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1 Introduction

1.1 Fractal inverse problem

The fractal inverse problem is an important research area with a great number of potential application
fields. It constists in finding a fractal model or code that generates a given object. This concept has
been introduced by Barnsley with the well known collage theorem [Bar88]. When the considered
object is an image, we often speak about fractal image compression. A method has been proposed by
Jacquin to solve this kind of inverse problem [Jac92].

This problem has been studied by much authors. Generally speaking, inverse methods can be
classified in two types:

• Direct methods: model characteristics are found directly. In the fractal case, very few direct
methods have been proposed. In general, we have to deal with synthetic data entries. Some
authors use wavelet decomposition to find frequency structures and extract IFS coefficients
[Ber97, SDG95]. A method using complex moment has been experienced to work for fractal
images [AKH97].

• Indirect methods: model characteristics are found indirectly. In general an optimisation algo-
rithm is used. These methods allows to deal with more complex models and less synthetic data
entries. Inverse problem for mixed IFS has been performed with genetic methods [LLVC+95].

Optimisation methods used in indirect methods are generaly stochastic, because it’s not possible to
calculate any derivative with respect to the model parameters. In [VS99], Saupe introduced derivative
property in his presentation of inverse problem. In [GTB01a, GTB02] , we developped a method based
on this property for fractal approximation of curves and surfaces.

1.2 Fractal approximation

Basically, the problem of approximating the shape of objects consists in finding a model that represents
a set of data points. A wide variety of representation methods have been proposed for modeling these
objects[BV91]. Basically, they can be classified into three categories depending on the data source and
the target application: mesh representation, parametric representation and implicit representation. For
a simple visualization of smooth surfaces, the model widely used is the mesh approximation[GGN00].
When the data is issued from sensors and the model should be suitable to a CAGD use, parametric
approximation seems to be well adapted using a standard model such as NURBS or B-splines[GGN00].
If the approximation should be used for a more semantic description of an object, implicit models can
be chosen like superquadrics[TM91, GB93]. Each application domain has a preferred model that relies

1



on its specificities.

Unfortunately, these models do not recover rough surfaces, i.e. surfaces defined by continuous
functions that are nowhere differentiable. In order to propose an efficient solution to the problem
of rough surface approximation, we have used a parametric model based on a fractal model. In
[ZT96a, ZT97b], we have proposed a projected IFS model for fractal curve and surfaces. This model
combines a fractal classical approach – Iterative Function Systems – and CAGD classical approach
– free form based on control points. These points allow an easy and flexible control of the fractal
shape generated by the IFS model and provide a high quality fitting. In [GTB00, GTB01a], we have
proposed an approximation method for curves based on this model. In [GTB01b], we have extended
this method to surfaces. In [GTB03, Gué02], we introduced a projected IFS tree model to obtain a
better approximation of natural surfaces and hreyscale images.

In this paper we present an analytical approach of the fractal approximation problem.

2 Modeling choice

IFS model, projected IFS model, and projected IFS tree model can be viewed as particular cases of a
more general fractal modeling. This fractal modeling is based on address functions.

In geometric modeling parameterised shapes (curves or surfaces) are expressed as numerical argu-
ment functions, mapping from a parameterisation space ([0, 1] or [0, 1]2) to a modelisation space like
X = Rm with m = 1, 2, 3, . . .. In a classical modeling approach, it is convenient to define differential
properties of functions. In this way, we can construct curves or surfaces with smooth geometrical
properties. In a fractal modeling approach, we want to deal with more general shapes that represent
natural objects. The only property we are able to guarantee is the continuity. The set of continuous
address functions can be viewed as a superset of continuous numerical argument functions.

2.1 Address functions

Address functions map from infinite words Σω to a modelisation space X = Rm. We will deal with a
general set of address functions: continuous functions that map from Σω to X , denoted here C0(Σω,X ).

It has several advantages:

• With a unique formalism, it is possible to describe objects like curves, surfaces, images with
smooth or rough aspect.

• This model allows multiresolution approach.

• Using address functions allows to extend classical analysis concepts defined on smooth shapes to
rough shapes, in particular notions used for functionnal approximation.

Taking different Σ, this set includes address functions associated with IFS introduced by Barnsley
and address functions associated with parameterized figures calculated from samples (curves, surfaces
or digitalized figures). With a parameterisation reformulation, it includes classical free forms used
in CAGD, and parameterised curves and surfaces defined with subdivision matrices [PM87, DL93].
This set includes also functions associated with images. Culik introduces similar functions defined
by WFA (Weighted Finite Automaton) [CK94]. He also introduces multiresolution image as a real
function φ̂ : Σ∗ → R with Σ = {0, 1, 2, 3} [CK95].
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2.2 Continuity

The structuration in word trees permits to have a multiresolution approach [CK95]. The finite and
infinite words set Σ∞ = Σ∗ ∪Σω constitutes a tree for the “prefix” relation: α ≤ β

def⇔ ∃γ β = αγ. The
root is the empty word ε, nodes are finite words and leaves are infinite words. The whole addresses set
Σω has an ultra-metric associated with this structure [BD85, Edg90]: d(σ, τ) = ( 1

N )|σ∧τ | with |σ ∧ τ |
length of σ ∧ τ biggest common prefix of σ and τ .

d must satisfy:

• If σ 6= τ then ∃α = α1...αn ∈ Σ∗ verifying σ = αiσ′ and τ = αjτ ′ with i 6= j, σ ∧ τ = α and
d(σ, τ) = ( 1

N )n > 0 ;

• If σ = τ then σ ∧ τ = σ have an infinite length and d(σ, τ) = limn→∞( 1
N )n = 0.

