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Abstract

Perfusion imaging of the brain via Dynamic Susceptibility Contrast MRI (DSC-MRI)
allows tissue perfusion characterization by recovering the tissue impulse response
function and scalar parameters such as the cerebral blood flow (CBF ), blood volume
(CBV ) and mean transit time (MTT ). However, the presence of bolus dispersion
causes the data to reflect macrovascular properties, in addition to tissue perfusion. In
this case, when performing deconvolution of the measured arterial and tissue concen-
tration time-curves it is only possible to recover the effective, i.e. dispersed, response
function and parameters. We introduce Dispersion-Compliant Bases (DCB) to rep-
resent the response function in the presence and absence of dispersion. We perform
in silico and in vivo experiments, and show that DCB deconvolution outperforms
oSVD and the state-of-the-art CPI+VTF techniques in the estimation of effective
perfusion parameters, regardless of the presence and amount of dispersion. We also
show that DCB deconvolution can be used as a pre-processing step to improve the
estimation of dispersion-free parameters computed with CPI+VTF, which employs
a model of the vascular transport function to characterize dispersion. Indeed, in
silico results show a reduction of relative errors up to 50% for dispersion-free CBF
and MTT . Moreover, the DCB method recovers effective response functions that
comply with healthy and pathological scenarios, and offers the advantage of making
no assumptions about the presence, amount, and nature of dispersion.
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1. Introduction

Perfusion imaging via Dynamic Susceptibility Contrast MRI (DSC-MRI) pro-
vides useful information in neurological diagnosis, characterization, and grading of
brain tumors (such as gliomas), and ischemic strokes (Shiroishi et al., 2015). This
information is supplied to physicians in the form of hemodynamic/perfusion param-
eters brain maps, such as the cerebral blood flow (CBF ), blood volume (CBV )
and mean transit time (MTT ). These maps are usually calculated, for each voxel,
from the measured arterial and tissue concentration time-curves, Ca(t) and Cts(t),
which result from the intravenous injection of a tracer. The voxel-wise computa-
tion of CBF and MTT is closely related to the estimation of the time-dependent
residual amount of tracer - the residue function2 r(t) - via deconvolution. In fact,
the perfusion problem can be modeled as a linear system where Ca(t) is the input,
Cts(t) the output, and R(t) = CBF · r(t) is the unknown convolution kernel, i.e. the
tissue impulse response function, which encodes capillary hemodynamic informa-
tion describing the perfusion (Østergaard et al., 1999). However, in perfusion data
processing the true arterial concentration is also unknown and can differ from the
measured Ca(t). Indeed, Ca(t) is typically measured once in an arterial blood area -
such as in the carotid or middle cerebral artery (Rosen et al., 1991; Calamante et al.,
1999) - but the bolus of tracer might undergo dispersion along the path to a voxel
of interest, where the tissue concentration Cts(t) is measured. Dispersion is frequent
in perfusion data especially of patients with cerebral ischemia or in the presence of
a steno-occlusive disease in the artery (Calamante et al., 2003b), but it can be also
present in healthy subjects (Østergaard et al., 1998; Calamante et al., 2000). When
dispersion is present, the deconvolution of the measured Ca(t) and Cts(t) leads to
the estimation of an effective response function R∗(t), whose shape reflects proper-
ties of both vasculature and tissue perfusion (Calamante et al., 2000, 2003b; Willats
et al., 2006). If dispersion is not modeled, then the estimates of hemodynamic pa-
rameters are affected. In particular the presence of dispersion can lead to MTT
overestimation and CBF underestimation (Calamante et al., 2000). An additional
vasculature-related issue is the presence of a time-delay τ between the measured
concentrations Ca(t) and Cts(t), which further complicates the characterization of
response function and dispersion.

Several techniques have been proposed to perform perfusion deconvolution. The
solution for the response function can be sought by adopting the mono/bi-exponential

2In literature it is usually indicated with capital “R”, however we reserve this symbol for the
response function.
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Figure 1: The Dispersion-Compliant Bases (DCB) to represent the unknown convolution kernel
between the arterial and tissue concentration time-curves in the presence or absence of dispersion,
and their usage to estimate effective perfusion parameters, performing dispersion detection, and
pre-processing data to obtain dispersion-free parameters.

