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Abstract

We investigate the automatic differentiation of hybrid models, viz. models that may
contain delays, logical tests and discontinuities or loops. We consider differentiation
with respect to parameters, initial conditions or the time. We emphasize the case of
a small number of derivations and iterated differentiations are mostly treated with
a foccus on high order iterations of the same derivation. The models we consider
may involve arithmetic operations, elementary functions, logical tests but also more
elaborate components such as delays, integrators, equations and differential equations
solvers. This survey has no pretention to exhaustivity but tries to fil a gap in the
litterature where each kind of of component may be documented, but seldom their
common use.

The general approach is illustrated by computer algebra experiments, stressing
the interest of performing differentiation, whenever possible, on high level objects,
before any translation in Fortran or C code. We include ordinary differential sys-
tems with discontinuity, with a special interest for those comming from discontinuous
Lagrangians.

We conclude with an overview of the graphic methodology developped in the
Diffedge software for Simulink hybrid models. Not all possibilities are covered, but the
methodology can be adapted. The result of automatic differentiation is a new block
diagram and so it can be easily translated to produce real time embedded programs.

We welcome any comments or suggestions of references that we may have missed.

Key words. — Automatic differentiation, Hybrid systems, Simulink, Block diagram,
Parametric sensitivity, Diffedge, Optimization, Real Time, Gradient, Maple, Matlab
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Introduction

The need to differentiate functions which are not described by formulas but by computer
programs is a classical and recurrent problem. “Automatic Differentiation” (AD) contains
two aspects: on the one hand, one wishes to extend the possibilities of some existing
software, most of the time in order to be able to optimize the choice of some parameter,
on the other hand the question may already be non trivial when posed before the program
is written. Indeed, computing efficiently some derivatives of functions that do not admit
closed form formulas is a non trivial task. For example, such functions may be integrals, or
solutions of systems of ordinary differential equations, or be implicitely defined by algebraic
equations. We may moreover compose such functions and in many pactical situations some
logical tests may appear, e.g. when some physical system must remain in some predefined
range of the state space.

This problem is an old one (see e.g. Arbogast [1]1) that has been widely considered in
recent years; many methods and softwares exist. One may refer to [45] for an introduction
to the subject. See also Griewank [32, 33]. The Wikipedia page Automatic differentiation
quotes no less than 17 softwares to differentiate C/C++ programs, 6 softwares for Fortran, 5
for Matlab, 9 for Python, . . . However, these software are limited to functions defined with
elementary functions and for some of them a few matrix operations. The structure of the
language itself can be an other limitation. What can be done if some high level function,
like Matlab functions “solve” or “dsolve” are used? Some years ago, the software Diffedge
was introduced to differentiate functions defined by bloc diagrams in Matlab/Simulink.
This corresponds to the user’s need to stay in the same working environment instead of
converting his model to C, Fortran, . . . losing then the possibilities offered by Simulink,
as well as the mathematical semantic of the problem to be solved. As a consequence, the
mathematical strategies that would have been used to deal with stiff ODEs, discontinuities
are lost that may lead to poor precision.

It is known, even if automatic differentiation is not as widely used as it should be, that
finite difference methods might lead to poor results [19] and in some unpredictable way, as
one cannot know what “small variation” should be chosen and, worse, it is not obvious to
tell in case of trouble if the choice made was too big or too small. And this is especially
true for embedded code dealing with noisy data. Computing iterated derivatives in that
way is a desperate task.

We would like here to emphasize that using automatic differentiation on some “low
level” Fortran or C code that contains subroutines for solving, say, algebraic systems using
a Newton method, or integrating differential equations, may lead to the same kind of
difficulties, so that one should try, whenever possible, to apply automatic differentiation at
the highest level, e.g. solve or dsolve functions as we may encounter them in computer
algebra systems like Maple or as Simulink blocks.

One wishes to keep as much control as possible on the precision of the results. Of course,
this is difficult, as no one knows in general what is the actual precision of the computations
one performs with a numerical software. A least, one would like the computation of the
derivative to have a precision η comparable to the precision ε of the function itself, viz.

1Rall [64] does not hesitate to trace it back to Qin Jiushao’s Mathematical Treatise in Nine Sections
(1247).
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η = O(ε). To this regard, brute force conversion to a low-level programming langage might
lead, as we will see, to erroneous results.

The plan of this paper is first to give a general theoretical methodology for such sit-
uations, viz. differentiating implicit functions, ODE solutions, possibly with delays and
discontinuities introduced by logical tests. Then, we will illustrate it with some Diffedge
examples. The last part is devoted to a few recipes to improve the accurracy of the result
and test the numerical precision of a software.

We assume that the differentiations are performed with respect to a limited number of
parameters (say in practice 3 or 5), meaning that the choice of reverse accumulation is a
legitimate strategy. We will also consider strategies for computing higher order derivatives
(without any other restriction than time and space complexity). The question of computing
high order time derivatives will also be considered.

We use here Maple just as an illustration of general recipes and do not consider the
many difficulties for producing effective implementations in this setting, allowing to get an
output in Fortran, C, Matlab or as a Simulink block diagram.

But we conclude with a description of the Diffedge Package, designed by the first
author, that shows how automatic differentiation can be performed inside the Simulink
environment, and allowing to deal with some combinations of the situations described
here.

The source code used for all the examples is available online.

1 Classical tools

1.1 Forward and reverse accumulation

It is well known that two basic opposite approaches may be used for automatic derivation
of formulas given by programs. Such a program may be represented by a graph, where all
nodes correspond to elementary functions. The forward approach will be best to compute
the derivative of many outputs with respect to one input. In the general case, let us assume
that we have a function of n variable, x1, . . . , xn defined in the following way.
a1 := f1(x)
a2 := f2(x, a1)
(. . . )
as := fs(x, a1, . . . , as−1)
where the functions fi are elementary function that will depend in practice of just one or
two of their possible arguments: e.g. a3 := x2 × a1. One will complete this program with
the expressions providing the values

ai,j :=
∂fi
∂xj

+

i−1∑
k=1

∂fi
∂ak

ak,j =
dfi
dxj

.

One sees that, assuming all functions fi to be +, − or ×, one needs at most 4s elementary
operations to compute the outputs of the initial s operations program together with their
derivatives; one will go to 5s if one uses also division ÷.

This simple idea, that may be adapted to partial derivatives, was experimented and
described by Wengert in 1964 [77].
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The reverse approach will be best to compute all partial derivatives of a single output,
that we may assume to be as = F (x) in the above program. New values a′j are then
computed in reverse order.
a′s−1 := ∂fs/∂as−1
a′s−2 := a′s−1 × ∂fs−1/∂as−2 + ∂fs/∂as−2
(. . . )
a′j :=

∑s−1
k=j+1 a

′
k × ∂fk/∂aj + ∂fs/∂aj (. . . )

x′j :=
∑s−1

k=1 a
′
k × ∂fk/∂xj + ∂fs/∂xj

The requested number of operations if the fi are elementary operations +, −, × will be
again 4s to compute all the partial derivative, and 5s including division. Iterations of this
process to get higher order derivatives are possible but inefficient, leading to an exponential
complexity. See also Gower and Gower [31] on this issue.

The idea goes back to the pionneering work of Baur and Strassen [3]. See also Mor-
genstern [57].

Finding the best solution to compute the jacobian matrix of a vector function defined
by a given straight-line program is known to be a difficult problem. In particular, if some
algebraic relations may exist between partial derivations, the computation of the Jacobian
using a minimal number of multiplication or addition has been shown by Naumann to be
NP-Complete [62].

The main idea is to consider the function φ : Rn 7→ Rn defined by φ(x)[i] := xi
∏
a∈Ai a,

where the Ai are subsets of some finite set A. Computing the diagonal Jacobian matrix
amounts to computing the products

∏
a∈Ai a. It may be shown that deciding whether

this may be done in s operations is equivalent to testing that the “ensemble computation”
problem can be solved in s steps: Bi := a, a ∈ A or Bi := Bji ∪ Bki with ji, ki < i and
Bji ∩Bki = ∅.

On sees that computing the Jacobian with a minimal number of elementary opera-
tion is here equivalent to computing the function φ itself in the best way. Our concern
here is rather to look for acceptable ways of computing derivation, starting from a given
implementation of a function, assumed to be reasonable if not optimal.

Practical issues are well illustrated by the special case of the Hessian. A method relying
on a first application of the forward method to compute the gradient, followed by the reverse
one, allows to obtain the Hessian with a complexity proportional to that of the initial
function [15]. The “edge pushing” algorithm does this but also avoid useless computation,
taking into accound the symmetry of the Hessian matrix [30]. Graph colouring algorithms
may be used to take advantage of sparsity [27].

Methods have been proposed to unify forward and reverse methods in order to look for
a good compromize according to the situation. See e.g. Volin1985.

We will avoid here such questions2 and will foccuss on the cases where some nodes
correspond in fact to a complex function, that solves algebraic equations, integrate dif-
ferential equations etc. Our choice will be the direct approach, assuming that in practice
one will try to optimize the behaviour of some system with respect to a limited number of
parameters. But we need first some more brief recalls of classical methods.

2But these are also important issues. E.g. in some complicated situations, finite difference methods
may be unable to decide that some output does not depend on a parameter.
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1.2 An illustration in Maple

The Maple package Codegen may be used to produce C code, provided that the Maple
procedure is limited to elementary structures and functions. It also provides gradient
computation using direct and reverse accumulation (reverse is the default), as well as
Jacobian and Hessian, taking for argument any procedure that returns a number or a vector
of numbers. The optimize function uses Maple’s remember table to identify common
subexpression, avoiding to recompute them. Here is a simple example, showing first the
reverse mode.

> with(codegen)
> F := proc(x, y)local a, b, c, df ; a := x+ y; b := a ∗ x; c := b+ 2; y ∗ c endproc :

> H := GRADIENT (F,mode = reverse)

H := proc(x, y) local a, b, c, df ; a := x+ y; b := a ∗ x; c := b+ 2;

df := array(1..3); df [3] := y; df [2] := df [3]; df [1] := df [2] ∗ x;
return a ∗ df [2] + df [1], c+ df [1] endproc (1)

> H2 := optimize(H);

H2 := proc(x, y)local a, df, t2; a := x+ y; df := array(1..3); df [1] := y ∗ x; t2 := df [1];

returna ∗ y + t2, a ∗ x+ t2 + 2 endproc (2)

>] We see now the same example with the direct mode.

> K := GRADIENT (F,mode = forward)

K := proc(x, y) local a, b, c, da, db, dc;

da := array(1..2); db := array(1..2); dc := array(1..2);

da[1] := 1; da[2] := 1; a := x+ y; db[1] := x ∗ da[1] + a;

db[2] := da[2] ∗ x; b := a ∗ x; dc[1] := db[1]; dc[2] := db[2]; c := b+ 2;

return dc[1] ∗ y, y ∗ dc[2] + c

end proc (3)

> K2 := optimize(K)

K2 := proc(x, y) local a, db, dc;

db := array(1..2); dc := array(1..2);

a := x+ y; db[1] := a+ x; dc[1] := db[1];

returndc[1] ∗ y, a ∗ x+ y ∗ x+ 2

end proc (4)

More details about this implementation may be found in Monagan and Neuenschwan-
der’s paper [56].

1.3 Using dual numbers and series

It is also known that computing the derivative with respect to xi using the direct approach
is equivalent to computing with “dual numbers”, that is first order truncated power series
a0+a1xi+O(x2i ). This idea allows to compute iterated partial derivatives of arbitrary order
with respect to different inputs with quite a good complexity, using power series truncated
at a higher order

∑r
j=0 ajx

j
i + O(xr+1

i ). Up to logarithmic terms, the multiplication of
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power series has a linear complexity in the size of the data3, i.e. the number of monomials,
using dense representation and to some extend also sparse representation [43, 52].

Theorem 1. — Given a straight line program of size L that computes a function
F (x1, . . . , xs) we may compute all derivatives

∂
∑s
i=1 `iF∏s

i=1 ∂x
`i
i

, `i ≤ αi

in Õ(
∏s
i=1 αi)L.

One may remark that the iterated use of the reverse approach leads to an exponential
complexity.

