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A B S T R A C T

The dynamic molecular mobility of poly(2-hydroxypropyl methacrylate) (PHPMA) base polyurethane (PU) was
studied over a broad range of frequency and temperature by combining dynamic dielectric spectroscopy and
dynamic mechanical analysis. Two hydrated levels were considered in this study: dry and room humidity states.
In dry state, two secondary relaxations γ and β are identified. And in room humidity state, a βsw mode is pointed
out. These modes are well known in poly(hydroxylalkyl methacrylate)s. The main α relaxation is influenced by
humidity and crosslinks. The Kramers-Kronig transform is used to reveal an ionic conductivity σionic. Relaxation
times extracted from dielectric and mechanical analyses are coherent for PU and PHPMA. This correlation allows
us to propose an interpretation of relaxations at a molecular level.

1. Introduction

Poly(hydroxylalkyl methacrylate)s base polyurethane (PU) coatings
are widely used in the coating industry [1,2]. The PU is classically
obtained by the chemical reaction of polyol and isocyanate. A better
understanding of relationships between its macromolecular dynamic
and structure is necessary to improve these material properties for
surface applications.

In previous works, spectroscopic studies have been devoted to the
molecular mobility of poly(alkyl methacrylate)s below Tg [3–19].
Although the mechanical and dielectric behaviors of poly(2-hydro-
xyethyl methacrylate) (PHEMA) has been extensively studied [20–32],
there is a paucity of academic data on the poly(2-hydroxypropyl
methacrylate) (PHPMA). PHEMA has a primary alcohol while PHPMA
has a secondary alcohol. The reaction with isocyanate is slowed down
with a secondary alcohol located on an ester side chain [33]. This
increase of reaction time with PHPMA permits to have an acceptable
time to apply the coating.

The aim of this work is to study the molecular dynamics of PHPMA
by dielectric and mechanical relaxation spectroscopy. The effects of
hydration and crosslinking of PHPMA on the relaxation modes are
shown and compared with the abundant literature on the water
influence on the poly(hydroxylalkyl methacrylate)s relaxations by
differential scanning calorimetry [33–40], dynamic dielectric spectro-
scopy [26,29,42–44] and dynamic mechanical analysis [45,46].

2. Experimental section

2.1. Materials

The PU coating is a two components system: PHPMA, MACRYNAL®
VSM 6299w/42WA (Allnex, Belgium), in 40 wt% water; and Easaqua™
X D 401 (Vencorex, France) composed of hexamethylene diisocyanate,
isocyanurate (45 wt%) and 3-isocyanatomethyl-3,5,5-trimethylcyclo-
hexyl isocyanate (30 wt%) in 15 wt% n-butyl acetate. The two parts
are mixed at room temperature (ratio 3:1). The mixture is sprayed with
a High Volume Low Pressure (HVLP) spray gun. The curing process is
30 min at 80 °C. In the following sections, PU is referred to as cross-
linked PHPMA with a degree of crosslinking of 75% determined by
infrared transmission and PHPMA as the linear base.

3. Methods

3.1. Differential scanning calorimetry

Differential scanning calorimetry (DSC) experiments were carried
out in a DSC 2920 apparatus (TA-Instrument, USA) under nitrogen gas
at several heating rates from −60 to 150 °C. The samples weight varied
from 5 to 10 mg and they are sealed in aluminum pans. The equivalent
frequency feq ,DSC [47] depends on the heating rate following the
equation:
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where v is the heating rate, a is a constant (a~1), δT is the mean
temperature fluctuation.

The associated relaxation time can be determined:

τ
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eq DSC
,

, (2)

3.2. Dynamic mechanical analysis

Dynamic mechanical analysis (DMA) was performed using an ARES
G1 strain controlled rheometer (Rheometrics Scientific, USA).
Experiments were carried out in rectangular torsion mode, over the
temperature range from −145 to 150 °C at constant angular frequen-
cies, with an heating rate of 3 °C/min. PU samples were sprayed on
silicone mold with 45 mm length and 10 mm width. After the curing
process, the sample thickness is approximately 500 μm.

3.3. Dynamic dielectric spectroscopy

A dynamic dielectric spectrometer (DDS) BDS 4000 (Novocontrol,
Germany) was used in the frequency range from 10−2 to 10+6 Hz
between −150 and 150 °C by 5 °C steps. The measurements were
carried out in the parallel plates geometry using 35 mm aluminum
circular electrodes. PU coatings were sprayed on the lower electrode.
For the second run, the dielectric data were fitted with the Havriliak-
Negami [48,49] parametric equation, which allowed us to extract the
mean dipole relaxation time τHN:
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iωτ
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where ε∞ is the high-frequency limit of the relative real permittivity, εs
is the low-frequency limit of the relative real permittivity, ω is the
angular frequency and αHN and βHN are the Havriliak-Negami fit
parameters, respectively related to the width and symmetry of the
distribution.

