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Defect-mediated turbulence in ribbons of viscoelastic Taylor-Couette flow
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Transition to defect-mediated turbulence in the ribbon patterns observed in a viscoelastic Taylor-Couette flow
is investigated when the rotation rate of the inner cylinder is increased while the outer cylinder is fixed. In four
polymer solutions with different values of the elasticity number, the defects appear just above the onset of the
ribbon pattern and trigger the appearance of disordered oscillations when the rotation rate is increased. The
flow structure around the defects is determined and the statistical properties of these defects are analyzed in the
framework of the complex Ginzburg-Landau equation.
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I. INTRODUCTION

The addition of a small amount of polymers with high
molecular mass (M ∼ 106 g/mol) to a Newtonian solvent
brings viscoelastic properties to the resulting solutions. Under
shear with a rate γ̇ , polymer solutions exhibit viscoelastic
properties via the shear thinning, the relaxation time λ, and
the normal stress differences that do not exist in Newtonian
liquids [1]. The Taylor-Couette system that consists of a
flow confined in the gap between two coaxial differentially
rotating cylinders is one of the flow systems that is suitable
for investigation of the viscoelastic properties of polymer
solutions [2–16]. The flow in viscoelastic Taylor-Couette
system with a given radius ratio or curvature can be controlled
by the Taylor number Ta = Re(d/a)1/2 for the inertia and
flow curvature effects and by the elasticity number E = λ/τν

and the viscosity ratio S = ηp/η for the viscoelastic effects.
Here τν is the viscous diffusion time, d is the gap width,
a is the radius of the inner cylinder, η is the solution
viscosity, ηp = η − ηs represents the polymer contribution
to the solution viscosity, and ηs the solvent viscosity. The
elasticity number can be written as the ratio between the
Reynolds number Re = γ̇ τν and the Weissenberg number,
Wi = γ̇ λ, i.e., E = Wi/Re, and it characterizes the polymer
solution in a flow configuration with a characteristic length d.

For very small values of the elasticity number, the elastic
effects are very weak compared to inertia effects. In this case,
experiments with different polymer solutions [4–11,17] have
found a stabilization of the circular Couette flow, i.e., the
threshold Tac of the primary instability mode (Taylor Vortex
Flow) is increased compared to the Newtonian case. For high
values of the elasticity, E ∼ 1, the elastic effects are very
important compared to inertia effects. Pure elastic instability
is observed: the circular Couette flow bifurcates to a chaotic
state formed of the irregular in space and in time vortices
even at very small values of the Taylor number Tac [4,7].
For intermediate elasticity, E ∼ 10−2, the elastic and inertia
effects are comparable, the circular flow bifurcates to rotating
standing waves also called ribbons [4,7,16], which become
unstable to disordered oscillations as the control parameter Ta
is increased.

Theoretical analysis of the flow solutions using the
Oldroyd-B model [12,13] and direct numerical simulations
(DNSs) of the FENE-P model [14,15] have reproduced some
of the flow patterns observed in the experiments. In particular,
it was shown that the ribbons bifurcate surpercritically from
the base flow [12,13]. Recently Liu and Khomami [18]
proposed a simple mechanism based on the comparison
between elastic body force and centrifugal force to explain the
inertio-elastic turbulence in the Taylor-Couette flow. Latrache
et al. [16,19] have shown experimentally that, for polyethylene
oxide (PEO) solutions with E ∼ 0.01–0.05, when Ta is
increased, the ribbon pattern becomes unstable to ribbon
pattern with spatio-temporal defects before the occurrence of
the transient turbulent spots followed by permanent turbulent
spots coexisting with laminar zones. Then this regime of
spatio-temporal intermittency was replaced by the inertio-
elastic turbulence in which the size and the duration of the
laminar zones are comparable with those of the turbulent
zones. These different states (ribbon pattern with defects,
transient turbulent spots, or permanent turbulent spots) belong
to the disordered oscillations regime first reported in Ref. [4]
in the viscoelastic Taylor-Couette flow of high molecular
weight polyacrylamide solution almost two decades ago. The
states with spatio-temporal defects are called defect-mediated
turbulent (DMT) states [20]. To our best knowledge, no
detailed investigation of the defect-mediated turbulence in
viscoelastic flows has been reported so far. The present work is
focused on the characterization of the spatio-temporal defects
occurring in the ribbon patterns just above the supercritical
bifurcation from the laminar circular Couette flow, and it
supplements our previous work [16] which was centered on the
spatio-temporal intermittency and inertio-elastic turbulence.

The defect mediated chaos has been observed in many ex-
periments with Newtonian fluids (Bénard-Marangoni convec-
tion [21], Faraday waves [22,23], in Taylor-Dean flow [24], in
inclined layer thermal convection [25], in the torsional Couette
flow [26], in the counter-rotating Couette-Taylor flow [27])
and in experiments on electrohydrodynamic convection in
nematic liquid crystals [28,29]. Theoretical analysis of the
defects dynamics has been developed by Refs. [20,30–32]
in the framework of the complex Ginzburg-Landau equation
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(CGLE) describing the space-time dynamics of the complex
order parameter A of the field pattern:

∂A

∂t
= A + (1 + ic1)

∂2A

∂z2
− (1 − ic3)|A|2A, (1)

where t is the time, z is the space coordinate, and c1 and
c3 represent the linear and nonlinear dispersion coefficients.
This equation admits plane waves solutions that are linearly
unstable to the Benjamin-Feir instability above the Newell
line 1 − c1c3 = 0 in the plane (c1,c3). Above the Newell line,
different research groups working on numerical simulations
of the CGLE have found spatio-temporal chaotic regimes
without defects that were termed “phase turbulence” and
spatio-temporal chaotic states with defects that were termed
“defect-mediated turbulence” or “amplitude turbulence”
[33–37]. Recent reviews on defect dynamics can also be found
in Refs. [30,38].

