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Abstract

The volume of the hive polytope (or polytope of honeycombs) associated with a Littlewood-
Richardson coefficient of SU(n), or with a given admissible triple of highest weights, is expressed,
in the generic case, in terms of the Fourier transform of a convolution product of orbital measures.
Several properties of this function —a function of three non-necessarily integral weights or of
three multiplets of real eigenvalues for the associated Horn problem— are already known. In the
integral case it can be thought of as a semi-classical approximation of Littlewood-Richardson
coefficients. We prove that it may be expressed as a local average of a finite number of such
coefficients. We also relate this function to the Littlewood-Richardson polynomials (stretching
polynomials) i.e., to the Ehrhart polynomials of the relevant hive polytopes. Several SU(n)
examples, for n = 2,3,...,6, are explicitly worked out.
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Introduction

In a previous paper [31], the following classical Horn’s problem was addressed. For two n by n
Hermitian matrices A and B independently and uniformly distributed on their respective unitary
coadjoint orbits O, and Og, labelled by their eigenvalues a and 3, call p(7y|c, 3) the probability
distribution function (PDF) of the eigenvalues v of their sum C' = A+ B. With no loss of generality,
we assume throughout this paper that these eigenvalues are ordered,

Q] =209 = =20y (1)

and likewise for 8 and ~. In plain (probabilistic) terms, p describes the conditional probability of
v, given a and (. The general expression of p was given in [31] in terms of orbital integrals and
computed explicitly for low values of n.

The aim of the present paper is to study the relations between this function p, and the tensor
product multiplicities for irreducible representations (irreps) of the Lie groups U(n) or SU(n),
encoded by the Littlewood-Richardson (LR) coefficients.

Our main results are the following. A central role is played by a function 7, («, ;) proportional
to p, times a ratio of Vandermonde determinants, see . This J, is identified with the volume
of the hive polytope (also called polytope of honeycombs) associated with the triple (a, 8;7), see
Proposition It is thus known [I4] to provide the asymptotic behavior of LR coefficients, for
large weights. We find a relation between [J, and a sum of LR coefficients over a local, finite,
n-dependent, set of weights, which holds true irrespective of the asymptotic limit, see Theorem
In particular for SU(3), the sum is trivial and enables one to express the LR coefficient as a
piecewise linear function of the weights, see Proposition [5| and Corollary Implications on the
stretching polynomial (sometimes called Littlewood-Richardson polynomial) and its coefficients are
then investigated.

The content of this paper is as follows. In sec.[I} we recall some basic facts on the geometric setting
and on tensor and hive polytopes. We also collect formulae and results obtained in [31] on the
function J,. Section 2 is devoted to the connection between Harish-Chandra’s orbital integrals
and SU(n) character formulae, to its implication on the relation between 7, and LR coefficients
(Theorem , and to consequences of the latter. In sec. 3, we reexamine the interpretation of 7,
as the volume of the hive polytope in the generic case (Proposition 4), through the analysis of the
asymptotic regime. In the last section (examples), we take n = 2,3...,6, consider for each case the
expression obtained for J,, give the local relation existing between the latter and LR coefficients
(this involves two polynomials, that we call R, and R, expressed as characters of SU(n)), and
study the corresponding stretching polynomials. Some of the features studied in the main body
of this article are finally illustrated in the last subsection where we consider a few specific hive
polytopes.

1 Convolution of orbital measures, density function and polytopes

1.1 Underlying geometrical picture

We consider a particular Gelfand pair (U(n) x H,, U(n)) associated with the group action of the Lie
group U(n) on the vector space of n by n Hermitian matrices. This geometrical setup allows one to
develop a kind of harmonic analysis where “points” are replaced by coadjoint orbits of U(n) : the
Dirac measure (delta function at the point a) is replaced by an orbital measure whose definition
will be recalled below, and its Fourier transform, here an orbital transform, is given by the so-called
Harish-Chandra orbital function. This theory of integral transforms can also be considered as a
generalization of the usual Radon spherical transform (also called Funk transform). Contrarily to
Dirac measures, orbital measures are not discrete, since their supports are orbits of the chosen Lie



group. Such a measure is described by a probability density function (PDF), which is its Radon-
Nikodym derivative with respect to the Lebesgue measure.

In Fourier theory one may consider the measure formally defined as a convolution product of Dirac
masses: < 0q * 0p, f >= §q44(2)f(x)dz. Here we shall consider, instead, the convolution product
of two orbital measures described by the orbital analog of d,.4(c), a probability density function
labelled by three U(n) orbits of H,,. These orbits and that function p may be considered as functions
of three hermitian matrices (we shall write it p(C|A, B)), and this answers a natural question in the
context of the classical Horn problem, as mentioned above in the Introduction, see also sec.|[1.1.4]
below. This was spelled out in paper [31]. Our main concern, here, is the study of the relations that
exist between this function p, and the tensor product multiplicities for irreducible representations
(irreps) of the Lie groups U(n) or SU(n), encoded by the Littlewood-Richardson (LR) coefficients
N Ku‘ For small values of n the function p can be explicitly calculated; for integral values of its
arguments, the related function J, can be considered as a semi-classical approximation of the LR
coefficients.

1.1.1 Orbital measures

For F, a function on the space of orbits, and O4, the orbit going through A € H,, one could
formally consider the “delta function” < dp,, F >= F(O4), but we shall use test functions defined
on H,, instead.

The orbital measure my4, that plays the role of dp,, is therefore defined, for any continuous
function f on H,, by

<my, f>= f f(u*Au)du
U(n)

where the integral is taken with respect to the Haar mesureﬂ on U(n), i.e., by averaging the function
f on a U(n) coadjoint orbit.

1.1.2 Fourier transform of orbital measures

Despite the appearance of the Haar measure on the group U(n) entering the definition of m 4, one
should notice that this is a measure on the vector space H,, an abelian group. Being an analog of
the Dirac measure, its orbital transformﬂ is a complex-valued function m4(X) on H, defined by
evaluating m4 on the following exponential function: Y € H, — exp(itr (XY)) € C. Hence we
obtain :

(X)) — J exp(i tr (Xu* Au))du
U(m)

As this quantity only depends on the respective eigenvalues of X and A, i.e., on the diagonal
matrices z = (1, x2,...Ty), and a = (a1, a9, ...,qy), it is then standard to rename the previous
Fourier transform and consider the following two-variable function, called the Harish-Chandra
orbital function:

H(a,ix) = J exp(itr (zu*ou)) du (2)
U(n)

1.1.3 The HCIZ integral

The following explicit expression of ‘H was found in [13] [16].

(det ei.xiajhéi,jén 3)
Aiz)A(a)

H(a,iz) = sf(n—1)

In practice we use the normalized Haar measure that makes the volume of U(n) equal to 1.
2The context being specified, people often simply write “Fourier transform” or “Fourier orbital transform” rather
than “spherical transform” or “orbital transform”.



where
A(z) = icj(z; — x5)

is the Vandermonde determinant of the x’s.
Here and in the following we make use of the superfactorial

sfm) = [ [ ! (4)
p=1

1.1.4 Convolution product of orbital measures

Take two orbits of the group U(n) acting on H,, labelled by Hermitian matrices A and B, and
consider the corresponding orbital measures m4, mpg. The convolution product of the latter is
defined as usual: with f, a function on H,,, one sets

<ma*mp,f>=<myg@mp, A(f) >

where
A(f)(a,b) := fla+D).

This orbital analog of d,44(c) has a non discrete support: for A, B € H,, the support of my p =
ma *mp is the set of uAu* + vBv* for u,v € U(n). The probability density function p of ma p
is obtained by applying an inverse Fourier transformation to the product of Fourier transforms
(calculated using m4 (X)) of the two measures:

1 (Ay)
(2m)™ \ sf(n)
Notice that p involves three copies of the HCIZ integral and that we wrote it as in integral on

R™, whence the prefactor coming from the Jacobian of the change of variables. We shall see below
(formulae extracted from [31]) how to obtain quite explicit formulae for this expression.

2
p(rla, B) = ) | e awrHainmsiam .o (5)

1.2 On polytopes

In the present context of orbit sums and representation theory, one encounters two kinds of poly-
topes, not to be confused with one another.

On the one hand, given two multiplets o and /3, ordered as in , we have what may be called the
Horn polytope ﬁag, which is the convex hull of all possible ordered «’s that appear in the sum of
the two orbits O, and Og. As proved by Knutson and Tao [20] that Horn polytope is identical to
the convex set of real solutions to Horn’s inequalities, including the inequalities , applied to ~.
For SU(n), this Horn polytope is (n — 1)-dimensional.

On the other hand, combinatorial models associate to such a triple (a, 3;7), with v € ﬁa,g, a
family of graphical objects that we call generically pictographs. This family depends on a number
(n — 1)(n — 2)/2 of real parameters, subject to linear inequalities, thus defining a d-dimensional
polytope ﬁzﬂ, with d < (n —1)(n —2)/2.

These two types of polytopes are particularly useful in the discussion of highest weight repre-
sentations of SU(n) and their tensor product decompositions.

Given two highest weight representations V) and V,, of SU(n), we look at the decomposition into
irreps of VA ®V),, or of A® p, in short, see below sec. Consider a particular space of intertwiners
(equivariant morphisms) associated with a certain “branching”, i.e., a particular term v in that
decomposition, that we call an admissible triple (X, u;v), see below Definition Such v’s lie in
the tensor polytope H), inside the weight space. The multiplicity N Ku of v in the tensor product



A ® p is the dimension of the space of intertwiners determined by the admissible triple (A, u;v).
As proved in [20], is is also the number of pictographs with integral parameters. It is thus also
the number of integral points in the second polytope that we now denote HY u These integral
points may be conveniently thought of as describing the different “couplings” of the three chosen
irreducible representations.

Pictographs are of several kinds. All of them have three “sides” but one may distinguish two
families: first we have those pictographs with sides labelled by integer partitions (KT-honeycombs
[20], KT-hives [22]), then we have those pictographs with sides labelled by highest weight compo-
nents of the chosen irreps (BZ-triangles [3], O-blades [25], isometric honeycombsEI). For convenience,
we refer to HY 38 the “hive polytope”, or also “the polytope of honeycombs”.