Dipolar relaxations are often hidden by dissipative losses due to
ohmic conduction. The Kramers-Kronig [50] relations offer an analy-
tical tool to calculate εKK

″ from the real permittivity εT
′(ω), thus

virtually eliminating the contributions of purely dissipative phenom-
ena.
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Molecular mobility is governed by the temperature dependence of
τ (T). Two τlog ( )T

1 behaviors are classically observed on an Arrhenius
plot: a linear and a non-linear one. In the glassy state, the temperature
dependence of relaxation times obeys the Arrhenius equation [5]:

⎜ ⎟⎛
⎝

⎞
⎠τ T τ H

RT
( ) = exp Δ

a0 (5)

where τ0a is the pre-exponential factor, ΔH is the activation enthalpy, R
is the gas constant.

For molecular mobility governed by the free volume, the tempera-
ture dependency deviates from Arrhenius type behavior; it is then
described by the Vogel-Fulcher-Tammann (VFT) equation [51]:
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where τ0v is the pre-exponential factor, αf is the thermal expansion
coefficient of the free volume and T∞ is the ideal glass temperature
below which there is no free volume.

4. Results and discussions

4.1. Physical structure

DSC analysis of PU was carried out with various heating rates
(Fig. 1). The glass transition of PU, determined by the inflection point
method (ASTM D3418), remains constant at 60 °C. An endothermic
peak is pointed out: its intensity decreases and it is shifted toward
higher temperatures with increasing heating rate. This endotherm is
associated with the rupture of the hydrogen bonds forming a local
order, as in segmented polyurethanes [52].

The extracted temperatures are reported in Table 1.

4.2. Mechanical relaxations

The storage modulus G′ and the loss modulus G″ are reported in
Fig. 2 for PU. In order to suppress the influence of water, the second
thermograms are shown. The linear behavior of the mechanical
response is checked from 1 to 100 rad/s. For the storage modulus G′,
the glassy plateau is between 1 GPa at −145 °C and 0.6 GPa at 20 °C.
At high temperature, the rubbery plateau is around 2 MPa. Between
30 °C and 110 °C, the modulus decrease associated with the mechanical
manifestation of the glass transition, labelled α, is observed. This
viscoelastic relaxation is shifted to higher temperatures with increasing
angular frequencies.

At lower temperature, two secondary relaxations γ and β are
observed. In order to resolve the lowest temperature mode, the angular
frequency is increased toward 100 rad/s. The γ peak location is shifted
toward higher temperatures as the angular frequency increases. The β
mode amplitude becomes less intense and tends to merge with the α
mode for 50 and 100 rad/s. Tα values are consistent with DSC results
(Table 1). The relaxation modes temperatures as the function of the
angular frequencies are reported in Table 2.

PU are sensitive to hydration, after 48 h at room humidity (RH), the

Fig. 1. DSC thermograms of PU for various heating rates (2nd heating). Lines correspond
to the inflection point method.

Table 1
. Thermal parameters extracted from of DSC thermograms.

Heating rate (°C/min) Tg (°C) Tendo (°C)

3 – 58 ± 2
5 – 62 ± 2
10 58 ± 2 76 ± 2
15 60 ± 2 126 ± 3
20 60 ± 2 138 ± 3



hydration level is near 1.3 ± 0.3 wt%. Their dynamic mechanical
analyses are reported in Fig. 3.

At RH state, four mechanical relaxation modes are identified γ, βsw,
β and α. Their specific temperatures are reported in the Table 2 as a
function of angular frequency. To resolve the lowest temperature mode,
the angular frequency is increased toward 100 rad/s. The maximum of
γmode is visible above 50 rad/s. The associated temperatures Tγ are the
same for the two hydrated states (dry and RH), suggesting that the γ
mode is not influenced by the presence of humidity.

In the temperature range of −100 to −75 °C, a new mode, called
βsw, is observed. The index “sw” is defined as “swelling”. The
molecular origin of this mode is explained later in this article. The β
mode is hidden by the βsw mode and the low temperature tail of α
mode. Compared to the dry state, the viscoelastic relaxation mode is

shifted toward low temperatures; i.e. characteristic of a plasticization
phenomenon.

Fig. 4 compares the dissipative modulus G″ for PU at 100 rad/s for
dry and RH states. γ mode strength decreases strongly in the RH state,
contrary to βsw mode. The presence of humidity changes the amplitude
of γ mode, but its temperature is unchanged.