The balls of (Σω, d) are mapping with the finite words of Σ∗:

B(σ, ε) = αΣω = B(σ,
1
Nn

) with (
1
N

)n ≤ ε < (
1
N

)n−1 and α = σ1...σn

Because we have:

d(σ, τ) ≤ ε ⇔ d(σ, τ) ≤ (
1
N

)n,

⇔ |σ ∧ τ | ≥ n,

⇔ τ = σ1...σnτ
′.

φ is continuous means that his values are close to each other when considering deep enough nodes:

φ(σ) ≈ φ(τ) for σ, τ ∈ αΣω.

The deeper α is, the more φ is precise.

2.3 Tabulation

This leads to the idea of tabulating the function φ, that means evaluating φ on finite and growing sets.
Tabulation of φ with a resolution n is the finite familly of values: φ(αkω) with α ∈ Σn and k ∈ Ω ⊆ Σ.
This kind of tabulation can be obtained, for example, with interpolating subdivision schemes.

Remark: In the curve case φ(σ) = F (ϕI(σ)), formal and numerical notions are equivalent:

• The address σ corresponds to the base N development of the parameter s: φ(σ) = F (s);

• The set Ω = {0, N−1} corresponds to the boundaries: φ(0ω) = F (0) and φ((N−1)ω) =
F (1);

• The formal tabulation corresponds to the numerical tabulation: φ(α′(N − 1)ω) =
φ(α0ω) = F ( j

Nn ), with α = α1...αn and α′ = α1...αn−1αn − 1 the two developments in
base N of j

Nn :

j

Nn
=

n∑
i=1

1
N i

αi,

= ϕI(α1...αn0ω),
= ϕI(α1...(αn − 1)(N − 1)ω).
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2.4 Example

A simple example shows that address functions are far more general. Figure 1 illustrates the main
difference between scalar argument functions and address functions. In the first case (Figure 1a), the
point 1

2 is a real problem, we have to choose wether the function value at this point is 0 or 1. In
the second case (Figure 1b), and because 1

2 has two binary expanding 01ω and 10ω, we can define a
continuous function wich is valued for this two expandings.

The interval [0, 1
2 ] in the scalar case corresponds to a ball of radius 1

2 in the address case: 0Σω =
B(0ω, 1

2). In a same maner, [12 , 1] corresponds to 1Σω = B(1ω, 1
2). Note that the distance between 01ω

and 10ω is not equal to zero:
d(01ω, 10ω) = 1

x

f(x)

0 1
2

1

(a) Scalar argument function

σ

f(σ)

0ω 01ω

10ω

1ω

(b) Address function

Figure 1: Comparison between scalar argument functions and address functions

3 Functionnal distances

We need to define a functionnal distance on address functions to be abble to estimate approximation
errors. Let us suppose that X is a Hilbert space, for example X = Rm with the dot product :
< x, y >=

∑m
j=1 xiyj . The set C0(Σω,X ), with the distance ‖φ− φ′‖2

∞ = maxσ∈Σω ‖φ(σ)− φ′(σ)‖, is
metric complete [Edg90].

However, if we want to apply classical non-linear approximation methods, we have to deal with a
euclidian metric such as a square sum. This allows to calculate differentials on error functions.

To perform fractal curves and surfaces approximation, we use the following error. A level n error
is evaluated with this kind of sum [CK95]:

Dn(φ, φ′) =
∑

α∈Σn

∑
k∈Ω

‖φ(αkω)− φ′(αkω)‖2 (1)

To define a true distance, we need to pass to the limit when n tends to infinity.

4



3.1 Weighted sums

To a function f : Σω → R, we associate wieghted sums:

• Sα(f) tabulation mean of f on a node α :

Sα(f) =
1
M

∑
k∈Ω

f(αkω)

with M = |Ω| ;

• Sn(f) tabulation mean of the level n:

Sn(f) =
1
Nn

∑
α∈Σn

Sα(f),

=
1
Nn

∑
α∈Σn

1
M

∑
k∈Ω

f(αkω),

with N = |Σ| ;

• S(f) the limit, if existing, of the weighted sums serie (Sn(f))n:

S(f) = lim
n→∞

Sn(f).

