Abstract: un outil et une méthodologie pour analyser une activité humaine médiée par un artefact technique complexe

Olivier L. Georgeon, Alain Mille, Thierry Bellet

To cite this version:
Olivier L. Georgeon, Alain Mille, Thierry Bellet. Abstract: un outil et une méthodologie pour analyser une activité humaine médiée par un artefact technique complexe. Ingénierie des Connaissances. Semaine de la connaissance, Jun 2006, Nantes, France. hal-01536650

HAL Id: hal-01536650
https://hal.science/hal-01536650
Submitted on 12 Jun 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Abstract : un outil et une méthodologie pour analyser une activité humaine médiaée par un artefact technique complexe

Olivier Georgeon1,2, Alain Mille3 et Thierry Bellet4

1 Lescot, Inrets, Bron, http://www.inrets.fr, olivier.georgeon@inrets.fr
2 Liris, Université Lyon1, Villeurbanne, http://liris.cnrs.fr
3 Liris, Université Lyon1, Villeurbanne, http://liris.cnrs.fr, alain.mille@liris.cnrs.fr
4 Lescot, Inrets, Bron, http://www.inrets.fr, thierry.bellet@inrets.fr

Résumé
Nous présentons une méthodologie et un outil pour analyser l'activité d'un opérateur humain en interaction avec un dispositif technique complexe. L'activité est observée pour être modélisée sous la forme d'une trace ayant une structure de graphe. La trace collectée est constituée initialement d'une succession de descripteurs d'événements, liés par une relation de séquentialité. Elle est ensuite enrichie selon un modèle d'utilisation pour construire une représentation de l'activité à différents niveaux d'abstraction. Cela permet de retrouver des signatures de schémas mentaux mis en œuvre par l'opérateur. Cette approche est utilisée pour la modélisation cognitive du conducteur automobile.

Mots clés : Trace; Analyse de l'activité; Conduite automobile; modélisation cognitive.

1 Objectif général

L'objectif général est de mieux comprendre le comportement de l'utilisateur d'un artefact technique complexe. Nous entendons par artefact technique un dispositif conçu pour permettre à une personne de réaliser avec lui une tâche déterminée. Il est dit complexe s'il n'est pas réductible à un petit nombre de paramètres et s'il est engagé dans une situation de forte imprédictibilité.

Cet objectif relève des champs de l'ergonomie cognitive et de l'analyse de l'activité qui visent à expliquer les comportements de l'opérateur par son activité cognitive. Plus spécifiquement, nous nous intéressons aux comportements tactiques, c'est-à-dire qui se déroulent sur une échelle de temps de quelques secondes. Cette approche de modélisation repose globalement sur le constat que l'opérateur n'agit pas en fonction de la réalité objective du monde, mais en fonction d'un « modèle mental » qu'il s'en fait. Ce modèle mental est considéré comme étant construit en mémoire de travail, à partir de connaissances en mémoire à long terme et d'éléments perçus dans l'environnement.

Le travail de modélisation consiste alors à décrire ce modèle mental et les mécanismes qui permettent son élabo-

ration. Au LESCOT, ce travail est réalisé par des psychologues et des ergonomes pour le cas de la conduite automobile [1], en s'inspirant de concepts tels que les « schémas opératoires » ou les « Frames ». Dans ce cas, c'est le véhicule automobile qui est le dispositif complexe, et la tâche consiste à se rendre en sécurité d'un point à une autre. Les méthodes utilisées sont, d'une part, des techniques d'investigation subjective par questionnements du conducteur pendant la conduite ou après coup, et d'autre part des techniques d'analyse des comportements objectifs. Des expériences de conduite en situation réelle sont menées avec un véhicule instrumenté qui permet de collecter des informations sur le comportement du conducteur, du véhicule et de l'environnement routier.

Le travail que nous présentons ici vise à faciliter l'analyse des données collectées, dans le but d'inférer ou valider les hypothèses de modélisation cognitive du conducteur. Il consiste à permettre au psychologue de consulter ces données de telle manière qu'elles puissent être comprises par lui dans le contexte de théories de modélisation. Cette représentation significante de l'activité peut ensuite être confrontée à une évaluation subjective de la part du conducteur, pour confirmation ou information.

2 Méthodologie et outil

L'ingénierie de la connaissance vise à exploiter, partager et transmettre des inscriptions de connaissances. Dans notre cas, les inscriptions de connaissance sont constituées en « traces » que nous définissons comme une succession « d'observés » temporellement situés. Nous entendons par « observé » tout élément d'information daté, produit par l'observation d'une activité dans le but de la décrire. Nous proposons donc ce que nous appelons un « système à base de trace » pour faciliter la découverte de connaissances de psychologie cognitive à partir des traces d'activité.

Pour cela nous considérons que deux conditions sont requises : (a) Les données comportementales doivent être « situées », car le comportement ne peut être compris que par rapport au contexte dans lequel il a lieu. A ce titre les
traces doivent inclure les informations contextuelles nécessaires à l’interprétation du comportement. (b) Les traces doivent être adaptées aux connaissances de l’analyste, car elles ne peuvent faire sens pour lui que dans le contexte de ses connaissances antérieures. Le système doit donc se baser sur les connaissances de l’analyste pour transformer les traces collectées en traces intelligentes par lui. Pour ce faire, le système inclut une spécification des concepts de modélisation dans une ontologie appelée « modèle d’utilisation » et une spécification des « règles de transformation » applicables aux traces.

Le niveau du « système à base de trace » constitue l’atelier d’analyse proprement dit. Il permet de manipuler les traces sous forme de graphes RDF (Resource Description Framework). Il regroupe les différentes fonctionnalités de transformation de la trace : un éditeur d’ontologie pour spécifier les modèles des différentes traces, un éditeur de transformation pour spécifier les différentes règles de transformation applicables aux traces, un moteur de transformation pour les appliquer, un système de visualisation pour visualiser les traces obtenues, un outil de requête pour rechercher des occurrences de signatures de schémas dans les traces.

Le mécanisme de transformation des traces consiste à enrichir et à les filtrer. L’enrichissement consiste à ajouter des nouveaux nœuds et arcs dans le graphe RDF, de plus en plus abstraits et expressifs pour l’analyste. Cet ajout se fait par l’application de règles d’inférence qui ajoutent des nœuds en fonction de « signatures » retrouvées dans la trace. Ces règles sont spécifiées par l’analyste. Le filtrage consiste à masquer les « observés » de bas niveau qui ne sont plus utiles pour l’analyste.

On définit deux niveaux de traces transformées : la « trace métier » qui décrit l’activité dans le langage de l’opérateur, et la « trace analysée » qui décrit l’activité dans le langage de l’analyste. La trace analysée est structurée en une succession d’états et transition selon le modèle Musette du LIRIS [2] pour permettre de retrouver des épisodes correspondant à des instanciations de schémas tactiques, grâce à un mécanisme de « signatures expliquées de schémas ».

3 Conclusion

Sur le plan pratique, nous utilisons actuellement cet outil pour la modélisation cognitive du conducteur automobile. Sur le plan théorique, ce travail met en rapport deux approches différentes de la cognition : une approche « représentationniste » issue de la psychologie cognitive, et une approche « située » plus phénoménologique. Nous continuons à explorer les conséquences de cette confrontation que nous croyons fructueuse.

Références