As mentioned above, for SU(n), and for an admissible triple (A, u;v), the dimension of the
hive polytope is (n — 1)(n — 2)/2: this may be taken as a definition of a “generic triple”, but see
below Lemma [I| for a more precise characterization. The cartesian equations for the boundary
hyperplanes have integral coefficients, the hive polytope is therefore a rational polytope. All the
hive polytopes that we consider in this article are “integral hive polytopes” in the terminology of
[17], however the corners of all such polytopes (usually called “vertices”) are not always integral
points, therefore an “integral hive polytope” is not necessarily an integral polytope in the usual
sense: the convex hull of its integral points is itself a polytope, but there are cases where the latter
is strictly included in the former. We shall see an example of this situation in sec.[f.4.2]

We shall return later to these polytopes and to the counting functions of their integral points,
in relation with stretched Littlewood-Richardson coefficients, see sec.[3}

1.3 Some formulae and results from paper [31]

1.3.1 Determination of the density p and of the kernel function 7,

Some general expressions for the three variable function p were obtained in [3I]. For the convenience
of the reader, we repeat them here.
The determinant entering the HCIZ integral is written as

= € EPNEEHEEL Z €PH i(zj—2j41)(Xh_y apgy—L Sp 1Oék), (7)
PeSy j=1

where ep is the signature of permutation P.

In the product of the three determinants entering , the prefactor €' 21 %5 L= (k4B —m)/n
yields, upon integration over %Z xj, 27 times a Dirac delta of }}, (o + Br — Vi), expressing the
conservation of the trace in Horn’s problem. One is left with an expression involving an integration
over (n — 1) variables u; 1= x; — xj41.

_ sf(n—1) - A(v) ,
p(vle, B) = n!(s(zkl(ak + Br — k) NGOG TIn(a, B57) (8)
i—n(n—l)/2 dn 1 n—1 (PP
In(a, Byy) = Tl gn—1 Z EpPEpI Epn f H el Ui, ) (9)
: P,P/.P"eS,

i ..n
A;j(P,P,P") = Z (ap@) + Brrk) — YPr(k)) % Z g+ Br — k), (10)

k=1 =

3The reader may look at [7] for an explicit descriptions and a few examples of O-blades and isometric honeycombs
in the framework of the Lie group SU(3). See also our SU(4) example in sec.m

4



where the Vandermonde A(x) has been rewritten as

Aw):= ] @itwvip+-uy). (11)

1<i<j<n—1

1.3.2 Discussion

Several properties of p(y|a, ) and of J,, are described in the paper [31]. We only summarize here
the information that will be relevant for our discussion relating these functions to the Littlewood-
Richardson multiplicity problem.

Note that the above expression of A; is invariant under simultaneous translations of all 4’s

YV Yi =Y+ ¢ ceR.

In the original Horn problem, this reflects the fact that the PDF p(vy|a, ) of eigenvalues of C' =
A + B is the same as that of C' + ¢l, with a shifted support. Therefore in the computation of
JIn(c, B;7), one has a freedom in the choice of a “gauge”

(a) either v, =0,
(b) or v such that

D= (@i +B), (12)
7 7

(c) or any other choice,

provided one takes into account the second term in the rhs of (which vanishes in case (b)).
Note also that enforcing starting from an arbitrary 4 implies to translate ¥ — v = 4 + ¢, with
c = %(Zl a; + 2 Bi — ;). If the original 4 has integral components, this is generally not the
case for the final ~.

JIn(c, B;7y) has the following properties that will be used below:

— (i) As apparent on @D, it is an antisymmetric function of «, 8 or v under the action of the Weyl
group of SU(n) (the symmetric group S,,). As already said, we choose throughout this paper the
ordering and likewise for 8 and ~.

For (a, ;) satisfying

— (il) Jn(a, B;7) is piecewise polynomial, homogeneous of degree %(n —1)(n—2) in a, B, in the
generic case;

— (iii) as a function of v, it is of class C™~3. This follows by the Riemann-Lebesgue theorem from
the decay at large u of the integrand in (9)), see [31];

— (iv) it is non negative inside the polytope ﬁa/g, cf sec. 1.2;

— (v) it vanishes for ordered ~y outside ﬁag;

— (vi) by continuity (for n > 3) it vanishes for v at the boundary of ﬁaﬂ;

— (vii) it also vanishes whenever at least two components of a or of coincideﬁ this follows from
the antisymmetry mentionned above;

— (viii) its normalization follows from that of the probability density p, (normalized of course by

S]Rn d"y p(v|e, B) = 1), hence

JN dn_lvA(i)(Z)(ﬁ) In(a, B;7) = sf(nl—l) (13)

H.s
“If o and § are Young partitions describing the highest weights A, u of two U(n) or SU(n) irreps, this occurs when
some Dynkin label of A or y vanishes, i.e., when \ or u belongs to a wall of the dominant Weyl chamber C.




. 11 1 1
which equals 1, 5, 15, 555 3q5g0, ** for n = 2,3,4,---.

As mentioned above, it is natural to adopt the following definition
Definition 1. A triple («, ;) is called generic if J,(«, 5;7) is non vanishing.

By a slight abuse of language, when dealing with triples of highest weights (A, u;v), we say
that such an admissible triple is generic iff the associated triple («, 3;7) is, see below sec.
By another abuse of language, we also refer to a single highest weight A as generic iff none of its
Dynkin indices vanishes, i.e., iff A does not lie on one of the walls of the dominant Weyl chamber,
or if equivalently the associated « has no pair of equal components.

From its interpretation as a probability density (up to positive factors), it is clear that 7, could
vanish at most on subsets of measure zero inside the Horn (or tensor) polytope. Actually it does
not vanish besides the cases mentioned in points (v-vii) of the previous list.

We want to construct the linear span of honeycombs 7—725 defined above in sect. 1.2. We first
consider what may be called the “SU(n) case”, where a,, = , = 0 and 7, is fixed by (12). By
relaxing the inequalities on the (n — 1)(n — 2)/2 parameters defining the usual honeycombs, one
builds a vector space of dimension 1(n—1)(n+4) = 3(n—1) + (n—1)(n— 2)/2 whose elements are
sometimes called real honeycombs. One may construct a basis of “fundamental honeycombs”, see
[10], and consider arbitrary linear combinations, with real coefficients, of these basis vectors. The
components of any admissible triple(a, 8,7), depend linearly of the components of the associated
honeycombs along the chosen basis. In such a way, one obtains a surjective linear map, from the
vector space of real honeycombs, to the vector space R3("—1),

One sees immediately that its fibers are affine spaces of dimension dyax = (n — 1)(n — 2)/2,
and for fixed a, 8 they are indexed by =, i.e., by points of RV, By taking into account the
inequalities defining usual honeycombs, but still working with real coefficients, the fibers of this
map restrict to compact polytopes whose affine dimension d is at most equal to dpax (the dimension
can be smaller, because of the inequalities that define bounding hyperplanes). For given « and £,
if v belongs to the Horn polytope ﬁag < R the corresponding restricted fiber is nothing else
than the associated hive polytope 7—72 5 We therefore obtain a map m whose target set is the Horn
polytope, a convex set, and whose fibers are compact polytopes. We then make use of the following
result’} the dimension of the fibers of 7 is constant on the interiors of the faces of its target set.
In particular, it is constant on the interior of its face of codimension 0, which is the interior of the
Horn polytope ﬁaﬂ.

In the present situation this tells us that the dimension of 7=1(y) = 7—725 which is the fiber

above ~, is constant when v belongs to the interior of the Horn polytope ﬁag. In particular, its
d-dimensional volume, where d has its maximal value d = (n—1)(n—2)/2 for SU(n), cannot vanish
there. We shall see later (in section 3) that this volume is given by J,(«, 5;7).

In the case of GL(n), (with ay,, 8, non fixed to 0), the argument is similar, so we have:

Lemma 1. For a and § with distinct components, the function Jp(«, 8;) does not vanish for
inside the polytope Hop.

2 From Horn to Littlewood-Richardson and from orbital trans-
forms to characters
2.1 Young partitions and highest weights

An irreducible polynomial representation of GL(n) or an irrep of SU(n), denoted V), is characterized
by its highest weight A. One may use alternative notations, describing this highest weight either by

®We thank Allen Knutson for pointing this out to us.



its Dynkin indices (components in a basis of fundamental weights) A\;, i = 1,--- ,n, and A\, = 0 in
SU(n) ; or by its Young components, i.e., the lengths of rows of the corresponding Young diagram:
a=/L(N),ie

N=>% i=1-,n. (14)
j=t

Note that such an a = £()\) satisfies the ordering condition ([I]).

In the decomposition into irreps of the tensor product of two such irreps V) and V,, of GL(n), we

denote by NY, the Littlewood-Richardson (LR) multiplicity of V.

As recalled above, N /l\/u equals the number of honeycombs with integral labels and boundary con-

ditions a = £()), 8 ={(n), v = {(v), i.e., the number of integral points in the polytope HY , [20].

Given three U(n) (resp. SU(n)) weights A, u, v, for instance described by their n (resp. n — 1)

components along the basis of fundamental weights, invariance under the U(1) center of U(n)

(resp. the Z,, center of SU(n)), tells us that a necessary condition for the non-vanishing of N}, is

ST G+ pg — i) =0 (resp. Y74 G(A + g — 1) =0 mod n).

Given three SU(n) weights A, p, v obeying the above SU(n) condition, one can build three U(n)
eights (still denoted A, pu,v) obeying the U(n) condition by setting A\, = p, = 0 and v, =

1 eI} U i(\j + pj — v;); in terms of partitions, with a = £(\), 8 = £(u) and v = £(v), the obtained

trlple (v, B;7) automatically obeys eq. (12).

More generally we shall refer to a U(n) triple such that the equivalent U(n) conditions eq. (12)), or

eq. (15 below, hold true, as a U(n)-compatible triple, or a compatible triple, for short.

Definition 2. A triple (A, p;v) of U(n) weights is said to be compatible iff
Z k:()\k + Uk — l/k) =0. (15)
k=1

For triples of SU(n) weights, we could use the same terminology, weakening the above condition
(15)) since it is then only assumed to hold modulo n, but in the following we shall always extend
such SU(n)-compatible triples to U(n)-compatible triples, as was explained previously.

We also recall another more traditional definition

Definition 3. A triple (A, ;) of U(n) or SU(n) weights is said to be admissible iff NY 0.

The reader should remember (at least in the context of this article!) the difference between
compatibility and admissibility, the former being obviously a necessary condition for the latter.