We have the following localisation property: f(σ) ∈ [a, b] ⇒ S(f) ∈ [a, b], indeed:

∀σ ∈ Σω f(σ) ∈ [a, b] ⇒ ∀n ∀α ∈ Σn ∀k ∈ Ω f(αkω) ∈ [a, b],

⇒ ∀n ∀α ∈ Σn Sα(f) =
1
M

∑
k∈Ω

f(αkω) ∈ [a, b],

⇒ ∀n Sn(f) =
1
Nn

∑
α∈Σn

Sα(f) ∈ [a, b],

⇒ S(f) = lim
n→∞

Sn(f) ∈ [a, b].

Because f is continuous and Σω is compact, f(Σω) is a compact of R and we can define:

af = min
τ∈Σω

f(τ), bf = max
τ∈Σω

f(τ),

We have then the following double inequality: af ≤ S(f) ≤ bf .

Remark: In the case of f = F ◦ ϕI , we have:

Sn(f) =
1
Nn

∑
α∈Σn

1
2
(f(α0ω) + f(α(N − 1)ω)),

=
1
Nn

Nn−1∑
j=0

1
2
(F (

j

Nn
) + F (

j + 1
Nn

)),

The limit of Sn(f) is a Riemann integral:

S(f) = lim
n→∞

Sn(f),

=
∫ 1

0
F (s)ds.
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3.2 Hilbert space of address functions

To define a euclidian metric on address functions, we introduce the following notations:

• < φ, φ′ >n is a bilinear product sequence defined by

< φ, φ′ >n= Sn(f) with f(σ) =< φ(σ), φ′(σ) > .

• L2(Σω,X ) the subset of address functions in which the following limit exists:

< φ, φ′ >= S(f) = lim
n→∞

< φ, φ′ >n .

Proposition 3.1 L2(Σω,X ) is a vector space.

Proof
The function (φ, φ′) → f with f(σ) =< φ(σ), φ′(σ) > is bilinear and ∀n, the function f → Sn(f) is
linear, the function <,>n: (φ, φ′) → Sn(f) is thus bilinear:

< λφ+ µφ′, λφ+ µφ′ >n = λ2 < φ, φ >n +2λµ < φ, φ′ >n +µ2 < φ′, φ′ >n

If φ, φ′ ∈ L2(Σω,X ), the sequence (< λφ+ µφ′, λφ+ µφ′ >n)n converges, indeed we have:

lim
n→∞

< λφ+ µφ′, λφ+ µφ′ >n = lim
n→∞

(λ2 < φ, φ >n +2λµ < φ, φ′ >n +µ2 < φ′, φ′ >n),

= λ2 lim
n→∞

< φ, φ >n +2λµ lim
n→∞

< φ, φ′ >n +µ2 lim
n→∞

< φ′, φ′ >n .

Hence, L2(Σω,X ) is a vector subspace of C0(Σω,X ):

φ, φ′ ∈ L2(Σω,X ) ⇒ λφ+ µφ′ ∈ L2(Σω,X ).

�

Lemma 3.1 φ 6= 0 ⇒ < φ, φ > > 0.

Proof
We have:

φ 6= 0 ⇒ ∃σ φ(σ) 6= 0,
⇒ ∃σ f(σ) = ‖φ(σ)‖ > 0.

As f is continuous, there exists a ball of center σ on which f is strictly positive:

∃σ ∃n (τ ∈ B(σ,
1
Nn

) ⇒ f(τ) > 0) ⇒ ∃σ ∃n (τ ∈ Σω ⇒ f(σ1...σnτ) > 0)

Let us denote α = σ1...σn and introduce the function fα : Σω → R+ defined by fα(τ) = f(ατ), we
have:

∀τ ∈ Σω fα(τ) > 0 ⇒ afα = min
τ∈Σω

fα(τ) > 0,

⇒ S(fα) ≥ afα > 0
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and:

Sn(f) ≥ 1
Nn

∑
β∈Σn

1
M

∑
k∈Ω

f(αβkω) ⇒ Sn(f) ≥ Sn(fα),

⇒ S(f) ≥ S(fα).

Thus:

< φ, φ >= S(f) ≥ S(fα) > 0.

�

Proposition 3.2 The function (φ, φ′) →< φ, φ′ > is a dot product on L2(Σω,X ).

Proof
<,> is bilinear:

< λφ+ µφ′, λφ+ µφ′ >= λ2 < φ, φ > +2λµ < φ, φ′ > +µ2 < φ′, φ′ >,

<,> is positive definite:
We have:

∀n < φ, φ >n≥ 0 ⇒ < φ, φ >= lim
n→∞

< φ, φ >n≥ 0.

The following implication: < φ, φ >= 0 ⇒ φ = 0 is demonstrated by his contrary: φ 6= 0 ⇒< φ, φ > 6=
0.

�
(L2(Σω,X ), d2) is a vector space with a euclidian like metric.

The norm and the distance associated are:

‖φ‖2 =
√
< φ, φ >, d2(φ, φ′) = ‖φ− φ′‖2

Proposition 3.3 (L2(Σω,X ), d2) is a compete metric space.

