beside the reduction of the
size of the reduced system, offers the possibility to keep
some interface DOF in the latter. Also unlike in Guyan’s con-
densation where an important number of the master DOF
should be kept to obtain good results, the presence of only
a few interface DOF in the reduced system is sufficient to
improve significantly the accuracy and the convergence of
the results over the methods using interface modes, with
only a small additional computation cost, as it will be
showed in the numerical example. Therefore, even in the
case the interface DOF are not needed in the reduced system,
it is better to keep some of them and use the partial interface
modes rather than the interface modes.

4. Case of structures with cyclic symmetry

A structure with cyclic symmetry is composed of N identical
sectors S0; S1; . . . ; SN�1, it is obtained by N � 1 repeated rotations
of the reference sector S0 through the angle a ¼ 2p=N rd to form



a circular system. The reference sector S0 has a right frontier Lr and
a left frontier Ll with the adjacent sectors. Using the cyclic symme-
try properties [68,75], only the reference sector S0 is modelized and
N systems of equations of S0 in the complex traveling wave coordi-
nates xS0 ;n are solved for N phase numbers n ¼ 0; . . . ;N � 1 (or N
phase angles an ¼ na), with appropriate second members and by
imposing the cyclic symmetry boundary conditions [72]:

xS0 ;n
Ll
¼ xS0 ;n

Lr
eian : ð17Þ

In order to reduce the size of the system of equations of S0, the CB
method has been used in [35], and the classical free and hybrid
interface methods as well as the methods using interface modes
in [72]. This section describes how the methods using partial inter-
face modes can be used in combination with the cyclic symmetry
properties, however it is also applicable for the classical methods
and the methods using interface modes.

The reference sector S0 being decomposed into substructures
(but not necessarily), the interface LS0 of S0 is composed of the fron-
tiers Lr; Ll and the interface between the substructures composing
S0. LS0 is then partitioned into the kept interface Lk and the elimi-
nated interface Le. Let us define the kept right frontier
Lrk ¼ Lr \ Lk, the kept left frontier Llk ¼ Ll \ Lk, the eliminated right
frontier Lre ¼ Lr \ Le and the eliminated left frontier Lle ¼ Ll \ Le.
We impose the condition that Lrk and Llk should correspond to
the same DOF on Lr and Ll, and by consequent Lre and Lle also verify
the same condition. The kept interface Lk is partitioned into the
fixed kept interfaces Lck and the free kept interfaces Lak, without
any condition.

At first, we compute the normal modes U (with fixed, free or
hybrid interface), the constraint modes Wc and WC , and the attach-
ment modes Wa of the isolated substructures composing S0, with-
out using the cyclic symmetry conditions.

Guyan’s reduced system Eq. (6) of the reference sector S0 is then
formed by projecting the stiffness and mass matrices of the sub-
structures on their constraint modes WC and by coupling the sub-
structure reduced matrices, or equivalently, by projecting the
matrices KS0 and MS0 of S0 on its constraint modes WS0

C :

KLXL ¼MLXLX
2
L ; ð18Þ

with KL ¼ tWS0
C KS0 WS0

C and ML ¼ tWS0
C MS0 WS0

C .
From Eq. (18), we compute the partial interface modes Xn

P , the
constraint modes Xn

ck and the attachment modes Xn
ak. Since they

are the modes of the whole structure, the cyclic symmetry bound-
ary conditions Eq. (17) are applied, but uniquely on the eliminated
right and left frontiers Lre and Lle at this stage, as if the sectors are
only connected at these frontiers:

xS0 ;n
Lle
¼ xS0 ;n

Lre
eian : ð19Þ

The normalized attachment modes Xn0
ak ¼ Xn

ak
akXn

ak

� ��1
, the homoge-

nized partial interface modes Xn0
P ¼ Xn

P � Xn0
ak

akXn
P and the homoge-

nized constraint modes Xn0
ck ¼ Xn

ck � Xn0
ak

akXn
ck are then computed,

from which we deduce the homogenized partial interface modes
Un0

P , the homogenized constraint modes Wn0
ck and the normalized

attachment modes Wn0
ak of the substructures composing S0 by using

Eq. (11):