4.3. Dielectric relaxations

Fig. 5 reports the dielectric loss surface of PU at RH state. Dielectric
relaxation modes are consistent with mechanical results. In addition an
ionic conductivity σionic is observed at high temperatures and low
frequencies. This dielectric contribution appears in the high frequency
tail of the conductivity σ. This phenomenon has been associated with
ions accumulation at electrode-sample interfaces, leading to a so-called
“electrode polarization” effect [53] superimposed to the high-tempera-
ture conductivity in Fig. 5.

The dynamic conductivity σ′ and permittivity ε′ at 150 °C are
reported in Fig. 6. For high frequency range, the conductivity is
frequency dependent. It corresponds to ion mobility at short times
[54,55]. At lower frequency, a nearly constant (σdc) plateau, associated
with random ions hopping mobility, is observed. With decreasing
frequency, the accumulation of ions near the electrodes leads to a

Fig. 2. Storage modulus G′ and loss modulus G″ versus temperature for dry PU.

Table 2
Mechanical relaxation modes temperatures for PU at dry and room humidity state.

Mode T1 rad/s
AMD (°C) T6.3 rad/s

AMD (°C) T50 rad/s
AMD (°C) T100 rad/s

AMD (°C)

State Dry
γ – – −140 ± 2 −135 ± 2
β −30 ± 2 −25 ± 2 – –
α 50 ± 2 55 ± 2 60 ± 2 61 ± 2

State RH
γ – – −140 ± 2 −135 ± 2
βsw −98 ± 2 −89 ± 2 −78 ± 2 −75 ± 2
β – – – –
α 47 ± 2 52 ± 2 50 ± 2 52 ± 2

Fig. 3. Storage modulus G′ and loss modulus G″ versus temperature for PU at RH state.

Fig. 4. Modulus loss G″ at 100 rad/s versus temperature for PU in dry and RH states.

Fig. 5. Dielectric loss ε″ surface for PU at RH state.



decrease in the mobile ions density within the sample (σ′ decreases).
And additional polarization of the sample is induced by the ions stacked
near the electrodes, resulting in an increase of ε′ [53]. The inset in Fig. 6
shows that ionic conductivity is governed by an Arrhenius behavior
with an activation energy greater than 100 kJ/mol. It confirms an ionic
charge transport.

Fig. 7 shows the relaxation times behaviors on an Arrhenius
diagram for PU in the dry and RH states. DDS and DMA relaxation
times are reported. The temperature dependence of the γ, βsw, β, α
relaxations and σionic are shown. Secondary relaxations and σionic follow
the Arrhenius behavior law described by Eq. (5). The extracted
parameters are indexed in Table 3.

For the γ mode, we observe a discrepancy between dielectric and
mechanical relaxation times at low temperature. It has been already
reported in the literature [20,22,32,56]. The dielectric response under
electric field is strongly dependent on the dipole moment, whereas the
mechanical relaxation is directly linked with molecular mobility and
Van der Waals binding forces. Aligning the dipole moment of eOH
group in the electric field is easier than overcoming the Van der Waals
interactions.

At RH conditions, the βmode cannot be fitted due to βsw relaxation.
Mechanical and dielectric relaxation times are in agreement for βsw
and β modes, contrary to Gates et al. [22] results. They observe a βsw

peak slightly lower for dielectric measurements. The γ relaxation and
σionic dielectric contributions are not influenced by hydration. αmode is
governed by a VFT behavior. A plasticization phenomenon due to water
molecules is observed. VFT fit parameters are reported in Table 4. The
ideal glass temperature T∞ is located at 56 °C below the calorimetric Tg
in the dry state.

Eq. (2) allows us to calculate the equivalent relaxation time τeq ,DSC,
approximately 30 s, for a heating rate of 20 °C/min and reported in
Fig. 7. The calorimetric Tg is consistent with the mechanical and
dielectric measurements.

In order to shed some light on the molecular origin of these
relaxation dynamics and to study the effect of crosslinking, the
dielectric permittivity of PHPMA in the dry and RH states was studied.
Due to the weak mechanical properties of PHPMA, DMA analyses could
not performed.

In Fig. 8, relaxation times temperature dependence of PHPMA are
reported on an Arrhenius diagram. In the glassy state, the secondary
relaxations are governed by the Arrhenius law and the fitted parameters
are reported in Table 5. These γ, βsw, βmodes of PHPMA are consistent
with those observed in PU.