Proof
Let (φm)m be a Cauchy sequence in L2(Σω,X ), we have:

lim
m→∞

‖φm+1 − φm‖2 = 0 ⇒ ∀σ ∈ Σω lim
m→∞

‖φm+1(σ)− φm(σ)‖ = 0.

To each word σ ∈ Σω is associated a Cauchy sequence (φm(σ))m in X that has a limit.
The function φω is then defined by:

φω : σ ∈ Σω 7→ lim
m→∞

φm(σ) ∈ X .

This function φω verifies:

∀n < φω, φω >n =
1
Nn

∑
α∈Σn

1
M

∑
k∈Ω

< φω(αkω), φω(αkω) >,

=
1
Nn

∑
α∈Σn

1
M

∑
k∈Ω

< lim
m→∞

φm(αkω), lim
m→∞

φm(αkω) >,

=
1
Nn

∑
α∈Σn

1
M

∑
k∈Ω

lim
m→∞

< φm(αkω), φm(αkω) >,

= lim
m→∞

1
Nn

∑
α∈Σn

1
M

∑
k∈Ω

< φm(αkω), φm(αkω) >,

= lim
m→∞

< φm, φm >n
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And we have:

lim
n→∞

< φω, φω >n = lim
n→∞

lim
m→∞

< φm, φm >n,

= lim
m→∞

lim
n→∞

< φm, φm >n,

= lim
m→∞

< φm, φm >

< φω, φω >= limn→∞ < φω, φω >n exists, and φω is in L2(Σω,X ).
We have:

lim
m→∞

‖φm − φω‖2
2 = lim

m→∞
lim

n→∞
< φm − φω, φm − φω >n

= lim
n→∞

lim
m→∞

< φm − φω, φm − φω >n

With:

lim
m→∞

< φm − φω, φm − φω >n = lim
m→∞

1
Nn

∑
α∈Σn

1
M

∑
k∈Ω

< φm(αkω)− φω(αkω), φm(αkω)− φω(αkω) >n

=
1
Nn

∑
α∈Σn

1
M

∑
k∈Ω

< lim
m→∞

φm(αkω)− φω(αkω), lim
m→∞

φm(αkω)− φω(αkω) >n

=
1
Nn

∑
α∈Σn

1
M

∑
k∈Ω

< φω(αkω)− φω(αkω), φω(αkω)− φω(αkω) >n

= 0

φω is the limit of (φm)m in the metric space (L2(Σω,X ), d2). �

Proposition 3.4 L2(Σω,X ) is a Hilbert space.

Proof
It is pre-hilbertian and metric complete. �

3.3 Decreasing condition

Proposition 3.5 If φ verifies the following decreasing condition:

∃m ∈ N ∃C ∈ R+ ∃r ∈ [0, 1[ : n ≥ m ⇒ ∀α ∈ Σn∀σ, τ ∈ Σω ‖φ(ασ)− φ(ατ)‖ ≤ Crn (2)

then, the sequence (< φ, φ >n)n converges and φ ∈ L2(Σω,X ).

Proof
The square difference gives:

f(αikω)− f(αkω) = ‖φ(αikω)‖2 − ‖φ(αkω)‖2,

= ‖(φ(αikω)− φ(αkω)) + φ(αkω)‖2 − ‖φ(αkω)‖2,

= ‖φ(αikω)− φ(αkω)‖2 + 2 < φ(αikω)− φ(αkω), φ(αkω) > +‖φ(αkω)‖2 − ‖φ(αkω)‖2,

= ‖φ(αikω)− φ(αkω)‖2 + 2 < φ(αikω)− φ(αkω), φ(αkω) > .
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Let us take D = ‖φ‖∞ = maxσ∈Σω ‖φ(σ)‖ and denote C ′ = C(C + 2D), we conclude that for n ≥ m:

|f(αikω)− f(αkω)| ≤ ‖φ(αikω)− φ(αkω)‖2 + 2‖φ(αikω)− φ(αkω)‖‖φ(αkω)‖,
≤ (rnC)2 + 2(rnC)D,
≤ rnC(rnC + 2D),
≤ rnC(C + 2D),
≤ rnC ′.

We have ∀k ∈ Ω f(αkkω) = f(αkω) and:

1
Nn+1

∑
α∈Σn

∑
i∈Σ

f(αikω)− 1
Nn

∑
α∈Σn

∑
i∈Σ

f(αkω) =
1

Nn+1

∑
α∈Σn

(
∑
i∈Σ

f(αikω)−Nf(αkω)),

=
1

Nn+1

∑
α∈Σn

∑
i∈Σ

(f(αikω)− f(αkω)),

=
1

Nn+1

∑
α∈Σn

(f(αkkω)− f(αkω) +
∑
i6=k

(f(αikω)− f(αkω))),

=
1

Nn+1

∑
α∈Σn

∑
i6=k

(f(αikω)− f(αkω)),

Hence, we have the upper bound:

|Sn+1(f)− Sn(f)| = | 1
M

∑
k∈Ω

1
Nn+1

∑
α∈Σn

∑
i6=k

(f(αikω)− f(αkω))|,

≤ 1
M

∑
k∈Ω

1
Nn+1

∑
α∈Σn

∑
i6=k

|f(αikω)− f(αkω)|,

≤ 1
M

∑
k∈Ω

1
Nn+1

∑
α∈Σn

∑
i6=k

rnC ′,

≤ 1
M
M

1
Nn+1

Nn(N − 1)rnC ′,

≤ N − 1
N

rnC ′.