In the present work, we will show that, in the small interval
of the control parameter Ta just above the transition from the
laminar circular Couette flow to the ribbon pattern, the perfect
ribbon state undergoes a Benjamin-Feir instability that leads,
when Ta is increased, to spatio-temporal defects associated
with strong amplitude variation of the ribbon pattern. The main
objective is to characterize the flow structure around a defect
and the statistics of the defects observed in four polymer solu-
tions with elasticity numbers E ∈ {0.011,0.020,0.046,0.137}
just above the threshold of the ribbon pattern. For each
solution, the increase of Ta leads to states in which the number
of defects first decreases and then increases with Ta. We have
determined the number of defects that occur during the relation
time and the associated statistics: the correlation time and the
correlation length, the lifetime of a defect, the laminar time,
and the distance between consecutive defects. The defects are
the source of the both spatial and temporal disorder.

The paper is organized as follows: Sec. II describes the
experimental setup and solution characterization. Results are
described in Sec. III, and they are discussed in Sec. IV.
Section V consists of our conclusions.

II. EXPERIMENTAL SETUP AND POLYMER
CHARACTERIZATION

The experimental setup consists of a Couette cell with
two coaxial horizontal cylinders. The inner cylinder is made
of black Delrin with a radius a = 4.46 cm, and the outer
cylinder is made of Plexiglass with a radius b = 5.05 cm.
The gap size is d = 0.59 cm and the working length L =
27.5 cm. The radius ratio is a/b = 0.883 and the aspect
ratio is � = L/d = 46.6. The outer cylinder is fixed, while
the inner cylinder is driven by a DC servomotor at variable
angular frequency 	 (the experimental control parameter).
The average shear rate in the flow is defined as γ̇ = 	a/d.
Polymer solutions were prepared by mixing a solution of
polyethyleneoxide (PEO) of large molecular mass (M ∼
106 g/mol) with 40 ml of isopropyl alcohol in 760 ml of
water. The experiments were performed for four solutions of
PEO with concentrations c ∈ {500,600,700,1200} ppm. The
resulting solutions have sufficiently low viscosities to avoid
the viscous heating-induced patterns that can occur in high-
viscosity polymer solutions [39]. Viscosity measurements
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FIG. 1. Master curve of the variation of the dynamic viscosity of
polymer solutions of PEO in 95% water–5% isopropyl alcohol with
the dimensionless shear rate λCγ̇ for three working concentrations.

revealed a shear-thinning behavior (Fig. 1), described by the
Carreau viscosity formula η = η0{1 + [λC(γ̇ )]2}−k , where η0

is the plateau viscosity, λC is the Carreau characteristic time,
and k is the shear-thinning index. The solution relaxation time
λ was extracted from the viscosity curve in the shear-thinning
zone as the time for which the viscosity reaches 0.95η0,
i.e., λ = λC(0.95−1/k − 1)−1/2. The polymer contribution to
the viscosity at the plateau (i.e., at low shear rates) is
ηp0 = η0 − ηs . We have determined the molecular relaxation
time λM using the Flory relation λM = ηsR

3
g/(kBT ) and the

coupling of size-exclusion chromatography and multiangle
laser light scattering to measure the gyration radius Rg [40]. We
found Rg = 1.65 10−7 m and λM = 10−3 s. The coefficients
of Carreau formula and relaxation times of the working
concentration are summarized in Table I. The two largest time
scales of the flow are the solution relaxation time λ (Table I)
and the viscous diffusion time τν = ρd2/η(γ̇ ) (Table II).

For flow visualization, we have added to polymer solutions
2% of Kalliroscope AQ 1000 suspension of highly anisotropic
reflective platelets. No significant change of the solution
viscosity due to these platelets was observed. A linear 1024-
pixel CCD camera recorded the reflected light intensity I (z)
from a line (parallel to the cylinder axis) with 8-bit sampling.
Recorded lines at regular intervals (0.2 s) are stacked together
to make space-time diagrams I (z,t) along a line of flow
patterns. The duration of the data recording is Trec over a length
Lrec; in most of the experiments, Trec = 18 618λ and Lrec =
41 d. In order to characterize quantitatively the hydrodynamic
fields in the neighborhood of the defects, we have used the
particle image velocimetry (PIV) to measure velocity fields in

TABLE I. Carreau characteristics for each polymer solutions.
The solution with concentration c = 1200 ppm was used for PIV
measurements.

c (ppm) η0 (mPa s) λC (s) k λ(s) S0 = ηp0/η0 λ/λM

500 5.13 0.12 0.078 0.088 0.83 88
600 7.40 0.16 0.098 0.122 0.88 122
700 10.21 0.29 0.105 0.233 0.92 233
1200 22.63 0.69 0.116 0.918 0.96 918
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TABLE II. Critical values of the Weissenberg number, Wic, the
Taylor number, Tac, for the appearance of the ribbon patterns from
laminar Couette flow for each polymer solution, and their critical
wave number qc and frequency fc.

c (ppm) η/η0 τν (s) E S Wic Tac qc fc

500 0.88 7.8 0.011 0.809 1.55 48.6 3.39 0.014
600 0.78 6 0.020 0.853 2.43 43.4 3.33 0.021
700 0.67 5 0.046 0.875 5.24 41.6 3.29 0.044
1200 0.66 6.7 0.137 0.961 11.53 41.9 2.2 0.15

meridional cross section, i.e., in the (r,z) plane [41,42]. These
measurements were performed in a vertical Tayor-Couette
cell with a = 4 cm and b = 5 cm and L = 45 cm designed
especially for PIV; it is immersed in a large rectangular tank
with a temperature fixed at T = 22 ◦C ± 0.2 ◦C.

