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 Improved 3-D Analytical Model for Axial-Flux Eddy-Current 

Couplings with Curvature Effects  
 

Thierry Lubin and Abderrezak Rezzoug 
 

Université de Lorraine, Groupe de Recherche en Electrotechnique et Electronique de Nancy, GREEN, F-54500 Vandœuvre-lès-

Nancy, France 

 

An improved three-dimensional analytical model for axial-flux permanent-magnet eddy-current couplings is presented in this 

paper. As the problem is solved in a 3-D cylindrical coordinate system, the proposed model directly takes into account the radial edge 

effects and the curvature effects on the torque prediction without the need of any correction factor. It is shown that the new analytical 

model is very accurate, even for the geometries where the curvature effects are very pronounced. Another advantage of the proposed 

model is the great reduction of computation time compared to 3-D finite elements simulations and an easier adaptation for parametric 

studies and optimization. 

 
Index Terms—Analytical modeling, curvature effects, eddy-current, magnetic coupling, three-dimensional, torque.  

 

I. INTRODUCTION 

NALYTICAL models available in the literature for the 

analysis of axial-field eddy-current magnetic couplings 

are usually based on 2-D approximations. The problem is 

solved in a Cartesian coordinate system under the mean radius 

development hypothesis and by considering an infinite depth 

for the magnets and the conducting region. The induced 

currents are then obtained by solving a 2-D diffusion equation 

[1]-[7] or by using the magnetic equivalent circuit (MEC) 

method [8]-[10]. The 3-D radial edge effects, which cannot be 

neglected for such devices, are taken into account by using the 

well-known Russel and Norsworthy’s correction factor [11]. 

However, it has been shown that this correction factor is not 

always accurate [5], [6]. Its precision greatly depends on the 

slip speed and on the coupling geometry: radial depth and pole 

pitch values. 

Unfortunately, the shift to a 3-D analytical model is not an 

easy task because of the induced currents determination in the 

moving conducting region which leads to mathematical 

difficulties. It is then not surprising to find very few papers 

about it in the literature. However, it is the only way to 

directly take into account the radial edge effects without the 

need of a correction factor. Some mathematical difficulties can 

be overcome by solving this problem in 3-D Cartesian 

coordinates. The 3-D cylindrical topology shown in Fig. 1 can 

be reduced to an equivalent 3-D linear structure by using the 

mean radius assumption [12]-[14]. Such model allows taking 

into account the radial edge effects and leads to accurate 

calculation of the torque and the axial force as long as the 

curvature effects can be neglected. 

Compared to our previous work [14] where the curvature 

effects was neglected, the objective of this paper is to develop 

an improved 3-D analytical model which is able to consider 

both the edge effects in the radial direction and the curvature 

effects. This is a very important issue if the analytical model is 

intended to be used in a design optimization procedure where 

the geometrical parameters can vary significantly. 

As the axial-flux magnetic coupling presents natural 

cylindrical boundaries (Fig .1), the problem will be directly 

solved in a 3-D cylindrical coordinate system (r, θ, z) thanks 

to the method of separation of variables. A magnetic scalar 

formulation will be used in the nonconducting regions 

(magnets and airgap) whereas a current density formulation 

will be used in the conducting regions (copper and back-iron). 

Compared to previous studies where a second-order potential 

formulation was used in the conducting regions [17]-[20], a 

direct formulation in terms of current density appears as a 

simplest way to solve analytically this 3-D eddy-current 

problem. In the knowledge of the authors, no 3-D analytical 

method, similar to that presented here, was found in the 

literature.   

 

 
 

 

Fig. 1. Cross section of the studied axial-flux permanent magnet eddy-current 

coupling. 
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From the field solution, the transmitted torque is derived by 

using the Maxwell stress tensor. The contribution of the torque 

due to the induced currents in the back-iron (copper side) is 

also taken into account. The results obtained here are 

compared with those numerically calculated with a 3-D finite 

element method, on one hand, and with those previously 

obtained by the authors thanks to a simplified Cartesian model 

[14] on the other hand. It is shown that the new analytical 

model is very accurate, even for the geometries where the 

curvature effects are very pronounced. Another advantage of 

the proposed analytical model is the great reduction of 

computation time compared to the one required for 3-D FE 

simulations.   

II. PROBLEM DESCRIPTION AND ASSUMPTIONS 

A. Geometry of the Studied Magnetic Coupling 

Fig. 1 shows the cross-section of the studied axial-flux 

eddy-current coupling. It consists of two movers separated by 

a small air-gap. The first one is composed of sector shaped 

rare-earth permanent magnets (PMs) glued to the back-iron. 