The γ relaxation process is associated with the rotation of the eOH
side groups as in PHEMA [32]. In the PU, all the eOH functions do not
react with the eNCO functions to form the PU function. The γ mode
remains relatively constant with water molecule presence, as a con-

Fig. 6. Real part of the conductivity σ′ and permittivity ε′ versus frequency for PU at
150 °C. Inset: Arrhenius diagram of log σDC.

Fig. 7. Arrhenius diagram of dielectric and mechanical relaxations times of PU at dry and
RH states. Lines correspond to VFT fit.

Table 3
Arrhenius fit parameters for secondary relaxations and σionic in PU at dry and RH states.

State Dry RH

Mode τ0 (s) Ea (kJ/mol) τ0 (s) Ea (kJ/mol)

γ 5.10−15 34 ± 1 1.10−14 32 ± 1
βsw – – 5.10−16 54 ± 1
β 6.10−26 123 ± 2 – –
σionic 4.10−21 136 ± 3 4.10−21 136 ± 2

Table 4
VFT fit parameters of α relaxation in PU at dry and RH states.

Mode State τ0 (s) T∞ (°C) αf (°C−1)

α Dry 2.10−10 2 ± 1 8.10−4

RH 3.10−9 1 ± 1 1.10−3

Fig. 8. Arrhenius diagram of relaxation times of PHPMA at dry and RH states. Lines
correspond to VFT fit.



firmation of Janacek [20] interpretation on PHEMA swollen (with
different concentrations of water or other polar solvents) by mechanical
experiments. Janacek et al. show that its γ mode gradually disappears
with increasing diluent concentration but its temperature location is
constant. Gates et al. [22] mention that the activation energy of the γ
mode is constant for cross-linked HEMA, DHPMA and their copolymers,
and not dependent from hydration. But Lustig et al. [57] observed for
PHEMA a slight decrease toward lower temperatures with water
content, while Shen et al. [58] for PHEMA and PHPMA noted the
opposite. In this work, the activation energy value for the γ relaxation is
about 34 kJ/mol. This result is in agreement with the ones previously
established for polyacrylic systems with hydroxyl groups as PHEMA
[22,32,59,60] or PHEA [61].

In RH state, the βsw mode is also observed. Literature reports that it
is shifted toward lower temperatures as water content increases for the
PHEMA [62] and for the PHEA [19]. This mode has been associated
with water molecules in interaction with hydroxypropyl group on the
polymer side chain [20]; i.e. a complex eOH side groups/water. A part
of eOH side groups involve in the γ process is transformed into the βsw
process. The activation energy is 52 kJ/mol which is consistent with the
values from literature [60,61].

As already observed in DMA, the β mode is hidden by the βsw
relaxation. Only a few points can be fitted with the HN function in the
RH state. The secondary mode β corresponds to the rotation of the ester
side group [20]. The activation energies in the dry and hydrated state
are close. In the literature, the temperature of the β mode slightly
decreases with water content [57,58]. The activation energy values
obtained for the β mode are similar to those reported for PHEMA
[59,24].

At higher temperatures, the σionic obeys an Arrhenius behavior and
is not influenced by hydration. The activation energy of the secondary
modes between PHPMA and PU are close. There is no influence on these
modes when PHPMA is crosslinked. Only, the ionic conductivity σionic is
modified. The activation energy is higher in the PHPMA.

A VFT behavior is observed for the PHPMA α mode. The VFT fit
parameters are reported in Table 6. The ideal glass transition tempera-
ture T∞, located in the vicinity of −20 °C, is 45 °C below the
calorimetric Tg in the dry state (Tg(PHPMA)=25°C). In the same way
as PU, the point (Tg(PHPMA) ,τeq ,DSC) has been reported in Fig. 8, and is
in good agreement with VFT fit. The α relaxation for the PU is shifted to
higher temperatures as compared to the PHPMA by crosslinking limit-
ing the degrees of freedom of the main chain segments involved in the
glass transition.

5. Conclusions

Mechanical and dielectric relaxations have been applied to thor-
ough investigation of the dynamic molecular mobility of PHPMA and
PU in dry and RH states. The combination of DMA and DDS has brought
to light the correlation between the response of this mobility under
mechanical and electric field.

At low temperature in the dry state, two secondary relaxation modes
γ and β were identified in PHPMA and PU. The molecular origin of the γ
mode is the rotation of the eOH side group in PHPMA. The β secondary
relaxation mode is attributed to the rotation of the ester side group.
Their relaxation times are not modified by humidity and crosslinking.
For RH conditions, the βsw mode has been observed and associated
with water molecules in interaction with eOH. This mode isn't modified
by crosslinking. At high temperature in the dry state, the α relaxation of
PHPMA is shifted to higher temperatures in PU due to crosslinking.