For given A and u, or equivalently, given a and 3, if N Ku # 0 for some h.w. v, the corresponding

~ must lie inside or on the boundary of the Horn polytope ﬁaﬁ, by definition of the latter. Since for
n = 3 the function 7, («, B; ) is continuous and vanishes on the boundary of its support, evaluating
it for «, 8, does not provide a strong enough criterion to identify admissible triples (a, 3;7).

2.2 Relation between Weyl’s character formula and the HCIZ integral

There is an obvious similarity between the general form (j5)) of the PDF p(v|a, #) and the expression
of the LR multiplicity N j\’# as the integral of the product of characters x)x,x; over the unitary

group SU(n) or over its Cartan torus T,, = U(1)""1

M= [ e o N, = [ ata@unem o
with the normalized Haar measure on T,
1
T = lt 2 t; 1
a (2m)n— 1nl )l H dti, (17)



for
. n
T = diag (¢'")j=1,..,n  with Y £; =0. (18)
j=1

This similarity finds its root in the Kirillov [19] formula expressing x» as the orbital function
H relative to Oy ), defined in , see below ; note the shift of A by the Weyl vector p,
the half-sum of positive roots.

Recall Weyl’s formula for the dimension of the vector space V) of h.w. A

A(d)
Fn—1)
From a geometrical point of view, this formula expresses dim V) as the volume of a group orbit

normalized by the volume of SU(n), the latter being also equal to sf(n — 1), once a natural Haar
measure has been chosen, see [23].

dim V) = with o' = (A + p), and ¢ as defined in . (19)

2.2.1 From group characters to Harish-Chandra orbital functions

Kirillov’s formula [19] relates Weyl’s SU(n) character formula with the orbital function of O,/. Here
and below, the prime on o’ refers to the value of «, for the shifted highest weights A + p

o =Il(\+p), (20)

and likewise for 3,7'. Indeed evaluated on an element 7' of the SU(n) Cartan torus as in (L),
Weyl’s character formula reads

detelti®i : it
(T = r (T) = —x oy with Ae) = [T (e —eb), (21)

or in terms of the orbital function H defined in and made explicit in
A(a’) i(ti —t)) '
) = —<——"= | H (o it) (22)
sf(n—1) 1<E<n (elti — elty)
or, owing to the Weyl dimension formula ([19)

W) Al
dimVy,  A(e't)

(o, it). (23)

2.2.2 The polynomial R, (T)

Consider the following (semi-convergent) integral

eiuA
szdu AeR
R

u

a one-dimensional analogue of the integral encountered in @D If A is a half-integer, we may write

A half-integer J = JW du et i G
—u n(2m)

- n

J du et uA;
2sin(u/2)

—T



according to a well-known identity. If A is an integer, the previous sum over n is understood as a
principal value. Then

[o0]
‘S 1 T
A int = d iuA PV. _ d iuA
integer J we V) o n(2r) J,r Y Stan(u/2)

- n=—0u

We now repeat this simple calculation for the (n — 1)-dimensional integral appearing in @D,
evaluated either for unshifted «, 3, or for shifted o/, 5,7/, associated as above with a compatible
triple of highest weights (\, u;v).

First we observe that the determinant det el (i~ 2% that appears in the first line of (Eb is
nothing else than the numerator of Weyl’s formula for the SU(n) character x,(7), evaluated
for the unitary and unimodular matrix

T = diag (' “w Xo8)) (24)

Henceforth we take ¢; = (z; — £ > a;), Dt; = 0. Consider now the product of three such deter-

minants as they appear in the computation of J,(c/, 8’;7/), see @ Each factor €' 25 %% under
27-shifts of the variables u; := t; — tj411, uj — u; + pj(27), is not necessarily periodic, because of
the second term of A; in :

. . . Jpj
el 2juiAy el 2 Ay e—27r1 2 =LY (o +B8 =) .

Indeed, for o = £(\ + p), etc, we have

n n—1 n(n _ 1)

Dl + B =) = D, R+ e = vg) + =5,

k=1 k=1
the first term of which vanishes for a compatible triple (A, u;v), see . Thus we find that under
the above shift, e 25 %4 — ¢l 25445 (—1)259=YPi - For n 0dd, like in SU(3), the numerator is 27-
periodic in each variable u;. For n even, however, we have a sign (—1)/Pi. We may thus compactify
the integration domain of the u-variables, bringing it from R”~! back to (—, 7)"~! by translations
uj — uj + (2m)p;, while taking the above sign into account. Thus for a compatible triple (X, p;v)
and the A;’s standing for the expressions of computed at shifted weights o/ = ¢(\ + p) and
likewise for 3’ and ', we have

n—1 iu; A; n—1
o dug et Uit )
1_[,]71’V J _ f H du] elu]'Aan
Rn—1 Au) (=mm)n=t 5

D, = Z (_1)Z]~jpj(n—1) H 1 (25)

P mp—— Liairan Wi T UL e wy (Dt pi)(27) ’

a sum that always converges. Now define

1 .

wo =[] 2sin(G(utuin o)) =10TDRAE) (26)
1<i<i’<n

R,(T) := Dyw,. (27)

R, as defined by , is a function of T' with no singularity, since all the poles of the original
expression A(u)~! have been embodied in the denominator A(elt'). It must be a polynomial in T
and T™, invariant under permutations and complex conjugation, hence a real symmetric polynomial
of the e*s. (Since detT = 1, T* is itself a polynomial in 7.) We conclude that R,(T") may be
expanded on real characters x.(7T'), £ € K, with K a finite n-dependent set of highest weights.
Moreover R, (I) = 1, as may be seen by looking at the small ¢ limit of . Thus



Proposition 1. The integrals over R"~! appearing in J(o/, B';7') in (@, foroa =l(A+p), B =
L+ p),y =L +p), (\u;v) a compatible triple, may be “compactified” in the form

[T}2) dujel"s™ ( 1)/2J T iu;A; Bn(T)
~ :inni dU'eluj b 28
Rn—1 A(U) (=m,m)n—1 ]]1 ’ A(el ti) ( )

where the real polynomial Ry, (T) is defined through . There exists a finite, n-dependent set IC
of highest weights such that R,(T) may be written as a linear combination Ry (T) = X, cx reXx(T)
of real characters. The coefficients r are rational and such that, when evaluated at the identity
matriz, Ry, (I) = 1.

Consider now the similar computation, again for a compatible triple (A, p; ) but with the A;’s
standing for the expressions of computed at unshifted weights, i.e., with a = £(\) and likewise
for 5 and ~. If the triple (o, B;7) is non generic, J,(«, ;) = 0. If it is generic, and n is odd,
(c, B;v) may be thought of as associated with the shift of the compatible triple (A—p, u—p;v—p).
Thus for n odd, this new calculation yields the same result as above. For n even, however, the
latter triple is no longer compatible and a separate calculation has to be carried out. It is easy to
see that the same line of reasoning leads to a modification of the formula and to a new family
of real symmetric polynomials }Afn(T), according to

n—1 iuiAs n—1
o dujet it . ~
H]—lN J _ J‘ H dujelujAan
Rn—t A(u) (=mm)n =t 5oy
~ O 1
D, := 29
" p17...7p;1_00 1<i1<—z‘['<n Ui+ i1 + oo+ ug—1 + (Pt o+ pr—1)(2m) 29)
]’i;n(T) = ﬁnwn, (30)

with the same w, as in (26)). Note that the sum in (29)) is convergent for n > 2. The case n = 2
requires a special treatment, see below in sec.

Proposition 2. The integrals over R"~! appearing in Jn(c, B;7) in (@, for a = L(N\), B =
), v =4L(v), (\ pu;v) a compatible triple, may be compactified in the form
]—[?:_11 dujet Ui

Rt A(u)

~

n—1
e 4 Ra(T)
n(n—1)/2 iu;A n
_ jn(n=1)/ J”n_l |'7| dug e S (31)
( ») Jfl

where the real polynomial }ABH(T) is defined through (@/ There exists a finite n-dependent set K
of highest weights such that R, (T) may be written as a linear combination R,(T) = e Texw(T)
of real characters. The coefficients 7 are rational and such that, when evaluated at the identity
matriz, }’%n(l) = 1. Forn odd, the following objects coincide with those of Proposition : }’%n = R,,
K=K and r, = Tr.

R A method of calculation and explicit expressions for low values of n of the polynomials R,,
R, and of the sets I, K will be given in sections and establishing the rationality of the

coefficients r,, 7. We shall see that the polynomial R, is equal to 1 for n = 2 and n = 3, but
5 1

non-trivial when n > 4. In contrast, already for n = 2, Ro(T') = 5x1(T'). These expressions of R,
and R, for low n suggest the following conjecture
Conjecture 1. The coefficients r,, and 7 are non negative.

As we shall see below in sec.[2.5| (v), this Conjecture [1] is related to Lemma [1]

10



2.3 Relation between 7, and LR coefficients
We may now complete the computation of 7, (</, 5';+") and T, (a, 8;7). We rewrite

1

_ 6115 2 . ; i
= |A( )| A(elt)A(elt)A(elt)*

A(eit)

the first term |A(e!?)|? is what is needed for writing the normalized Haar measure over the SU(n)
Cartan torus T,,, see , while the three Vandermonde determinants in the denominator provide
the desired denominators of Weyl’s character formula.