III. RESULTS

Lengths are scaled by the gap width d and times are
scaled by the relaxation time λ for each concentration
(Table I). For high molecular mass PEO solutions with
small concentrations c < 400 ppm corresponding to E < 0.01
in our horizontal Taylor-Couette system, the laminar flow
bifurcates to stationary Taylor vortex flow [7]. The base flow
bifurcates to ribbon state for 500 < c < 800 ppm (Fig. 2)
and to disordered pattern for c > 800 ppm. The threshold Tac

depends on the concentration c or on the elasticity number E

of the polymer solution. The bifurcation to stationary Taylor
vortex and to the ribbon state are supercritical, no significant
hysteresis was found when increasing and decreasing Ta
around the critical value Tac in agreement with theoretical
predictions [12]. The bifurcation scenario in polymer solutions
with E < 0.01 was described in Ref. [7]; we will present the
results of the experiments performed in PEO solutions with
four different concentrations: c ∈ {500,600,700,1200} ppm.
In our flow systems, this range of concentrations corresponds
to elasticity number E from 0.011 to 0.137 where elastic and
hydrodynamic stresses become comparable when Ta = Tac

and the circular Couette flow bifurcates to a standing wave
also called a ribbon [Fig. 3(a)]. The ribbon state results from
the superposition of left and right traveling helicoidal waves
called spirals in the Taylor-Couette literature [43]. The left
and right spirals have almost the same values of the frequency
and of the axial wave numbers. It was found that the critical

FIG. 2. Transition sequences from circular Couette flow (CCF)
to the states of disordered oscillations in viscoelastic Taylor-Couette
flow with concentrations c ∈ {500,600,700}: Tac, Tad , Tai , and Tat

are the threshold values of the ribbon pattern, of the defects mediated
turbulence, of the spatio-temporal intermittency and of the inertio-
elastic turbulence [16], respectively. Tau is the lower boundary of the
unexplored yet zone.

Taylor number Tac decreases with elasticity E while the critical
Weisenberg number Wic increases with E and with S [7];
critical values are given in Table II. The ribbon pattern was
also obtained in nonlinear stability analysis of Oldroyd-B flow
equations [12,44], but this flow model does not contain shear
thinning. We note that the ribbons appear in the shear-thinning
zone where effective viscosity η(γ̇ ) is lower than the viscosity
of Newtonian plateau η0. The main results to be analyzed are
illustrated in Figs. 3, 4, and 5.

A. Ribbon patterns with defects

Increasing the angular velocity of the inner cylinder, the
ribbon pattern [Fig. 3(a)] undergoes a Benjamin-Feir insta-
bility characterized by the occurrence of side-band frequency
peaks located at f0 ± �f , i.e., around the fundamental peak
in the frequency spectrum [Fig. 3(d)]. For E = 0.011, the
fundamental frequency of the ribbon pattern f0 decreases as
Ta increases while the axial wave number remains almost
constant within the experimental precision. The ribbon pattern
transits to a state of ribbons with spatio-temporal defects
[Fig. 3(b)] that occur erratically in time and space. A further
increase of Ta leads to the spatio-temporal intermittency (STI)
regime [Figs. 2, 3(c)]. The regimes of disordered oscillations
[Figs. 2, 3(b) and 3(c)] are characterized by the increase of the
background noise and of the width of the peaks in the pattern
spectra [Figs. 3(e) and 3(f)].

The defects are observed in the ribbon pattern just above the
threshold in the interval (0.02 < ε = (Ta − Tac)/Tac < 0.15
[Fig. 4(b)]. For E = 0.011, they occur above ε ≈ 0.02, for
E = 0.02, they are observed above ε ≈ 0.07, and for E =
0.046, they occur above ε ≈ 0.04.

Using the complex demodulation, we have extracted the
phase and amplitude of the left [Figs. 4(a) and 4(d)] and of the
right spiral [Figs. 4(c) and 4(f)]. Comparison of space-time
diagrams of the amplitude and phase for each spiral shows
the existence of two defects of opposite charges: ν+ = 1 for
right defect when the phase presents a positive discontinuity
(+2π ) and ν− = −1 for left defect when the phase presents
a negative discontinuity (−2π ). The localizations of the right
and left defects are illustrated by the black and white dashed
squares respectively [Figs. 4(a) and 4(c)]. In the vicinity of the
right defect, the amplitude of right spiral decreases strongly
and vanishes in its core, while the amplitude of the left spiral
has a weak change [Figs. 4(d)—4(f)]. The same behavior of
amplitudes of the right and left spirals is observed for left defect
[Figs. 4(d)–4(f)]. We observe that the defects are associated
with strong amplitude variation of the ribbons [Figs. 3(b)
and 4(b)]. In the most of cases, the defects nucleate pairwise
(right and left defects) (Figs. 3–5).