Let us denote C” = N−1
N C ′, we have:

n ≥ m ⇒ Sn+1(f)− Sn(f)| ≤ rnC”.

The sequence (< φ, φ >n)n = (Sn(f))n is a Cauchy sequence, it is then convergent and < φ, φ >=
limn→∞ < φ, φ >n exists. �

4 Modelisation of rough shapes

The Hilbert space of address functions constitutes a general frame of geometric fractal modeling. One
convenient way to provide address functions is the use of IFS (Iterated Function Systems). Further-
more, we will see that these functions verify the decreasing condition and then belong to L2(Σω,X ).
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4.1 IFS model

Introduced by Barnsley[Bar88] in 1988, the IFS (Iterated Function Systems) model generates a
geometrical shape or an image [Jac92] with an iterative process. An IFS-based modeling system is
defined by a triple (X , d,S) where [ZT96b, ZT97a]:

• (X , d) is a complete metric space, X is called iteration space;

• S is a semigroup acting on points of X such that: λ ∈ X 7→ Tλ ∈ X where T is a contractive
operator, S is called iteration semigroup.

An IFS T (Iterative Function System) is a finite subset of S: T = {T0, ..., TN−1} with operators
Ti ∈ S. We note H(X ) the set of non-empty compacts of X . H(X ) is a complete metric space with
the Hausdorf distance. The associated Hutchinson operator is:

K ∈ H(X ) 7→ TK = T0K ∪ ... ∪ TN−1K .

This operator is contractive in the complete metric space H(X ) and admits a fixed point, called
attractor [Bar88]:

A(T) = lim
n→∞

TnK with K ∈ H(X ) .

By introducing a finite set Σ, the IFS can be indexed T = (Ti)i∈Σ and the attractor A(T) has an
address function [Bar88, Edg90] defined on Σω, the set of infinite words of Σ:

ρ ∈ Σω 7→ φ(ρ) = lim
n→∞

Tρ1 ...Tρnλ ∈ X with λ ∈ X . (3)

Corollary 4.1 Every address function associated with an IFS is in L2(Σω,X ).

Proof
Each IFS is by definition composed of contracting operators. To each Ti is associated a contraction
factor ri ∈ [0, 1[.
If we denote r = maxi∈Σ ri and C = maxσ,τ∈Σω ‖φ(σ)−φ(τ)‖, then, the associated address function φ
verifies:

∀i ∈ Σ ∀σ, τ ∈ Σω ‖φ(iσ)− φ(iτ)‖ = ‖Tiφ(σ)− Tiφ(τ)‖,
≤ ri‖φ(σ)− φ(τ)‖,
≤ r‖φ(σ)− φ(τ)‖,
≤ rC.

By induction, it verifies the decreasing condition (2) :

∀α ∈ Σn ∀σ, τ ∈ Σω ‖φ(ασ)− φ(ατ)‖ = ‖Tα1 ...Tαnφ(σ)− Tα1 ...Tαnφ(τ))‖,
≤ rnC.

Then the function φ is in L2(Σω,X ). �

4.2 IFS generalisation

Natural shapes are not strictly self-similar. Most of the time, we can see only projections of this self-
similarity. To allow more flexible modeling, we introduced and used a projected IFS model [ZT96b,
ZT97a].

Furthermore, natural objects are composed of heterogeneous parts. To cope with this problem, we
indroduced another generalisation: projected IFS trees model [GTB03, Gué02].
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4.2.1 Projected IFS model

The way to obtain projected IFS attractors is to use a barycentric metric space X = BJ :

BJ = {(λj)j∈J |
∑
j∈J

λj = 1}

Then, the iteration semigroup is constituted of matrices with barycentric columns:

SJ = {T |
∑
j∈J

Tij = 1, ∀i ∈ J}

This choice leads to the generalisation of IFS attractors named projected IFS attractors:

PA(T) = {Pλ |λ ∈ A(T)}

where P is a polygon or grid of control points P = (pj)j∈J and Pλ =
∑

j∈J λjpj . The associated
address function is:

ϕ(σ) = Pφ(σ) =
∑
i∈J

piφi(σ)

In figure 2, an example of projected attractor is shown. This attractor is a curve, projected through
four control points.

Figure 2: Example of a projected IFS curve

4.2.2 Projected IFS tree model

Let Γ be a cut of the tree (Σ∞,≤), that means a finite part of Σ∗ such that each word σ ∈ Σω admits
a unique decomposition on Γ× Σω:

σ = γτ with γ ∈ Γ and τ ∈ Σω.