Once hydrated, a plasticization phenomenon appears for PHPMA
and PU. In dielectric analysis, an ionic conductivity σionic is associated
with ions accumulation at electrodes. This phenomenon is not influ-
enced by humidity but by crosslinking. Finally, the good consistency
between DMA and DDS results allows us to significantly improve the
knowledge of molecular/dynamic structure relationships of PHPMA
base PU coating.

Acknowledgments

These results were obtained under the research project
“SURFINNOV” at the IRT Saint Exupéry. We thank the industrial and
academic members of the IRT who supported this project through their
contributions, both financial and in terms of specific knowledge:

– Industrial members: Airbus Defence & Space, Airbus Group
Innovation, Airbus Helicopter, Airbus Operation, Akzo, GIT,
Liebherr, Mapaero, Mecaprotec, Prodem, Socomore, Stelia
Aerospace, Thales Alenia Space

– Academic members: CIRIMAT, Laplace, UPS and CNRS.

We also thank the “Commissariat Général aux Investissements” and
the “Agence Nationale de la Recherche” for their financial support in
the “Programme d'Investissement d'Avenir” (PIA).

References

[1] P.S. Suchithra, V.K. Abitha, D. Patil, A.V. Rane, Effect of hydroxyl value of acrylic
polyol and type of crosslinkers on the properties of polyurethane coatings,
Moroccan J. Chem. 3 (2015) 476–483.

[2] D.J. Mills, S.S. Jamali, K. Paprocka, Investigation into the effect of nano-silica on
the protective properties of polyurethane coatings, Surf. Coat. Technol. 209 (2012)
137–142.

[3] F. Garwe, A. Schönhals, H. Lockwenz, M. Beiner, K. Schröter, E. Donth, Influence of
cooperative α dynamics on local β relaxation during the development of the
dynamic glass transition in poly(n-alkyl methacrylate)s, Macromolecules 29 (1996)
247–253.

[4] M.A. Desando, M.A. Kashem, M.A. Siddiqui, S. Walker, Dielectric studies of the β1
and β2 processes of poly(alkyl methacrylate) polymers, J. Chem. Soc., Faraday
Trans. 2 80 (1984) 747–762.

[5] N.G. McCrum, B.E. Read, G. Williams, Anelastic and Dielectric Effects in Polymeric
Solids, John Wiley, 1967.

[6] J. Janacek, J. Kolarik, Relaxation behavior of poly(methacrylic acid) esters swollen
by low molecular weight substances at temperatures below the glass transition
point, J. Polym. Sci. C 16 (1967) 279–291.

[7] F. Lednicky, J. Janacek, Relaxation behavior of the ester groups (β dispersion) in
some swollen polymethacrylates, J. Macromol. Sci. Part B. 5 (1971) 335–354.

[8] T.W. Wilson, D.T. Turner, Vitrification of water in a hydrogel, Macromolecules 21
(1988) 1184–1186.

[9] K. Mpoukouvalas, G. Floudas, G. Williams, Origin of the α, β, (βα), and “Slow”
dielectric processes in poly(ethyl methacrylate), Macromolecules 42 (2009)
4690–4700.

[10] H. Sasabe, S. Saito, Dielectric relaxations and electrical conductivities of poly(alkyl
methacrylates) under high pressure, J. Polym. Sci. Part A-2 (6) (1968) 1401–1418.

[11] K. Schröter, R. Unger, S. Reissig, F. Garwe, S. Kahle, M. Beiner, E. Donth, Dielectric
spectroscopy in the αβ splitting region of glass transition in poly(ethyl methacry-

Table 5
Arrhenius fit parameters for the secondary relaxations and σionic in PHPMA at dry and RH
states.

State Dry RH

Mode τ0 (s) Ea (kJ/mol) τ0 (s) Ea (kJ/mol)

γ 7.10−15 34 ± 1 2.10−15 35 ± 1
βsw – – 1.10−15 52 ± 1
β 9.10−27 127 ± 2 1.10−27 131 ± 2
σionic 1.10−30 187 ± 2 1.10−30 188 ± 2

Table 6
VFT fit parameters of the α relaxation in PHPMA at dry and RH states.

Mode State τ0 (s) T∞ (°C) αf (°C−1)

α Dry 1.10−10 −20 ± 2 8.5.10−4

RH 8.10−10 −22 ± 1 1.10−3

http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0005
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0005
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0005
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0010
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0010
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0010
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0015
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0015
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0015
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0015
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0020
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0020
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0020
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0025
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0025
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0030
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0030
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0030
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0035
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0035
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0040
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0040
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0045
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0045
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0045
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0050
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0050
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0055
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0055


late) and poly(n-butyl methacrylate): different evaluation methods and experi-
mental conditions, Macrolecules. 31 (1998) 8966–8972.