B. Velocity field of the ribbon patterns

The radial and axial velocity components of the ribbon
patterns without and with defects have been measured using the
PIV for the solution with E = 0.137. The space-time diagrams
of the radial velocity component of the ribbons without
and with defects are presented respectively in Fig. 5(a) for
Ta = 41.9 and Fig. 5(d) for Ta = 46. To get more information
on the behavior on ribbons and defects, we have filtered the
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FIG. 3. Space-time diagrams and frequency power spectra of pattern states for E = 0.011: (a, d) ribbons without defects for Ta = 49.05;
(b, e) ribbons with defects for Ta = 50.1; (c, f) spatio-temporal intermittency regime for Ta = 54.82. The inset of Fig. 3(d) represents a zoom
of power spectrum in the neighborhood of fundamental frequency.

right [Figs. 5(b) and 5(e)] and left [Figs. 5(c) and 5(f)] spirals
of radial velocity components. For the ribbon state without
defects, the velocity magnitudes of the right and left spirals

are comparable. For the ribbons with defects [Fig. 5(d)], the
velocity field of the right spiral [Fig. 5(e)] shows that the
radial velocity component vanishes (u′

r = 0) in the defects.
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FIG. 4. Demodulation of the ribbon state observed at Ta = 44.5 and E = 0.046: (b) ribbons with defects the black and white dashed
squares are the positions of right and left defects respectively; (a, d) phase and amplitude of the left spiral; (c, f) phase and amplitude of the
right spiral; (e) spatial profiles of the amplitudes |A| and |B| of the right and left spirals in the vicinity of the core of defects. Black zones in
amplitudes correspond to the neighborhood of the defects.
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FIG. 5. Spatiotemporal diagrams of the radial velocity compo-
nent for ribbon state without defects (a) for Ta = 41.9 and with
defects (d) for Ta = 46. Spatiotemporal diagrams of the the right
(b, e) and left (c, f) spirals for ribbons without defects and with
defects. The velocities are scaled by d/λ. The data correspond to a
working solution with E = 0.137.

We found also that the axial velocity component vanishes
in the defects, i.e., u′

z = 0. The incompressibility condition
implies that the azimuthal component of the perturbation also
vanishes, i.e., u′

θ = 0. These results are in a good agreement
with those obtained by Refs. [27,42] in the study of the
amplitude of defects in spiral pattern observed in Newtonian
Couette-Taylor flow between counter-rotating cylinders and
in the Taylor-Dean system [24]. They confirm the fact that
the spatio-temporal defects are characterized by vanishing
amplitude A = 0 [20,29,32].

C. Evolution of the mean number of defects with Ta

To measure the number of defects observed in the patterns,
we have digitized the space-time plot of the amplitude
obtained after the complex demodulation of the space-time
diagrams (Fig. 6). The dark regions in Fig. 6(b) correspond
to depressions in the pattern amplitude [Fig. 6(a)] and are
associated with defects. The amplitude of the ribbon pattern
being zero in the core of the defects, a digitization process
(black: A = 0 for defects, white: A > 0 for ribbon pattern)
leads to the black and white pattern [Fig. 6(c)]. Then we can
count the number n of defects during a whole experimental

TABLE III. Fit coefficients of the defect density in different
systems using the formula (3). For the present work, c3 = Ta and
c

′′
3 = Tad

System E a b c
′′
3

Ginzburg-Landau 0 0.66 0.98 0.70
equation [37]
DMC in torsional 0 5 4 38.5
Couette flow [26]
Present work: 0.011 0.058 ± 0.004 0.25 ± 0.04 49.8

0.020 0.008 ± 0.001 0.86 ± 0.05 46.6
0.046 0.032 ± 0.001 6.0 ± 0.08 43.5

run and determine the mean number of defects as

〈n〉 = n/T̃rec = nλ/Trec, (2)

where T̃rec is the dimensionless duration of data recoding. The
variation of 〈n〉 with the control parameter is plotted in Fig. 7(a)
for three polymer solutions. We observe that, for each solution
(i.e., each value of the elasticity number E), there exists a value
of Ta = Tad below which the number of defects decreases and
above which, the number of defects increases. For all the three
working solutions, Tad/Tac ∈ [1.025,1.075], meaning that the
ribbon patterns become unstable to spatial modulations just
after their threshold.

The value Tad , which is a function of the elasticity number
E (Table III), can be considered as the threshold of the
defect mediated turbulence (DMT). In fact, the dynamics
of the defects observed in our experiment resembles in
some aspects that observed in the transition between phase
turbulence and defect turbulence of the complex Ginzburg-
Landau equation [33,37]. After the analysis of the formulas
suggested by different studies, we found that our data of the
number of defects for Ta > Tad are best fitted by the functional
relation suggested by [37]

〈n〉 = a exp

( −b

c3 − c
′′
3

)
, (3)

where the nonlinear dispersion coefficient c3 in the Ginzburg-
Landau equation serves as a control parameter, while a, b, and
c

′′
3 are free parameters. The best fit coefficients of this relation

with our experimental results yields the values of a, b, and c
′′
3

given in Table III; Ta plays the same role as c3 and c
′′
3 = Tad .

The relation (3) is the analog of the Arrhenius law of the
variation of the number of defects with the temperature T of a
crystal. The coefficient b is the analog of the formation energy
of a defect in the crystal, while Ta − Tad plays the role of the
thermal energy kBT where kB is the Boltzmann constant.

D. Correlation time and correlation length

Another way to characterize the behavior of the defects
near Tad consists in the determination of the temporal and
spatial correlation functions of the ribbon patterns without and
with defects [the insets of Figs. 7(b) and 7(c) are examples
of temporal and spatial correlation functions respectively] and
extracted from them the correlation time and length for Ta ∈
[Tac,Tai] [Figs. 7(b) and 7(c)]. For ribbon patterns without
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FIG. 6. Space-time diagram of: (a) ribbon pattern with defects, (b) amplitude of the pattern, (c) digitized amplitude for E = 0.020 and
Ta = 46.2.

defects, the correlation length weakly decreases (by a factor
1.2) with Ta while the correlation time decreases significantly
with Ta by a factor 3 from values ξ and τ at Tac. As soon as the
defects appear in the pattern, the correlation time τ drop to a
small value by factor 10 and the correlation length ξ is reduced
by a factor 5. In the neighborhood of the value Tad , both τ and
ξ first increase for Ta < Tad and then decrease for Ta > Tad .
The data were fitted by power law in the neighborhood of Tad

as follows:

τ ∝
{

(Tad − Ta)γ1 , Ta < Tad

(Ta − Tad )γ2 , Ta > Tad
(4)

and

ξ ∝
{

(Tad − Ta)δ1 , Ta < Tad

(Ta − Tad )δ2 , Ta > Tad
. (5)

The best fit coefficients γi,δi,i = 1,2 are given in Table IV.
These power law fits work just in the neighborhood of Tad .
Exponential fits have been tested to capture the variation of τ

and ξ on the whole interval Tad < Ta < Tai , but they missed
most of the points near Tad .