Putting everything together we find

Theorem 1. 1. For a compatible triple (A, u;v), the integral J,, of (@-@, evaluated for the shifted
weights X+ p ete, or for the corresponding o/ = L(A+p), B = L(u+p), v = L(v+ p), may be recast
as

Tl F57) = | AT DT) RulT) (52)
where the integration is carried out on the Cartan torus with its normalized Haar measure. Writing
R, (T) = > e TeXx(T) as in Prop. |1, this may be rewritten as

jn(O/,B’;’Y’) = Z rnN)\#

K,EfC

— Z WINY, (33)

V/

where the sum runs over the finite set of i?“reps V' obtained in the decomposition of @rexc(V ® K),

with rational coefficients Y , = > ek VY

2. For a compatible triple ()\ w;v) of wezghts not on the boundary of the Weyl chamber, the integral
In of (@-@, evaluated for the unshifted weights A, u, v, or for the corresponding a = £(\), 5 =
(), v =L(v), may be recast as

Tl i) = ﬁr AT X (T) X (D)X (T) R(T) (34)

where the integration is carried out on the Cartan torus with its normalized Haar measure. Writing
Rn(T) = 3., ¢ "Xx(T) as in Prop. @ this may be rewritten as

jn(a71877) = Z fHN/\VLp/J pNII{/V P (35)
rek
= éz(/l//)NKfp H=p (36)

where the sum runs over the ﬁnite set of irreps V' obtained in the decomposition of ®, ¢ ((pr)®/£),

A

with rational coefficients ¢ e , =2 N7

Proof. (32) and result from the previous discussion. The product R, (T)x,(7T) may then be
decomposed on characters,

Rn(T)x(T) = Z T Xk (1) X0 ( Z rnXu T) = ZC(VZ;)XV’(T) )

ke neiC

with cl(/l,') = D ek N , T, Which yields (33)). Similarly, Rnx,, 0= D cl(/,)x,,/ with c(l’) Doei VY
which gives . Recall that if either of A, i or v lies on the boundary of the Weyl chamber, «a,
or 7 has at least two equal components and 7, («, 8;7) = 0. O

11
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Thus, in words, J,(</, ;") and J,(«, 5;y) may be expressed as linear combinations of LR
coefficients over “neighboring” weights v/ of v. If Conjecture [1|is right, the coefficients cl(jl,/), él(,l,/) are
also non negative.

Remark. Note that even though the function 7, (a, 8;7) is defined for any triple («, 3;7), compat-
ible or not, integral or not, equations , hold only for triples (¢, 5;7) or (a, 8;7y) associated
with compatible triples (A, p;v). Recall also from the previous discussion that for n even, the triple
(/, 854" is not integral and compatible if the triple («, 3;7) (or (A, u;v)) is

Comment. It would be interesting to invert relations and to express the LR coefficients
NY ” as linear combinations of the functions 7,, and their derivatives. In view of the considerations

of [30] this doesn’t seem 1nconce1vableﬂ

2.4 Expression of the R and R polynomials

Here is the essence of the method used to compute R, and ﬁn, as defined through , .
We first introduce two families of functions, defined recursively

1 0 1 0
fu,m) = 17 (v,m—1)|p=y and g(u,m)= —W%Q(%m — Dlo=u

with (see above the beginning of sec.[2.2.2)

_ 1 PR S R o VA SN
Sl =20 ) e~ T YD N 2 o o T T T

R, and ]%n , defined in 1 , are obtained explicitly by an iterative procedure. We start from

VAw =[] !

1<i<j<n—1 (wi + i1 + - uyj)

First we pick a variable in (A(u))™, say ul, shift it by p1(27), perform a partial fraction expansion
of the rational function H2<j<n TP E— 1+p1(27r) with respect to the variable u; and make use of
J—

the previous identities in the summation over p;. This produces a sum of trigonometric functions
of uy, -+ ,up—1 which are (27) periodic or anti-periodic in each of these variables, times rational
functions of wg, - ,u,—1. Then iterate with the variable ug, say, shifting it by pa(27) etc. (Of
course the order of the variables is immaterial.) As explained in sec. the final result has the
general form

R, (resp. }Ain)
[icici<n? sin (5 (u; + Uipr + -+ + up_1))

where R,, resp. ]’%, is a (complicated) trigonometric function of the u variables, or alternatively
a symmetric trigonometric function of the ¢ variables. The latter is then recast as a sum of real
characters of the matrix 7T'.

This procedure will be illustrated in sec.[4.2] on the first cases, for 2 < n < 6.

Remark. The reader may have noticed the parallel between this way of computing }Afn and
the computation of 7, in [3I]: both rely on an iterative partial fraction expansion, the connection
between the two being the Poisson formula. As a consequence of this simple correspondence,
JIn(a, ;) evaluated for a compatible triple and ]’%n have rational coefficients with the same least
common denominator §,, see below Prop.

S0ur thanks to Michele Vergne for pointing to that possibility.
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2.5 Consequences of Theorem 1

(i) We start with a useful lemma

Lemma 2. With the notations of Theorem[I], we have the relations

diredimV, = 1 (37)
KeEK
Y iedimV, = 1 (38)
kel
YN ey dimV, = dimV, dimV, (39)
YN, b dimV,_, = dimVi_, dimV_,. (40)

v,V

Proof. From the relation R, (T) = Y.k xXx(T) evaluated at T' = I, with R,(I) = 1, it follows

that >, rxdimV, = 1. Then
Cyr = Z Ny = 2 N
kel KelC

because of the reality of the irreps of h.w. k, hence

YN e, dimV, = Y r > NN, dimV,)

v,V ke v/ v
= D 1w Y. Ny dimV, dim V,
KEK v/
= Y redimVi Y N,y dimV, = dim Vy dimV,.
KEK v/
| S —
=1
The two relations and are proved in the same way. O

(ii) Localization of the normalization integral of 7,.
For two given integral (non negative) « and 3, consider the sum of 7, (v, 8;v)A(y) over the integral
~’s inside the connected part ﬁaﬁ of the support of J,. If either o or 8 is non generic, (i.e., has
two equal components), all 7, («a, 8;7) vanish.

Conversely if both a and § are generic, i.e., A and p are not on the boundary of the Weyl

chamber, we make use of and

. A(Y) B ' dimV,_
gjn(aaﬁafy)A(a)A(ﬂ)Sf(n— 1) = Z’y:jn(OQBv’Y)dlm V)\—p diHll)VM_p
dimV,_,

— NY ey =1 41
2 N s i Vi, dimV,_, (41)

v,V

by Lemma [2| (The v’s on the boundary of the Weyl chamber, for which v — p is not dominant, do
not contribute because of the vanishing of 7, («a, 8;7).) Comparing with , we find that
A(y) 1

n—1 . &: a, D =
fﬁaﬂd 1 0B XA G Weﬁgznlj”( P R@a@ -y P

In others words, the normalization integral of 7, over the sector v,_1 < --- < 1 localizes over the
integral points of that sector.

(iii) Quantization of 7,,.

13



Proposition 3. For any integral compatible triple («, B;7), Tn(e, 5;7) is an integral multiple of
some rational number J,*.

Proof. Call d,, the least common denominator of the coefficients ¢, in . Then we see that
JIn(c, B;7y) is an integral multiple of 1/6,,. O

Unfortunately we have no general expression of 4, and rely on explicit calculations for low
values of n:

ni23(4| 5 |6
on || 1]1]6]360]|9!

(iv) Asymptotic behavior. The asymptotic regime is read off (32136)): heuristically, we expect that
asymptotically, for rescaled weights, the t-integral in the computation of 7, will be dominated by
t ~ 0, hence T' ~ I, for which R,, = R, = 1, whence the asymptotic equality, for A, u, v large

Tn(a,857) ~ Tu(a, B;7) ~ Ny, (43)

More precisely, it is known [27] that, as a function of v/, N )\Z' can be extended to a continuous
piecewise polynomial function, thus for large v, one approximates the rhs of by N )\Z Do C A
N )\Z since the coefficients sum up to 1, again as a consequence of R, ([) = 1:

s 1

MNew=r YN TET Y redimV, =1
v KelC v/ KelC

as observed above in .

We shall see below in sec. that (32133 enable us to go (a bit) beyond this leading asymptotic

behavior.

(v) Compare Conjecture [1] and Lemma

We just observe here that Conjecture [1|is consistent with Lemma |1} Indeed, if we apply to an
admissible (hence compatible) triple (A, p; v), with the assumption that the sum over v/ includes v
with a non vanishing coefficient ¢,, and using the non negativity of the other ¢,/ (as stated in Conj.
, one obtains J,(a/, 5;7') = NY, >0, in agreement with Lemma

3 On polytopes and polynomials

The polytopes ﬁaﬁ and HK# considered in this section have been introduced in Sec.

3.1 Ehrhart polynomials

Given some rational polytope P, call sP the s-fold dilation of P, i.e., the polytope obtained by
scaling by a factor s the vertex coordinates (corners) of P in a basis of the underlying lattice.
The number of lattice points contained in the polytope sP is given by a quasi-polynomial called
the Ehrhart quasi-polynomial of P, see for example [2§]. It is polynomial for integral polytopes
but one can also find examples of rational non-integral polytopes, for which it is nevertheless a
genuine polynomial. We remind the reader that the first two coefficients (of highest degree) of the
Ehrhart polynomial of a polytope P of dimension d are given, up to simple normalizing constant
factors, by the d-volume of P and by the (d — 1)-volume of the union of its facets; the coefficients
of smaller degree are usually not simply related to the volumes of the faces of higher co-dimension.
We finally mention the Ehrhart—Macdonald reciprocity theorem: the number of interior points of
P, of dimension d, is given, up to the sign (—1)d, by the evaluation of the Ehrhart polynomial at
the negative value s = —1 of the scaling parameter.

14



3.2 Littlewood-Richardson polynomials

It is well known [I4} TT] that multiplicities like the LR coefficients admit a semi-classical description
for “large” representations. In the present context, there is an asymptotic equality of the LR
multiplicity N Z’“, when the weights A, i, v are rescaled by a common large integer s, with the
function J,,. Here again we assume that the admissible triple (A, ;1) is generic, in the sense of
Definition |1} Indeed, from , as s — o

Ko X Ta(l(sA+ p), U(sp+ p); L(sv + p)) & Tn(sa, 55 57) = s D=2 7 (0 B1y) . (44)

The last equality just expresses the homogeneity of the function 7,.
These scaled or “stretched” LR coefficients have been proved to be polynomial (“Littlewood-
Richardson polynomials”) in the stretching parameter s [9, 27],

ssi\js,u = P)l\/u(s) (45)

and it has been conjectured that the polynomial P} (s) (of degree at most (n —1)(n — 2)/2 by
), has non negative rational coefficients [I7]. More properties of P)’\’#(s), namely their possible
factorization and bounds on their degree have been discussed in [18]. For a generic triple, our study
leads to an explicit value (eq. ) for the coefficient of highest degree, namely the kernel function
Tul, B:7), see eq. ).