One may also generalize this idea to the case of multiple derivations, using again trun-
cated first order power series: a0 +

∑n
i=1 aixi(xi|1 ≤ i ≤ n)2. But computing higher order

derivatives using series truncated at order r + 1:
∑
|α|≤r aαx

α(xi|1 ≤ i ≤ n)r+1, one may
not escape an exponential growth of the ouput. Such a structure is just equivalent to jets
of order r.

In any typed computer algebra system, jet space may be defined for any ring and
provide the basic setting for forward automatic differentiation of any expression including
the basic ring or field operation and some elementary functions. This has been done in
Axiom by Smith et al. [72].

2 Our theoretical setting illustrated using computer algebra

In this section, we explain how to extend automatic differentiation to more complicated
situations and, before comming to Simulink models, we illustrate our ideas with computer
algebra tools. One will soon see that it is more complicated that just computing closed
formulas and then differentiating them, as very often closed formulas do not exist.

2.1 Introducing new functions

One often needs to introduce new functions, satisfying some ordinary or partial differential
systems. E.g. some functions Fi are such that

∂Fi
∂xj

= Gi,j(F, x).

From a mathematical standpoint, the solution is straightforward. From the standpoint of
practical implementation, the problem may be less obvious if one does not want to reimple-
ment completely the differentiation. Using typed systems like Axiom, it is easy to design
a new package with the requested functions and their differentiation rules. For example,
here is a part of the package ElementaryFunction written by Manuel Bronstein[14].

3It is said to be soft linear. E.g., we will write ln n (ln ln n)n = Õ(n).
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oplog := operator("log"::Symbol)$CommonOperators
opexp := operator("exp"::Symbol)$CommonOperators
opsin := operator("sin"::Symbol)$CommonOperators
opcos := operator("cos"::Symbol)$CommonOperators
optan := operator("tan"::Symbol)$CommonOperators

(. . . )

derivative(opexp, exp)
derivative(oplog, inv)
derivative(opsin, cos)
derivative(opcos, - sin #1)
derivative(optan, 1 + tan(#1)**2)

Each object in Axiom as a name and a type, and the functions to be used for them
depend on their type too, specified with a $. We see here how the derivatives of the
operators log, exp, sin etc. that belong to the category CommonOperators can be defined.

Following such examples, one is free to design functions of one’s own in a new package,
containing the requested rules for derivation. Anyway, there is a price to pay for that
liberty, as programming in such a system may become tedious when one needs to specify
the type of each mathematical object and to specify also how to change the type of some
object according to our goals. An advantage for this extra work is that one must adopt a
cautious programmation style that avoids many mistakes.

We mention this possibility for the sake of completeness and the satisfaction of com-
petent and courageous readers. In Maple, one just needs to know that the internal diff
function of Maple, when encoutering a function F first looks if diff/F is defined, so that
one just has to define it with the proper value. Then, this new definition will be used by
the system to compute the derivatives of all formulas.

The rule is the following: assuming that F takes n arguments, diff/F is a procedure,
depending of n+1 arguments a1, . . . , an, b, that provides the value of ∂F (a1, . . . , an)/∂b.

E.g, assume we want to define two new functions f(x, y) and g(x, y) such that

∂f

∂x
= 2g,

∂f

∂y
= 3g,

∂g

∂x
= −2f, ∂g

∂y
= −3f.

(Of course sin(2x+ 3y + c1) and cos(2x+ 3y + c2) are solutions. . . it is just to consider a
simple example.) A possible answer is illustrated by the following Maple session.

> d̀iff /f ` := proc(a, b, c) diff (a, c) ∗ 2 ∗ g(a, b) + diff (b, c) ∗ 3 ∗ g(a, b) endproc :

> d̀iff /g` := proc(a, b, c) − diff (a, c) ∗ 2 ∗ f(a, b)− diff (b, c) ∗ 3 ∗ g(a, b) endproc :

> diff (f(a(c), b(c)), c)

2
(

d
dca(c)

)
g(a(c), b(c)) +

(
d
dcb(c)

)
g(a(c), b(c))3

> diff (f(x, y) ∗ g(x, y), x)
2g(x, y)2 − 2f(x, y)2

> diff (int(f(x, y), x = a..b), y)∫ b

a
3g(x, y)dx

> diff (f(z, z ∗ ∗2), z)
2g(z, z2) + 6zg(z, z2)

Before using such a possibility in a computer algebra system, one must be sure of what
we are doing: partial derivatives here are assumed to commute. An other way to proceed
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in Maple would be to use the Diffalg or the DifferentialAlgebra packages and compute
first a “characteristic set of the prime differential ideal generated by the above system”.
Basically it is some kind of normalized set of equations, which may be difficult to compute
but provides any information one may need.

In our case, the result will be the system itself, because the partial derivations ∂/∂x
and ∂/∂y do commute and the computation is reduced to checking this.

∂f
∂x

∂y
=

∂f
∂y

∂x
and

∂g
∂x

∂y
=

∂g
∂y

∂x
.

We can then use NormalForm to replace the derivatives with their proper values.

> with(DifferentialAlgebra) : with(Tools) :
> R := DifferentialRing(Blocks = lex [f, g], derivations = [x, y]) :

> syst := [Differentiate(f, x,R) = 2 · g,Differentiate(f, y,R) = 3 · g,
Differentiate(g, x,R) = −2 · f,Differentiate(g, y,R) = −3 · f ] :

> simplified_syst := RosenfeldGroebner(syst , R) :
> Equations(simplified_syst)

[[fx − 2g, gx + 2f, fy − 3g, gy + 3f ]]

> NormalForm(Differentiate(f · g, x,R), simplified_syst)
[−2f2 + 2g2]

> NormalForm(f, simplified_syst)
f

This might look complicated but it is good to know that such tools exist in case of need,
provided that one keeps in mind that they could be time and memory consuming. They
must be reserved to cases were one does not know a priori a normal form for our relations.
Moreover, we need to use here the Differentiate function of the DifferentialAlgebra
package, which is different from the Diff function used elsewhere.

Diffalg may also be used to eliminate some function, using specific orderings on deriva-
tives. In the next example blocks=[lex[f],lex[g]] means that f and all its derivatives
are greater than g and all its derivatives. So, one does not express ∂g/∂y as −3f any more,
but instead f is expressed as (−1/3)(∂g(x, y)/∂y.

> with(DifferentialAlgebra) : with(Tools) :
> R := DifferentialRing(Blocks = lex [f ], lex [g], derivations = [x, y]) :

> syst := [Differentiate(f, x,R) = 2 · g,Differentiate(f, y,R) = 3 · g,
Differentiate(g, x,R) = −2 · f,Differentiate(g, y,R) = −3 · f ] :

> simplified_syst := RosenfeldGroebner(syst , R) :
> Equations(simplified_syst)

[[gy + 3f, 3gx − 2gy, gy,y + 9g]]

> NormalForm(Differentiate(f · g, x,R), simplified_syst)
[2g2 − 2

9g
2
y]

> NormalForm(f, simplified_syst)
− 1

3gy

Longer considerations would exceed the ambitions of this paper, but these tools de-
serve to be mentioned here. For more details, one may refer to the work of Boulier, the
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first designer of Diffalg [10, 9] and of Hubert who developped the latest Maple versions
[36, 37] and considered also non commuting derivations [46]. The new Maple package
Differentialalgebra is based on Boulier’s Bibliothèques Lilloises d’Algèbre Différentielle
citeBLAD, redesigned for Maple by Boulier and Cheb-Terrab.

Using numerical schemes obtained in this way, it is easily seen that, knowing an approx-
imation of some function f(x1, . . . , xn) with an error bounded by ε, the approximation for
any iterated derivative of f will be O(ε). However, one may expect an exponential growth
with respect to the order of derivation. The point for us is that we are sure that increasing
the precision on the computation of the fi will increase the precision on the computation
of derivatives, which may not be granted with other tools.

2.2 Runge–Kutta methods

Assume indeed that one computes some function f that is the solution of some ordinary
differential equation: f ′ = G(f). We may compute an approximation of f for x ≥ 0 using
a Runge-Kutta method of order n, that is implemented in some low-level C or Fortran
Program, which would be a common choice. If G is linear (resp. quadratic), f will be
approximated by a piecewise polynomial function of degree n (resp. 2n − 1). So, we see
that we have no hope to evaluate derivatives of order higher that this degree from the
implemented Runge-Kutta approximation, even if we increase its precision with a smaller
step. We need at least to change the order of the Runge Kutta method itself! And A
priori, we can only expect acceptable values for derivatives up to order n, at most: all
greater derivatives will be 0 with a linear equation and the approximations obtained for
non linear equations are not very good.

As an example, consider f(x) := (1+x)−1, solution of f ′ = G(f) := −f2 with f(0) = 1.
The following table gives the successive devives of f(x) and their approximation using
“midpoint” and RK4 methods.

Order of derivation i 1 2 3 4 5 6 7 8 9 10 11
f(i)(0) −1 2 −6 24 −120 720 −5040 40320 −3.63105 3.63106 −3.99107

Midpoint −1 2 −1.5 0 0 0 0 0 0 0 0
RK4 −1 2 −6 24 −115 600 −3438.75 19530 −1.0773105 5.481105 −2.44106

Even if the use of AD for computing derivatives of order greater than 2 is uncommon,
it seems worth to mention this limitation. We will return to the derivation of solutions of
differential equation in section 2.5

2.3 Conditionals and piecewise functions

As noticed by Beck and Fischer [4], the differentiation of piecewise functions may lead to
erroneous results in some cases. To summarize the situation, assume that a real function
is defined on the union of disjoints intervals

⋃s
i=1 Ii, where Ii =]/[ai, bi]/[ are intervals

with a nonempty interior, that is ai < bi. We may also admit ±∞ values for the intervals
bounds. In such a case, assuming that a function F is described on Ii by some program
that implements a differentiable function fi and that this program can be differentiated,
the only trouble can arise if ai = bi+1: then the value of the derivatives must agree. If not,
the function is not differentiable at ai

9
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The real difficulty may be illustrated by the following example: F (x) := (1− cos(x))/x
if x 6= 0, F (0) = 0. Most implementations will provide F ′(x) = sin(x)/x−(1−cos(x))/x2 if
x 6= 0, F ′(0) = 0: even if the function admits a continuous derivative, the value computed
for x = 0 is erroneous. Let us look at Maple possibilities.

A naïve use of the diff function gives poor results. In principle D(F)(x) and diff(F(x),x)
should be equivalent: their internal representation is different, but D(F)(x) - diff(F(x),x)
simplifies to 0. Nevertheless, Diff and D act in different ways. Using diff(F(x),x), F(x)
is evaluated first, and then the differentiation performed. . . It is best here to use the D
function, more adapted to the differentiation of a procedure.
> F := proc(x) if x 6= 0 then 1−cos(x)

x else 0 end if end proc:
> diff (F (x), x);

sin(x)
x − 1−cos(x)

x2

>D(F )

proc(x)

if x <> 0 then sin(x)/x− (1− cos(x))/x 2̂ else 0 endif

end proc

One sees that the result at x = 0 is wrong, as suspected. However, one may easily
change the definition of the function, using the full possibilities of computer algebra, to be
sure it can be differentiated up to a chosen order, here 10.

> F := subs
(
T = simplify

(
convert(taylor(1− cos(x), x = 0, 12), polynom)

x

)
,

proc(x) if x 6= 0 then 1−cos(x)
x else 0 end if end proc );

F := proc(x)

if x < 0 then
(1− cos(x))/x

else
1/3628800 ∗ x ∗ (x 8̂− 90 ∗ x 6̂ + 5040 ∗ x 4̂− 151200 ∗ x 2̂ + 1814400)

end if
end proc
>D(F )

proc(x)

if x <> 0 then
sin(x)/x− (1− cos(x))/x 2̂

else
1/3628800 ∗ x 8̂− 1/40320 ∗ x 6̂ + 1/720 ∗ x 4̂− 1/24 ∗ x 2̂ + 1/2

1/3628800 ∗ (8 ∗ x 7̂− 540 ∗ x 5̂ + 20160 ∗ x 3̂− 302400 ∗ x)
end if

end proc

Then, we can use the facilities of the CodeGeneration package to translate this Maple
function in C or Fortran.
>

textitWith(Codegeneration):
>

textitFortan(F );
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doubleprecision function F (x)
integer x
if (x .ne. 0) then

F = (1 - cos(dble(x))) / dble(x)
return

else
F = dble(x * (x ** 8 - 90 * x ** 6 + 5040 * x ** 4

- 151200 * x ** 2 + 1814400))/0.362880D7
return

end if
end

Maple can also handle more easily such situations using piecewise.