The PMs are magnetized in the axial direction and regularly 

distributed to obtain alternately north and south poles. The 

second one is composed of a conducting plate, usually made 

of copper, screwed to the back-iron. As is well known, the 

torque-speed characteristic of such device is related to the 

induced currents in the conducting regions. The value and the 

distribution of the induced currents depend among other things 

on the slip speed Ω = Ω1 - Ω2 where Ω1 and Ω2 are 

respectively the absolute angular speeds of the primary and the 

secondary movers (Fig. 1). 

The geometrical parameters of the studied coupling are 

given in Fig. 1. We can note that the radius of the copper plate 

R3 is chosen significantly greater than R2. In so doing, the 

return paths of the induced current are mainly located outside 

the useful area that corresponds to the magnet depth (R2 – R1) 

and the performances of the magnetic coupling are greatly 

improved [10], [14]. 

 

 
 

Fig. 2.  Five-layer field model of the studied magnetic coupling in the r-z and 

r-θ  planes for one pole-pitch. 

B. Field Problem and Assumptions 

As shown in Fig. 2, the whole domain of the field problem 

is divided into five identical wedge-shaped cylindrical regions: 

the back-iron (region 1), the PMs (region 2), the air-gap 

(region 3), the copper plate (region 4), and the back-iron of the 

copper side (region 5). Except their angular phase shift, the 

PMs and the eddy-current distributions are the same, so the 

magnetic problem presents an odd periodicity in the               

θ-direction. The whole domain shown in Fig. 2 is then limited 

by the planes θ = -π/2p and θ = π/2p where p is the pole-pairs 

number. In order to simplify the solution of this boundary 

value problem, it is important to note that the radius of the 

back-iron of region 1 has been extended to R3.  

To analytically solve this 3-D problem, we suppose a linear 

behavior of all material media in Fig. 2. The air-gap, the PMs, 

and the copper plate have the same permeability µ0 (vacuum 

permeability) whereas the relative permeability of the back-

iron is µrb (regions 1 and 5). The electrical conductivity of the 

copper σc (region 4) and of its back-iron σb (region 5) is 

considered as constant. Since there are no relative motion 

between the PMs and the back-iron of region 1, its 

conductivity has not to be considered. Here, we consider only 

the steady state operation. The slip speed Ω is considered as a 

constant term. 

In order to facilitate the analytical treatment of this 3-D 

eddy-current problem, the frame of reference is fixed to the 

copper plate and its back-iron (regions 4 and 5). In so doing, 

there will be no speed term in the partial differential equations 

for the conducting regions. Therefore, for an observer placed 

in the copper plate, the PMs and its back-iron move with the 

angular slip speed Ω. The PMs region is then seen as a 

travelling magnetic wave with a residual magnetization M 

which depends on the r-θ spatial coordinates (Fig. 3) and on 

the time variable t. As the PMs are axially magnetized and the 

magnetization distribution is 2π/p periodic in the θ-direction, 

it can be written as follows with a complex notation: 

 

( , , )   zM r tθ= zM e    (1) 

with 

( ) ( )

1

( , , )
jnp t

n

n

z MM r er t
θ Ωθ

∞
−

=

  

 

= 


∑ℜ  (2) 

 

where ez is the unit vector in the z-direction, n is an odd 

integer, p is the number of pole-pairs, ℜ denotes the real part 

of a complex number and 1j = − . The mathematical 

expression of Mn(r), which depends on the magnetization 

distribution as shown in Fig. 3, will be developed in the next 

section. In accordance with the source term (2) and reminding 

that this problem is 2π/p periodic in each region, the solution 

of field quantities will take the following general form 

 

( ) ( )

1

,( , , , )
jnp t

n

n

X r z X r z et
θ Ωθ

∞
−

=

  
 
 

=


∑ℜ  (3) 
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where X can denote a magnetic scalar potential for the non-

conducting regions 1, 2, and 3, or a component of the current 

density for the conducting regions 4 and 5. Expression of       

X (r,θ,z,t) for each region is developed in the next section. 

III. THREE DIMENSIONAL ANALYTICAL MODEL IN 

CYLINDRICAL COORDINATES 

A. Boundary Conditions 

Fig. 2 summarizes the boundary conditions to be applied for 

each region (i = 1, 2, 3, 4 and 5) of the studied problem. As 

indicated previously, the fields apply on two opposite sides (at 

θ = ±π/2p) is anti-periodic and must check  

 

( , / 2 , , ) ( , / 2 , , )  i ir p z t r p z tπ π= − −H H  (4) 

 

where Hi is the magnetic field strength in region i. 