From the very definition of the hive polytope H¥ L associated with an admissible triple (each in-
tegral point of which is a honeycomb contributing to the multiplicity), with Littlewood-Richardson,
or stretching, polynomial P/\”M(s), and from the general definition of the Ehrhart polynomial, it is
clear that both polynomials are equal. Notice that P)’\’H(s), defined as the Littlewood-Richardson
polynomial of the triple (X, u; v) or as the Ehrhart polynomial of the polytope H¥ 4+ 18 polynomial
even if the hive polytope happens not to be an integral polytope; on the other hand the Ehrhart
polynomial of the polytope defined as the convex hull of the integral points of HY " will differ from
Py “(s) if H3,, is not integral, see two examples in sec. and

From the volume interpretation of the first Ehrhart coefficient, which was recalled in sec.[3.1]
we find:

Proposition 4. For SU(n), the normalized d-volume V of the hive polytope HY,, equals d! jn( ,B57),
with d = (n — 1)(n — 2)/2, for a generic and admissible triple (X, u;v), wzth a =1L\, s (1),
v =L(v), and with J,(c, B;7) given by eq. (@

We use here the definition given by [12 24]: for a polytope of dimension d, the Euclidean
volume v is related to the normalized volume V by v = V/d!. More generally the total normalized
p-volume V), of the p-dimensional faces of a polytope is related to its total Euclidean p-volume v,
by v, = V,/pl.

This is consistent with the result [20] that the LR coefficient is equal to the number of integral
points in the hive polytope. In words, says that the number of integral points of that polytope
is asymptotically well approximated by its euclidean volume 7.

The Blichfeldt inequality [5] valid for an integral polytope Q of dimension d, states that its
number of integral points is smaller than V + d, where V is its normalized volume. This property,
which a fortiori holds for a rational polytope H with integral part Q, together with Proposition 4,
implies the following inequality for a generic hive polytope H¥ , of SU(n):

d! Jn(a, B;y) = Ny, —d (46)

with d = (n —1)(n —2)/2 and a = 4(\), B =L(n), v = (V).
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3.3 Polytopes versus symplectic quotients

Here is another argument relating the volume of the hive polytope with p(vy|a, 8), hence also with
TIn(a, B;7), for a = £(N), B = €(n), v = £(v), A\, p, v being dominant integral weights. It goes in
two steps, as follows.

Step 1.

N j\’# is the number of integral points of the hive polytope.

For large s, the coefficient NJY u is approximated by s? times the volume of the same polytope.
Step 2.

For large s, N3} s 18 approximatedﬂ by the volume of a symplectic quotient of the product of three
coadjoint orbits labelled by A, 4,7, where 7 is the conjugate of v.

The same volume is given, up to known constants, by p(vy|«, ), hence by J,(«, 5;7), see [21], Th4.
Hence the result.

As already commented in [21], the equality between the two volumes is quite indirect and it
would be nice to construct a measure preserving map between the hive polytope and the above
symplectic quotient, or a variant thereof. To our knowledge, this is still an open problem.

The details of the first part of step 2 are worked out in [29]. We should mention that this
last reference also adresses the problem of calculating the function p(vy|a, ), at least when the
arguments are determined by dominant integral weights, and the authors present quite general
formulae that are similar to ours. However, they do not use the explicit writing of the orbital
measures using formula , which was a crucial ingredient of our approach and allowed us to
obtain rather simple expressions for 7, (a, 3;7).

3.4 Subleading term

From the asymptotic behavior , we have

Ko = Pu(s) = s DOTDRT (0N, £(u); () (1 + O(s71))

provided the leading coefficient 7, (¢(\), £(n); £(v)) does not vanish. According to Lemma [1| the
stretching polynomial Py (s) is of degree (n —1)(n — 2)/2 for v inside the tensor polytope and for
A, ¢ 0C, but is of lower degree on the boundary of that polytope, or for A or g on 0C.

Write for stretched weights

jn(e(S)‘_i_p)?e(su"i'p)iE(SV+p ZTHZ SVUK s)\s,u

ke 1z

For s large enough, all the weights 1/ = sv + k, where k runs over the multiset {x} of weights
(i.e., counted with their multiplicity) of the irrep with highest weight k, are dominant and thus
contribute to the multiplicity N, [26]. Thus
Tn(L(sA + ), (sp+ p); L(sv + p)) = Y e Y, NEE. (47)
KeK  ke{x}

But as a function of A, i, v, and in the case of SU(n), the LR coefficient Ny, is itself a piecewise
polynomial [27]: more precisely in the latter reference it is shown that, for the case of SU(n), the
quasi-polynomials giving the Littlewood-Richardson coefficients in the cones of the Kostant complex
are indeed polynomials of total degree at most (n—1)(n —2)/2 in the three sets of variables defined
as the components of the highest weights A, u, v

"More precisely lims_ ngjA”sM = {w?/d!, with d = (n — 1)(n — 2)/2, where w is the symplectic 2-form on the

symplectic and Kihler manifold of complex dimension d defined as (Ox x O, x Oz)//SU(n):=m~'(0)/SU(n), with
m, the moment map m : (a1, az,a3) € Oy x O, x Oy — a1 + a2 + as € Lie(SU(n))*.
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Remark. The well known Kostant-Steinberg method for the evaluation of the LR coefficients (a
method where one performs a Weyl group average over the Kostant function) is not used in our
paper, or it is only used as a check. However we should stress that, even in the case of SU(3)
where the LR coefficients can be deduced from our kernel function J3, see below sec. the
expressions obtained for N using the Kostant—Steinberg method differ from ours.

If we assume that Ny  may be extended to a function of the same class as Jp, namely C" 3, see
above sec. a Taylor expansion to second order of the rhs of (47)) is possible for n > 4. This
leaves out the cases n = 2 and n = 3 which may be treated 1ndependently, see below sec. [£.1.T] and
We thus Taylor expand for large s

Tull(sh+p) Usp+ p)il(sv +p) = D re 3 Bi(s)
ke  ke{x}

= e | dim Vi PY,(s) +f D1 RV, (s) +
KeK ke{n}

— P{(s) <1 + o(i>> (48)

since Y 7. dimV, = 1 as noticed above in sec.2.2, and Y.,k = 0 in any irrep. Thus for
generic points, the two polynomials Jn(€(sA + p), {(sp + p); {(sv + p)) and FY, (s) have the same
two terms of highest degree dyq: = (n — 1)(n — 2)/2 and d;q; — 1. In the degenerate case where
the term of degree d,q, vanishes and the next does not, the leading terms of degree d; . — 1 are
equal. If the degree is strictly lower than d,,q.; — 1, there is no obvious relation between the two
polynomials, see examples at the end of sec.[4.3.3

4 A case by case study for low values of n

We examine in turn the casesn =2,--- ,6.

4.1 Expression and properties of the 7, function

The expressions of Ja, J3 and Jy were already given in [3I]. We repeat them below for the
reader’s convenience. Those of J5 and Jg, which are fairly cumbersome, are available on the web
site http://www.lpthe. jussieu.fr/~zuber/Z_Unpub.html

4.1.1 The case of SU(2)

In the case of n = 2, the function /5 reads

Jo(, B;7) = (1r(m2) — 1-1(12)) (49)

where v19 := 71 —¥2 and 17 is the characteristic function of the segment ﬂ I = (Jang—Pa2|, a12+ P12).
Then, when evaluated for shifted weights, o/ = ajo +1 =X +1, 8 = Bp+1=pu +1,79 =
y2+1 =11 +1 > 0, it takes the value 1 iff |a12 — B12] < 712 + 1 < @12 + B2 + 2, ie., iff
|ovie — Bi2| < 712 < a2 + P12 which is precisely the well known value of the LR coefficient,

1 if lage — friol = M —m| < vz =vi <aig+ Bz = M+

Ny, = and v — [\ — 1| even

o
0 otherwise

8This result should be connected with the fact that the support of the convolution product of measures on
concentric 2-spheres is an annulus.
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We conclude that
jQ(O/aB,;’)/) = NKy? (50)

in agreement with the general formula , provided we assume that the indicator function vanishes
at the end points of the interval I.
On the other hand, as we shall see below in sec. Ry = %X1(T), so that amounts to

1 / /
T, Byy) = 52]\%—1”1—1 m-11 (51)
l//

—_

if (M —p| +2<y2=v1 <A+ —2

_ and v; — |A\; — p1| even (52)
% ifV1=|/\1—u1|0r=)\1+u1
0 otherwise

which is consistent with 1} if we assume now that the indicator function takes the value % at

the end points of the interval I. This rather peculiar situation is a consequence of the irregular,
discontinuous, structure of 7.

4.1.2 The case of SU(3)

For n = 3, J3 takes a simple form within the tensor polytope (here a polygon). In [31], the following
was established.
The function

ol Bim) =7 D) eppe(An) (14| — |41 — Ao, (53)

P,P’eS3

with A7 and As as in , may be recast in a more compact form:
Proposition 5. Take a1 = ag = as, and likewise for 3. For vy satisfying (@, Horn’s inequalities
and y1 = 2 = 73,

J3(a, Biy) = %(041 —az3+ 1 —PBs+7—3) — %\OQ + B2 — 72| — %%g(’y) - %wﬂa(’ﬂ (54)

where

(e—az3—=p1)—(m—a1—P2) ifyp—az—F =20and vy —a; —fF2 <0
Yap() = (13—a2—P3) —(r2—az—p1) ify—ar—pPs3=0andy—a3—p1 <0 . (55)
=0

(m—a1—P2) —(3—ax—pF3) if y1—aq —fo and y3 —az — 33 <0

Js(a, B; ) takes non negative values inside the tensor polygon and vanishes by continuity along the
edges of the polygon. It also vanishes whenever two components of a or [ coincide (non generic
orbits).

The non-negativity follows from the interpretation of J3 as proportional with a positive coeffi-
cient to the PDF p.

Consider now an admissible triple (X, u; ) of highest weights of SU(3). The associated triple
(ar, B;7) is defined as explained above, a; = A1 + Ao, ag = Ao, B1 = u1 + pa, fo = p2, ag = Pz =0,
Y1 =1 +Vva+v3,v2=1s+r3and y3 =v3 = %()\1 + 2Xg + p1 + 2p2 — v1 — 217), an integer, so that
31 (v — i — Bi) = 0. Then
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Figure 1: The Horn-tensor polygon ﬁaﬁ = H,, for the two SU(3) weights A = (9,5) pu = (6,5),
hence o = (14,5,0), 8 = (11,5,0). The multiplicity increases from 1 to 6 inside the
polygon, giving a matriochka pattern to the successive contours.