Un0
P ¼ WC

jXn0
P ; Wn0

ck ¼ WC
jXn0

ck; Wn0
ak ¼ WC

jXn0
ak: ð20Þ

From Eq. (14), the displacements of the substructures composing S0

are expressed in the traveling wave coordinates as:

xn ¼ U0ln þUn0
P l

S0 ;n
P þ Wn0

ck;W
n0
ak

� �
xS0 ;n

Lk ; ð21Þ

where U0 are the homogenized normal modes which do not depend
on n; ln and l

S0 ;n
P are the complex generalized coordinates, xS0 ;n

Lk are
the complex displacements of the kept interface Lk of S0. Note that
6

ln are associated to only one substructure, while l
S0 ;n
P and xS0 ;n

Lk are
common to all the substructures composing S0.

The displacements xS0 ;n of S0 resulting from the expression Eq.
(21) of the substructure displacements xn already verified the cyc-
lic symmetry boundary conditions Eq. (19) on the eliminated right
and left frontiers Lre and Lle, since US0 0

jLre
¼ US0 0

jLle
¼ 0, and US0 ;n0

P ; WS0 ;n0
ck

and WS0 ;n0
ak already verified Eq. (19).

The reduced systems of the substructures are obtained by
projecting the equilibrium equation of the substructures on the
projection basis Q n ¼ U0;Un0

P ;W
n0
ck;W

n0
ak

� �
. The coupling of the

substructure reduced systems through the generalized coordinates
l

S0 ;n
P and the kept interface displacements xS0 ;n

Lk provides the reduced
system of S0 whose unknowns are qS0 ;n ¼ t tlS0 ;n; tl

S0 ;n
P ; txS0 ;n

Lk

h i
, where

lS0 ;n contains the generalized coordinates ln of all the substructures
composing S0. The coupled reduced system is solved by applying
the cyclic symmetry conditions Eq. (17) on the kept right and left
frontiers Lrk and Llk:

KS0 ;n
R qS0 ;n þ CS0 ;n

R
_qS0 ;n þMS0 ;n

R
€qS0 ;n ¼ fS0 ;n

R þ fS0 ;n
LR ; ð22Þ

xS0 ;n
Llk
¼ xS0 ;n

Lrk
eian : ð23Þ

The solutions of Eqs. (22) and (23) provide the generalized coordi-
nates qS0 ;n from which the traveling wave coordinates xn of the sub-
structures and xS0 ;n of S0 are deduced by using Eq. (21). The real
physical displacements of each sector Sj are obtained as the real part
of a summation on xS0 ;n: xSj ¼ R

PN�1
n¼0 xS0 ;n eijan

n o
.

Let us notice that the cyclic symmetry boundary conditions Eq.
(17) are applied in two stages, at first on the eliminated left and
right frontiers Lre and Lle in Eq. (19) when computing the partial
interface modes and the static modes of Guyan’s reduced system
Eq. (18), and secondly on the kept left and right frontiers Lrk and
Llk in Eq. (23) when solving the reduced system Eq. (22) of S0.

In two particular cases, the cyclic symmetry conditions are im-
posed only once on the whole frontiers Lr and Ll: (i) when solving
the reduced coupled system Eq. (22) in the classical methods
where Le ¼£, since there is no interface modes or partial interface
modes [35]; and (ii) when solving Guyan’s reduced system Eq. (18)
in the methods using interface modes where Lk ¼£, since there is
no physical interface DOF in Eq. (22) [72].

Moreover, the free partial interface modes are computed by
imposing the cyclic symmetry conditions on the eliminated fron-
tiers Lre and Lle in Guyan’s reduced system, so they are different
to the interface modes for which these conditions are imposed
on Lr and Ll. These two sets will be the same if all the DOF of Lr

and Ll are eliminated, i.e. if Lr � Le and Ll � Le.
5. Numerical application

5.1. Test case description and computation cases

The structure S consists of a cyclically symmetric bladed disk
(Fig. 3a) which is composed of 15 repetitive sectors with data given
in Table 2. The structure is clamped on the inner circle, so the DOF
on the latter will not be taken into account. The number of DOF of
the whole structure S is 10350 (3 DOF per node, only the flexural
motion is considered).