>G(x) := piecewise
(
x 6= 0, 1−cos(x)

x , 0
)
:

> diff (G(x), x); { 1
2 x = 0

sin(x)
x − 1−cos(x)

x2 otherwise
> D[1](G);

x→ piecewise
(
x = 0, 12 ,

sin(x)
x − 1−cos(x)

x2

)
> D[1, 1, 1](G);

x→ piecewise
(
x = 0, 14 ,−

sin(x)
x − 3 cos(x)

x2 + 6 sin(x)
x3 − 6(1−cos(x))

x4

)
The derivations are computed in the right way, up to any order, without any interven-

tion of the user. However, the Fortran translation is not suited for automatic differentiation.
>

textitWith(Codegeneration):
>

textitFortan(F );

doubleprecision function F (x)
integer x
if (x .ne. 0) then

G = (0.1D1 - cos(dble(x))) / dble(x)
return

else
G = 0.0D0
return

end if
end

A choice like the following, although the formula is discontinuous at x = 0.1, will allow
differentiation and will be also more accurate for small values of x.
> H := subs

(
T = simplify

(
convert(taylor(1− cos(x), x = 0, 12), polynom)

x

)
,
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proc(x) if |x| > 0.1 then 1−cos(x)
x else T end if end proc );

F := proc(x)

if x < 0 then
(1− cos(x))/x

else
1/3628800 ∗ x ∗ (x 8̂− 90 ∗ x 6̂ + 5040 ∗ x 4̂− 151200 ∗ x 2̂ + 1814400)

end if
end proc

>

textitFortan(H);

doubleprecision function F (x)
integer x
if (0.1D0 .lt. dble(abs(x))) then

F = (1 - cos(dble(x))) / dble(x)
return

else
F = dble(x * (x ** 8 - 90 * x ** 6 + 5040 * x ** 4

- 151200 * x ** 2 + 1814400))/0.362880D7
return

end if
end

One sees on this apparently simple problem of AD can be very difficult when acting on
some low level code that has not been properly implemented in order to facilitate it. The
only way then to avoid inaccurate results would be to reconstruct, if it is still possible, the
original symbolic formula. One may refer to Shamseddine and Berz [67] for more details.

2.3.1 Differentiating flat outputs

Flat systems [24, 25, 26, 70, 53] are examples of differential control systems the solutions
of which may be parametrized by some functions of their state, called flat outputs and
some derivatives of these functions. A classical example is that of a car, described by the
following equations:

x′ = u cos θ
y′ = u sin θ
θ′ = u

` tanφ

The functions x and y are easily seen to be flat outputs, as θ = arctan(y′/x′) (or θ =
π − arccot(x′/y′)), u =

√
(x′)2 + (y′)2 and φ = arctan((`/u)θ′). So, we can compute the

trajectory of the car knowing x and y, provided that (x′, y′) 6= (0, 0), see ex. 1. If the car
follows a trajectory that starts forward and end backward, that is common for parking,
one needs to cross a singularity where both x′ and y′ vanish, so that θ is undefined. Such
singularities have been studied in [48]. If θ′ 6= 0, this is an apparent singularity , as one
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may use some different flat outputs, e.g. θ and sin(θ)x− cos(θ)y. See ex. 2. But this case
is mostly theoretical, as in such a situation, one need have φ = ±π/2. In such a situation,
the curve parametrized by (x, y) is a cusp: x(t) ' At2 and y(t) ' Bt3.

With an actual car, a common limit is |φ| > π/4. In such a case, we have, e.g.
x(t) ' At2 and y(t) ' Bt5, that is a rhamphoid cusp. This corresponds to an essential
singularity, meaning that parametrization cannot be achieved by choosing some new flat
outputs. An efficient pratical solution is then to compute power series solutions for θ and
φ at the singular point, as described in the Maple worksheet. See ex 3. Just using the
formula with rounded floating point numbers near the singularity, we have no division by
0 and the value obtained for θ is satisfactory. That obtained for φ is erratic. see ex. 4.

2.4 Loops. Solving “algebraic” equations

Algebraic4 equations solvers are a second example of high level functions that require a
special care to be differentiated. In low level code, they will appear as loops, such as until
|F (x)| < ε repeat [...], whereas in Maple one would encounter solve(F(x)=0,x). How-
ever, the solve function is not recognized by Maple’s C function. Applying diff to the
result of solve, which may be a sequence, can be disappointing. One need also notice that
the numerical resolution of a polynomial system may be, in the general case, as hard as
its symbolic solving. If we consider more general situations, like polynomials in x and ex,
one can in the best cases provide bounds on the number of solutions.

Anyway, we take here for granted the existence of a reasonable numerical method for a
given system, that is a starting point in a ball containing a single simple root, from where
some iteration process—say a Newton method for a one variable system—will converge.

Let (x1(y), . . . , xn(y)) be a regular solution of a system Pi(x1, . . . , xn, y) = 0, 1 ≤ i ≤ n,
that is a n-uple of functions such that Pi(x(y), y) = 0 and |JP |(x(y), y) 6= 0 on the definition
domain of the xi, where JP := (∂Pi/∂xj). Whatever can be the numerical method used
to compute the xi, one knows that

∂ηj
∂θ

= J−1P (η)


∂P1
∂θ (η)
...

∂Pn
∂θ (η)

 . (1)

This formula may be regarded as a differential equation, so that we need not repead what
was said above5.

From now one, this topic will be illustrated with the case of a single equation in a
single variable. A straightforward implementation of Newton’s method in Maple may look
like the following procedure g. It is well known that, for computing square roots

√
a, the

Newton method iterates the operator x 7→ (a− x2)/2x = (1/2)(a/x+ x).
> g := proc(a, epsilon, c) local x, b;

if type(c, numeric) then x := c else x := 1. end if;

4By “algebraic”, we mean here “non differential”; such equations may not be polynomial.
5Let us just mention, for whoever would need to compute high order derivatives, that Bostan et al. [12]

have shown that, for a single function defined by a polynomial equation P (x, y), one could in fact define
x as the solution of a linear equation, allowing to compute iterated derivatives faster that using Newton’s
method for series.
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if type(a+ epsilon+ c, numeric) then
b := a/x;
while evalb(epsilon < abs((b− x)/x)) do

x := (1/2) ∗ x+ (1/2) ∗ b; b := a/x

end do;
x

else return 'procname(args)' end if
end proc

> d̀iff/g` := proc(a, epsilon, c, t)(1/2) ∗ (diff(a, t))/g(a, epsilon, c) end proc

> eval(subs(a = 1.5, diff(g(a, 0.1e− 3, 1.00001), a, a))), eval(subs(a = 1.5, diff(a(1/2), a, a)))

-.1360827546, -.1360827636
One sees that, with a proper definition of diff/g, iterated differentiation works well.
It is know that the limit of derivatives of the sequence of functions associated to New-

ton’s method converges to the derivative of the limit algebraic function (see e.g. Beck [5]).
However, in practice difficulties arize as a limited number of iterations will be achived.
Even in cases where the direct automatic differentiation of the numerical code can produce
accurate values, it is likely to be slower; see Bell and Burke [6] and the reference therin.
One must however stress that even if the numerical approximation is very good, its direct
derivation may lead to poor results, as shown by the following example.
> plot(g(a, 0.5e-1, 1.), a = .1 .. 2.000)

Arround the initial value, the function is flat, and a single Newton step produces a
linear function, so that the second derivative will be 0. Very often, such procedures are
used in sequence and one improves the efficiency by starting with the previously computed
value, as in the following “memory” function.
> g2 := proc(a, epsilon) global p_res; local x, b;

if type(p_res, numeric) then x := p_res else x := 1 end if;
if type(a+ epsilon, numeric) then

b := a/(x);

while evalb(abs((b− x)/(x)) > epsilon) do x := (x+ b)/(2); b := a/(x) end do;
p_res:=x

else return 'procname(args)' end if
end proc

Then, the resulting curve for a small value of the precision ε looks smooth, but it is in
fact a piecwise constant function, so that any attempt to differentiate it will fail.

14



It is worth noticing that, when it fails to compute a closed form solution, Maple’s solve
function expresses a result with the RootOf function, that has a well defined solution.
> c := solve(x3 + exp(x) = b, x); solve(x2 = b, x)

c := RootOf(e_Z +_Z3 − b)√
b,
√
b

> diff (c, b), diff (RootOf(_Z2 − b), b)
1

(exp(RootOf(e_Z+_Z3−b))+3∗RootOf(e_Z+_Z3−b)2)
, 1

(2∗RootOf(_Z2−b))

> apply(eval( d̀iff /RootOf )̀, P (_Z, b), b)
− (D[2](P ))(RootOf(P (Z ,b)),b)

(D[1](P ))(RootOf(P (Z ,b)),b)

To conclude this topic, one may remark that i iterations of Newton’s method produces
a Taylor series up to order 2i. But in practice acceptable values for derivatives of higher
order may be obtained. The following procedure applies Newton method to a power series,
so that successive derivatives of the Newton operator may be easily obtained.
> h := proc(a, η, c, n,m) local x, b, d, ε; global nIter; nIter := 0; x := c;

if type(a+ η + c+ n+m,numeric) then
b := (a+ ε)/x;
while evalb(η < abs(subs(ε = 0, convert(series((b− x)/x, ε = 0, n), polynom)))) do

nIter := nIter + 1;
x := series((1/2) ∗ x+ (1/2) ∗ b, ε = 0, n);
b := series((a+ ε)/x, ε = 0, n)

end do;
(diff (subs(εm = d, convert(x, polynom)), d)) ∗ factorial(m)

else return 'procname(args)'
end if

end proc
> h(2., 0.1e− 3, 1., 20, 19), nIter;

1.141438794109, 3
> subs(b = 2., diff (b(1/2), b$19))

1.140326912 ∗ 109

After just 3 iteration, the derivatives must be correct up to order 7 = 23 − 1. Anyway,
by chance, the value of the 19th derivative is already obtained with a precision of 10−3.
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In such a situation it seems prudent to iterate loops at least one more time or even
log2(e) if derivatives of order e are to be computed. In the last figure, acceptable values
of the second derivatives were obtained with a single iteration. Adding extra iterations is
expressed by the old recipe: one always iterate a loop 13 times!

2.5 Integrators and differential equations

It is amazing that the requested formulas seem to have left no precise record in the history
of mathematics. We may find some of them, treated as “weel known”, in some posthu-
mous manuscript of Jacobi[47], but as late as 1919, Ritt published a paper [65]6 on the
special problem of differentiating the solution of a single order one equation y′ = f(y, t, c)
with respect to the parameter c. One may also mention some works by Bliss [7, 8] or
Grönwall[35]7 on the same subject.

Assume that the solution fj(x1, . . . , xm, θ1, . . . , θs) of an ODE or PDE system

Pi

(
∂|α|fj

∂xα1
1 · · · ∂x

αm
m

(x, θ), θ1, . . . , θs

)
= 0 (2)

depending on parameters θ, completed with initial or boundary conditions

Qk

(
∂|α|fj

∂xα1
1 · · · ∂x

αm
m

(X(x, θ), θ), θ

)
= 0 (3)

is unique and that it is differentiable with respect to the parameters θ`. For instance, if
m = 2, one may have X1(x, θ) = x1 and X2(x, θ) = 0 or X2(x, θ) = θ1 to describe initial
condition on an line passing through the origin or depending on the parameter θ1. One
may also use Xi = xi/

√
x21 + x22, defined on R2 \ {(0, 0)} for initial conditions on the unit

circle, etc.
Then, the basic properties of derivation impose that

∂

∂θ`
Pi

(
∂|α|fj

∂xα1
1 · · · ∂x

αm
m

(x, θ)

)
=
∑
j,α

∂Pi

∂
∂|α|+1fj

∂x
α1
1 ···∂x

αm
m

∂|α|+1fj
∂xα1

1 · · · ∂x
αm
m ∂θ`

+
∂Pj
∂θ`

= 0 (4)

6This paper mentions a previous work of Major Forest Moulton, whom he met when he worked with
Oswald Veblen for the U.S. artillery at Aberdeen Proving Ground during First World War.