E. Laminar and defect times in the ribbon patterns

Figure 6(c) allows us to measure the lifetime T i
def of

the defect number i, the time Tlam and the axial distance

TABLE IV. Fit coefficients for the variations of the mean laminar
time the correlations time and length, after the relation (7), (4), and (5)
with Ta.

E Tad A1 β A2 B γ1 γ2 δ1 δ2

0.011 49.8 37 −1.5 143 −0.32 −0.2 −0.4 −0.2 −0.28
0.020 46.6 49 −0.7 200 −0.16 −0.4 −0.46 −0.23 −0.23
0.046 43.5 150 −1.4 50 −2.4 −0.4 −0.42 −0.26 −0.28

Llam separating the occurrence of two consecutive defects as
illustrated in Fig. 8(a). The mean lifetime of defects 〈Tdef〉 is
calculated as

〈Tdef〉 =
n∑

i=1

T i
def/n. (6)

The variation of the mean lifetime of defects with T a is
given in Fig. 8(b) for the three values of E. The mean lifetime
of defects 〈Tdef〉 is larger for solutions with small values of
E. It is much larger than the relaxation time while it remains
comparable to the diffusion time for the working solutions(i.e.,
〈Tdef〉λ/τν ≈ 1).

The mean laminar time 〈Tlam〉 [Fig. 8(a)] increases with
Ta for Ta < Tad , while for Ta > Tad , it decreases with Ta
[Fig. 8(c)]. The plots of 〈Tlam〉 exhibit a net divergence near
Tad ; this suggests that Tad can be considered as the onset of
the defect-mediated chaos. The behavior of 〈Tlam〉 near Tad

can be fitted by a power law for Ta < Tad and an exponential
decay for Ta > Tad as

〈Tlam〉 =
{

A1(Tad − Ta)β, Ta < Tad

A2 exp[−B/(Ta − Tad )], Ta > Tad
. (7)

The fit coefficients A1, A2, β, and B are given in Table IV.
We found that 〈Tlam〉 is comparable with τ in agreement with

the results of Shraiman et al. [33]. The mean laminar distance
between defects exhibit a similar divergence-like behavior
as 〈Tlam〉 in the neighborhood of Tad with different power
exponents.

The divergence behavior of the laminar time has been
reported in the numerical simulations of the Ginzburg-Landau
equation [33,35] and in the experiment on torsional Couette
flow [26]. As one can see from Fig. 8(c), the fluctuations of the
laminar time are very strong, especially near the transition to
DMT. We have found that the inverse of the mean laminar time
is almost equal the mean number of defects: 〈T −1

lam〉 ≈ 〈n〉. We
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FIG. 7. Variation with Ta: (a) of the mean number of defects for
three values of the elasticity number: E = 0.011 (stars), E = 0.020
(squares), and E = 0.046 (circles): the solid lines are the law (3)
proposed by Ref. [37]; (b) of the correlation time for E = 0.020, (c)
of the correlation length for E = 0.020. The insets of panels (b) and
(c) are examples of the temporal and spatial correlation functions,
respectively. The secondary peaks in the spatial correlation function
come from the subharmonic mode.

have performed a statistical analysis of laminar time between
two consecutive defects for different values of Ta. Figure 9
represents an example of cumulative histogram of laminar
time for E = 0.046 and Ta = 47.6. The histograms exhibit

700λ
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FIG. 8. (a) Digitized amplitude for E = 0.020 and Ta = 46.2
[extracted from Fig. 6(c)]. The variation with Ta of (b) the mean
lifetime of defects, (c) the laminar time between two consecutive
defects, for three values of E: E = 0.011 (stars), E = 0.020
(squares), and E = 0.046 (circles). The solid lines are the fits from
the formula (4). The error bars represent the standard deviations.

an exponential decrease for all values of Ta and E: Nlam ∝
exp(−Tlam/Tclam), where Tclam is characteristic laminar time.
The exponential decrease of the number of the laminar times
means that the inverse of the characteristic laminar time is
equal to the mean number of defects [26]. We have calculated
the evolution of the inverse of the characteristic laminar time
(Tc−1

lam) as function as the mean number of defects 〈n〉. We
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FIG. 9. Histogram of the laminar time between two consecutive
defects in ribbons for Ta = 47.4 and E = 0.046

have realized that the inverse of characteristic time is larger
than the mean defect number, especially for the large values
of mean number of defects, i.e., Tc−1

lam > 〈n〉. This anomalous
behavior can be corrected by subtracting the total cumulated
duration of lifetime of defects from the acquisition duration in
the calculation of the mean number of defects:

〈ncor〉 = n/

(
T̃rec −

n∑
i=1

T i
def

)
. (8)