If we denote m = maxγ∈Γ |γ|, then we have the following decomposition:

∀n ≥ m Σn =
⋃
γ∈Γ

γΣn−|γ| and Σω =
⋃
γ∈Γ

γΣω

Drawn from the families:
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• of address functions φγ ∈ C0(Σω,Xγ),

• of affine functions P γ : Xγ → X .

we define a new address function with the following functionnal equation:

φ(γτ) = P γφγ(τ) .

Proposition 4.1 If the functions φγ verify the decreasing condition (2) then φ verifies this condition
too.

Proof
If we take m = maxγ∈Γ |γ| and n ≥ m, each word α ∈ Σn can be written α = γβ with γ ∈ Γ and
β ∈ Σn−|γ|.
If we take C = maxγ∈ΓC

′
γCγr

−|γ|
γ , and r = maxγ∈Γ rγ , we have:

‖φ(ασ)− φγ(ατ)‖ = ‖P γφγ(βσ)− P γφγ(βτ)‖,
≤ C ′

γ‖φγ(βσ)− φγ(βτ)‖,

≤ C ′
γCγr

n−|γ|
γ ,

≤ C ′
γCγr

−|γ|
γ r|γ|γ rn−|γ|

γ ,

≤ C ′
γCγr

−|γ|
γ rn

γ ,

≤ Crn.

�

Corollary 4.2 Every address function φ built on address functions associated with IFS Tγ is in
L2(Σω,X ).

Proof
The functions φγ are associated with IFS, that means that they verify the decreasing condition (2),
and φ too. �

To modelise surfaces we use the address function defined by:

φ(γτ) = P γφγ(τ)

and:
∀γ ∈ Γ, ∀i ∈ Σ, φγ(iτ) = T γ

i φ
γ(τ) .

φ is the address function of the compact set:

φ(Σω) =
⋃
γ∈Γ

P γA(Tγ)

An example of heterogeneous surface is given in figure 3. Each patch of the surface can have different
properties. In this example, we have mixed rough and smooth modeling together.
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3× 3
rough

5× 5
rough

9× 9
smooth

3× 3
smooth

9× 9
rough

9× 9
rough

5× 5
smooth

(a) Modeling quadtree (b) Associated surface

Figure 3: Surface modeling with projected IFS quadtree

5 Approximation formulation

In the Hilbert space of address functions, optimisation problem can be expressed with the following
formulation. Let ϕ be an address function, find T that minimises the error function:

T ∈ SΣ → g(T) = ‖Ψ(T)− ϕ‖2
2 ∈ R+

with Ψ(T) the address function associated with T.
To apply standard non-linear fitting methods, the function g needs to have good properties. This

function is a quadratic form of Ψ. In the following, we will expose these properties.

5.1 Semigroup characterisation

We now deal with affine IFS, that means IFS defined with affine contractions in X = Rm. In this case,
the contractive semigroup can be characterised. An affine operator is defined by a couple (u, L) with
u ∈ Rm and L a m×m matrix:

Tp = u+ Lp

The set of affine operators acting on Rm is a complete metric space with the following distance:

d(T, T ′) = ‖u− u′‖+ ‖L− L′‖

where
‖L‖ = max

‖u‖=1
‖Lu‖ .

Proposition 5.1 The affine contractive semigroup is an open set S = Rm×B1 where B1 = {L/‖L‖ <
1}.
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Proof
One can easily verify that T ∈ S implies its contraction:

∃r ∈ [0, 1[, ∀p, q ∈ Rm, d(Tp, Tq) ≤ rd(p, q) ⇔ ∃r ∈ [0, 1[, ∀u ∈ Rm, ‖Lu‖ ≤ r‖u‖
⇔ ∃r ∈ [0, 1[, ∀u ∈ Rm, ‖u‖ = 1, ‖Lu‖ ≤ r
⇔ max

‖u‖=1
‖Lu‖ < 1

�

5.2 Analyticity

In this section, we precise property of the function:

ψ : T ∈ SΣ → ψ(T) ∈ C0(Σω,X )

Definition 5.1 Let SΣ be the set of indexed IFS T = (Ti)i∈Σ. Let ψρ be the following function, where
ρ ∈ Σω is fixed:

ψρ : SΣ → X
T 7→ ψρ(T) = limn→∞ Tρ1 . . . Tρnp

As Ti is affine, we may decompose it in a translation vector ui and a linear part Li:

Tip = ui + Lip

In this case, the product TiTj gives ui +Liuj as translation vector and LiLj as linear part. Then,
we expand the matrix product:

Tρ1 . . . Tρnp = uρ1

+Lρ1uρ2

+Lρ1Lρ2uρ3

+ . . .
+Lρ1 . . . Lρn−1uρn

+Lρ1 . . . Lρnp

(4)

When n tends to infinity, p has no influence on this formula:

lim
n→∞

(Lρ1 . . . Lρnp) = 0

because Li are linear contractions. Then ψρ(T) can be writen as a summation:

ψρ(T) = lim
n→∞

n∑
k=1

Lρ1 . . . Lρk−1
uρk

Proposition 5.2 For every ρ in Σω, the function ψρ is analytical on SΣ.