Boundary conditions are also required in the radial direction 

to solve this problem. The studied domain is then truncated by 

an artificial boundary at r = R3. We impose for each region a 

perfect magnetic boundary condition on the plane at r = R3. 

Moreover we consider that the magnetic field remains finite at 

r = 0. 

 

30  at   i r r R× = =H e    (5) 

 is finite  at  0i r =H    (6) 
 

where er is the unit vector in the r-direction. 

It is important to note that for regions 4 and 5, the boundary 

condition (5) corresponds to a zero value for the radial 

component of the induced current at r = R3. 

As shown in Fig. 2, the field problem is also limited in the 

z-direction by two boundaries positioned at z = 0 and z = z5. 

On these planes, we impose that no flux line leak out the iron-

yoke, which corresponds to fix a flux-parallel boundary 

condition for regions 1 and 5  

 

0  at   0  1 z⋅ = =zB e    (7) 

50  at   5 z z⋅ = =zB e    (8) 

 

where B1 and B5 are the flux density in region 1 and 5, 

respectively. 
 

B. Magnetic Field in the Nonconducting Regions  

For the nonconducting regions (i = 1, 2, 3), the magnetic 

field is based on the magnetostatic Maxwell’s equations 

 

0i⋅ =B∇  0i× =H∇   (9) 

 

From (9), the magnetic field strength can be written in terms 

of a magnetic scalar potential iΦ , which is defined as 

 

i i= − ΦH ∇    (10) 

 

For the permanent magnets, we consider a linear 

characteristic with a relative permeability near unity (NdFeB 

magnets) such as  

 

0 0i i iµ µ= +B H M  ( )0 for 2iM       i≠ =  (11) 

 

where Mi is the remanent magnetization vector defined in (1). 

Equations (9), (10) and (11) are combined to give  
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ii∇ Φ = ⋅M∇    (12) 

 

As indicated in (1), the magnetization vector presents only 

one z-independent component in the z-direction. The Poisson 

equation (12) is then simplified to the Laplace equation (13) 

for all nonconducting regions, which can be written in 

cylindrical coordinates as 

 

2 2 2

2 2 2 2

1 1
0i i i i

r rr r zθ
∂ Φ ∂Φ ∂ Φ ∂ Φ+ + + =

∂∂ ∂ ∂
   for   1,2,3i =     (13) 

 

The boundary conditions given in (4)-(6) can be re-written 

in terms of magnetic scalar potential as follows 

 

3

( , / 2 , , ) ( , / 2 , , )

( , , , ) 0

( , , , ) is finite at   0

i i

i

i

r p z t r p z t

R z t

r z t r

π π
θ

θ

Φ − = −Φ
Φ =
Φ =

      (14) 

 

By using the method of separation of variables, we obtain 

the general solution of the boundary problem (13)-(14) in 

terms of Bessel function Jnp(αk  r) of the first kind and order np 

[25]: 

( ) ( )

1 1

( , , , ) ( )
jnp t

ii np k

n k

r z t z J r e
θ Ωθ Φ α

∞ ∞
−

= =

  Φ =  
  
∑∑ℜ  (15) 

 

with  

( ) k kz z
i i iz A e B e

α αΦ −= +   (16) 

 

where k is a positive integer (n is an odd positive integer). The 

values of αk are determined thanks to the boundary condition 

Φi = 0 for r = R3, which corresponds to the kth zero of the 

Bessel function of order np: 

 

( )3 0np kJ Rα =    (17) 

 

The complex coefficients iA and iB  in (16) will be 

determined by using the interface conditions in the z-direction. 

Fig. 3 shows the magnetization distribution Mz(r,θ, t) along 

the r and θ-direction at t = 0 (region 2). The magnetization can 

be developed into Fourier-Bessel series as follows  

 

( ) ( )

1 1

( , , )
jnp t

z nk np k

n k

M r t M J r e
θ Ωθ α

∞ ∞
−

= =

  =  
  
∑∑ℜ  (18) 
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with 

 

( )

( ) ( )
3

2 2
3 1 3

2

0 2

4

                    ( , ) cos  

nk

np k

R p

z np k

p

p
M

R J R

M r J r np rdrd

π

π

π α

θ α θ θ

+

−

=

× ∫ ∫
   

(19) 

From (19) and using the magnetization distribution given in 

Fig. 3, we obtain 

 

( )
( )

2

1

2 2
0 3 1 3

8
sin

2

R

r
nk np k

np k R

B
M n rJ r dr

n R J R

πα α
πµ α+

 =  
  ∫     (20) 

 

where Br is the remanent flux density of the magnets and α the 

pole-arc to pole-pitch ratio of the PMs. Integral in (20) can be 

determinate numerically or by its analytical expression which 

is given in the appendix. 