7Gilbert Ames Bliss and Thomas Hakon Gronwall worked also with Veblen at Aberdeen. The question
of differentiation with respect to initial conditions is of special interest in artillery as a gunner can only
play with them. The influence of parameters such as projectile mass that cannot be exactly matched is
also to be studied and compensated e.g. for 155mm ammunition using extra propelant bags.
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and this system is to be completed with the derivatives of boundary conditions

∂
∂θ`
Qk

(
∂|α|fj

∂x
α1
1 ···∂x

αm
m

(X(x, θ), θ)
)
=∑

j,α
∂Pi

∂
∂|α|fj

∂x
α1
1 ···∂x

αm
m

∂|α|+1fj
∂x
α1
1 ···∂x

αm
m ,θ`

(X(x, θ), θ)

+
∑

j,α,µ
∂Pi

∂
∂|α|fj

∂x
α1
1 ···∂x

αm
m

∂|α|+1fj
∂x
α1
1 ···∂

αµ+1xµ···∂xαmm ,θ`
(X(x, θ), θ)

∂Xµ
∂θ`

+ ∂Q
∂θ`

= 0.

(5)

A complete study in the partial differential case would exceed the ambitions of this paper.
One may refer to [73] for more details and examples in this case. In the case of ODE, one
may also refer to Dickinson et al. [16] and [20] for implicit differential algebraic equations.
See also Estévez Schwarz et al. [21] in the case of singularities. For generalized ODEs, one
may refer to Slavík [71]

In the case of ODEs, the following theorem synthetizes the rules to apply.

Theorem 2. — Let us consider a parametrized system of ordinary differential equations

x′i = fi(x, t, θ) 1 ≤ i ≤ n; (6)
xi(h(θ)) = gi(θ) 1 ≤ i ≤ n, (7)

where the functions fi, g and h are defined and Cr, r ∈ N ∪ {∞}, on some open set V .
i) There exists a maximal open set U ∈ R2 and a function x : U 7→ Rn such that:

a) π2(V ) = U , where π2(t, θ) = θ;
b) ∀θ ∈ V (h(θ), θ) ∈ U ;
c) ∀θ ∈ V x(·, θ) is a solution of the differential system (6) with initial conditions (7).

ii) The function x is Cr on U .
iii) The derivative functions xi,θ(∂xi/∂θ) are solution of the system

x′i,θ =
n∑
i=1

∂fi(x, t, θ)

∂xi
xi,θ +

∂fi(x, t, θ)

∂θ
; (8)

with initial conditions:

xi,θ(h(θ)) =
∂gi
∂θ
− fi(x, t, θ)

∂hi
∂θ

. (9)

Proof. — Assuming the functions xi(t, θ) to exist and be Cr on [a, b] × [c, d], the
equations 8 are similar to equations 4 and are obtained by straightforward differentiation
of the initial system 6

xi(t, θ) = fi(x(t, θ), t, θ)

=⇒ ∂xi(t,θ)
∂θ = ∂fi

∂x
∂x(t,θ)
∂θ + ∂fi

∂x
∂θ
.

Differentiating the initial conditions (7) gives

∂xi(h(θ), θ)

∂t

∂h(θ)

∂θ
+
∂xi(h(θ), θ)

∂θ
=
∂gi(θ)

∂θ
.
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Then, replacing ∂xi/∂t by its value fi(x(t, θ), t, θ), one gets formula (9).
So, the main point is to prove the existence and differentiability of functions solution

of the system (8) with initial conditions (7). The existence is a classical result, that may
be easily achieved using, e.g., Picard’s operator. To prove that the functions xi(t, θ) are
indeed Cr, one may use Picard’s operator again. For simplicity, we may use yi(t, θ) :=
xi(t+h(θ)−h(θ0)+ t0, θ+ θ0), so that studying differentiability of xi at (t0, θ0) is reduced
to studying that of yi at (0, 0). Let C := maximax(sup(z,t,θ)∈[−ε,ε]n+2(∂f/∂yi, ∂f/∂θ)(z +
g, t, θ), sup[−ε,ε] ∂gi/∂θ) and y[0],i := gi(θ). We define Picard’s operator by P (φ)(t, θ) :=

φ(0, θ) +
∫ t
0 f(φ(τ, θ), θ)dτ and y[s] := P r(y[0]). An easy recurence shows that for |t| <

ln(ε)/C and |θ − θ0| ≤ ε, we have ∀s ∈ N y[s](t, θ) < ε and ‖y[s+1](t, θ) − y[s](t, θ)‖∞| ≤
(Ct)s+1/(s + 1)!. This shows that the sequence ‖y[s](t, θ)‖∞ converges uniformly. If
the same way, under the same hypotheses, ∀q ≤ r ‖∂qy[s](t, θ)/(∂θ)q‖∞ < εCq and
‖∂qy[s+1](t, θ)/(∂θ)

q − ∂qy[s](t, θ)/(∂θ)
q‖∞| ≤ C(Ct)s+1/(s + 1)!, showing that the se-

quence ‖∂qy[s](t, θ)/∂θq‖∞ converges uniformly too. As both the sequence of functions
and of derivatives converge uniformly, the limit of the functions y[s] is differentiable and
its derivatives are the limit of their derivatives.

To conclude the proof, one just needs now remark that xi(t, θ) = yi(t−h(θ), θ), so that
(∂xi/∂θ)(h(θ0), θ0) = (∂yi/∂θ)(h(θ0), θ0) − (∂h/∂θ)(θ0)(∂yi∂t)(h(θ0), θ0), thus recovering
fomula (9).

2.6 Higher order derivatives

The idea may be iterated, as many times as needed and possible, according to the differ-
entiability order of the functions defining the system and initial equations. One may also
consider partial derivatives with respect to an arbitrary number s of parameters. The only
point is to notice that, obviously, ∂2x/∂θ1θ2 = ∂2x/∂θ2θ1. So, whenever possible, one
should try to avoid useless computation instead of applying twice the gradient operator,
provided that the extra implementation work remains acceptable.

The two formulations are mathematically equivalent, but the numerical computations
will not be the same. An optimized choice would require extra investigations. Comparing
the two results may be a test for strategies and integrators.

In the generic situation, in order to compute ∂|α|y/
∏s
j=1 ∂θ

αj
j , one needs to compute

all partial derivatives ∂|β|y/
∏s
j=1 ∂θ

βj
j with ∀j βj ≤ αj . In other words, if one does not

compute the derivative for β, one will be unable to compute the one for β + γ, γ ∈ Ns.
Computing partial derivatives up to an arbitrary order, one need not compute them all,
but the subset must be such that the multi-index α are in the complementary set of an
additive e-set or monoideal, i.e. sets stable by addition of any element of a monoide.

Computing high order power series solutions of solutions of ODEs may be efficiently
done using Newton’s operator [13], which is asymptotically optimal. However van der
Hoeven’s method proves more efficient[41] in the range of order of practical interest.

2.7 Implementation in Maple and examples

We tried to put into practice the theoretical recipes described above, with the Maple
package D_ODE_tools that is illustrated with some examples. The basic principle is
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easy, but to put it in practice may be tedious and require some effort of style to pro-
duce a usable result. At first sight, the formulae describing the new differential equa-
tions and initial conditions just have to be applied. This would be easy using a repre-
sentation of x as a function of t and the parameters θ. But, Maple’s function dsolve
only accepts functions of one single argument. So, we cannot represent ∂2x/∂θ1θ2 by
diff(x(t,theta[1],theta[2]),theta[1],theta[2]). We need to imagine some other
representation, like x[theta[1]*theta[2]](t). Without getting into tedious details, the
greatest part of the work is a carefull analysis of the internal representation of deriva-
tives in Maple, once faced to the absence of some ready-made tools to extract elementary
information such as partial or total orders, name of the base function and independent
variables.

The implementation provided here allows to compute derivatives of arbitrary order
with respect to the parameters, that may also appear in the initial conditions. One may
describe the set of derivatives by excluding some multiples of a given derivation. For this,
one uses the Groebner package of Maple.

One encounters extra limitations of various types. For example, dsolve may manage
to find a symbolic general solution, but is is impossible to use this function with symbolic
boundary conditions for different values of the independent variable. Our implementation
allows such specifications. Although our focus is on numerical resolution, systems with
closed form solutions, besides their intrinsic interest, provide easy tests for the exactness
of such an implementation.

2.7.1 Identifiability

On may refer to Walter [76] for a general introduction to the notion. We condider a
structure, i.e. a parametric system of state space equations

x′i = fi(x, θ, t), 1 ≤ i ≤ n, θ = (θ1, . . . , θs) (10)
xi(0) = ci (11)
yj = gj(x, θ) 1 ≤ j ≤ q, (12)

where the yj are assumed to be outputs, or mesured quantities. A model of the structure
is obtained by specializing parameters. Then, a model is (locally observable if one can
compute a (locally) unique value of the state functions xi knowing the outputs yj . It is
(locally identifiable if one can compute a (locally) unique value of the parameter vector θ
knowing the outputs yj . Structural observability or identifiability means that almost all
models are observable or identifiable. If the functions fi and gj are polynomial or rationnal,
the vector of parameters corresponding to locally observable or identifiable models is empty
or dense. So, testing these structural properties may be done by finding a single observable
or identifiable model. This may be done by symbolic computation. Biologists are likely
to feel more comfortable with a numerical test, that may be done with the same program
they use for their simulations and requires no exotic algebraic knowledge, besides matrix
ranks and determinants. But they are likely to ignore that one may compute ∂yj/∂θ` in a
better way than using finite differences.
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The most basic test is to choose s+ q times tk and to check if the determinant∣∣∣ ∂yj
∂ci

(tk)
∂yj
∂θ`

(tk)
∣∣∣

is non 0. Then the system is both locally observable and identifiable.
One must remark that numerical computation can show that the determinant does not

vanish, but not that it is 0. In such a case, one will get a small result, depending on the
precision. Moreover, even the vanishing of the determinant does not prove that the system
is not observable and identifiable: there is a probability to choose unfortunate values for
the tk that are precisely roots of this determinant. Using exact computation, one can
obtain a probabilistic test, meaning that the system can be shown to be non observable
with a small possibility of error. See Sedoglavic [66]. This method uses fast power series
computation using Newton’s operator described in [13].

An example of some HIV model due to Perelman et al. is given as an illustration.

See Schumann-Bischoff [68] et al. for the use of AD in parameter identification.

2.8 Delay systems

Differential systems with delays enter easily in our general setting. Latest versions of
Maple allow to solve them with dsolve. Among important issues that are linked with the
differentiation of delay systems with respect to their parameters, including the delay itself,
is the practical online computation of an unknown delay. See e.g.

The rules are easy to generalize to this setting. Assume a differential system with
delays is given by

x′i(t) = fi(x(t), x(th), t),

then its derivative is a solution of the system

x′h,i(t) =
n∑
j=1

∂fi
∂xj(t)

xh(t) +
n∑
j=1

∂fi
∂xj(t− h)

(xh,j(t− h)− fi(x(t), x(th), t).

This is easily generalized to many delays, or delays depending on parameters, the xi or the
time. See [40] for more details in the case of state-dependent neutral functional differential
equations.

2.9 Sequences

In many cases, sequences are iterated in order to converge to a fixed point, a problem that
we have already considered. But it may happen that they possess a different meaning and
must be iterated a precise number of times. Such an issue cannot be solved by inspecting
a low level program.

The following example shows that computing the derivative may sometimes be almost
impossible, even if the iteration of the function is easily computed:

f(x, n) = (10nx, n+ 1).
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The value of f21(0,−10) is (0, 11) and ∂f21/∂x(0,−10) is 1. But the accurate computation
of this value with floating point arithmetic would require an unusual precision. See also
Beck [5].

2.10 Conditionals and discontinuities in EDOs

We have already discussed the case of continuous functions define by conditionals. The
case of discontinuous functions reduces at first sight to the impossibility of computing
derivatives at discontinuities. The case becomes harder when we integrate such func-
tions. The derivative of the Heaviside function is 0 on R∗ and undefined at 0. But∫ y
−∞Heaviside(x− a)dx = (y − a)Heaviside(y − a), so that its derivative with respect to a
is defined and not 0 for y > a.