Proposition 6. 1. For an admissible triple, the function J3(o, B;7) of eq. takes only values
that are integral and non negative; as just discussed, these values vanish by continuity along
the edges of the polygon; the vertices of the boundary polygon are integral and give admissible

v's;
2. for a = L(N), B =Ll(u), v="~Lv), Ts3(a,B;7) = N;\’M — 1; in particular, if some X\; or u;
vanishes, hence o or B are non generic, N)’\’# =1, a well-known property of SU(3);

3. the points v of value J3(€(N),4(1n);€(v)) = m, for 0 < m < My form a “matriochka”
pattern, see Fig. [1

4. Now evaluate J3 at shifted weights N = X+ p, ' = p+ p, p the Weyl vector (1,1), hence
a, =L;(N)+3—1, B = li(n) + 3 —1i and still oy = B5 = 0. Then

J3(d, 8'39') = N3, (56)
with v such that v, = ¢;(v) +3 —1i, 1 =1,2,3.

5. The sum Zweﬁaﬁmﬁ %Jg(a, B;7) equals %; therefore replacing the sum by an integral
over the domain v3 < v9 < 1, See , gives the same value (namely %)

Proof. Point 1 follows from Proposition [3], with d3 = 1. Integrality of the vertices of the polygon is
seen by inspection of Horn’s inequalities. Point 4 follows from together with the fact that for
n = 3, the polynomial R3 = 1, see below sec. Points 2 follows from and the observation
made in [7] that, for SU(3),

v+ v
Ny pusp = NXu+ 1. (57)

The matriochka pattern of point 3 matches the similar pattern of points of multiplicity m + 1 in the
tensor product decomposition A ® p (cf [7], eq (22)]). Point 5 has already been derived in sec.[2.5]
and is here a direct consequence of »] NY pdimVy, = dim V) dim V), . Ul

We want to stress a remarkable consequence of the above eq. (54l55/56))

Corollary 1. The LR coefficients N3, of SU(3) may be expressed as a piecewise linear function
of the weights \, u, v, sum of the four terms of .
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To the best of our knowledge, this expression was never given before. Note that the lines of
non differentiability of the expression split the plane into at most 9 domains. In each domain,
the function [J3 is linear. This is to be contrasted with the known expressions that follow from
Kostant—Steinberg formula (see for example [10], Prop. 25-29) and which involve a sum over two
copies of the SU(3) Weyl group.

We should also recall that there exist yet another formula for the multiplicity N} T stemming from
its interpretation [20] as the number of integral solutions to the inequalities on the honeycomb
variable,

Ny, = Js(a/,89) =min(e, —B5 + 75,0 + oy + B — 1) (58)
—max(ay, V3 — 83,7 — By, 04 + g + By — g, 00 +ah + By — 1,01 — )+ )
= 14+ min(A; + Ao, v + 0,15 — o + 20)
—max(Ag,0,v9 — g + 0,09 — Ao — 2 + 20,9 — 1 — p2 + 20, + Ay — 1)

where o := %()\1 + 2Xg + p1 + 2pg — 1 — 219). See also [2, [7] for alternative and more symmetric
formulae and [8] for an expression in terms of a semi-magic square.

Remark. The lines or half-lines of non-differentiability of J3, as they appear on expression ,
(see also Figures in [31]), are a subset of the lines along which two arguments of the min or of the
max functions of coincide.

4.1.3 The case of SU(4)

The case of SU(4) is more complicated. Some known features of SU(3) are no longer true. In
particular, it is generically not true that multiplicities N )\V# are equal to 1 on the boundary of the
polytope; there is no matriochka pattern, with multiplicities growing as one goes deeper inside the
tensor polytope; and relation is wrong and meaningless, since (A + p, u + p; v + p) cannot be
compatible if (\, p; V) is.

We first recall the expression of Ju(a, 5;7) given in [31]. With A; standing for A;(P, P', P") in
the notations of ,

1 1
Jila, Bi7) = o3 Y. epepepre(Ar) <3,€(A2 — A1) (|43 — A1 — |43 — Ag + A1 — [A3 — Ao|* + | A3])
.P,P’,P”ES4 :
1 1
—3604ﬂ(Vhfg—As—-A2P)—-2UA2—-A1|—|AQDUA3—-A2KA3—-A2)+|A3fh)>~ (59)

One can actually restrict the previous triple sum over the Weyl group to a double sum only while
multiplying the obtained result by 4!, and this is quite useful for practical calculations.

Then, we have, for an admissible triple (A, u; v) of h.w. of SU(4) (with A\, u ¢ 0C, i.e., Aj, u; # 0),
and oo = L(A), B = €(p), v = L(v),

Proposition 7. 1. Nfu = 4 inside the tensor polytope.

2. Ja(a, B;y) vanishes when v belongs to the faces of the polytope ﬁag,' conversely Jy does not
vanish inside the polytope.

3. At these interior points, 6.J4(, B;7), which is the normalized 3-volume V' of the hive polytope
Ku’ s an integer.

4. That integer satisfies V = 6J4(c, B;7) = N/\Vu - 3.

5. The sum Zweﬁfmmzi” %‘74(@,5;7) equals 1—12, which matches the normalization .
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Proof. Point 1 results from a general inequality in integral d-polytopes that asserts that their
number of integral points is larger or equal to d + 1, see [I], Theorem 3.5. Here for points v inside
the tensor polytope, the polytope HY L is integral and 3-dimensional, hence d = 3. The first part
of point 2 has been already amply discussed, while the second one follows from Lemma [I Points
3 and 5 have been established in sec. Point 4 follows from Blichfeldt’s inequality . O

The consequences of Theorem 1 on the values of 7y at shifted weights will be discussed in the
next subsection.
4.1.4 A few facts about SU(5)

1. Based on the study of numerous examples, it seems that for weights v interior to the tensor
polytope, we have the lower bound N /\Vu > 8. Note that the afore mentioned inequality of
Theorem 3.5 of [I] (which would give the weaker N}, > 7) is no longer applicable, since the
hive polytope is not generally integral for n = 5, see a counter-example in sec.

2. Js(a, B;y) vanishes outside (and on the boundary) of the polytope, as already discussed.

3. For a compatible triple («, ;) and + inside the polytope ﬁag, 3605 (v, B;7) is a positive
integer (see sec.[2.5)), provided a and (8 have only distinct components. It is non vanishing
according to Lemma [I| Moreover N/’\’M < 6! J5(ay B;v) + 6 according to 1|

4. Z'yGI?IaﬂF\Z‘l j5( ﬁ, )W = TéS’ see again.

4.2 The polynomials R, and ]%n Application of Theorem 1

As in section the notation x denotes the character of the Lie group SU(n) associated with the
irrep of highest weight A. Also recall that for n odd, R, = R,.

4.2.1 Casesn=2and n=3

For n = 2 and n = 3, the polynomial R, is equal to 1. Indeed:

0 ( 1)1)1 B 1 - ;
pl_EOO up +27p1 2sin(u/2)  Aeil) (60)
> ! ) 1
g o (w1 + 2mp1) (ug + 2mpo) (ur + up + 2w (p1 +p2)) 2% sin(uy/2) sin(uz/2) sin((u1 + u2)/2)
.3
T A (61)

On the other hand,

i i _cos(u1/2) sitr T

1+ 27Tp1 - u 27rp1 © 2sin(u1/2)  A(elti)’

hence Ry(T) = 2x1(T), while Ry = R3 = 1.
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4.2.2 Casen=4

In contrast, for n > 4, one finds non trivial polynomials R,,(T) and R, (T). For instance for n = 4,
with the notations D4, D4 and w4 introduced in

0 (_1)p1+p3
Dy, =
4 Z H Ui + Ui + o Fug—1 + (i + -+ pir—1)(2m)

P1,p2,p3=—0 1<i<i’<4

1 1
75 (6 + Dicicjca 08 3 (Ui + - + Uj—l)) o (tr Ttr T* + 8)

Wy Wy
1 *
g31(trTtrT™ 4 8)
- 62
N (62)
and likewise
~ O 1
D, =
pl,pz%;:—oo KE@ Ui+ Uigr + o+ ug—r+ (P + oo+ pr—1)(2m)
3 (2cos(%)cos (B + %+ %) +eos (B - %)) 5 Zicicjac
Wy W4
_ %((trT) — tr T?) (63)
INED)
hence
1 . 1
Ry(T) = ﬂ(tthrT +8) = ﬂ(9 + X(1,0)(1)) (64)
~ 1 1
Ry(T) = E((UT)Q —tr7T?) = 5X(0.10) (7). (65)

Now, in SU(4), we can write

X0 (Mxo(T) = xu(T) + D, xu(T)

l/’

X(o,l,o)(T)Xu—p(T) = 2XV”(T)

with a sum over the h.w. 1/, resp. v/, appearing in the decomposition of v ® (1,0, 1), resp. of
(v—p)®(0,1,0). Notice that (1,0,1) is the highest weight of the adjoint representation, hence one
may write / = v + & where & runs over the 12 non zero roots & for v “deep enough” in the Weyl
chamber, i.e., provided all v + & are dominant weights, and over three times the weight 0 . Thus
we may write

Ja(b(A + p), U + p); £(v + p))

1 » y

ﬂ(9NM + 2 NY,) (66)
1

and for v deep enough in C = - + 35 ZN”+a = N, + iAN/l\’#.

where ANY = LY sy :é‘ — NY,) may be regarded as a second derivative term (a discretized
Laplacian), while the “first derivative” term vanishes because of > & = 0.

Example: Take A\ = (1,2,2), p = (2,2,1), v = (1,4, 1), the v/ and their multiplicities read

(V Ny (101)) = {(0 3 2) ) ((0 4 0)7 ) ((0>5’2)a1)7((07670)’1)a((17373)71)’
((2,2,2),1),((2,3,0),1),((2,4,2),1),((2,5,0),1), ((3,3,1), 1), ((1,4,1),3)} ,
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Ta(lO+p), Lp+ )i L(v + p)) = 97/24 while NY, = 5, %, N¥(; 1) NX), = 52, the rhs of (66) equals
97/24, and matches the lhs. Note that in that example, only 10 out of the 12 & contribute.

There is a second relation, which follows from with the above expression of _§4
\74(£(>‘)7£ ZNA pu—pv— p(O,l,O) (67)

For the previous example A = (1,2,2), u = (2,2,1), v = (1,4,1), three weights v” contribute
NV = 1, namely (0,2,0), (1,2,1), (0,4,0), but only the first two give Nj\’ipu_p = 1, the

v—p(0,1,0)
third has NV 0, and the rhs equals %, which is the value of J4(¢£(N), (n); £(v)).