Figure 10 shows the evolution of the inverse of the
characteristic laminar time; it is very close to the corrected
mean number of defects (Tc−1

lam ≈ 〈ncor〉) for different values of
Ta and E. This result confirms the one obtained by Cros and Le
Gal for defect-mediated chaos in torsional Couette flow [26].
For these cases of defect-mediated chaos, the nucleation of
a defect freezes the dynamics of the pattern around the
defect. This result also validates the role of a homoclinic
orbit in the transition scenario proposed by Afraimovich and
Bunimovich [35].
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FIG. 10. Variation of the characteristic laminar time with the
corrected mean defect number for the three values of E: E = 0.011
(stars), E = 0.020 (squares), and E = 0.046 (circles)
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FIG. 11. Variation with ε̃ of the ratio of the mean lifetime of
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the elasticity number, E = 0.011 (stars), E = 0.020 (squares), and
E = 0.046 (circles). The error bars represent the standard deviations

F. Evolution of ribbon with defects into ribbons with spots

In order to characterize the evolution of ribbon patterns
with defects into disordered ribbon pattern with spots when
increasing Ta, we have compared the lifetime of defects with
the laminar time between two defects. Figure 11 shows that
ratio Tdef/Tlam increases with ε̃ = (Ta − Tad )/Tad . The ratio
Tdef/Tlam depends on the value of E and varies between 0.3
and 0.7 when ε̃ 
 0.1. The mean lifetime of defect becomes
comparable with the average time of turbulent spot [16]. This
result confirms the theoretical prediction of Afraimovich and
Bunimovitch [35] that transition occurs when the lifetime of
defects is close to the laminar time (Tdef ≈ Tlam) in the limit
of large defect density. We have measured also the distance
between two consecutive defects, and we have found that,
near the threshold of the STI regime, the mean distance
is close to the correlation length (〈Llam〉 ≈ ξ ) for the three
polymer solutions, in agreement with theoretical findings of
Coullet et al. [20] who showed that the transition to developed
turbulence occurs when the correlation length of the system
becomes of the same order of the mean distance between
defects. These results confirm the fact that the defects are
the precursors of the spots in ribbon patterns.

IV. DISCUSSION

The disordered oscillations regime first observed in PAAM
solutions with Mw = 5–6 MDa in a Taylor-Couette system
with radius ratio of 0.708 and a gap width of 0.785 cm and
an axial aspect ratio of 54 by Ref. [4] were also observed
in our Taylor-Couette system with different geometrical
parameters and with different PEO solutions. These disordered
oscillations can be subdivided into three states: ribbon patterns
with spatio-temporal defects, ribbon patterns with transient or
permanent spots and disordered state in which the laminar and
turbulent spots have almost the same size (which was called
inertio-elastic turbulence in Ref. [16]).

The transition from laminar viscoelastic Couette flow of
ribbon state is supercritical so that the dynamics of ribbon
pattern can be described by the coupled complex Ginzburg-
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Landau equations with two opposite group velocities [45]. We
have shown that the defects appear on either right traveling
or left traveling spirals that compose the ribbon pattern; so
it is reasonable to analyze the results in the framework of
the complex Ginzburg-Landau equation valid for one spiral
pattern. The PIV measurements in the meridional plane of the
flow have confirmed that in the ribbon state without defects,
the right and left spirals have almost the same amplitude.
Moreover, the amplitude of the velocity vanishes in the core
of the defect in agrement with theoretical predictions.

The visualization supplemented with demodulation of the
space-time diagrams of patterns has allowed us to make a
statistical analysis of the defects dynamics in the disordered
ribbon states. The mean number of defects, their lifetime,
and the laminar time together with their correlation time and
length have been measured from these diagrams, and from
their behavior, a net threshold to defect-mediated turbulence
in the viscoelastic Taylor-Couette flow has been determined.

The present study performed in the viscoelastic Taylor-
Couette flow brings a supplementary proof of the universality
of the DMT in dissipative systems. In fact, the DMT was
observed in different systems on the background of the
oscillatory states: traveling waves in electrohydrodynamic
convection in a thin layer of nematic liquid crystal [28],
traveling inclined vortices in the Taylor-Dean system [24], a
periodic spiral wave pattern in the torsional Couette flow [26],
a state of undulations in the inclined layer convection [25], and
an oscillatory transition phase in the Faraday waves [23]. This
universality is described by the complex Ginzburg-Landau
equation, which possesses a state diagram spanned by (c1,c3)
in which the defect states can be situated [33]. The transition
to DMT in the experiments [23,25,28] occurred continuously
from the state without defects (the phase turbulence) to
the amplitude defect turbulence by crossing the line L1 in
the plane (c1,c3). In the present experiment, there exists
defects before Tad whose mean number decreases towards
< n >= 0 at Tad as Ta increases from below, and then for
Ta > Tad , the mean number of defects increases with Ta.
The correlation time and length together with the laminar
time and distance between defects exhibit a divergence-like
behavior near Tad , suggesting that Tad represents a threshold
to the defect-mediated turbulence. The existence of the defects
before Tad whose number decreases towards zero when Ta
approaches Tad from below can be compared to the existence
of bichaotic region between lines labeled L2 and L3 in the

plane (c1,c3) of the CGLE. A similar behavior of the number
of the defects was observed in the torsional Couette flow [26].
The existence of these defects in the present experiment and
in Ref. [26] may be attributed to the length of the experiment,
which is not large enough to allow the spatial modulation of the
pattern to relax before generating space-time defects [34,36].