[12] G. Floudas, Structure and dynamics of poly(n-decyl methacrylate) below and above
the glass transition, Macromolecules 31 (1998) 6951–6957.

[13] M. Beiner, K. Schröter, E. Hempel, S. Reissig, E. Donth, Multiple glass transition and
nanophase separation in poly(n-alkyl methacrylate) homopolymers,
Macromolecules 32 (1999) 6278–6282.

[14] E. Dudognon, A. Berne, C. Lacabanne, Study by thermostimulated currents of
dielectric relaxations through the glass transition in an amorphous polymer: poly(n-
butyl methacrylate), Macromolecules 34 (2001) 3988–3992.

[15] E. Dudognon, A. Berne, C. Lacabanne, Low-frequency chain dynamics of poly(n-
hexyl methacrylate) by dielectric spectroscopies, Macromolecules 35 (2002)
5927–5931.

[16] E. Dudognon, A. Bernès, C. Lacabanne, Nature of molecular mobility through the
glass transition in poly(n-alkyl methacrylates): a study by dielectric spectroscopies,
J. Macromol. Sci. Part B. 43 (2004) 591–604.

[17] C. Menissez, B. Sixou, L. David, G. Vigier, Dielectric and mechanical relaxation
behavior in poly(butyl methacrylate) isomers, J. Non-Cryst. Solids 351 (2005)
595–603.

[18] A. Kyritsis, P. Pissis, J.L. Gomez Ribelles, M. Pradas, Dielectric relaxation spectro-
scopy in PHEA hydrogels, J. Non-Cryst. Solids 172–174 (1994) 1041–1046.

[19] A. Kyritsis, P. Pissis, J. Ribelles, M. Pradas, Polymer-water interactions in poly
(hydroxyethyl acrylate) hydrogels studied by dielectric, calorimetric and sorption
isotherm measurements, Polym. Gels Networks 3 (1995) 445–469.

[20] J. Janacek, Mechanical behavior of hydroxyalkyl methacrylate polymers and
copolymers, J. Macromol. Sci. Part C Polym. Rev. 9 (1973) 3–47.

[21] J. Kolarik, Secondary relaxations in glassy polymers: hydrophilic polymethacrylates
and polyacrylates, J. Adv. Polym. Sci. 46 (1982) 119–161.

[22] G. Gates, J. Harmon, J. Ors, P. Benz, Intra and intermolecular relaxations 2,3-
dihydroxypropyl methacrylate and 2-hydroxyethyl methacrylate hydrogels,
Polymer (Guildf). 44 (2003) 207–214.

[23] R. Diaz Calleja, Dielectric γ relaxation in poly (2-hydroxyethyl methacrylate), J.
Polym. Sci. Part B Polym. Phys. 17 (1979) 1395–1401.

[24] J.L. Gomez Ribelles, R. Diaz Calleja, The β dielectric relaxation in some metha-
crylate polymers, J. Polym. Sci. Part B Polym. Phys. 23 (1985) 1297–1307.

[25] G.A. Russell, P. Hiltner, D. Gregonis, A. DeVisser, J. Andrade, Thermal and dynamic
mechanical relaxation behavior of stereoregular poly(2-hydroxyethyl methacry-
late), J. Polym. Sci. B Polym. Phys. 18 (1980) 1271–1283.

[26] K. Pathmanathan, G.P. Johari, Dielectric and conductivity relaxations in poly
(hema) and of water in its hydrogel, J. Polym. Sci. Part B Polym. Phys. 28 (1990)
675–689.

[27] G.P. Johari, Dielectric behaviour of H-bonded liquids and amorphous and crystal-
line solids, J. Mol. Struct. 250 (1991) 351–384.

[28] A. Kyritsis, P. Pissis, J.L.G. Ribelles, M.M. Pradas, Depolarization thermocurrent
studies in poly(hydroxyethyl acrylate)/water hydrogels, J. Polym. Sci. Part B
Polym. Phys. 32 (1994) 1001–1008.

[29] K. Pathmanathan, G.P. Johari, Relaxation and crystallization of water in a hydrogel,
J. Chem. Soc. Faraday Trans. 90 (1994) 1143–1148.

[30] N. Araujo, D. Gomes, J.L.G. Ribelles, M.M. Pradas, J.F. Mano, Dynamic-mechanical
behavior of hydrophobic–hydrophilic interpenetrating copolymer networks, Polym.
Eng. Sci. 46 (2006) 930–937.