A=pu—p =

4.2.3 Casen=2>5

For n = 5, likewise
1
Rs(T) = 180 [45 +12( cos(zq — x2) + perm. : 10 terms in total)
+(cos(x1 + x9 — 3 — x4) + perm. : 15 terms in total)]
L L[(t T)? — trT?][c.c.]
= op T pptrTtr Taao kT r c.c.

71 1 -
= + ZOX(I,O,O,O)(T)X(LO,O:O)(T )+ 360X(0’1’0 0)( )X(o,l,o,o)(T )

360 (45 + 10x(1,0,0,1)(T) + X(0,1,1,0)(T)) -

Comment: note that at T'= I, 45+ 10 x 24 + 75 = 360, R5(I) = 1, as it should.
Then denoting the h.w. appearing in (1,0,0,1) ® v, resp. (0,1,1,0) ® v, by v/, resp. v”,

3(1;0 (45X1/ + 10 Z XV’ + Z XV"(T)>

V”

R5 (T) Xv (T)

and

36075 (£(X + p), £(u + p); £(v + p)) = 45N¥, + 102 N{, + D INK,. (68)
Here again, for v “deep enough” in C, we can make the formula more precise: v/ — v runs over the
24 weights (=roots) of the adjoint representation (1,0,0,1), including 4 copies of 0 and 20 non zero
roots &; likewise v — v runs over the 75 weights of the (0, 1,1, 0) representation, including 5 copies
of 0, twice the 20 & and the 30 weights B of the form +(dij tag) withl <i<j<k<l<bor
+ (G + ) with 1 <@ < k < j <1 <5. Here we are making use of the notations ¢&;, 1 < i <4 for
the simple roots, and &;; = &; + -+ + &;j—1 with 1 <4 < j < 5 for the positive roots . Thus “deep
enough” actually means: all v + & and v + B eC. Then reads

TN+ b+ 0+ ) = N+ 55 SN = M)+ 55 O - NG (69
B

(with 20/30 + 30/360 = 3/4).

Example. A = (2,3,3,2), p = (3,2,3,2), v = (5,3,2,3), N{, = 211. We find in the lhs of
360T5(L(\ + p), L(p + p); (v + p)) = 63213 while the three terms in the rhs equal respectively
9495, 42010, 11708 with a sum of 63213, qed.
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4.2.4 Casen==6

We have found, after long and tedious calculations

2791 Ry = 31356(cos(x1 + 9 + x3 — x4 — x5 — Tg) + perm. : 10 terms in total)
—i—(cos(xl + x9 + 223 — x4 — x5 — 2x6) + perm. : 90 terms in total)
—|—1923(cos(x1 + xg + x3 — x4 — 2x5) + perm. : 120 terms in total)
—1-284238( cos(x1 + o — x3 — x4) + perm. : 45 terms in total)
-1-126((308(2.7}1 + w9 — 2x3 — x4) + perm. : 180 terms in total)
+18906(cos($1 + x9 — 2x3) + perm. : 60 terms in total)
+1362( cos(2z1 — 2x2) + perm. : 15 terms in total)
+1801128( cos(z1 — x2) + perm. : 15 terms in total)
+4919130.

Alternatively

2891 Rg(T) 1699488 + 715852 (1.0.0.0.0)(T) (c--) + 860X (2.0,0.0.0) (T) (c-c.)
+12032 (X(&LO,O,O) (T)X.0000)(T) + c.c.) + 202683X(0.1,0.0.0)(T)(c-c.)
+124x (11000 (c-C.) — 5207(X(0 0.1,00) (T)XE“l Looo)(T) + c.c.) +10414x(0.01.0.0) (T) (c-c.)
+X(1,0,1,0,0)(T)(c.c.) + 6876 (X 1,0,1,0,0)(T)X(0,1,0,0,0)(T) + C~C-)
— 2620422x(0.0,0,0.0)(T) + 1670 (x 00111 (T) + c.c. ) + 24167x(0,0.2.00)(T)
13826 (x(0,1,00.2)(T) + e:¢.) + 216561x(0,1,0.1.0)(T) + 957461x(1 0.0.01)(7)
+X(1,0,2,0,)(T) + 125X(1,1,0,1,1)(T) + 985X(2,0,0,0,2) (1) -

where the last expression is a decomposition as a sum over real representations, with a total
dimension 289!, as it should.
We also found :

9! §6(T> = 5422x(0,0,1,0,0)(T) + X(0,1,1,1,0)(T") + 13(X(0,2,0,0,1)(T) + X(1,0,0,2,0)(T)) +
186x(1,0,1,0,1)(T") + 982(x(0,0,0,1,1)(T") + X(1,1,0,0,0)(T)) - (70)

When evaluated at T' = 1 we check that the dimension count is correct:
(5422,1, 13,186, 982).(20, 1960, 560 x 2,540,70 x 2) = 9!.

We leave it to the reader to write the relations involving Ny ” that follow from || and ,
see an example below in sec.

4.3 Stretching polynomials
4.3.1 The case n =2

This is a trivial case. Since for any admissible triple, N Ku = 1, we have, according to a general
result [I7], Py (s) = 1.
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4.3.2 The casen =3

For n = 3, we have, from point 2. in sec.[4.1.2
Ny, = 1= T3(L(A), £(p); £(v))
and the latter is an homogeneous linear function of s, hence
Pyu(s) = NiXgp = T3(E(A), €(p); £(v)) + 1 = (N3, —1)s + 1. (71)

This expression is also valid for weights A and/or p on the boundary of the Weyl chamber C,
in which case, as is well known (“Pieri’s rule”), all LR multiplicities equal 1, and then again by
the same general result [I7], Py (s) = 1, while as noticed above, J3 = 0. Likewise as noticed in
sec.2.2.2, if v lies on the boundary of tensor polytope, (the outer matriochka), NY u = 1 and thus
again, PY, (s) = 1.

Remark. The property that Py (s) =1+ s(Ny, — 1) had been proved in [I7], then recovered in
[27] using vector partition functions.

4.3.3 The casen =14

For n = 4, given weights A, u ¢ 0C, and weights v interior to the polytope, J4(¢(N)¢(w); £(v))) # 0
(assuming that Lemma (1| holds true) and the stretching polynomial P)’\’H(s) is of degree exactly 3.
Now let us Taylor expand

Ta(U(sA + p), €(sp+ p)ib(sv + p)) = s> Ta(L(N), £(p); £v)) + %SZCL +0(s),

where the coefficient a, stemming here from the first order derivatives of J4, will receive shortly a
geometric interpretation.
The stretching polynomial Py M(s) must satisfy the three conditions

1. P}, (1) = NY,, by definition;
2. PY,(0) = 1;
3. PY,(s) = Ti(L(N), £(p); L(v))s® + 1s%a + O(s), as discussed in .

Recall now the discussion of sec. and [3.2): Ju(€(N), £(p); £(v)) is & times the normalized volume
V of the hive polytope, and a is half the total normalized area A. There is a unique polynomial
satisfying these conditions, namely

1 1
Pi(s) = Tall) L) 6))s® + 3A% + (NX, = Ta(l(N), )i €)= JA—1)s + 1
_ e e iy Lyl
= 6Vs +4.As + (N3, 6V 4A 1)s+1. (72)
Then the alleged non-negativity of the s coefficient [I7] amounts to

71 1
NY >= - 1,
e 6V+4A+ (73)

while the counting of interior points, through Ehrhart—Macdonald reciprocity theorem, gives us
another lower bound on N ;\’“

1
# (interior points) = — Py, (—1) = Ny, — (5.4 +2)=>0.
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In [4, 1] inequalities were obtained between coefficients of the Ehrhart polynomial of an integral
polytope. Recall that for n = 4, all hive polytopes are integral [6], and we may apply on these
inequalities which read

A _ V.1
4 - 2 2
1 1 yV 3
N —gV-7A-1 < o+3
hence VoA 5
NY, < =—+>=+=< 4
e 2+4+2 V+3 (74)

which is precisely the Blichfeldt inequality mentioned above at point 4 of sec.

In contrast, for non generic triples (A, u;v), Ja(€(N), £(p); €(v)) = 0, the stretching polynomial

is of degree strictly less than 3, and reads in general
Py (s) = %SQ +(NY, — g —1)s+1. (75)

If the coefficient @ is non vanishing, it has now to be interpreted as the normalized area of the
2-dimensional hive polytope (a polygon). If a = 0, either N > 2 and P)'\’#(s) = (NAVu —1)s+ 1, or
Ny, =1and Py u(3> = 1, consistent with the result of sec.|3.4/ and the two general results P = 1 if
Ny,=land P=s+1if Ny =2
In the former case (dimension 2 polytope, degree 2 Ehrhart polynomial), Erhrart—Macdonald reci-
procity theorem gives us an upper bound on N Ku < a + 2, while the alleged non-negativity of the
s-coefficient gives a lower bound, N} > 3(a +2). Thus one should have

?

1 .
5a+2) < N, <a+2. (76)

Also denoting ¢ := #internal points = P(—1) = a — N3, + 2, b = # boundary points, b + ¢ :=
#total of points = N )’fu, hence a + 2 = b + 2¢ which is Pick’s formula for the Euclidean area
a/2="0/2+c—1.

Examples: Here we denote for short J; = J4(£(sA + p), £(su + p); £(sv + p)).
Take A\ = (2727 1)7 m = (Qa 173)7

for v = (0,1,4), NY, = 3, P, (s) = 35(s + 1)(s + 2), T = 15(65° + 155 + 7)

while for v = (2,4,0), N}, =3, P}, (s) =2s+ 1, J| = $(1+ 4s)

and for v = (2,0,4), N, =4, P}, (s) = (s + 1)%, Jf = 1(4s* + 7s + 2).

Take A\ = (3,0,3), u = (2,3,1),

for v = (3,4,0), NY, =3, PY,(s) = 25 + 1, Jf = §(14s + 5),

while for v = (2,3,1), NY, = 6, PY,(s) = (s + 1)(2s + 1), Jj = §(165” + 185 + 3).

4.4 The hive polytope: three examples
4.4.1 An example in SU(4)

Consider the irreps of highest weight A = (21,13,5) and u = (7,10,12). Their tensor product
contains 7092 distinct irreps v with multiplicities ranging from 1 to 377. The tensor polytope H),
is displayed in fig. [2| left. The total multiplicity (sum of multiplicities for the various v’s) is 537186.