From (15), the three components of the magnetic field in 

each region (i = 1, 2, 3) are given by 

 

1
H    ;  H    ;  Hi i i

ri i zi
r r z

θ θ
∂Φ ∂Φ ∂Φ= − = − = −
∂ ∂ ∂

 (21) 

 

C. Magnetic Field in the Conducting Regions  

For the conducting regions (i = 4, 5), the quasi-static 

Maxwell’s equations are used to model the problem 

 

0i i i

i
i

          

             
t

× = ⋅ =
∂× = −
∂

∇ ∇

∇

H J B

B
E

  (22) 

 

where Ei is the electric field and Ji the induced current density. 

As the stationary frame is fixed to the conducting regions, 

Ohm’s law is expressed as  
 

 

i i iσ=J E    (23) 

 

where σi is the electrical conductivity of region i. 

At this point an important question arises: what is the best 

formulation to solve the problem in the conducting regions as 

simply as possible? In [14], we have chosen a H-formulation 

to solve a similarly problem but in Cartesian coordinate. 

Nevertheless, we had to solve two partial differential 

equations because the magnetic field strength includes three 

components and 0i⋅ =∇ H . We have also shown in [14] that 

the induced currents in the conducting regions are laminar and 

flow in the r-θ planes, therefore the current density presents 

only two components: 

 

( , , , ) ( , , , )i ri iJ r z t J r z tθθ θ= +rJ e eθ  (24) 

 

 
 

Fig. 3.  Magnetization distribution along the r- and θ-direction. 

 

Knowing that 0i⋅ =∇ J , it is therefore easier to address this 

problem by choosing a J-formulation. In this way, we have to 

solve only one partial differential equation that corresponds to 

one component of the current density. 

Manipulating (22) and (23) gives the following diffusion 

equation for the induced current density 

 

2 i
i i i

t
σ µ ∂=

∂
∇ J

J   (25) 

 

where µi is the permeability of region i. Written in cylindrical 

coordinates and considering (24), (25) can be split into two 

coupled partial differential equations 

 
2 2 2

2 2 2 2 2 2

1 1 2ri ri ri ri i ri ri
i i

J J J J J J J

r r tr r z r r

θ σ µ
θθ

∂ ∂ ∂ ∂ ∂ ∂+ + + − − =
∂ ∂ ∂∂ ∂ ∂

 

 (26) 

2 2 2

2 2 2 2 2 2

1 1 2i i i i ri i i
i i

J J J J J J J

r r r tr r z r r

θ θ θ θ θ θσ µ
θ

∂ ∂ ∂ ∂ ∂ ∂+ + + + − =
∂ ∂ ∂∂ ∂ ∂

 

 (27) 

As 0i⋅ =∇ J , we obtain the following relation between Jri 

and Jθi 

( )
0

ri i
rJ J

r

θ
θ

∂ ∂+ =
∂ ∂

  (28) 

 

Using (26) and (28), and defining a new function Xri = rJri, 

we obtain a simpler and decoupled partial differential equation 

which is directly linked to the r-component of the induced 

current density 
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2 2 2

2 2 2 2

1 1ri ri ri ri ri
i i

X X X X X

r r tr r z
σ µ

θ
∂ ∂ ∂ ∂ ∂+ + + =

∂ ∂∂ ∂ ∂
 (29) 

 

 The boundary conditions given by (4)-(6) can be re-written 

in terms of the new function Xri as follows 

 

3

( , / 2 , , ) ( , / 2 , , )

( , , , ) 0

( , , , ) is finite at   0

ri ri

ri

ri

X r p z t X r p z t

X R z t

X r z t r

π π
θ

θ

− = −
=

=
 (30) 

 

Finally, we have the same boundary value problem to solve 

as the one given by (13) and (14), apart from the second 

member in (29), but this is not a problem because the solution 

is time-harmonic as indicated by (3). Using the method of 

separation of variables, general solution of (29) which satisfies 

the boundary conditions (30) is given by   

 

( ) ( )

1 1

( , , , ) ( )
jnp t

riri np k

n k

X r z t X z J r e
θ Ωθ α

∞ ∞
−

= =

  =  
  
∑∑ℜ  (31) 

with  

( ) k kz z
ri i iX z A e B e

γ γ−= +   (32) 