At first, we consider the tuned case where only the reference
sector S0 is modelized. For the CMS methods, S0 is decomposed into
two substructures, the reference disk sector D0 and the reference
blade B0 (Fig. 3b). The interface LS0 of S0, which is also the interface
LD0 of D0, is composed of the right frontier Lr , the left frontier Ll and
the disk–blade interface LB0 . The numbers of DOF of S0; D0; B0;

LS0 ; Lr ; Ll and LB0 are respectively 750, 660, 99, 129, 60, 60 and 9.
In a second stage, we introduce a mistuning in the struc-

ture, which consists in the random coefficients cki and cmi for
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Fig. 3. Structure, reference sector and decomposition into substructures.

Table 2
Bladed disk data.

Inner radius of the disk 12:7� 10�3 m
Outer radius of the disk 101:6� 10�3 m
Outer radius of the bladed disk 152:4� 10�3 m
Blade length 50:8� 10�3 m
Blade width 8:5� 10�3 m
Thickness 1:982� 10�3 m
Young’s modulus 2� 1011 N=m2

Poisson’s ratio 0.3
Density 7860 kg=m3
i ¼ 0; . . . ;14, with mean value 1 and standard deviation 0.2
(Table 3). The stiffness and mass matrices of the mistuned struc-
ture are obtained by multiplying the stiffness matrix of the tuned
sector Si by cki and the mass matrix of Si by cmi. For the CMS
methods, the structure is decomposed into 30 substructures, 15
disk sectors and 15 blades (Fig. 3a). The number of DOF of the
interface LS between the substructures is 1035. Two approaches
are used, in the first one (MIS1) the projection bases, i.e. the
substructure normal and static modes and the interface modes or
partial interface modes, are computed from the mistuned struc-
ture, while in the second one (MIS2) they are computed from the
tuned structure. The advantage of the second approach is that
the normal modes and the static modes of the tuned reference disk
sector D0 and blade B0 are used for all the substructures, and the
tuned interface modes and partial interface modes can be com-
puted by using the cyclic symmetry properties.
Table 3
Coefficients for mistuning.

Si 0 1 2 3 4 5 6
cki 0.88 0.80 1.19 0.61 1.12 1.25 1.27
cmi 0.91 1.20 0.79 0.94 1.36 1.15 0.74
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The results of the CMS methods are compared to the reference
results obtained by using the cyclic symmetry (CS) without CMS
for the tuned case, and by performing the computations on the
whole structure (WS) for the mistuned cases.

5.2. Component mode synthesis methods

The CMS methods used in the numerical application are orga-
nized into three groups, in each group the same type of interface
(fixed, free or hybrid) is used for both substructure modes and par-
tial interface modes: the fixed interface group (CB); the free inter-
face using attachment modes group (FA); and the hybrid interface
using attachment modes group (HA). Other combinations such as
the CB method with free or hybrid partial interface modes are of
course possible, but they are not used here since the number of
the considered CMS methods is already too important.

In each group, we consider three methods (Table 1):

– the classical method (CB, FA and HA, or C in short) and the
variants using WC of the free and hybrid interface classical
methods (FA0 and HA0, or C0 in short);

– the method using interface modes (CBI, FAI and HAI);
– the method using partial interface modes (CBP, FAP and HAP,

number 9, 13 and 17 in Table 1), with two selections of the
kept interface DOF (Fig. 3b). In the first selection P1, nodes
105 and 167 on the disk–blade interface LB0 are kept in the
reduced system. In the second selection P2, nodes 105, 167
and also nodes 21, 261 on the left and right frontiers of S0

are kept. The numbers of the kept interface DOF are respec-
tively 6 and 12 in the tuned case. The same selections are
made for the other sectors with the corresponding nodes in
the mistuned case, the numbers of the kept interface DOF
are respectively 90 and 135 for P1 and P2.

In the hybrid interface group (HA), the following choice of the
fixed interface and the free interface is made in the tuned case
(Fig. 3b): concerning the substructure modes, Lr and node 105
are fixed (Ll and the other nodes of LB0 are free) for D0, while
105 is free (the other nodes of LB0 are fixed) for B0; concerning
the partial interface modes, node 105 is fixed while nodes 21,
167 and 261 are free. The same choice is made for the other disk
sectors Di, blades Bi and sectors Si with the corresponding nodes
in the mistuned case. The above choice is made so that not only
the substructures have the hybrid interface, but the substructure
coupling is also performed between the fixed interface and the
free interface.