Such issues cannot be handeled in Maple by the piecewise function but the derivative
of the Heaviside function involves the Dirac function and allows correct computation.

It is however almost impossible to adapt the idea in some numerical setting and most
of the time the problem remains unsolved. The best compromise is to approximate the
Heaviside function with atan(ax), as done in Diffedge, or erf(ax). The choice of the
parameter a and of the function to be substituted to Heaviside may be a delicate issue for
which we found no proper reference. If a is too small, the approximation of the Heaviside
function is poor. If too great, integrators will face difficulties to integrate a stiff equation.
We will see in the next section how the use of “events” when solving differential equation
may offer an alternative and permit some comparisons.

A few Maple experiments illustrating the topic are provided.

2.11 Lagrangian

Mechanical systems whose equations may be easily computed using the Lagrangian for-
malism deserve a special attention. Let us recall that the Lagrangian is expressed by
L(x′(t), x(t), t) := Ek(x

′(t), x(t), t) − Ep(x(t), t), where Ek denotes kinetic energy and Ep
potential energy, and that we have

d

dt

∂L
∂x′i

=
∂L
∂xi

, (13)

which expresses the minimality of
∫ t2
t1
L(x′(t), x(t), t)dt, for any two fixed times t1 and t2,

the values x(t1) and x(t2) being fixed too.
Then, if we have a Lagrangian depending on parameters ak, we may first compute a

normal form from equations (13), which requires that the Hessian |∂2L/∂x′i∂x′j | does not
vanish, and then compute the derivatives of ∂x(t)/∂ak using the method developped in
subsection 2.5. An alternative is to stay in the Lagrangian formalism, using the derivative
of the Lagrangian with respect to ak:

d

dak
L =

n∑
i=1

∂L
x′i

∂x′i
∂ak

+

n∑
i=1

∂L
xi

∂xi
∂ak

+
∂L
∂ak

.

Such formulas may me iterated for higher derivatives.
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More interesting is the hability to use the Lagrangian formalism with discontinuous
terms of energy in order to model shocks, under the assumption that the total energy
is preserved. We need here the assumption that the kinetic energy Ek is quadratic with
respect to derivatives x′i: Ek = (x′)tA(x)(x′), where A(x) is an invertible8 n × n matrix.
We assume that Ep = Ep,1 if f(x, t) ≥ 0 and Ep = Ep,2 if f(x, t) < 0. By the principle of
least action, the following integral must be minimal:∫ t1

t0

L(t)dt+
∫ t2

t1

L(t)dt,

where f(x(t1), t1) = 0. We recall that x(t0) and x(t2) are fixed. We further assume that

n∑
i=1

∂f

∂xi
x′i +

∂f

∂t
> 0.

In the sequel, we omit sum signs to alleviate formulas. The minimality of the integral
implies that, denoting by δxi a small variation,∫ t1

t0

∂L
∂x′i

δx′i +
∂L
∂xi

δxidt+

∫ t2

t1

∂L
∂x′i

δx′i +
∂L
∂xi

δxidt+ (L(t−1 )− L(t
+
1 )δt1 = 0, (14)

where L(t±1 ) denote the left and right limits at time t1. Integrating by parts, we get:∫ t1

t0

(
− d

dt

∂L
∂x′i

+
∂L
∂xi

)
δxidt+

∫ t2

t1

(
− d

dt

∂L
∂x′i

+
∂L
∂xi

)
δxidt

+
∂L
∂x′i

(t−1 )δxi(t
−
1 )−

∂L
∂x′i

(t+1 )δxi(t
+
1 ) +

(
L(t−1 )− L(t

+
1 )
)
δt1 = 0. (15)

As we have
d

dt

∂L
∂x′i

=
∂L
∂xi

,

the condition at t1 becomes

∂L
∂x′i

(t−1 )δxi(t
−
1 )−

∂L
∂x′i

(t+1 )δxi(t
+
1 ) +

(
L(t−1 )− L(t

+
1 )
)
δt1 = 0, (16)

that must stand for any small variation δx, δt1. For simplicity, we may assume to have
chosen coordinates xi in such a way that df(x(t1), t1) = Cdxn, meaning that dxi, 1 ≤ i < n
are coordinates on the hyperplane tangent to the hypersurface H defined f(x(t1), t1) = 0.
With A(x(t1), t1) = (ai,j), we may furthermore assume that ai,n = an,i = 0 if i 6= n.

With dt1 = 0, we get

∂L
∂x′i

(t−1 ) =
∂L
∂x′i

(t+1 ), for 1 ≤ i < n, (17)

meaning that
x′i(t

−
1 ) = x′i(t

+
1 ), for 1 ≤ i < n. (18)

8Without invertibility, we cannot obtain explicit equations from the Lagrangian.
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The component of the speed tangent to H is preserved.
As the trajectory is continuous, we have

δxi(t
−
1 ) + x′i(t

−
1 )δt1 = δxi(t

+
1 )− x

′
i(t

+
1 )δt1 (19)

with
∂f

∂xi
δxi(t

±
1 )∓

(
∂f

∂xi
x′i(t

±
1 ) +

∂f

∂t
(t1)

)
δt1 = 0. (20)

We may now consider the case xi(t−1 ) + x′i(t
−
1 )δt1 = δxi(t

+
1 )− x′i(t

+
1 )δt1 = 0 for 1 ≤ i < n.

Let
v := −∂f

∂t
/
∂f

∂xn
.

It corresponds to the speed of the hyperplane H. We have

δxn(t
±
1 ) = ±(x

′
n(t
±
1 )− v)δt1,

so that we obtain

2an,nx
′
n(t
−
1 )(x

′
n(t
−
1 )−v)+an,nx

′
n(t
−
1 )

2+Ep,2 = 2an,nx
′
n(t
−
1 )(x

′
n(t
−
1 )−v)+an,nx

′
n(t

+
1 )

2+Ep,1
(21)

equivalent to the final equation:

an,n(x
′
n(t
−
1 )− v)

2 + Ep,2 = an,n(x
′
n(t

+
1 )− v)

2 + Ep,1, (22)

meaning that the sum of the potential energy and the kinetic energy associated to the speed
relative to the hyperplane H and orthogonal to it for the norm defined by the matrix A
remains constant. In particular, this implies the conservation of the energy.

Assuming that an,n(x′n(t
−
1 ) − v)2 + Ep,1 − Ep,2 < 0, the equation (22) has no real

solution, so that we have a rebound. The mobile stays in the half space f(x(t), t) < 0 and
we have then

an,n(x
′
n(t

+
1 )− v) = −an,n(x

′
n(t
−
1 )− v). (23)

The Maple package D_ODE_tools contains a function that computes events that rep-
resent such a discontinuity, associated to the vanishing of function f . Details of the
implementation would be boring. We only mention that the evaluation of the new val-
ues x′i(t) = fooi(x′) is done in sequence, which would produce the erroneous affectation
x′2 = foo2(foo1(x′), x′2, . . . ) instead of x′2 = foo2(x′1, x

′
2, . . . ), so that we needed to perform

in two steps zi = fooi(x′), and then x′i = zi. What is to be stressed is that AD of high
level functions is full of many troubles of this kind that are highly time consuming: it is
unavoidable that the documentation of a powerfull and versatile function tends to be both
quite lengthy and somehow unprecise, so that many experiments are required.

As an example, the case of a double pendulum. The integration using events is com-
pared with an approximation with arctan. One may note that we need to use some trick
to prevent unwanted activation of an event a short time after a discontinuity has been
encountered and first derivatives given new values.
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In our Maple worksheet, many intermediate results are not printed. In fact, the formu-
las used in the events description are often (too) big. One needs tools to replace useless
lengthy formulas with SLP (Straight Line Programms) that compute them. Such issues
have been considered with success for solving algebraic systems, for example with Kro-
necker. See Giusti et al. [39].

Producing new events to compute the derivatives of solutions of ODE with disconti-
nuities produced by events accoding to the dsolve syntax boils down from a mathematical
standpoint to the case of initial conditions, already considered in subsectionDiff-eq th. 2.
From a practical standpoint, we prefer to postpone this task, due to the difficulties men-
tionned above, and many others of the same kind, among them the necessity to deal with
the many cases of possible “events”, not all associated to possible discontinuities. We hope
to go back to with issue in a next version of this paper.

Glocker [29] considers impacts with dissipations, or multicontact collisions. We refer
to Fetecau et al. [38] or Leine et al. [51] and the references therin for more details on
rigid-body dynamics with impacts, dry friction, etc. in a more general setting.

2.12 Operational Calculus

Operational calculus is a convenient way to deal with linear differential equations, pop-
ular in many applicational fields, including control theory. An easy way to develop it
on sound bases, avoiding difficulties of defining the Laplace transform for some function,
was developped by the Polish mathematician Jan Mikusiński [55], using Titchmarsh con-
volution theorem [74]: the convolution operator on R+ defines a domain on continuous
functions. So, as

∫
f = 1 ∗ f , the derivation operator s may be defined as the inverse of 1

for convolution, in a purely algebraic way.
Even delays may be modeled in this framework, by using formula f(x − h) = e−hsf .

Differentiation with respect to parameters in differential equations is straightforward in
this setting. If we have a differential equation decribing a system with output y and input
u: y′ = ay + u, we may translate it as (s + 1)y = u, so that y = u/(s + 1). This transfer
function expresses the relation between the input and the output.

2.13 Differentiating noisy data

If the final goal of automatic differentiation is to build enbeded code to control and optimize
the behaviour of a physical process, one is soon faced with the major difficulty of computing
the derivatives of noisy signal. Finite difference may be acceptable for first derivatives and
low level noises, but one may achieve better accuracy using the evaluation of derivatives
by integration.

The general idea may be traced back to [50]. See also [34, 69, 69, 63, 17]. But this
approach is not well suited for online computation as each evaluation of a derivative at a
given point require a new integration. An other method inspired by Mikusiński’s theory has
been designed by Fliess, Sira-Ramirez, Join. . . [22]. With this approach, the evaluation
of derivatives may be obtained by continuous integration. However, the quality of the
result is best some time after the integration starts and is subject to some degradation,
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so that one needs to restart repeatedly the method, which is not trivial from a computer
programming standpoint. See also [60] for a variant that tries to avoid reinitialization and
may to some extend be used with delay systems.

3 Diffedge

Diffedge is a differentiation tool designed for systems represented by block diagrams in
Matlab9 Simulink. Its goal is to provide a result that remains in the same diagram en-
vironment. It was developped by Appedge in 2005 [54, 2] and is the result of a long
familiarity with the suject [28]. Optimization often require to get an analytical expression
of the gradient function, which is a non trivial task in this setting, but then real time op-
timization tools may be tested and translated in C/C++ code ready for use on embedded
processors, using e.g. Embedded Coder®.

Several ways may be considered, but they do not all allow to handle models with dis-
continuities (switch, saturation, etc.) or heterogenous mathematical representation mixing
continuous and discrete time models. We will illustrate the possibility on some simple
examples.

3.1 A didactic example

In this first order model (fig. 1), we want to compute the derivative with respect to the
parameter τ of the model.

Figure 1: Academic example : First order transfert function

3.1.1 Symbolic derivative. Manual method using the transfer function

See subsection 2.12 for operational calculus formalism used here. Compute the equivalent
transfer function. Write the equation between each block and resolve the causality:(

e = − 1
τ Y + k

τU
Y = 1

se

)
=⇒ Y =

kU

1 + τs
(24)

9About AD in the Matlab environment, see e.g. [58, 49].
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Then, we have two possibilities. The first is to work in the Laplace domain.

dY

dτ
=

−ks
(1 + τs)2

U. (25)

The second way is to transform the equation 24 in time differential equation like
(equ. 26) :

y′ =
−y + ku

τ
=⇒ dy′

dτ
=

(
−dy
dτ + k dudτ

)
τ + y − ku

τ2
(26)

with
du

dτ
= 0.

For theses 2 ways (equ. 25) and (equ. 26), it is necessary to rewrite the equations in
block diagram description and to make the time integration to get the expected result. We
can also, when it is possible, compute a finite form solution (equ. 27) and derivate this one
with respect to the independent parameters.