 

and 

2
=k k i ijnpγ α σ µ Ω+    (33) 

 

where αk is obtained from (17). The radial and circumferential 

components of the induced currents are respectively obtained 

from  Jri = Xri/r and (28), and are given by 

 

( ) ( )

1 1

1
( , , , ) ( )

jnp t
riri np k

n k

J r z t X z J r e
r

θ Ωθ α
∞ ∞

−

= =

  =  
  
∑∑ℜ      (34) 

( ) ( )'

1 1

1
( , , , ) ( )

jnp t
rii np k

n k

J r z t j X z J r e
np

θ Ω
θ θ α

∞ ∞
−

= =

  =  
  
∑∑ℜ (35) 

 

where '
npJ  is the derivative of npJ  given by 

 

( ) ( ) ( )'
1np k k np k np k

np
J r J r J r

r
α α α α−= −  (36) 

 

The complex coefficients iA and iB  in (32) will be 

determined in the next section by using the interface 

conditions in the z-direction. 

 

D. Unknown Coefficients Determination 

Equations (16) and (32) show that we have two unknown 

coefficients to determine for each region. Because we have 

five regions for this problem (Fig. 2), this means that we need 

ten independent linear equations. The first two equations are 

obtained by considering the boundary condition (7) and (8) 

which can be re-written in terms of magnetic scalar potential 

Φ and the function Xr. Moreover, we know that the normal 

component of the magnetic flux density and the tangential 

component of the magnetic field strength are continuous 

between two regions. These interface conditions give eight 

independent linear equations including two equations with the 

source term Mnk defined in (20) 

 

for  z = 0 
1

0
z

Φ∂ =
∂

   (37) 

 

for  z = z1 

1 2

1 2

rb nkM
z z

Φ Φ
Φ Φµ

 =

 ∂ ∂= + ∂ ∂

  (38) 

 

for  z = z2 

2 3

2 3

nkM
z z

Φ Φ
Φ Φ

 =

∂ ∂= + ∂ ∂

  (39) 

 

for  z = z3 

4
3

2 2
0

2
3

4
2 2

0

1 r

c

k
r

c

X

zn p

X
z n p

Φ
σ µ Ω

αΦ
σ µ Ω

 ∂= ∂


∂ = ∂

  (40) 

for  z = z4 

4 5

4 5

c
r r

b

r rc

b rb

X X

X X

z z

σ
σ

σ
σ µ

 =



∂ ∂ =
 ∂ ∂

  (41) 

 

for  z = z5 5 0rX =     (42) 

 

where σc, σb, and µrb are the copper conductivity, the back-

iron conductivity, and the back-iron relative permeability, 

respectively. Using the ten independent linear equations given 

above, all the unknown constants iA and iB  can be obtained. 

Developments are given in the appendix. 

E. Torque Expression 

To determine the electromagnetic torque expression, we 

apply the Maxwell stress tensor method on a circular disc of 

radius R3 placed in the air-gap region (region 3) 

 

( ) ( )
3 2

2
0 3 3

0 0

, , , , , ,

R

zT H r z t H r z t r drd

π

θµ θ θ θ= ∫ ∫  (43) 

 

where Hz3 and Hθ3 can be derived from (15) and (21). From 

(43), we can express the torque as a function of the unknown 

coefficients 3A and 3B  of regions 3  

 

( ) ( )* *2
3 3 3 3

2
3

1

1

1

30
2

k np

n

k

k

J R A B A BT R p jn
π µ αα

∞ ∞

= =
+

  =  
 

−


∑∑ℜ

 (44) 

where 
*
3A   is the complex conjugate of 3A . 
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IV. MODEL VALIDATION 

The main objective here is to show the benefit of the 3-D 

analytical model proposed in this paper compared to the one 

we have recently presented in [14]. The analytical model in 

[14] was 3-D but did not take into account the curvature 

effects. To show the effectiveness of the new analytical model, 

the results will be compared with 3-D finite-element 

simulations by using COMSOL Multiphysics® software. The 

FE simulations (A-φ formulation) are carried out on the actual 

cylindrical coupling shown in Fig. 1. An infinite box 

surrounds the studied system in order to set boundary 

conditions. As the back-iron thickness have been chosen to 

avoid magnetic saturation, we consider a constant value for 

the relative permeability of the ferromagnetic parts µrb = 1000. 

Only 1 pole of the coupler is considered in the FE analysis 

with anti-periodic boundary conditions in the circumferential 

direction. 