Proof
The function can be viewed as an expression with variables ui, Li. We can express the differential of
ψρ function:

dψρ(T) = duρ1

+dLρ1uρ2 + Lρ1duρ2

+dLρ1Lρ2uρ3 + Lρ1dLρ2uρ3 + Lρ1Lρ2duρ3

+dLρ1Lρ2Lρ3uρ4 + Lρ1dLρ2Lρ3uρ4 + Lρ1Lρ2dLρ3uρ4 + Lρ1Lρ2Lρ3duρ4

+ . . .

14



For the second order differentiation, we obtain:

d2ψρ(T) = 2dLρ1duρ2

+dLρ1dLρ2uρ3 + dLρ1Lρ2duρ3 + Lρ1dLρ2duρ3

+ . . .

The kth differentiation is obtained the same way:

dkψρ(T) = dk(uρ1) + · · ·︸ ︷︷ ︸
a)

+ dk(Lρ1 . . . Lρk−1
uρk

)︸ ︷︷ ︸
b)

+ dk(Lρ1 . . . Lρk
uρk+1) + · · ·︸ ︷︷ ︸

c)

As showed above, there are three cases to consider:

a) The number of factors is strictly lower than k. In this case, the kth differentiation is equal to
zero.

b) The number of factors is equal to k. In this case, we have k! possible choices for obtaining the
product dLρ1 . . . dLρk−1

duρk
.

c) The number of factors is strictly greater than k. In this case, the result is a sum of mixed factors
involving both variables ui, Li and differentials dui, dLi.

When evaluating at the point 0, i.e. ui = 0 and Li = 0, only one factor is kept. In the following
expressions, dui and dLi have been replaced by ui and Li because we have considered the point 0.

dψρ(0)(T) = uρ1

d2ψρ(0)(T) = 2Lρ1uρ2

d3ψρ(0)(T) = 6Lρ1Lρ2uρ3

. . .
dkψρ(0)(T) = k!Lρ1 . . . Lρk−1

uρk

Then, the Mac-Laurin expanding at the point 0 of the ψρ function is:

n∑
k=0

1
k!
dkψρ(0)(T) = uρ1 + Lρ1uρ2 + . . .+ Lρ1 . . . Lρn−1uρn

∞∑
k=0

1
k!
dkψρ(0)(T) = uρ1 + Lρ1uρ2 + . . .+ Lρ1 . . . Lρn−1uρn + . . .

= limn→∞ Tρ1 . . . Tρnλ
= ψρ(T)

The function ψρ is equal to his Mac-Laurin expanding, it is analytical.�

5.3 Error estimation

In practical, this error function is evaluated on samples, that means on a finite number of values:

gn(T) =
1
Nn

∑
α∈Σn

1
M

∑
k∈Ω

‖ψαkω(T)− ϕ(αkω)‖2

with f(σ) = ‖ψσ(T)− ϕ(σ)‖2 error function on a value.
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To perform finite exact computations, we take advantage of the fact that each transformation has
a fixed point:

Tkck = ck

We evaluate the function at a deep n, with ‖α‖ = n. Then, the function has the form:

ψαkω(T) = Tα1 . . . Tαnφ(kω),
= Tα1 . . . Tαnck.

In this case, only polynomial computations have to be performed, gn is a polynomial function:

gn(T) =
1
Nn

∑
α∈Σn

1
M

∑
k∈Ω

‖Tα1 . . . Tαnck − ϕ(αkω)‖2

5.4 Resolution

We prooved the analyticity of affine IFS functions with respect to their matrix coefficients. We can
now use a differential method to solve our problem. The litteral derivative is more complex to evaluate
than a numerical approximation with a perturbation. The optimisation algorithm used is Levenberg-
Marquardt, an improved gradient method [PFTV93].

6 Numerical examples

This section illustrates the theorical results obtained previously with three examples: function approx-
imation, surface approximation and image compression.

6.1 Function approximation

This section will show a very simple example of numerical optimisation using affine IFS defined in R.

6.1.1 Model overview

Transformations operate on R:
Ti : R → R

x 7→ aix+ bi

Each transformation is defined by two scalars. In this case, the address function is:

φ(ρ) = bρ1 + aρ1bρ2 + aρ1aρ2bρ3 + . . .

A simple serie converge to this value:
φ(ρ) = lim

n→∞
Bn

where {
B1 = bρ1

Bi+1 = Bi +Aibρi+1 for i ≥ 1

and {
A1 = aρ1

Ai+1 = Aiaρi+1 for i ≥ 1
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6.1.2 Approximation formulation

When dealing with approximation, a common data type is an ordered list of points (xi, yi)i=1,...,p. The
value of xi will be used to extract an address associated to the sample, whereas the value of yi will be
the target value of the address function. Let α(i) = α

(i)
1 . . . α

(i)
n be the N -adic expansion of x̄i = ji

Nn

with xi = x̄i + εi and εi < 1
Nn+1 :

xi =
∞∑

j=1

1
N j

α
(i)
j

Then, the approximation problem with affine IFS in R can be formulated. Given data entries
(xi, yi)i=1,...,p where xi+1 > xi, and a number of transformations N , find the IFS that minimizes
the error:

Topt = argmin
T∈SΣ

gn(T)

= argmin
T∈SΣ

1
p

∑
i=1...p

‖ψ
α

(i)
1 ...α

(i)
n 0ω(T)− yi‖2

6.1.3 Results

We have tested our approximation method on several data sets, ranging from smooth curves to random
data. As expected, the approximation quality depends on the number of transformations N taken.