V. CONCLUSION

In this study, we have performed velocity measurement in
the meridional plane of the flow and the statistical description
of the transition of the ribbon pattern to defects-mediated
turbulence in viscoelastic solutions in the Taylor-Couette
system when increasing the control parameter Ta for a given
elasticity number E. The relaxation time of the viscoelastic
solutions has been used to scale the temporal properties of
defects. We have found that the radial and axial velocity
components vanish in the core of a spatio-temporal defect.
The complex demodulation of the space-time diagrams of the
ribbon patterns and their digitization for defects detection have
allowed us to characterize in some detail the generation of
disordered oscillations observed in viscoelastic Taylor-Couette
flows when the first bifurcation from laminar state leads to a
ribbon pattern. The variations of the main characteristics of
the spatio-temporal defects with the flow control parameters
Ta and E have been described and compared to the theoretical
results from the complex Ginzburg-Landau equation. For
each working viscoelastic solution, the curves of variation
of the mean number of defects and of the correlation time
and correlation length exhibit a divergence-like behavior near
Tad corresponding to the transition to the defect mediated
turbulence. The latter is one of the states that were coined
“disordered oscillations” to characterize the higher modes of
the ribbon pattern in viscoelastic flows in the Taylor-Couette
flow [4].
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[36] P. Manneville and H. Chaté, Phase turbulence in the two-
dimensional complex Ginzburg-Landau equation, Physica D 96,
30 (1996).

[37] D. A. Egolf and H. S. Greenside, Characterization of the
Transition from Defect- to Phase-Turbulence, Phys. Rev. Lett.
74, 1751 (1995).

[38] I. S. Aranson and L. Kramer, The world of the complex
Ginzburg-Landau equation, Rev. Mod. Phys. 74, 99 (2002).

[39] U. A. Al-Mubaiyedh, R. Sureshkumar, and B. Khomami,
Influence of energetics on the stability of viscoelastic Taylor-
Couette flow, Phys. Fluids 11, 3217 (1999).

[40] M. Doi and S. F. Edwards, The Theory of Polymer Dynamics,
Oxford Science Publications (Oxford University Press, Oxford,
1994).

[41] N. Abcha, N. Latrache, F. Dumouchel, and I. Mutabazi, Quali-
tative relation between reflected light intensity by Kalliroscope
flakes and velocity field in the Couette-Taylor flow system, Exp.
Fluids 45, 85 (2008).

[42] I. Mutabazi, N. Abcha, O. Crumeyrolle, and A. Ezersky,
Application of the particle image velocimetry to the Couette-
Taylor flow, in The PIV Characteristics, Limits and Possible
Applications, edited by G. Cavazzini (InTech, Rijeka, 2012),
Chap. 7, pp. 177–202.

[43] P. Chossat and G. Iooss, The Couette-Taylor Problem (Springer,
New York, 1994).

[44] Y. L. Joo and E. S. G. Shaqfeh, The effects of inertia on the
viscoelastic Dean and Taylor-Couettte flow instabilities with
applications to coating flows, Phys. Fluids A 4, 2415 (1992).

[45] M. C. Cross and P. C. Hohenberg, Pattern formation outside
equilibrium, Rev. Mod. Phys. 65, 851 (1993).