[31] M. Salmeron Sanchez, R. Brıigido Diego, S.A.M. Iannazzo, J.L. Gomez Ribelles,
M. Pradas, The structure of poly(ethyl acrylate-co-hydroxyethyl methacrylate)
copolymer networks by segmental dynamics studies based on structural relaxation
experiments, Polymer (Guildf). 45 (2004) 2349–2355.

[32] K. Mohomed, T.G. Gerasimov, F. Moussy, J.P. Harmon, A broad spectrum analysis
of the dielectric properties of poly(2-hydroxyethyl methacrylate), Polymer (Guildf).
46 (2005) 3847–3855.

[33] Z.W. Wicks, D.A. Wicks, J.W. Rosthauser, Two package waterborne urethane
systems, Prog. Org. Coat. 44 (2002) 161–183.

[34] P.H. Corkhill, A.M. Jolly, C.O. Ng, B.J. Tighe, Synthetic hydrogels: 1. Hydroxyalkyl
acrylate and methacrylate copolymers - water binding studies, Polymer (Guildf). 28
(1987) 1758–1766.

[35] K. Hofer, E. Mayer, Glass-liquid transition of water and ethylene glycol solution in
poly(2-hydroxyethyl methacrylate) hydrogel, J. Phys. Chem. 94 (1990) 2689–2696.

[36] B. Ramaraj, G. Radhakrishnan, Modification of the dynamic swelling behaviour of
poly(2-hydroxyethyl methacrylate) hydrogels in water through interpenetrating

polymer networks (IPNs), Polymer (Guildf). 35 (1994) 2167–2173.
[37] M.B. Ahmad, M.B. Huglin, States of water in poly(methyl methacrylate-co-N-vinyl-

2-pyrrolidone) hydrogels during swelling, Polymer (Guildf). 35 (1997) 1997–2000.
[38] G. Smyth, F.X. Quinn, V.J. McBrierty, Water in hydrogels. 2. A study of water in

poly(hydroxyethyl methacrylate), Macromolecules 21 (1988) 3198–3204.
[39] J. Rault, A. Lucas, R. Neffati, M. Monleo, Thermal transitions in hydrogels of poly

(ethyl acrylate)/poly(hydroxyethyl acrylate) interpenetrating networks,
Macromolecules 30 (1997) 7866–7873.

[40] F.X. Quinn, E. Kampff, G. Smyth, V.J. Mcbrierty, Water in hydrogels. 1. A study of
water in poly(N-vinyl-2-pyrrolidone/methyl methacrylate) copolymer,
Macromolecules 21 (1988) 3191–3198.

[42] J.L. Gomez Ribelles, J.M. Meseguer Duenas, M. Pradas, Dielectric relaxations in
poly(hydroxyethyl acrylate): influence of the absorbed water, Polymer (Guildf). 29
(1988) 1124–1127.

[43] M.B.I.N. Ahmad, J.P.O. Mahony, M. Huglin, T.P. Davis, A.C. Rlcclardone,
Application of dielectric spectroscopy and DSC to the study of relaxations in some
copolymeric hydrogels, J. Appl. Polym. Sci. 56 (1995) 397–404.

[44] H. Xu, J.K. Vij, V.J. McBrierty, Wide-band dielectric spectroscopy of hydrated poly
(hydroxyethyl methacrylate), Polymer (Guildf). 35 (1994) 227–234.

[45] L.M. Muratore, K. Steinhoff, T.P. Davis, Self-reinforcing hydrogels comprised of
hydrophobic methyl methacrylate macromers copolymerised with either N-vinyl-2-
pyrrolidone or 2-hydroxyethyl acrylate, J. Mater. Chem. 9 (1999) 1687–1691.

[46] G. Di Marco, M. Lanza, M. Pieruccini, Dynamical mechanical measurements in dry
PHEMA and its hydrogels, Nuovo Cim. 16 (1994) 849–854.

[47] A. Hensel, J. Dobbertin, J.E.K. Schawe, A. Boller, C. Schick, Temperature modulated
calorimetry and dielectric spectroscopy in the glass transition region of polymers, J.
Therm. Anal. 46 (1996) 935–954.

[48] S. Havriliak, S. Negami, A complex plane analysis of α-dispersions in some polymer
systems, J. Polym. Sci. Part C. 14 (1966) 99–117.

[49] S. Havriliak, S. Negami, A complex plane representation of dielectric and
mechanical relaxation processes in some polymers, Polymer (Guildf). 8 (1967)
161–210.

[50] P. Steeman, J. Van Turnhout, A numerical Kramers-Kronig transform for the
calculation of dielectric relaxation losses free from Ohmic conduction losses,
Colloid Polym. Sci. 275 (1997) 106–115.