All these methods are not useful to keep the block diagram description but it is better
that nothing when the model is simple.

y′ =
−y + ku

τ

[b]
∫

−→ y(t) = k
(
1− e−t/τ

)
u(t)

[b]d/dτ
−→

dy(t)

dτ
=
kte−t/τ

τ2
. (27)

3.1.2 Finite difference with independent parameters

Often, this method is used with optimization algorithm and to compute the derivative
with respect to parameter by finite difference. Nevertheless, it is very difficult to choose
the epsilon value of the parameter. This method does not work well when we have noise on
the input, strongly non linear equation or when we have discontinuities in the model ( step,
hysteresis, etc) and it is very difficult to embed it in real time. The finite difference is not
generally accurate and the optimization, even if we use a complex strategy of optimization,
does not lead to the optimal solution due to the choice of epsilon. But all the engineers
use it for small and big models.

3.1.3 Via computer algebra tools

We can use BlockImporter™ (which is a Maple add-on) that allows you to import a
Simulink model into Maple and to convert it into a set of mathematical equations. Thus
it is possible to analyze and derivate the equation in a reliable way. But the work is not
finished, as it is necessary to translate the result back in the Simulink block diagram envi-
ronment. It will be impossible to treat the blocks: discontinuities, logic evens and look-up
table in the model, except if we decompose the model in piecewise continuous functions.
Another hard issue will be closed form integration, which will not be possible in the general
case, and may be very expensive in time and memory.
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3.1.4 Automatic differentiation of code

We may try to convert the model in C or Fortran code and then call appropriate tools.
For a short and didactic example, we use the on-line Automatic Differentiation engine
TAPENADE. The routine model table 3.1.4 describes the equation(25): the dependent
output variables are yprime, y and the independent parameter tau. We have chosen the
option Fortran and differentiated in “TangenteMode”, we have obtained the differentiated
program in table 3.1.4.

SUBROUTINE MODEL(yprime, y, u, tau, k)
IMPLICIT NONE
DOUBLE PRECISION yprime, y, u, tau, k
yprime = (-y+k*u)/tau
END

Figure 2: Source code

SUBROUTINE MODEL_D(yprime, yprimed, y, yd, u, tau, taud, k)
IMPLICIT NONE
DOUBLE PRECISION yprime, y, u, tau, k
DOUBLE PRECISION yprimed, yd, taud
yprimed = (-(yd*tau)-(y+k*u)*taud) /tau**2
yprime = (-y+k*u)/tau
END

Figure 3: Differentiated program

Usually it is not possible to use the result of the automatic differentiation in real time.
We face a lot of problems of compatibility between libraries, or related to the structures
of languages, especially when we use triggers10 or enable blocks. Moreover we don’t have
access at all the sources of the libraries, which is a major limitation to build embedded
code.

3.1.5 Graphic derivative AGDM First derivative

An another way is to apply the rules described in the forthcoming paragraph 3.3 Rules for
the automatic graphic differentiation Methodology (AGDM). With these rules, the model
(Fig.1) can be written like in the following Figure 4. The rules are straightforward to
implement.

10Triggers are blocks that determine times when the trigger is set “up” or “down”, corresponding to
special actions to be performed.
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Figure 4: ADGM Order 1

3.2 Computing the Hessian

Try to compute the hessian or the second derivative is very complicated for all the raisons
explained before but also by the size of result too, except if the model is simple.

For example, if we start with the Equation 24, we obtain the Equation 28.

d2Y

dτ2
=

2ks

(1 + τs)3
U (28)

But, the disadvantage which have been outlined is that we lost, in the condensed formula,
the saturation of integrator. With ADGM it is possible to drive the integrator in the
derivative flow by the saturation value in the original scheme (Fig. 1).

Via ADGM, it is necessary to apply the rules one more time on the model. The
properties of the partial derivative are kept: ∂2Y

∂x∂z = ∂2Y
∂z∂x . However, to use an helpful

automat like Diffedge will be appreciated and we obtain the Figure 5. If we compare by
numerical simulation ( integration) the mathematical form of ADGM methology and the
explicit derivative ( Second order) we obtain exactly the same result.

3.3 Rules for Automatic Graphic Differentiation Methodology (AGDM)

The rules are based on the technical field of “Automatic Differentiation” to derive the
conditional structures as well as the structural properties of block (math function, state,...)
diagrams and by application of the formula for derivatives of composite functions. Seven
simple rules of differentiation, including two rules on the links ( J) and five on the blocks
(M) allow to automatize the process of differentiation which can be manual or by computer
using a computer algebra system like Maple . All these rules can differentiate easily a model
described as pattern blocks (SISO, MIMO, continuous / sampled, finite state) systems
Applying all these rules are possible because we use the structural property (flow causality,
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Figure 5: Hessien of original scheme ( Order 1)

block independent,...) of bloc diagram representation. Each block is independent, in other
words it does not depend on other block around it and is self-standing. This guarantees
that all blocks in the block diagram can be differentiated independently of each other.
Furthermore, we use the causality property of the block diagram. The derivative flow
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propagates like the causality flow.
Finally, with these rules we obtain the block diagram differentiated with respect to the

parameter k. The user benefice is very important because the derivative model is also a
block diagram and like that, we still have access at all the functionality of Matlab/Simulink
(optimization, real time etc.). This method is definitively the best and the most powerful
way to get the symbolic derivative instead of translating the model in equations and then
derivate them. For understanding these rules, one may look to their application on the
figures (Fig.1),(Fig.4) and (Fig.5).

3.3.1 Link rules: J1 and J2

J1 Whatever the block through by the differentiated flow, all its outputs will be affected
by it. This rule can be applied for scalar links, vector and matrix. For example multiplexor,
demux, subsystem, etc (see 6)

Figure 6: J1 rule applied to Mux block

J2 All blocks unaffected by the derivative flow and not depending on derivative param-
eter can be considered as a constant source equal to zero like constant block, sourcefrom
workspace , etc In other words, when the inputs do not carry the flow derivative with re-
spect to derivative parameter, the block does not appear in the derivative block diagram.
This rule is useful for simplifying the derivative model. (see 7)

3.3.2 Block rules M1, M2, M3, M4, M5

M1 All the inputs/outputs of each of block and the sub-block of the original scheme
should be accessible at every step time of the simulation. Because it is necessary to have
the mathematical function of each block to obtain the derivative scheme. Moreover, each
subsystem is increased of the derivative flow. For instance, the subsystem with 2 inputs
and 1 output differentiated with respect of 2 parameters k2 and k2 gives the following:

M2 For all linear blocks H(k) in U through by differentiated flow we can built the follow-
ing scheme that contains the original block diagram increased of derivative with respect to
a parameter k.(Fig. 9)
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Figure 7: J2 rule derivative block independent of the parameter

Figure 8: Derivative subsystem

Figure 9: M2 rule for alinear block depending on of the parameter k

If the block does not depend of derivative parameter, we obtain the diagram below
(figure 10).

In fact, when the blocks are linear and do not depend on the differentiation parameter,
we just need to duplicate the model into the derivative flow. We will increase the original
model as many times as there are parameters with respect to which differentiation is
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Figure 10: M2 rule for linear block without parameter

performed.

M3 For a nonlinear block we write

Figure 11: M3 for non linear block in Laplace or Z

In this case, it may be necessary to use a computer algebra system to compute the
derivatives, accordiing to the mathematical definition of the block.

M4 For a conditional block (Switch, hysteresis, max, min, trigger subsystem, logic( and,
or,etc) , stateflow..., saturated integrator ...) which is defined by a piecewise or event
function, we duplicate the block and we keep the same logical tests as in the original block
but the outputs contain the derivative flow. According to automatic differentiation, the
threshold of logical blocks has not to be differentiated.(figure 12)

M5 In the case of “black box” block, such as a lookup table 1D, nD or S-function11,
the mathematical equations are not accessible and nothing can be done in the case of
lookup tables. So we need to retreat to finite difference. E.g. in the case of a function
y(x, k) = f(x, k, u(x, k)), we obtain an evaluation of the derivative df

du = ∂f
∂k + ∂f

∂u
∂u
∂k :

11Simulink block written outside of the block environment, in a computer language such as Matlab, C,
C++ or Fortran.
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Figure 12: M4 rule on switch and AND block

dy(k, u(k))

dk
=
f(x, k + εk, u(x, k + εk)− f(x, k, u(x, k))

εk

+
f(x, k, u(x, k) + ηu(k))− f(x, k, u(x, k))

ηu(k)

∂u(k)

∂k
. (29)

The best choice of the increment ηu(k) of the input u(k) is the step between 2 values
of u(k) input values of a lookup table. In general, the choice of the increment ε(k) may
require many tests befor finding a proper value and it is better to adapt the choice for each
lookup table or black box block rather than using a single value ε for the whole model.

Figure 13: M5 rule for Black box

All the rules introduced above are sufficient to compute the derivative model of all
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Simulink models and for specifying an automata computing the derivative like Diffedge.

3.3.3 Other mathematical representation

This notion of graphic derivative may be generalized to all mathematical objects like con-
tinuous transfer and state space but also to discrete transfer function and state space. It is
thus possible to build the gradient of hybrid models. For instance, in the case of continuous
state space JM’s rules give the original state-space increased of the derivative flow

Continuous case

{
Ẋ = AX +BU
Y = CX +DU

=⇒


(

Ẋ
dẊ
dk

)
=

[
A 0
dA
dk

A

](
X
dX
dk

)
+

[
B 0
dB
dk

B

](
U
dU
dk

)
(

Y
dY
dk

)
=

[
C 0
dC
dk

C

](
X
dX
dk

)
+

[
D 0
dD
dk

D

](
U
dU
dk

) (30)

Discrete case For the Discrete case, we have the same structure with the following
notation: Ẋ = Xn+1 and X = Xn and idem for U and Y .

In Simulink The Discrete Transfer function block implements the z-transform transfer
function described by zn or z−n power with the following equations in z:

H(z) =
b0 + b1z + · · ·+ bmz

m

a0 + a1z + · · ·+ amzm
with m ≤ n. (31)

3.4 Other examples

Simulink blocks have often dissimulate complex structures. It may then be necessary to
rewrite theses blocks using elementary blocks to be able to apply the rules and compute
the derivative of blocks such as Min, Max, etc.

Discontinuous block: For example, we propose to differentiate the Saturation Dynamic
block (the bounds range of the input signal to upper and lower saturation values). The
input signal outside of these limits saturates to one of the bounds low or up port. We
suppose, the bounds do not depend of the parameter.

Discrete block. We want to study the sensibility of the parameter k inside of discrete
integrator, it is necessary to compute the derivative (Fig. 16)

Application of rules gives the Fig. 3.4 For computing the derivative of the (Fig. 16),
we duplicate the original model. We just put the source at zero and link the derivative of
the integrator with respect to K just after the add block then finally we put a additional
block in the derivative flow.

And at last, we compare the ADGM with the evaluated derivative. This last one step is
very complicated to obtain. We have to evaluate the close loop, to compute the derivative
with respect to k and to convert it into a rational fraction in canonic form that will be
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Figure 14: Saturation Dynamic block (left) and its derivative (right)

Figure 15: Inside the Derivative of Saturation dynamic block

Figure 16: Discrete representation

entered in the dialogue discrete box of Simulink. The next formula expresses the formal
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Figure 17: Discrete derivative representation

derivative and is implemented in the “Symbolic” block of fig. 3.4.

dY (z)

dk
=
Ts
(
z4 + az3 + (b− 1)) z2 − az +KTs− b

)
−KTs2

(z3 + (a− 1) z2 + (KTs− a+ b) z +KTs− b)2
. (32)

The result obtained with ADGM is exactly equal to what we get frrom the integration
of equation 32, with less effort.

The best way for computing the derivative is to use JM’s rules It is very simple, efficient,
fast and useful. This method is also a good way for optimizing Finite Response Input (FIR)
filters12 with saturation.

3.5 An example of optimization

We conclude this section with a classical example. We consider a second order system and
try to minimize the energetic cost of the transitory behaviour during a step action. Our
second order system is the following (Fig. 20).

x′′ = −2ζωx′ − ω2x+ ω2u(t) (33)
y = x (34)

12Such filters are known to have usefull property such as inherent stability.
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Figure 18: Error between the true and ADGM derivative

The initial conditions are x(0) = 0 and x′(0) = 0 and u(t) the Heaviside function u(t) = 0
if t < 0 and u(t) = 1 if t ≥ 0.