5.3. Mode selections

We are interested to the eigen frequencies of the structure up to
fmax ¼ 3000 Hz. For the substructure normal modes, we use Rubin’s
criterion [61] which consists in selecting all the free interface nor-
mal modes whose frequencies are smaller than a cut-out frequency
defined by fcs ¼ 1:5f max ¼ 4500 Hz. In the tuned case, five modes
are selected for the disk sector D0 and four modes for the blade
B0, including three rigid body modes for the latter (Fig. 4). The
same numbers of modes are used for the fixed and hybrid interface
modes, and also in the mistuned case for each disk sector Di and
each blade Bi.
7 8 9 10 11 12 13 14
1.13 0.89 0.93 0.74 1.03 0.81 1.25 1.09
1.28 1.10 0.68 0.74 1.08 1.10 0.88 1.05
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Fig. 4. Frequencies of the substructures D0 and B0 with fixed (CB), free (FA) and
hybrid (HA) interface in the tuned case.
A similar criterion is used with a different cut-out frequency
fci ¼ cifmax for the interface modes and the partial interface modes
[72] (Fig. 5). Three selections (a, b and c) are used, corresponding
respectively to ci ¼ 1:5, 2.5 and 3.5 (fci ¼ 4500, 7500 and
10,500 Hz). In order to select the same number of interface modes
and partial interface modes for all the methods, the maximum
number of modes given by the criterion is used for each selection.
They are respectively 4, 5 and 6 in the tuned case for each phase
number, and 44, 62, 81 in the mistuned case. A suffix (for instance
CBIa, CBP1b) indicates which selection is used.

Figs. 4 and 5 show that the frequencies of the substructure and
partial interface modes in the CB and HA cases (fixed and hybrid
interface) are much higher than those in the FA case (free inter-
face). If we apply Rubin’s criterion to the CB and HA cases with
the same cut-out frequency, the number of the selected modes will
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Fig. 5. Frequencies of the interface mode (I) and the partial interface modes (P1 and
P2) with fixed (CB), free (FA) and hybrid (HA) interface in the tuned case.

Table 4
Size of the assembled reduced system and mean adimensioned CPU time (reduction and

Method Reference CS, WS Classical C, C0 Interface mode

Ia Ib

Size of the assembled reduced system
Tuned 750 138 13 14
Mistuned 10,350 1170 179 197

Mean CPU time (adimensioned by the smallest value, 3.26 s)
Tuned 328.6 46.3 1 1.1
MIS1 765.7 166.9 11.7 14.6
MIS2 161.6 6.7 9.9
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be very small. As Rubin’s criterion was initially used in [61] to se-
lect the free interface substructure modes, we apply the criterion
first to the FA case, and then use the same number of the selected
modes for the CB and HA cases.

The size of the system in the reference cases CS and WS and the
size of the coupled reduced system in all the CMS methods are
given in Table 4.

5.4. Undamped frequencies and modes

The 40 frequencies of the structure up to 3000 Hz obtained in
the reference CS and WS case are plotted in Fig. 6 for both tuned
and mistuned cases. The tuned frequencies are double for the
phase numbers n – 0. The mistuned frequencies are no longer dou-
ble, however they are very close to those of the tuned case. The dif-
ference between the frequencies of the tuned and mistuned cases
are comprised between ±8%. The results of the CMS methods are
not plotted since they are not distinguishable from the reference
results.

Fig. 7 shows the relative errors on each frequency obtained with
CMS methods and with Selection (a) of interface modes or partial
interface modes. The classical methods give the smallest errors
which are practically zeros, while the methods using interface
modes give largest errors. As usually observed with CMS and other
projection methods, the results are excellent on the low frequen-
cies and deteriorate when the frequencies go up, due to the trunca-
tion of the projection basis. The truncation effect is emphasized
after the 30th modes where the errors increase rapidly, in particu-
lar for the methods using interface modes.

Fig. 8 shows the evolution of the mean relative errors on the fre-
quencies and modes obtained with the CMS methods using inter-
face modes and partial interface modes in function of the
number of the selected modes, the first three values corresponding
solution) of the frequency response.