A. Curvature Effects 

As shown in [15] and [16], the curvature effects can be 

analyzed in an effective manner by considering a 

dimensionless number λ defines as the ratio of the radial 

excursion of the magnets ∆R = R2 - R1 around the mean radius 

Rmean = (R1 + R2)/2 to the pole pitch τ : 

 

R∆λ
τ

=      with    meanR
p

πτ =   (45) 

 

A large value for λ means that the curvature of the magnetic 

coupling is pronounced. For the analysis, we consider the 

geometrical parameters given in Table I. The mean radius of 

the magnets is fixed to Rmean = 45mm and ∆R = 40mm. In 

order to change the value of λ given in (45), the pole pitch 

value is varied by changing the pole-pairs number from p = 1 

to p = 15, which gives 0.28 < λ < 4.24. The other parameters 

are kept constant and are those given in Table I. 

Fig. 4(a) and Fig. 5(a) respectively show the geometrical 

distribution of the PMs by considering p = 4 and p = 10 which 

corresponds respectively to λ = 1.13, and λ = 2.83. For these 

geometries and for an air-gap value c = 5mm, we have 

computed the torque-slip characteristic with three different 

models: 

 

- the 3-D FE model which is considered as the reference 

model, 

-  the torque formula (39) given in [14] for which the 

curvature effects was neglected, 

- the torque expression (44) given in this paper which 

considers the curvature effects. 

 

The results given in Fig. 4(b) clearly show that the torque 

versus slip speed characteristic is well determinate with both 

3-D analytical models if the curvature coefficient λ ≃ 1.  

When the curvature coefficient increases, this is not longer 

true and we can observe in Fig. 5(b) that the error on the 

torque prediction is important by using the 3-D analytical 

model developed in Cartesian coordinates [14]. On the other 

hand, the results obtained with the 3-D analytical model 

developed in this paper (44) which considers the curvature 

effects remain very accurate. 

 

 
TABLE I 

PARAMETERS OF THE STUDIED EDDY-CURRENT COUPLING 

Symbol Quantity value 

R1 Inner radius of the magnets 25 mm 

R2 

R3 

a 

b 

c 

d 

e 

α 

Outer radius of the magnets 

Outer radius of the conducting plate 

Thickness of the back-iron (magnets side) 

Magnets thickness 

Air-gap length 

Copper thickness 

Thickness of the back-iron (copper side) 

PMs pole-arc to pole-pitch ratio 

65 mm 

90 mm 

10 mm 

10 mm 

variable 

5 mm 

8 mm 

0.9 

p Pole-pairs number variable 

Br Remanence of the permanent magnets (NdFeB) 1.25 T 

σc 

σb 

µrb 

Conductivity of the copper 

Conductivity of the back-iron 

Relative permeability of the back-iron 

57 MS/m 

7 MS/m 

1000 

 

 

 
(a) 

 

 
(b) 

 

Fig. 4.  PMs distribution (a), and Torque-slip speed characteristic (b) for p = 4 

(λ = 1.14) and c = 5mm. 
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(a) 

 

 
(b) 

 

Fig. 5. PMs distribution (a), and Torque-slip speed characteristic (b) for           

p = 10 (λ = 2.28) and c = 5mm. 

 

Fig. 6 gives the relative error on the torque prediction 

between the two 3-D analytical models (with or without the 

curvature effects). The error is defined as follows   
 

% 100
cylindrical cartesian

cylindrical

T T

T
ε

−
= ×       (46) 

 

where Tcylindrical is the torque obtained using (44) and Tcartesian is 

the torque obtained using the formula (39) in [14]. The results 

given in Fig. 6 have been computed for a slip speed of 300rpm 

and by considering three values for the air-gap length (1mm, 

3mm and 5mm). 

It can be noted that the error between the two models 

remains lower than 5% until the curvature coefficient  λ is not 

greater than about 1.2. When λ increase, the error becomes 

significant and can be greater than 50% when the curvature 

effects are very pronounced. These results show the limits of 

the ‘linearized’ model [14] to represent a cylindrical structure. 

Another important point when we compared 3-D analytical 

models with 3-D FE models is the computation time. This is 

an important issue if the model has to be used in an 

optimization procedure. 

 
 

Fig. 6. Error on the torque prediction between 3-D analytical models 

(Cylindrical and Cartesian) for three values of the air gap length at 300rpm. 

 
The torque-speed characteristics given in Fig. 5(b) have 

been computed in 0.1s when using 3-D analytical model 

whereas it takes more than 3 hours with 3-D FE model. 