We want to minimize

J(ζ) =

∫ ∞
0

(ω2e(t)2 + q2e′(t)2)dt,

with e(t) = x(t)− u(t).
In this simple case, a simple Maple computation will provides the optimal value of ζ

with q = 1 and ω = 1 is ζ = sqrt(2)
2 = 0.7071067811865475 with 16 Digits. We will use

it to illustrate how Diffedge can be used for optimization. For this, we need to compute
(∂J/∂ζ)(ζ), in order to use the Levnberg–Marquardt algorithm, implemented in Matlab
fsolve function. The time of simulation is 10 sec.
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Our goal is to compare AD and finite difference in real world condition(by example
embedded optimization on micro computer), many practical examples encountered in en-
geneering practice being close to this archetypic problem wherever the sample time of the
observation is large.

Remark. One must be carefull to the sensibility of the computation of the integral J with
respect to the time observation frequency: not enought points will give a poor precision in
optimization, but too many points can cumulate inacuracies and finite difference method
will be very sensitive to such computational noise. The time observation is given by the
block rate transition with the variable Tsample. Here after (fig. 19, we show two
responses with differente values of Tsample. One may notice that there are too few points
in the sample here to use finite difference but that AGDM still works.

Figure 19: Tsample=0.5 seconds (left) and Tsample= 0.005 seconds (right)

Differentiation. The corresponding block diagram of these equations can be written in
the following way (Fig. 20). Following classical engeneering practice, one may use Heaviside
operational calculus and represent our equations by a unit feedback of the open loop system
described by the transfer function

ω2

s(2ωζ + s)
.

In this model, the cost is simulated together with the initial model. One may notice
that, for the sake of genericity, the derivative e′(t) is computed using the block derivative,
that uses finite difference, that may penalize accuracy. But, if u were not constant for t ≥ 0,
we would have no other choice, as e′ = x′ + u′, except if u is itself defined in such a way
that AD can be used for it. The differentiated model, described by the following (fig. 20).
is obtained by duplicating the initial model (fig. 21). and applying the rules:

— J2 on the constant;
— M2 on the linear block depending on ζ;
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Figure 20: Second order with cost function J

— M3 on the nonlinear blocks like multiplication.
Modifications with respects to the initial model appear in red.
The optimization program to be used here is the following. The output dJ/dζ of our

differentiated block diagram is embedded in the myfcost function.

function [J,Jacobian] = myfcost(zeta)
zeta=min(zeta,3);zeta=max(.001,zeta);
assignin(’base’,’zeta’,zeta)
sim(’mymod’);
out=eval(’base’,’out’); % get J in the workspace
dout=eval(’base’,’dout’); % get dJ/dzeta workspace
J=out; % Objective function
if nargout > 1 % Two outputs argument
Jacobian = dout; % Jacobian of the function (ADGM)
end

To launch optimization, where ζ is initialized to the value 0.1, one uses the following
syntax with option on for ADGM/Symbolic or off for finite differences, when computing
the Jacobian.

[zeta_opt,fval,exitflag,output]=fsolve(@myfcost,[.1],optimset(’Jacobian’,’on’))

One may compare the obtained value to the theoretical solution of ζ.
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Figure 21: Second order derivative with respect to ζ

Rate transition Matlab jacobien ADGM jacabien
(time observation) (finite difference) (symbolic)

Theorical ζ = 0.7071067811865475
0.5 Zeta_opt= 0.1 Zeta_opt=.70698585

1 iterations 9 iterations
funcCount: 22 funcCount: 23

0.1 Zeta_opt= 0.10154269 Zeta_opt=0.71180603
8 iterations 8 iterations
funcCount: 40 funcCount: 25

0.07 Zeta_opt= 0.10089164 Zeta_opt= 0.70857782
4 iterations 7 iterations
funcCount: 29 funcCount: 24

0.04 Zeta_opt= 0.10062591 Zeta_opt= 0.71130072
5 iterations 9 iterations
funcCount: 32 funcCount: 22

0.01 Zeta_opt= 0.70625955 Zeta_opt= 0.70671083
9 iterations 9 iterations
funcCount: 29 funcCount: 19

0.005 Zeta_opt= 0.70630892 Zeta_opt= 0.70628714
9 iterations 9 iterations
funcCount: 29 funcCount: 29
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The number of observation points does not improve the result. In our case the solver
is ode45 and the relative tolerance is rtol = 10−7. This means that the computed state
(J) is accurate to within 0.00001% It is not possibe to get better precision than around
≈ 10−4 even using symbolic jacobian. But we notice that the optimization with a symbolic
jacobian is more reliable.

4 Testing the precision

It seems safe to complete this presentation with a few hint to test the robustness of the
obtained results. Most of the time, it is of course impossible to compare results using an
extra tool with certified reliability. And if the result of the other tool is not somehow
“certified”, a third one would be required, in case of discrepancies, assuming that if two
methods agree they are likely to be right.

However, any numerical tool may be tested on a set of known systems that already
may give an idea of its possibilities and help to test it during its development.

4.1 Symbolic computation

The possibilities are obvious enough to dispense us of lengthy developments, but as most
differential systems do not have closed form solution, let us stress that the safest way would
be a start by the solution and reconstruct the system. Chained systems provide an easy
way to build systems of increasing size and complexity when keeping symbolic resolution
fast.

4.2 Flat systems

Flat system, already menstionned above (see 2.3.1), are a special class of differential sys-
tems with a closed form solution, including well known chained examples of arbitrary size,
like the car with n-trailer [23] or many discretization of flat inifinite dimensional systems
[59]. Such examples where used with success during the tests of the rocket engine simulator
Carins [61], allowing to detect a bug in Maxima.

4.3 Interval arithmetics

As interval arithmetic can garanty that the result belongs to the result interval, it may also
be used to test any numerical tool. The computer algebra system Mathemagix includes a
package numerix for intervals and also balls with certified arithmetics [44, 42].

Conclusion

We have shown that, if the advantages of AD are obvious, one needs to be carefull in many
cases of great pratical interest, where its naive use may lead to inaccuracies. A clever
use requires a high level knowledge of what subroutines are made for, that is not just
their syntax but also semantics. E.g. we have shown that differentiating a loop heavily
depends on the fact that the loop is assumed to converge to a fixed point, or not. In the
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worse case, automatic procedures will be unable to recover the semantic hidden behind
the syntax, which may lead to unavoidable inaccuracies. The best solution would be to
generate numeric code from symbolic formulae, allowing more flexibility if new expressions,
such as a derivatives, are required. But the available tools are still limited.

Simulink block diagrams offer a perfect illustration of high level object that may—and
must—be differentiated as high level object, leading to better accuracy and keeping the
benefit of their wide range of possibilities, including translation in Fortran or C to incorpo-
rate of real time optimization routines in embeded code. To some extend, Simulink block
diagram description offers a better and more flexible framework to compute gradients with
AGDM methodology that what is offered, not only by low level coputer languages like C or
Fortran, but also by computer algebra systems like Maple, with the restriction of disconti-
nuities that cannot be handled properly and require the use of continuous approximations
using arctan.

Being able to produce numerical programs that could be efficient and flexible, i.e. that
could easily produce extra outputs such as derivatives, remains a challenge for software
engineering. Producing numerical code from computer algebra specification is a part of
the answer, but we need to adapt our tools to produce not only matematical formulas, but
programs that must be fast and well conditionned. For the present time, we still have to
cope with the necessity of pluging AD features on softwares that have not been thought in
advance to facilitate the task or even make it possible and safe.

References

[1] Arbogast, (Louis François Antoine), Du calcul des dérivations, Levrault frères,
Strasbourg, an VIII (1800).

[2] Bastogne (Thierry), Thomassin (Magalie), Masse (John), “Selection and iden-
tifcation of physical parameters from passive observation. Application to a winding
process” Control Engineering, Practice, Elsevier, 2007, 15 (9), pp.1051-1061.

[3] Baur (Walter) and Strassen (Volker), “The complexity of partial derivatives”, The-
oretical Computer Science, 22, 317-330, North-Holland, 1983.

[4] Beck (Thomas) and Fischer (Herbert), “The if-problem in automatic differentia-
tion”, Journal of Computational and Applied Mathematics, 50, 119–131, 1994.

[5] Beck (Thomas) “Automatic differentiation of iterative processes”, Journal of Com-
putational and Applied Mathematics 50, 109–118, 1994.

[6] Bell (Bradley M.) and Burke James V., “Algorithmic differentiation of implicit func-
tions and optimal values”, chapter in Advances in Automatic Differentiation, Lecture
Notes in Computational Science and Engineering vol. 64, 67–77, Springer 2008.

[7] Bliss (Gilbert Ames), “The solutions of differential equations of the first order as
functions of their initial values”, Annals of Mathematics, Second Series, Vol. 6, No. 2,
49–68, 1905.

42



[8] Bliss (Gilbert Ames), “Solutions of differential equations as functions of the constants
of integration”, Bull. Amer. Math. Soc. vol.25 , 15–26, 1918.

[9] Boulier (François), Lemaire (François) and Moreno Maza (Marc), “PARDI !”,
International Symposium on Symbolic and algebraic computation 2001, ACM Press,
38–47, 2001.

[10] Boulier (François), Lazard (Daniel), Ollivier (François) and Petitot (Michel), “Com-
puting representations for radicals of finitely generated differential ideals”, Special
issue Jacobi’s Legacy of AAECC, J. Calmet and F. Ollivier eds., 20, (1), 73–121,
2009.

[11] Boulier (François), Bibliothèques Lilloises d’Algèbre Différentielle, free sotware de-
velopped in C.
http://www.lifl.fr/ boulier/pmwiki/pmwiki.php?n=Main.BLAD

[12] Bostan (Alin), Chyzak (Frédéric), Salvy (Bruno), Lecerf (Grégoire) and Schost
(Éric), “Differential Equations for Algebraic Functions”, Proceedings of ISSAC’07, 25–
32, ACM, New-York, 2007.

[13] Alin (Bostan), Chyzak (Frédéric), Ollivier (François), Schost (Éric), Salvy (Bruno)
and Sedoglavic (Alexandre), “Fast computation of power series solutions of systems
of differential equations”, Proceedings of 18th ACM-SIAM Symposium on Discrete
Algorithms, 1012–1021, 2007.

[14] Bronstein (Manuel), ElementaryFunction, Axiom (Scratchpad II) package, 1987.
http://axiom-wiki.newsynthesis.org/SandBoxElemntry

[15] Christianson (Bruce), “Automatic Hessians by reverse accumulation”, IMA J. Nu-
mer. Anal., 12 (2), 135-150, 1992.

[16] Dickinson (Robert P.) and Gelinas (Robert J.), “Sensitivity analysis of ordinary
differential equation systems – A direct method”, Journal of Computational Physics
21, 123–143, (1976).

[17] Dridi (Mehdi), Dérivation numérique : synthèse, application et intégration, PhD
thesis, École centrale de Lyon, 2010.

[18] Dubois (François), Le Meur (Hervé) and Reiss (Claude), “Mathematical modeling
of antigenicity for HIV dynamics”, Maths In Action, 3, (1), (2010), 1–35.

[19] Elsheikh (Atiyah) and Wiechert (Wolfgang), “Accuracy of Parameter Sensitivi-
ties of DAE Systems using Finite Difference Methods”, IFAC Proceedings Volumes,
Volume 45, Issue 2, 136–142, 2012.

[20] Elsheikh (Atiyah), “An equation-based algorithmic differentiation technique for dif-
ferential algebraic equations”, Journal of Computational and Applied Mathematics,
281, 135–151, 2015.

43

http://axiom-wiki.newsynthesis.org/SandBoxElemntry


[21] Estévez Schwarz (Diana) and Lamour ( René), “Diagnosis of singular points of
properly stated DAEsusing automatic differentiation”, Numer. Algor. 70, 777–805,
2015.

[22] Fliess (Michel), Join (Cédric) and Sira-Ramírez (Hebertt), “Non-linear estimation
is easy”, Int. J. Modelling Identification and Control, Inderscience Enterprises Ltd.,
2008, Special Issue on Non-Linear Observers, 4 (1), 12-27.

[23] Fliess (Michel), Lévine (Jean), Martin (Philippe) and Rouchon (Pierre), “Flat-
ness and motion planning: the car with n trailers”, European Control Conference,
1518–1522, 1993.