Partial interface mode
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15 19 20 21 25 26 27
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1.3 1.2 1.3 1.4 3.0 3.3 3.6
17.3 30.5 35.4 40.0 42.2 47.4 53.3
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Fig. 6. Structure frequencies obtained in reference cases (CS and WS).
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Fig. 7. Percent errors in frequency obtained with CMS methods.
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Fig. 8. Variation of mean errors in frequency and mode in function of the number of
interface modes and partial interface modes.
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to the mode selections (a–c) derived from Rubin’s criterion. The
errors on the mode xi, normalized so that kxik ¼ 1, are obtained

by ei¼kxiðcmsÞ�ðtxiðrefÞxiðcmsÞÞxiðrefÞk¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ðtxiðrefÞxiðcmsÞÞ2

q
. The three

mode selections (a–c) provide very good results, for both interface
9

modes and partial interface modes. Using more modes than in
Selection (c) only improves slightly the results. With the same
number of modes, the methods using interface modes are less



accurate than those using partial interface modes, as expected. The
partial interface modes improve not only the accuracy of the re-
sults, but also their convergence when the number of modes in-
creases. Indeed, the interface modes, although provide very good
results, do not converge very well in the mistuned cases, except
with the free interface method. Selection P2 provides better results
than Selection P1 but not that much, despite that the number of
the kept interface DOF is multiplied by 2 in the tuned case and
by 1.5 in the mistuned case.

Fig. 9 shows the mean relative errors on the frequencies and
modes obtained with all the CMS methods. For all the CMS meth-
ods, the results in the tuned case are much better than those in the
mistuned cases, probably because the projection bases in the tuned
case are more appropriate than in the mistuned case, since Rubin’s
criterion is used to select the substructure modes in the tuned case,
and the same numbers of modes are then kept for the mistuned
cases. The MIS1 mistuned case gives much better results than
the MIS2 mistuned case, this means that the tuned projection
bases do not represent the mistuned structure as accurately as
the mistuned projection bases. The mean errors in the tuned,
MIS1 and MIS2 cases are respectively smaller than 0.08%, 0.2%
and 0.6% on the frequencies, and 1%, 6% and 8% on the modes.
The classical methods provide the best results, with less than
0.02% mean error on the frequencies and less than 0.3% mean error
on the modes. The variants FA0 and HA0 give the same results than
the FA and HA methods. This confirms that the Ritz vectors associ-
ated with the interface DOF in the free and hybrid interface classi-
cal methods are either identical to or can be replaced by the
constraint modes of the CB methods, and justifies the replacement
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(c) Mistuned case with tuned modes (MIS2)
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Fig. 9. Mean errors in frequency and mode obtained with CMS methods.
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of the latter by the interface modes or the partial interface modes
as in the CB method. The free interface methods are more accurate
than the fixed interface and the hybrid interface methods, and the
latter give similar results.

5.5. Frequency response to harmonic forces

Three harmonic forces, f1 ¼ 10 cos Xt � 10 sin Xt; f 2 ¼ 20 cos Xt�
20 sin Xt and f3 ¼ 30 cos Xt � 30 sin Xt, are applied to the DOF uz of
nodes 21, 105 and 261 of sector S0 (Fig. 3b). A proportional damping
matrix C ¼ aKþ bM is introduced, with a ¼ 5� 10�5 and b ¼ 1. The
frequency response is computed for both tuned and mistuned cases
with the excitation frequency X varying from 2 to 1000 Hz with a
step of 2 Hz.

Fig. 10 shows the frequency response of the amplitudes Uz of
the displacements uz ¼ Uz cosðXt þuÞ of node 105 obtained in
the reference cases (CS and WS). Three main resonance peaks are
observed before 200 Hz, with a slight shift of the peaks towards
the smaller frequencies in the mistuned case. The peak amplitudes
are also a little different between the tuned and mistuned cases.

Fig. 11 shows the absolute errors UzðcmsÞ � UzðrefÞ obtained with
the CMS methods and with Selection (a) of interface modes or par-
tial interface modes. All the CMS methods give excellent ampli-
tudes in the tuned and the MIS1 mistuned cases, the absolute
errors are smaller than 10�6, i.e. 4 order smaller than the ampli-
tude. The results are less accurate in the MIS2 mistuned case, with
absolute errors smaller than 10�3.