Because the Bessel functions converge very rapidly, the 

number of harmonic terms needed for the analytical model 

remains very low, the first five harmonics in the r- and θ-

directions are sufficient to obtain accurate results.     
 

B. Induced Currents distribution in the copper 

Fig. 7 compares the eddy-current density distribution in the 

copper along the θ-direction at r = R2 obtained with 3-D FEM 

and with the proposed analytical formulas (34) and (35), for a 

slip speed of 1000rpm. We can observe that the two 

components of the induced current are well predicted by the 3-

D analytical model in terms of amplitudes and waveforms. 

Since the number of pole-pairs is large (p = 10) and the air-

gap length is important (c = 5mm), the harmonic components 

of the induced currents are mitigated and the current 

distribution shown in Fig. 7 is quasi-sinusoidal. 

Fig. 8 shows the eddy-current density distribution in the 

middle of the copper plate along the r-direction at θ = 0. These 

results clearly show the ability of the proposed 3-D analytical 

model to predict the induced currents distribution in the radial 

direction when the curvature effects are significant. In fact, we 

can observe in Fig. 8 that the eddy-current density distribution 

is not symmetrical around the mean radius (Rmean = 45mm), 

that would be the case if the linearized model [14] was used, 

resulting in important errors for the torque prediction as shown 

in Fig .5(b). 
 

C. Impact of the Conductor Back-Iron on the Torque Value  

The 3-D analytical model developed in this paper takes into 

account the eddy-currents induced in the back-iron (copper 

side) and their contribution to the torque (44). Indeed, the 

problem has been solved in region 5 of Fig. 2 and 

mathematical expressions for the radial and circumferential 

components of the current density in this region have been 

obtained (34), (35). 
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Fig. 7.  Eddy-current density distribution along the θ-direction for r = R2,         

z= (z3+z4)/2, p = 10, c = 5mm and 1000rpm.  

 

 
 

Fig. 8. Eddy-current density distribution along the r-direction for θ = 0,           

z= (z3+z4)/2, p = 10, c = 5mm and 1000rpm.  

 

 
 

Fig. 9. Back-iron conductivity effect on the torque-slip characteristic for       

p = 4 and c = 1mm. 

 

In order to investigate the contribution of the induced 

currents in the back iron, we compared the torque-slip 

characteristics obtained by considering the back-iron 

conductivity (σb = 7MS/m) and by ignoring it (σb = 0MS/m). 

We consider the geometrical parameters given in Table I with 

p = 4 and c = 1mm. The results are given in Fig. 9. It can be 

observed that the eddy-currents induced in the back-iron have 

a negligible influence on the torque. The difference between 

the two characteristics is never greater than 2%. This result 

has been confirmed with other geometrical values and is in 

accordance with the results given in [6] and [7]. Therefore, it 

is possible to neglect the back-iron conductivity in order to 

obtain a simpler model for the axial-field eddy-current 

magnetic coupling, as it is illustrated in the next section.  
 

D. Simplified Model and Closed-Form Expression for the 

Torque 

It has been shown in the previous section that the eddy 

currents induced in the back-iron have a negligible influence 

on the torque value and can be neglected in the model. 

Moreover, the back-iron thicknesses a and e in Fig. 1 have to 

be designed to avoid magnetic saturation. Therefore, to 

simplify the model we consider an infinite permeability for 

regions 1 and 5 of Fig. 2. The whole domain of the field 

problem is then reduced to only three regions (regions 2, 3 and 

4 of Fig. 2) with the following boundary conditions which are 

directly related to the infinite permeability assumption for 

regions 1 and 5: 

 

2 10  at    z z× = =zH e    (47) 

4 40  at    z z× = =zH e    (48) 

 

With the previous assumptions, it is now possible to obtain 

a closed-form expression for the torque. After some rather 

long calculations to determine the expressions of all unknown 

coefficients and particularly those of region 3 which appear 

directly in the torque expression (44), we obtain the following 

torque formula that depends directly on the physical and 

geometrical parameters and can be used as it is: 

 

( ) ( )2
1 3

2
2

0 3

1 1

sinh
2

N K
nk

k
kn

np k

k

M
T R p jn bJ R rαπ µ α

α= =
+

  =  
  
∑∑ℜ  

 (49) 

with  

 

( ) ( ) ( ) ( )

( )( ) ( ) ( )( ) ( )

sinh cosh cosh sinh

sinh cosh cosh sinh

k
k k k k

k

k
k k k k

k

c d c d

r

b c d b c d

γα γ α γ
α
γα γ α γ
α

+
=

+ + +
 

 

where ℜ  denotes the real part of a complex number, 

1j = − , Mnk is given by (20), αk and γk are respectively 

given by (17) and (33), Jnp+1 is the Bessel function of the first 

kind and order np+1, n is an odd integer and k is an integer. 