[24] Fliess (Michel), Lévine (Jean), Martin (Philippe) and Rouchon (Pierre), “Flat-
ness and defect of nonlinear systems: introductory theory and applications”, Internat.
J. Control, 61, p. 1327–1887, 1995.

[25] Fliess (Michel), Lévine (Jean), Martin (Philippe) and Rouchon (Pierre), “Deux
applications de la géométrie locale des diffiétés”, Annales de l’IHP, section A, 66, (3),
275–292, 1997.

[26] Fliess (Michel), Lévine (Jean), Martin (Philippe) and Rouchon (Pierre), “A
Lie-Bäcklund approach to equivalence and flatness of nonlinear systems”, IEEE AC.
44:922–937, 1999.

[27] Gebremedhin (Assefaw Hadish), Manne (Fredrik) and Pothen (Alex), “What color
is your Jacobian? Graph coloring for computing derivatives”, SIAM Rev, 47, 629–
705, 2005.

[28] Gilbert (Jean-Charles), Le Vey (Georges) and Masse (John), La différentiation
automatique de fonctions représentées par des programmes, Tech. rep. 1557, INRIA,
1991.

[29] Glocker (Ch.), “Concepts for modeling impacts without friction”, Acta Mechanica
168, 1–19, 2004.

[30] Gower (R. M.) and Mello (M. P.), “A new framework for the computation of
Hessians”, Optimization Methods and Software, 27, (2), 2012.

[31] Gower (R. M.) and Gower (A.L.)“Higher-order reverse automatic differentiation
with emphasis on the third-order”, Math. Program., Ser. A 155, 81–103, 2016.

[32] Griewank (Andreas), “A Mathematical View of Automatic Differentiation”, Acta
Numerica 12 (2003), 321–398.

[33] Griewank (Andreas) and Walther (Andrea), Evaluating Derivatives: Principles
and Techniques of Algorithmic Differentiation, Other Titles in Applied Mathematics
105 (2nd ed.), SIAM, 2008.

[34] Groetsch (Charles W.), “Lanczos’ generalized derivative”, Amer. Math. Monthly,
105 (1998) 320–326.

44



[35] Grönwall (Thomas Hakon), “Note on the Derivatives with Respect to a Parameter
of the Solutions of a System of Differential Equations”, Annals of Mathematics, Second
Series, Vol.20, No. 4, pp. 292–296, 1919.

[36] Hubert (Évelyne), “Notes on triangular sets and triangulation-decomposition algo-
rithms II: Differential Systems”, Chapter of Symbolic and Numerical Scientific Com-
putations, U. Langer and F. Winkler eds, LNCS, 2630, Springer, 2003.

[37] Hubert (Évelyne), Diffalg, Maple package.

[38] Fetecau (R.C.), Marsden (J.M.), Ortiz (M.), and West (M.), “Nonsmooth La-
grangian Mechanics and Variational Collision Integrators”, SIAM J. Applied Dynam-
ical Systems, Vol. 2, No. 3, 381–416, 2003.

[39] Giusti (Marc), Lecerf (Grégoire) and Salvy (Bruno) “A Gröbner free alternative
for polynomial system solving”, Journal of Complexity, 17(1), 154–211, 2001.

[40] Hartung (Ferenc), “Differentiability of solutions with respect to parameters in neu-
tral differential equations with state-dependent delays”, J. Math. Anal. Appl., 324,
504–524, 2006.

[41] van der Hoeven (Joris), “Relax, but don’t be too lazy”, Journal of Symbolic Com-
putation, Volume 34 Issue 6, 479–542, 2002.

[42] van der Hoeven (Joris), “Certifying Trajectories of Dynamical Systems”, Kotsireas
I., Rump S., Yap C. (eds), MACIS 2015, Lecture Notes in Computer Science, vol. 9582,
Springer, 520-532, 2016.

[43] van der Hoeven (Joris) and Lecerf (Grégoire), “On the bit-complexity of sparse
polynomial and series multiplication”, Journal of Symbolic Computation, 50, 227–254,
2013.

[44] van der Hoeven (Joris) and Lecerf (Grégoire), 23nd Symposium on Computer
Arithmetic, (ARITH), IEEE, 142–149, 2016.

[45] Hoffmann (Philipp H.W.), “A Hitchhiker’s guide to automatic differentiation”, Nu-
merical Algorithms, Vol. 72 No. 3 (2016), 775–811.

[46] Hubert (Évelyne), “Differential Algebra for Derivations with Nontrivial Commuta-
tion Rules”, Journal of Pure and Applied Algebra, 200, (1-2), 173–190, 2005.

[47] Jacobi (Carl Gustav Jacob), “De investigando ordine systematis aequationum dif-
ferentialum vulgarium cujuscunque”, Gesammelte Werke V, 193-216. “The order of a
system of ordinary differential equations”, AAECC, 20, (1), 7–32, 2009.

[48] Kaminski (Yirmeyahu), Lévine (Jean) and Ollivier (François), Intrinsic and ap-
parent singularities in flat differential systems, 2017. HAL.

[49] Kharche (Rahul Vijay), MATLAB automatic differentiation using source transfor-
mation, PhD thesis, Cranfield University, 2011.

45

http://www-sop.inria.fr/members/Evelyne.Hubert/diffalg/
https://hal.archives-ouvertes.fr/hal-01426378


[50] Lanczos (Cornelius), Applied Analysis, Prentice-Hall, Englewood Cliffs, NJ, 1956.

[51] Leine (Remco I.) and Nijmeijer (Henk), Dynamics and bifurcations of non-smooth
mechanical systems, Springer-Verlag, Berlin Heidelberg New York, 2004.

[52] Lebreton(Romain) and Schost (Éric), “A simple and fast online power series mul-
tiplication and its analysis”, Journal of Symbolic Computation, 72, 231–251, 2016.

[53] Lévine (Jean), Analysis and Control of Nonlinear Systems: A Flatness-based Ap-
proach, Springer, 2009.

[54] Masse (John) and Cambois (Thierry), “Differentiation, sensitivity analysis and iden-
tification of hybrid Models under Simulink”, Symposium Techniques Avancéeés et
Stratégies Innovantes en Modélisation et Commandes Robustes des Processus Indus-
triels, Martigues, 21 & 22 septembre 2004.

[55] Mikusiński (Jan G.), Rachunek operatorów, Warszawa 1953. The Operational Calcu-
lus, Pergamon Press, Oxford, 1983.

[56] Monagan (Michael B.) and Neuenschwander (Walter M.), “GRADIENT: Algorithmic
Differentiation in Maple”, Proceedings of ISSAC’93, 68–76, ACM Press, 1993.

[57] Morgenstern (Jacques), “How to compute fast a function and all its derivatives: a
variation on the theorem of Baur-strassen”, ACM SIGACT News, Volume 16, Issue 4,
60–62, ACM Press, April 1985.

[58] Neidinger (Ricerd D.), “Introduction to automatic differentiation and MATLAB
object-oriented programming”, SIAM Review, Vol. 52, No. 3,545–563, 2010.

[59] Ollivier (François) and Sedoglavic (Alexandre), “A generalization of flatness to
nonlinear systems of partial differential equations. Application to the command of a
flexible rod”, Proceedings of the 5th IFAC Symposium “Nonlinear Control Systems”,
vol. 1, Elsevier, 196–200, 2001.

[60] Ollivier (François), Moutaouakil (Saïd) and Sadik (Brahim), “Une méthode
d’identification pour un système linéaire à retard”, Comptes Rendus Mathématique,
344, (11) 709–714, 2007.

[61] Ordonneau (Gérard), Masse (John) and Albano (Gérard), “CARINS: un logiciel
de modélisation et de simulation pour les procédés industriels complexes fondé sur le
logiciel libre”, REE, 4, 66-73, 2008. PDF

[62] Naumann (Uwe), “Optimal Jacobian accumulation is NP-complete”, Math. Pro-
gramm. Ser. A, 112, 427–441, 2008.

[63] Rangarajan (S.K. ) and Purushothaman (S.P.), “Lanczos’ generalized derivative
for higher orders” Journal of Computational and Applied Mathematics, 177, (2005)
461–465.

46

http://www.ree.see.asso.fr/IMG/2pdf001/1216b3e12f/pdf04/2006_0004_08.pdf


[64] Rall (Luis B.), “Early Automatic Differentiation: The Ch’in-Horner Algorithm”,
Reliable Computing, 13, 303–308, 2007.

[65] Ritt (Joseph Fels), “On the differentiability of the solution of a differential equation
with respect to a parameter”, Ann. of Math. vol. 20, 289–291, 1919.

[66] Sedoglavic (Alexandre), “A probabilistic algorithm to test local algebraic observ-
ability in polynomial time”, Journal of Symbolic Computation, 33 (5), 735–755, 2002.

[67] Shamseddine (Khodr) and Berz (Martin), “Exception handling in derivative com-
putation with nonarchimedean calculus”, chapter of Computational differentiation:
techniques, applications and tools, Berz, Bischof, Corliss and Griewank eds, SIAM,
1996.

[68] Schumann-Bischoff (Jan), Luther (Stefan) and Parlitz (Ulrich), “Nonlinear
system identification employing automatic differentiation”, Commun. Nonlinear Sci.
Numer. Simulat., 18, 2733–2742, 2013.

[69] Shen (Jhanghong), “On the generalized Lanczos generalized derivative”, Amer. Math.
Monthly 106 (1999) 766–768.

[70] Sira-Ramírez (Hebertt) and Agrawal (Sunil K.), Differentially Flat Systems, Mar-
cel Dekker, New York, 2004.

[71] Slavík (Antonín), “Generalized differential equations: Differentiability of solutions
with respect to initial conditions and parameters”, Journal of Mathematical Analysis
and Applications, 402 (1), 261–274, 2013.

[72] Smith (Jacob), Dos Reis (Gabriel) and Järvi (Jaakko), “Algorithmic differentiation
in Axiom”, ISSAC’07, ACM Press, 347–354, 2007.

[73] Tijskens (E.), Roose (D.), Ramon (H.) and De Baerdemaeker (J.), “Automatic
Differentiation for Solving Nonlinear Partial Differential Equations: An Efficient Op-
erator Overloading Approach”, Numerical Algorithms, 30, (3), 259–301, 2002.

[74] Titchmarsh (Edward Charles), “The zeros of certain integral functions”, Proc. Lon-
don Math. Soc., s2-25, (1), 283-302, 1926.

[75] Volin (Yu.M.) and Ostrovskii (G.M.), “Automatic computation of derivatives with
the use of the multilevel differentiating technique—I. algorithmic basis”, Comp. &
Maths. with Appls Vol. II. No. II., 1099-1114, 1985.

[76] , Walter (Éric), Identifiability of State Space Models, Lecture Notes in Biomathe-
matics, Vol. 46, 1982.

[77] Wengert (R. E.), “A Simple Automatic Derivative Evaluation Program”, Commu-
nications of the ACM, Volume 7, Issue 8, 463–464, ACM New York, 1964.

[78] Wu (Hulin), Zhu (Haihong), Miao (Hongyu) and Perelson (Alan S.), “Parameter
identifiability and estimation of HIV/AIDS dynamic models”, Bull. Math. Biol. 70 (3),
785-99, 2008.

47


	Classical tools
	Forward and reverse accumulation
	An illustration in Maple
	Using dual numbers and series

	Our theoretical setting illustrated using computer algebra
	Introducing new functions
	Runge–Kutta methods
	Conditionals and piecewise functions
	Differentiating flat outputs

	Loops. Solving ``algebraic'' equations
	Integrators and differential equations
	Higher order derivatives
	Implementation in Maple and examples
	Identifiability

	Delay systems
	Sequences
	Conditionals and discontinuities in EDOs
	Lagrangian
	Operational Calculus
	Differentiating noisy data

	Diffedge
	A didactic example
	Symbolic derivative. Manual method using the transfer function
	Finite difference with independent parameters
	Via computer algebra tools
	Automatic differentiation of code
	Graphic derivative AGDM First derivative

	Computing the Hessian
	Rules for Automatic Graphic Differentiation Methodology (AGDM)
	Link rules: J1 and J2
	Block rules M1, M2, M3, M4, M5
	Other mathematical representation

	Other examples
	An example of optimization

	Testing the precision
	Symbolic computation
	Flat systems
	Interval arithmetics