Fig. 12 shows the relative errors on the amplitudes Uz which are
defined as the ratio of the euclidian norms kUzðcmsÞ � UzðrefÞk=
kUzðrefÞk, where Uz is the vector containing the amplitudes Uz for
all the excitation frequencies. All the CMS methods provide excel-
lent results with relative errors smaller than 0.03%, 0.05% and 6%
for the tuned, MIS1 and MIS2 cases respectively. Like in the fre-
quency and mode computations, the classical methods and their
variants are the most accurate. With the same mode selection
(a–c), the methods using partial interface modes are more accurate
than those using interface modes, and the accuracy increases with
the number of interface modes and partial interface modes.
Selection P2 of the kept interface DOF is only slightly better than
Selection P1, and the free interface methods are better than the
fixed and hybrid interface methods, but only in the tuned and
MIS1 mistuned cases.

The mean CPU times, adimensioned by their smallest values
3.26 s, are presented in Table 4. For the CMS methods, the CPU
time includes, on the one hand, the model reduction, i.e. the
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computation of the substructure, interface and partial interface
modes, the projection and the coupling of the substructures, and,
on the other hand, the solution of the reduced system, including
the restitution of the physical displacements.
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Thanks to the use of the cyclic symmetry properties, the CPU
times of the tuned case compared to the mistuned cases is reduced
in average by a factor of 2.3, 3.5, 10.6 and 17.1 respectively with
the reference methods, the classical CMS methods, the methods
using interface modes and the methods using partial interface
modes. The CMS methods using interface modes and partial inter-
face modes are in average 40 and 20 times faster than the classical
methods in the tuned case, 11 and 4 times faster in the MIS1 mis-
tuned case, and 17 and 4 times faster in the MIS2 mistuned case.
Due to the additional interface DOF in the reduced system, the
methods using partial interface modes require more CPU times
than the methods using interface modes. In the tuned case, the for-
mer methods with Selection P1 are only slightly slower than the
latter methods, but they provide much better results. In the mis-
tuned cases, the former methods with Selection P1 are about 3
times slower than the latter methods. Selection P2 requires about
1.5 times more CPU time than Selection P1, but the results are not
much better.

The use of the tuned modes in the MIS2 mistuned case in place
of the mistuned modes in the MIS1 mistuned case deteriorates sig-
nificantly the results and does not reduce the CPU times as much as
we may expect, since the saving on the CPU times only comes from
the model reduction, or more precisely on the computation of the
substructure modes and the interface modes or partial interface
modes, and not from the solution of the reduced system.

6. Conclusion

Several CMS methods using partial interface modes which al-
lows to reduce the number of interface generalized coordinates
and at the same time to keep a few physical displacements in
the reduced coupled system have been developed. They are applied
on a bladed disk with cyclic symmetry and they are compared with
the classical CMS methods and the CMS methods using interface
modes. The results obtained with all the CMS methods are in very
good agreement with the reference results.

According to the results obtained in this example, the following
recommendations can be made:

– if the number of the interface DOF is not an issue, the classical
CMS methods give the best results. The free interface methods
are recommended since they are the most accurate, although



the fixed interface methods are also easy to implement and
they work well with a large range of applications.

– if the number of the interface DOF is too important and has to
be reduced, the new CMS methods using partial interface
modes are recommended. And even in the case the physical
displacements are not needed in the reduced coupled system,
it is better to keep some of them and use the partial interface
modes rather than the interface modes, since the former are
much better concerning the accuracy and the convergence of
the results. A small number of the kept interface DOF and
the mode selections derived from Rubin’s criterion are suffi-
cient to obtain very good results, and the increase of the num-
ber of the kept interface DOF or the selected modes do not
improve very much the results.

– for the mistuned case, the use of the tuned substructure, inter-
face and partial interface modes in the CMS methods is not
recommended, since it deteriorates significantly the results.
The use of the mistuned modes provides much better results
with only a small additional computational cost.

The development of CMS methods based on the proper orthog-
onal decomposition [57] is in progress. The future works will con-
sist in using CMS methods for further investigation on mistuned
bladed disk systems with non-linearity and aeroelastic coupling.
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