Using (49), the torque-slip characteristic given in Fig. 9 is 

obtained in a few tens of milliseconds whereas it needs more 

than one hour with the 3-D FE model with the same 

assumptions. 
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Fig. 10. Conductivity of copper as a function of the temperature. 

 

 
 
Fig. 11. Torque versus temperature for p = 4, c = 1mm and 300rpm. 

 

E. Effect of the Temperature on the Torque value 

In this paper, we have considered a constant value for the 

copper conductivity. However, it is well-known that due to the 

eddy-current losses, the temperature of the copper will rise, 

and even more as the slip speed is important. As the electrical 

conductivity of the copper decreases with the temperature, this 

will have a direct impact on the torque-slip speed 

characteristic. Therefore, a complete design of eddy-current 

magnetic couplings requires both magnetic and thermal 

analysis because the magnetic and thermal fields are coupled 

each other. A thermal analysis based on thermal network 

model has been recently proposed in [23] and has given 

accurate results. Fig.10 shows the variation of the copper 

conductivity as a function of the temperature. This has a direct 

impact on the torque value (49) as can be seen in Fig. 11. A 

temperature of 200°C, classically reached in braking 

operation, can cause a 31% drop on the torque value in 

comparison with the ambient temperature. 

V. CONCLUSION 

In this paper, a novel 3-D analytical model has been 

proposed for the analysis of axial-field eddy-current magnetic 

couplings. The analytical model has been obtained by solving 

the Maxwell equations in a 3-D cylindrical coordinate system. 

Compared to previous analytical models available in the 

literature, the proposed model directly takes into account the 

radial edge effects and the curvature effects without the need 

of using correction factors as it is usually done. Comparisons 

with 3-D FE simulations have shown that the proposed 

analytical model is very accurate to predict the torque-slip 

characteristic, even for the geometries where the curvature 

effects are very pronounced. On this point, we have shown the 

limits of the approximated 3-D analytical models using the 

mean radius development assumption. 

As the proposed model is very efficient in terms of 

precision and computation time, it can be effectively used in a 

design optimization procedure where the geometrical 

parameters can vary significantly. 

APPENDIX 

● From (37) to (42), we obtain a system of ten equations with 

ten unknown complex coefficients: 

 

1 1 1 1

1 1 1 1

2 2 2 2

2 2 2 2

3 3 3

1 1

1 1 2 2

1 1 2 2

2 2 3 3

2 2 3 3

3 3 4 4
2 2

0

0

1

k k k k

k k k k

k k k k

k k k k

k k k

z z z z

z z z z nk

rb k

z z z z

z z z z nk
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z z zk

c

A B

A e B e A e B e
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A e B e A e B e

A e B e A e B e
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A e B e A e B e

A e B e A e B e
n p

α α α α

α α α α

α α α α

α α α α

α α λ

µ α

α
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σ µ Ω

− −

− −

− −

− −

−
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+ = +

 
− = + + 

 

+ = +

− = − +

+ = −( )
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( )

( )

3

3 3 3 3

4 4 4 4

4 4 4 4

5 5

3 3 4 4
2 2

0

4 4 5 5

4 4 5 5

5 5 0

k

k k k k

k k k k

k k k k

k k

z

z z z zk

c

z z z zc

b

z z z zc

rb b

z z

A e B e A e B e
n p

A e B e A e B e
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A e B e

λ

α α λ λ

λ λ λ λ

λ λ λ λ

λ λ

α
σ µ Ω

σ
σ

σ
µ σ
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−
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(A.1) 

The ten unknown coefficients in (A.1) can be determined 

numerically by solving the linear system of equations (A.1) 

using mathematical software (Matlab or Maple). 

 

● The magnetization distribution (20) depends on the 

following integral issued from the orthogonal properties of the 

Bessel function 

 

( )
2

1

R

np k

R

I rJ r drα= ∫   (A.2) 

 

This integral can be computed numerically or by its analytical 

expression 
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( ) ( ) ( )
( )

1 2

2 2

1
2

2

1 2
2

1
                          F 1 ; 1 ,2 ;

2 2 4

nn
n

n

xJ ax dx x ax
n

n

n n
n a x

− +

 Γ + 
 =

 Γ + Γ + 
 

  × + + + −    

∫
 (A.3) 

 

where Γ is the Gamma function and F the Hypergeometric 

function [25]. 
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