Figure 4 shows the approximation of a cubic curve y = 6(x− 1
2)3 with the method described previ-

ousely. The original curve contains 1000 points. When approximating with only 2 transformations, the
result is very bad. When the number of transformations becomes larger, the quality of approximation
is better.

Figure 5 shows the approximation of a random function that contains 100 points. With only 5
transformations, the result is not so bad. Increasing the number of transformations leads to a better
approximation. The upper limit of N is when we reach the number of data points: N = p. In this
case, the exact reconstruction is possible.

Remark: The method used to solve the approximation problem is not global. It means that
the result can be a local minimum.

6.2 Surface approximation

We want to approximate (s, t) ∈ [0, 1]2 7→ F (s, t) ∈ R with a projected IFS tree. The model is
described by two families of parameters: (P γ)γ∈Γ and (Tγ)γ∈Γ. The value of the associated address
function is:

ψαkω(P,T) = P γψβkω(Tγ),
= P γT γ

β1
...T γ

βl
cγk

The value of the sampling of F is:

ϕ(αkω) = ϕ((αsk
ω
s ) • (αtk

ω
t )),

= F (ϕI(αsk
ω
s ), ϕI(αtk

ω
t )),

= F (
js
Nn

,
jt
Nn

),
= zjs,jt .
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Figure 4: Approximation of a cubic polynomial curve (1000 points)
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Figure 5: Approximation of a random function (100 points)
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with

• k = ks • kt ∈ Ω = {0, N − 1} • {0, N − 1}

• α = αs • αt Péano code of the base N developpements of:
js
Nn

= ϕI(αsk
ω
s ),

jt
Nn

= ϕI(αtk
ω
t ).

Figure 6 represents the result of a surface approximation with N = 2. The sampling of F is an elevation
grid of size 257 × 257. In this example, a recursive approximation method has been applied, with a
simple error criterion based on a minimum PSNR value. PSNR is directly related to the definition of
gn(T):

PSNR(T) = 10 log10(
max
gn(T)

)

In this example, each patch is subdivided into four independant patches while PSNR is fewer than
40dB. Detailed method is presented in [GTB02].

(a) Original surface (b) Approximated surface

Figure 6: Approximation of the french “Massif central” mountain

6.3 Image compression

By using the same model as surfaces, we are able to perform image compression. The difference is
in the approximation method, that optimizes the rate/distortion ratio. Figure 7 shows an example
of image compression. For a bit rate of 0.12bpp, the corresponding error is PSNR=28.3dB, with the
following classical definition of PSNR:

PSNR(T) = 10 log10(
255
gn(T)

)

Detailed method is available in [GTB03, Gué02].
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(a) Original image: portion of pep-
pers

(b) Image compressed at 0.12bpp,
PSNR=28.3dB

Figure 7: Image compression example

7 Conclusion

We showed that analytical approach and methods using derivation properties can be used to perform
the fractal inverse problem. This problem can be formulated as an optimisation problem in an Hilbert
space. For a usefull family of fractal model based on affine IFS, the error function is analytical. Hence,
the optimisation problem has a non-linear classical formulation. This result has been experienced to
work practicaly on the simple case of IFS in R. Our previous work on complex cases such as surfaces
or images have a theoritical justification.
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[CK94] K. Culik and J. Karhumäki. Finite automata computing real functions. SIAM Journal on
Computing, 23(4):789–814, 1994.

[CK95] K. Culik and J. Kari. Inference Algorithms for WFA and Image Compression. In Yuval
Fisher, editor, Fractal Image Encoding and Compression, pages 235–320. Springer-Verlag,
1995.

[DL93] Ingrid Daubechies and Jeffrey C. Lagarias. Two-scale difference equations II. local regu-
larity, infinite products of matrices and fractals. SIAM. J. Math. Anal., 23(4):1031–1079,
July 1993.

[Edg90] Gerald A. Edgar. Measure, Topology, and Fractal Geometry. Springer Verlag, 1990.

[FX98] Zhigang Feng and Heping Xie. On Stability of Fractal Interpolation. Fractals, 6(3):269–
273, 1998.

[GB93] A Gupta and R Bajcsy. Volumetric segmentation of range images of 3D objects using
superquadrics models. CVGIP: Image understanding, 58(3):302–326, November 1993.

[GGN00] B Girod, G Greiner, and H Niemann, editors. Principles of 3D Image Analysis and
Synthesis. Kluwer Academic Publishers, 2000.
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