Let us now consider a particular term in the decomposition of the tensor product into irreps:
the admissible triple (A, p; v), with v = (20, 11, 9), whose multiplicity is equal to 367. This term can
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Figure 2: Left: The SU(4) tensor polytope Hy, for A = (21,13,5), p = (7,10,12) , and its 7092
integral points (distinct irreps). Each such point can itself be thought as a hive polytope,
for example the one given on the right.

Right: ~ The SU(4) hive polytope H, associated with the branching rule:
((21,13,5),(7,10,12);(20,11,9)). Each integral point (367 of them) stands for a pic-
tograph describing an allowed coupling of this triple, for example the one given in fig.

be thought of as a particular point of the tensor polytope and stands itself for a hive polytope of
dimension 3 (d = (n—1)(n—2)/2 = 3 for SU(4)). It is displayed in fig. |2} right. It has 367 integral
points: 160 are interior points, in blue in the figure, and 207 are boundary points. Among the
latter, 17 are vertices, in red in the figure, the other boundary points are in brown. The polytope
is integral since its vertices are integral — it is always so for SU(4) (see [6], example 2). Every single
one of the 367 points of the polytope displayed in fig. [2, right, stands for a pictograph contributing
by 1 to the multiplicity of the chosen tensor product branching rule. For illustration, we display
one of them on fig. actually we give several versions of this pictograph: first, the isometric
honeycomb version and its dual, the O-blade version, and then, the KT-honeycomb version and
its corresponding hive. Notice that for the first two kinds of pictographs the external vertices are
labelled by Dynkin components of the highest weights, whereas for the last two, they are labelled
by Young partitions.

The hive polytope has 12 facets (eight quadrilaterals, three pentagons and one heptagon), 27
edges, and 17 vertices (and Euler’s identity is satisfied: 12 — 27 + 17 = 2).
Its normalized volume and area are V = 1484 and A = 410.
The number of pictographs with prescribed edges gives the following sequence of multiplicities
NXou = {367,2422,7650, 17535, 33561, 57212,89972, 133325, 188755, 257746, ...}, for s = 1,2...
Only the first three terms of this sequence are used to determine the LR polynomial if we impose
that its constant term be equal to 1: P} (s) = (59365 + 246052 +3885+24) /4! From our discussion
in sec. Py H(s) should be equal to the Ehrhart polynomial E(s) of the hive polytope; using the
computer algebra package Magma [24] we checked that it is indeed so.

The direct calculation of Js using gives Ju(€(N),(p); £(v)) = 742/3, and more gener-
ally Ju(£(s\), €(sp);€(sv)) = T425%/3. Using the same eq. (59), we can also calculate J; for
p-shifted arguments: Jy(¢(sA + p), (s + p);l(sv + p)) = 2% + 2262 + 125 + 2. In agree-
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20

O-blade version: edges are non-negative
integers, opposite angles (sum of adja- Isometric honeycomb version: oppo-
cent edges) around the inner points are site angles (sum of adjacent edges) of
equal. hexagons are equal.

63

63 34
68 35 12

86 43 17 0

125 71 37 14 0

Figure 3: One of the 367 pictographs associated with ((21,13,5),(7,10,12);(20,11,9)). For com-
pleteness we also give below the corresponding KT-honeycomb and its dual hive.

ment with our general discussion of sec. the first two terms of Py (s) and of Jy({(sA +
p), L(sp + p); €(sv + p)) are identical, the leading term being also equal to Jy(€(sA), €(sp); £(sv)).

One checks that the leading coefficient of E(s), hence of PY (s), is equal to 3 of the normal-

ized volume of the polytope and that the second coefficient is equal to %% of the normalized
2-volume of its boundary. In accordance with Ehrhart—Macdonald reciprocity theorem, one also
checks that —P§ (—1) = 160, the number of interior points in the polytope. Finally, on this
example, one can test eq which relates Zy(4(A + p), (1 + p); £(v + p)) = 11592 to a sum
of the Littlewood-Richardson coefficient Ny and its twelve “neighbors” v + & appearing in the
tensor product v ® (1,0,1). Likewise eq relates 2474(0(N), 0(p); £(v)) = 1484 to a sum
over six Weights V" = (18,10,9), (18,11, 7),(19,9,8), (19,11, 8),(20,9,9), (20,10, 7) of the product

Nj\’ipu_lel,’_p (0,1,0) which takes the respective values 254,235,254, 243,259,239, the sum being
indeed 1484.
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4.4.2 An example in SU(5)

Consider the following tensor branching rule of SU(5): (A, u;v) with A = (1,3,2,3), u = (2,1,4,2),
v = (3,1,4,3). The hive polytope HY,, has dimension d = 6. We shall see that it is not an
integral polytope. We denote Q the convex hull of its integral points. HKM has 66 vertices and
99 points, all of them being boundary points. Q has 64 vertices and 99 points (the latter being
the same as for HY , by definition). Therefore we see that 2 vertices of Hy,, are not (integral)
points of H3 . The normalized volume of H¥, is 2544 (it is 2538 for Q). The normalized volume
of the boundary of Hf , is 3630 (it is 3618 for Q). The LR polynomial P)’f#(s), i.e., the Ehrhart
polynomial of HY , is 53s%/15 + 1215°/8 + 667s/24 + 679s%/24 + 68757 /40 + 735/12 + 1. In the
case of ’HK# , we check the first two coefficients related to the 6-volume of the polytope and to the
5-volume of the facets: 2544/6! = 53/15 and 1/2 x 3630/5! = 121/8. The Ehrhart polynomial of Q
is 1415%/40 4+ 6035 /40 + 6655 /24 + 67953 /24 + 25952 /15 + 925/15 + 1. In the case of Q, the same
volume checks read: 2538/6! = 141/40 and 1/2 x 3618/5! = 603/40.

An independent calculation using the function J5 gives J5(¢(A), £(p); €(v)) = 53/15, the leading
coefficient of the stretching polynomial.

In the present example, where HY  and Q differ, it is instructive to consider what happens under
scaling. The two vertices of HY " that are not integral points are actually half-integral points, so that
they become integral by doubling. The polytope 2’HKM has again 66 vertices (by construction), it is
integral, it has 1463 points, 18 being interior points and 1445 being boundary points. It could also
be constructed as the hive polytope associated with the doubled branching rule (2, 2u;2v), and
its own Littlewood-Richardson (LR) polynomial, equal to its Ehrhart polynomial, can be obtained
from the LR polynomial of HKM by substituting s to 2s.

The polytope 2Q has again 64 vertices (of course), it is integral, it has 1460 points, 18 being
interior points ans 1442 being boundary points. Since Q HK“ we have 20 < QHK“, but now both
polytopes are integral (and they are different).

Q and HY u have the same integral points, so, in a sense, they describe the same multiplicity for the
chosen triple (A, p; v), however, under stretching (here doubling) of the branching rule, we have to
consider QHKH, not 2Q, otherwise we would miss three honeycombs (= 1463 — 1460) and find an
erroneous multiplicity. These three honeycombs correspond to the two (integral) vertices of 27{’/(“
coming from the two (non integral) vertices of HKH that became integral under doubling, plus one
extra (integral) point, which is a convex combination of vertices. For illustration purposes we give
below the three pictographs (in the O-blade version) that correspond to these three points.

Figure 4: The three SU(5) pictographs (O-blade version) associated with (2, 2u;2v), with A =
(1,3,2,3), p=(2,1,4,2), v = (3,1, 4, 3) that belong to the hive polytope of this doubled
branching rule but that do not belong to the double of the integral part of the hive
polytope of (A, u;v).
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4.4.3 An example in SU(6)

We consider the following tensor branching rule of SU(6): (A, p;v) with A = (1,3,1,2,1), u =
(2,1,3,2,1), v = (4,1,6,2,1). The multiplicity is 38.

For SU(6), the number of fundamental pictographs is 5 x 3 + 2 x 10 but there are 10 syzygies

(one for each inner hexagon in the honeycomb picture) so that a basis has 25 elements, the set
of 38 (integral) honeycombs is then described as a 25 x 38 matrix. The convex hull of these 38
points is then calculated, one finds that it is a 10 dimensional polytope Q (in R??). The obtained
polytope —which has no interior point and 38 integral points, 36 of them being vertices— happens
not to coincide with the hive polytope H (we are in a situation analogous to the one examined in
the previous SU(5) example). A quick study of Q reveals that this polytope, and so H itself, has
dimension 10, and that the chosen triple is therefore generic.
The fact that H differs from Q can be seen in (at least) three different ways: 1) The Ehrhart
polynomial of Q fails to recover the multiplicity of (sA,su;sv), already for s = 2 where the
multiplicity is 511. 2) The leading coefficient (30/9!) of this polynomial, hence the normalized
volume of Q, differs from J5(¢(\), £(n); £(v)) = 32/9! determined directly or from Theorem [1] (part
2), we shall come back to this below. 3) A direct determination of the polytope H obtained as
an intersection of 45 half-spaces —interpreted for instance as the number of (positive) edges in the
oblade picture— will show that # is not an integral polytope (its vertices, aka corners, are rational
but not all integral) and its integral part is indeed Q. We leave this as an exercise to the reader.
The LR-polynomial associated with the chosen triple, equivalently the Ehrhart polynomial of H,
is equal to

st0 67s7  899s% 563957 11281s 2276355 572777s*  78481s3 883515  3683s

1
11340 " 24192 " 24192 T 20160 © 8640 | 5760 72576 | 7560 | 10080 | 840

while the Ehrhart polynomial of Q is

510 N 947" N 20358 N 323557 N 22756 N 66767s° N 946187s* N 9458553 N 142152 N 11189s N
12096 = 362880 5760 12096 = 180 17280 120960 9072 160 2520

The coefficient of s'°, equal to 1/11340 = 32/9! and interpreted as the normalized volume of H, can
be obtained from a direct evaluation of the expression of Jg, but it can also be obtained easily from
Theorem (1| (part 2). This double sum involves the seven weights x together with the seven
associated coefficients 7, that appear in and turns out to involve only the following weights
V' (1,2,2,2,0),(1,2,3,0,1),(2,1,2,1,1),(2,1,3,0,0). Most terms are actually zero (because of the
vanishing of many Littlewood-Richardson coefficients), and the result is (1+2+2+1+413+13)/9! =
32/9!.
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