043126-10

http://dx.doi.org/10.1122/1.3626584
http://dx.doi.org/10.1122/1.3626584
http://dx.doi.org/10.1122/1.3626584
http://dx.doi.org/10.1122/1.3626584
http://dx.doi.org/10.1122/1.4798549
http://dx.doi.org/10.1122/1.4798549
http://dx.doi.org/10.1122/1.4798549
http://dx.doi.org/10.1122/1.4798549
http://dx.doi.org/10.1016/0377-0257(93)80033-8
http://dx.doi.org/10.1016/0377-0257(93)80033-8
http://dx.doi.org/10.1016/0377-0257(93)80033-8
http://dx.doi.org/10.1016/0377-0257(93)80033-8
http://dx.doi.org/10.1098/rspa.1994.0132
http://dx.doi.org/10.1098/rspa.1994.0132
http://dx.doi.org/10.1098/rspa.1994.0132
http://dx.doi.org/10.1098/rspa.1994.0132
http://dx.doi.org/10.1103/PhysRevLett.97.054501
http://dx.doi.org/10.1103/PhysRevLett.97.054501
http://dx.doi.org/10.1103/PhysRevLett.97.054501
http://dx.doi.org/10.1103/PhysRevLett.97.054501
http://dx.doi.org/10.1017/S0022112008004710
http://dx.doi.org/10.1017/S0022112008004710
http://dx.doi.org/10.1017/S0022112008004710
http://dx.doi.org/10.1017/S0022112008004710
http://dx.doi.org/10.1103/PhysRevE.86.056305
http://dx.doi.org/10.1103/PhysRevE.86.056305
http://dx.doi.org/10.1103/PhysRevE.86.056305
http://dx.doi.org/10.1103/PhysRevE.86.056305
http://dx.doi.org/10.1002/aic.690150328
http://dx.doi.org/10.1002/aic.690150328
http://dx.doi.org/10.1002/aic.690150328
http://dx.doi.org/10.1002/aic.690150328
http://dx.doi.org/10.1017/jfm.2013.544
http://dx.doi.org/10.1017/jfm.2013.544
http://dx.doi.org/10.1017/jfm.2013.544
http://dx.doi.org/10.1017/jfm.2013.544
http://dx.doi.org/10.1088/1742-6596/137/1/012022
http://dx.doi.org/10.1088/1742-6596/137/1/012022
http://dx.doi.org/10.1088/1742-6596/137/1/012022
http://dx.doi.org/10.1088/1742-6596/137/1/012022
http://dx.doi.org/10.1103/PhysRevLett.62.1619
http://dx.doi.org/10.1103/PhysRevLett.62.1619
http://dx.doi.org/10.1103/PhysRevLett.62.1619
http://dx.doi.org/10.1103/PhysRevLett.62.1619
http://dx.doi.org/10.1051/jphys:01987004804056900
http://dx.doi.org/10.1051/jphys:01987004804056900
http://dx.doi.org/10.1051/jphys:01987004804056900
http://dx.doi.org/10.1051/jphys:01987004804056900
http://dx.doi.org/10.1103/PhysRevE.54.R1052
http://dx.doi.org/10.1103/PhysRevE.54.R1052
http://dx.doi.org/10.1103/PhysRevE.54.R1052
http://dx.doi.org/10.1103/PhysRevE.54.R1052
http://dx.doi.org/10.1103/PhysRevLett.104.184507
http://dx.doi.org/10.1103/PhysRevLett.104.184507
http://dx.doi.org/10.1103/PhysRevLett.104.184507
http://dx.doi.org/10.1103/PhysRevLett.104.184507
http://dx.doi.org/10.1007/s100510050018
http://dx.doi.org/10.1007/s100510050018
http://dx.doi.org/10.1007/s100510050018
http://dx.doi.org/10.1007/s100510050018
http://dx.doi.org/10.1103/PhysRevLett.88.034501
http://dx.doi.org/10.1103/PhysRevLett.88.034501
http://dx.doi.org/10.1103/PhysRevLett.88.034501
http://dx.doi.org/10.1103/PhysRevLett.88.034501
http://dx.doi.org/10.1103/PhysRevE.70.016309
http://dx.doi.org/10.1103/PhysRevE.70.016309
http://dx.doi.org/10.1103/PhysRevE.70.016309
http://dx.doi.org/10.1103/PhysRevE.70.016309
http://dx.doi.org/10.1016/j.physleta.2010.06.019
http://dx.doi.org/10.1016/j.physleta.2010.06.019
http://dx.doi.org/10.1016/j.physleta.2010.06.019
http://dx.doi.org/10.1016/j.physleta.2010.06.019
http://dx.doi.org/10.1103/PhysRevLett.62.756
http://dx.doi.org/10.1103/PhysRevLett.62.756
http://dx.doi.org/10.1103/PhysRevLett.62.756
http://dx.doi.org/10.1103/PhysRevLett.62.756
http://dx.doi.org/10.1103/PhysRevLett.63.1237
http://dx.doi.org/10.1103/PhysRevLett.63.1237
http://dx.doi.org/10.1103/PhysRevLett.63.1237
http://dx.doi.org/10.1103/PhysRevLett.63.1237
http://dx.doi.org/10.1016/S0167-2789(99)00068-8
http://dx.doi.org/10.1016/S0167-2789(99)00068-8
http://dx.doi.org/10.1016/S0167-2789(99)00068-8
http://dx.doi.org/10.1016/S0167-2789(99)00068-8
http://dx.doi.org/10.1103/PhysRevLett.85.86
http://dx.doi.org/10.1103/PhysRevLett.85.86
http://dx.doi.org/10.1103/PhysRevLett.85.86
http://dx.doi.org/10.1103/PhysRevLett.85.86
http://dx.doi.org/10.1098/rspa.2009.0002
http://dx.doi.org/10.1098/rspa.2009.0002
http://dx.doi.org/10.1098/rspa.2009.0002
http://dx.doi.org/10.1098/rspa.2009.0002
http://dx.doi.org/10.1016/0167-2789(92)90001-4
http://dx.doi.org/10.1016/0167-2789(92)90001-4
http://dx.doi.org/10.1016/0167-2789(92)90001-4
http://dx.doi.org/10.1016/0167-2789(92)90001-4
http://dx.doi.org/10.1088/0951-7715/7/1/007
http://dx.doi.org/10.1088/0951-7715/7/1/007
http://dx.doi.org/10.1088/0951-7715/7/1/007
http://dx.doi.org/10.1088/0951-7715/7/1/007
http://dx.doi.org/10.1016/0167-2789(94)00182-P
http://dx.doi.org/10.1016/0167-2789(94)00182-P
http://dx.doi.org/10.1016/0167-2789(94)00182-P
http://dx.doi.org/10.1016/0167-2789(94)00182-P
http://dx.doi.org/10.1016/0167-2789(96)00045-0
http://dx.doi.org/10.1016/0167-2789(96)00045-0
http://dx.doi.org/10.1016/0167-2789(96)00045-0
http://dx.doi.org/10.1016/0167-2789(96)00045-0
http://dx.doi.org/10.1103/PhysRevLett.74.1751
http://dx.doi.org/10.1103/PhysRevLett.74.1751
http://dx.doi.org/10.1103/PhysRevLett.74.1751
http://dx.doi.org/10.1103/PhysRevLett.74.1751
http://dx.doi.org/10.1103/RevModPhys.74.99
http://dx.doi.org/10.1103/RevModPhys.74.99
http://dx.doi.org/10.1103/RevModPhys.74.99
http://dx.doi.org/10.1103/RevModPhys.74.99
http://dx.doi.org/10.1063/1.870183
http://dx.doi.org/10.1063/1.870183
http://dx.doi.org/10.1063/1.870183
http://dx.doi.org/10.1063/1.870183
http://dx.doi.org/10.1007/s00348-008-0465-9
http://dx.doi.org/10.1007/s00348-008-0465-9
http://dx.doi.org/10.1007/s00348-008-0465-9
http://dx.doi.org/10.1007/s00348-008-0465-9
http://dx.doi.org/10.1063/1.858483
http://dx.doi.org/10.1063/1.858483
http://dx.doi.org/10.1063/1.858483
http://dx.doi.org/10.1063/1.858483
http://dx.doi.org/10.1103/RevModPhys.65.851
http://dx.doi.org/10.1103/RevModPhys.65.851
http://dx.doi.org/10.1103/RevModPhys.65.851
http://dx.doi.org/10.1103/RevModPhys.65.851