[51] F. Kremer, A. Schönhals, Broadband Dielectric Spectroscopy, Sp, Berlin, 2003.
[52] T.R. Hesketh, J.W.C.V.A.N. Bogart, S.L. Cooper, Differential scanning calorimetry

analysis of morphological changes in segmented elastomers, Polym. Eng. Sci. 20
(1980) 190–197.

[53] D.L. Sidebottom, B. Roling, K. Funke, Ionic conduction in solids: comparing
conductivity and modulus representations with regard to scaling properties, Phys.
Rev. B 63 (2000) 024301.

[54] J.C. Dyre, The random free energy barrier model for ac conduction in disordered
solids, J. Appl. Phys. 64 (1988) 2456–2468.

[55] A.K. Jonscher, Dielectric relaxation in solids, J. Phys. D. Appl. Phys. 32 (1999)
57–70.

[56] G. Hartwig, Polymer Properties at Room and Cryogenic Temperatures, Springer US,
Boston, MA, 1994.

[57] S. Lustig, J. Caruthers, N. Peppas, Dynamic mechanical properties of polymer-fluid
systems: characterization of poly (2-hydroxyethyl methacrylate) and poly (2-
hydroxyethyl methacrylate-co-methyl), Polymer (Guildf). 32 (1991) 3340–3353.

[58] M.C. Shen, J.D. Strong, Low-temperature internal-friction study of diluent effect in
some polymethacrylates, J. Appl. Phys. 38 (1967) 4197–4202.

[59] K. Mohomed, F. Moussy, J.P. Harmon, Dielectric analyses of a series of poly(2-
hydroxyethyl methacrylate-co-2,3-dihydroxypropyl methacylate) copolymers,
Polymer (Guildf). 47 (2006) 3856–3865.

[60] L.V. Karabanova, G. Boiteux, G. Seytre, I. Stevenson, O. Gain, C. Hakme,
E.D. Lutsyk, A. Svyatyna, Semi-interpenetrating polymer networks based on
polyurethane and poly(2-hydroxyethyl methacrylate): dielectric study of relaxation
behavior, J. Non-Cryst. Solids 355 (2009) 1453–1460.

[61] R. Sabater I Serra, J.L. Escobar Ivirico, J.M. Meseguer Duenas, A. Andrio Balado,
J.L. Gomez Ribelles, M. Salmeron Sanchez, Dielectric relaxation spectrum of poly
(ε-caprolactone) networks hydrophilized by copolymerization with 2-hydroxyethyl
acrylate, Eur. Phys. J. E Soft Matter 22 (2007) 293–302.

[62] J. Kolarik, J. Janacek, Dynamic mechanical behavior of poly(2-hydroxyethyl
methacrylate)-glass beads composites, J. Appl. Polym. Sci. 20 (1976) 841–851.

6

http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0055
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0055
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0060
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0060
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0065
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0065
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0065
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0070
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0070
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0070
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0075
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0075
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0075
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0080
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0080
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0080
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0085
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0085
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0085
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0090
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0090
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0095
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0095
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0095
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0100
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0100
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0105
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0105
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0110
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0110
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0110
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0115
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0115
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0120
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0120
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0125
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0125
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0125
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0130
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0130
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0130
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0135
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0135
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0140
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0140
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0140
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0145
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0145
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0150
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0150
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0150
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0155
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0155
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0155
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0155
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0160
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0160
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0160
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0165
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0165
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0170
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0170
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0170
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0175
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0175
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0180
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0180
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0180
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0185
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0185
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0190
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0190
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0195
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0195
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0195
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0200
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0200
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0200
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0210
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0210
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0210
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0215
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0215
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0215
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0220
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0220
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0225
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0225
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0225
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0230
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0230
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0235
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0235
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0235
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0240
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0240
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0245
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0245
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0245
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0250
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0250
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0250
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0255
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0260
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0260
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0260
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0265
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0265
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0265
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0270
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0270
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0275
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0275
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0280
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0280
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0285
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0285
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0285
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0290
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0290
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0295
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0295
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0295
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0300
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0300
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0300
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0300
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0305
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0305
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0305
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0305
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0310
http://refhub.elsevier.com/S0022-3093(17)30199-0/rf0310

	garde_21_297.pdf
	dupenne_17889_auteur
	Dynamic molecular mobility of polyurethane by a broad range dielectric and mechanical analysis
	Introduction
	Experimental section
	Materials

	Methods
	Differential scanning calorimetry
	Dynamic mechanical analysis
	Dynamic dielectric spectroscopy

	Results and discussions
	Physical structure
	Mechanical relaxations
	Dielectric relaxations

	Conclusions
	Acknowledgments
	References