models from pharmacokinetics (Jacquez, 1972; Bassingthwaighte and Goresky, 1984;
Lassen et al., 1988) or the vascular model (Mouridsen et al., 2006). Other approaches
adopt the truncated singular value decomposition tSVD (Østergaard et al., 1996)
and its variants (Wu et al., 2003; Smith et al., 2004; Bjørnerud and Emblem, 2010),
Tikhonov regularization (Calamante et al., 2003a), non-linear stochastic regulariza-
tion (Zanderigo et al., 2009), maximum entropy principle (Charter and Gull, 1987;
Drabycz et al., 2005), maximum likelihood estimation (Vonken et al., 1999a), fully
bayesian methods (Boutelier et al., 2012), wavelets (Wirestam and St̊ahlberg, 2005;
Connelly et al., 2006), exponential approximation (Keeling et al., 2009), ARMA mod-
eling (Batchelor et al., 2010), and control point interpolation (Mehndiratta et al.,
2013). Some of these approaches allow for time-delay estimation/insensitivity and/or
for non-negativity of the estimated response function but do not account, at least
explicitly, for dispersion.

Dispersion has been widely studied in literature (Calamante et al., 2000, 2002,
2003b, 2006; Calamante, 2005; Ko et al., 2007; Willats et al., 2012; Chappell et al.,
2013). It can be characterized by a Vascular Transport Function (VTF): this is the
probability density function V TF (t) of the vascular transit times t. Some methods
for detecting or minimizing dispersion effects (Willats et al., 2006, 2008), and cor-
recting or characterizing them (Zanderigo et al., 2009; Mouannes-Srour et al., 2012;
Mehndiratta et al., 2014a) have been proposed. However these methods employ
heuristics or assume models for the VTF which can condition the estimation of the
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effective response function R∗(t) via deconvolution, biasing results. Moreover, disper-
sion might be completely absent in a specific voxel-region; therefore, deconvolution
should be performed with the least amount of assumptions about it.

In this work, we propose a framework to perform perfusion deconvolution to es-
timate the effective response function and hemodynamic parameters with and with-
out dispersion. At the same time, we estimate the time-delay existing between the
measured arterial and tissue concentrations. A graphical representation of our ap-
proach is presented in fig. 1. The method we propose is based on the non-parametric
representation of the response function with newly introduced Dispersion-Compliant
Bases (DCB). This representation allows us to obtain the effective convolution kernel
between the measured Ca(t) and Cts(t) without assumptions about the presence of
dispersion or the shape of the VTF. After this, we characterize the eventual presence
and amount of dispersion based on a shape parameter computed on the obtained re-
sponse function: the dispersion time τδ. We also show that our approach can be used
to improve results of techniques that quantify dispersion by employing a model for
the VTF, such as the CPI+VTF technique (Mehndiratta et al., 2014a) which uses a
gamma dispersion kernel for it. Particularly, we propose to fit the VTF model-based
technique directly on the effective response function obtained with our DCB-based
deconvolution. We test the performance of our approach at different dispersion lev-
els and with different dispersion kernels. We validate our approach through in silico
experiments comparing with oSVD (Wu et al., 2003), and the recently proposed CPI
(Mehndiratta et al., 2013) and CPI+VTF (Mehndiratta et al., 2014a) methods. We
also provide qualitative and quantitative results on stroke MRI data.

Our paper is structured as follows. In section 2, we review the theory of per-
fusion processing and provide a detailed explanation of the proposed deconvolution
approach by means of Dispersion-Compliant Bases, and of the comparing techniques.
Then, we discuss the implementation of the methods, the synthetic data generation
and the MRI dataset in section 3. In sections 4 and 5, we present the performed
experiments and related results, which we discuss in section 6 to finally provide our
conclusion in section 7.

2. Theory

In the following, we recapitulate the theoretical background of perfusion (sec-
tion 2.1), and discuss the change in the tissue impulse response function in the
presence of dispersion (section 2.2). We then show the influence of dispersion on the
perfusion parameters, and propose to characterize its eventual presence and amount
with the dispersion time (section 2.3). Afterwords, we introduce our Dispersion-
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Compliant Bases (DCB) to represent the effective response function in the presence
or absence of dispersion (section 2.4).

2.1. Perfusion Background

The characterization in vivo of perfusion by means of DSC-MRI is performed by
injecting a bolus of tracer, i.e. a paramagnetic agent (PA), in the subject’s vascular
system. This characterization is based on the tracer kinetics (Zierler, 1962, 1965;
Axel, 1980) under the assumption that the tracer is intravascular and the blood
brain barrier is intact. The passage of the PA in correspondence of small blood
vessels or capillaries leads to phase dishomogenization of spins due to susceptibility
effects (Villringer et al., 1988; Rosen et al., 1990; Weisskoff et al., 1994; Kiselev
and Posse, 1999). This leads to the transverse relaxation time shortening – T ∗2 in
case of Gradient-Echo sequence and T2 with Spin-Echo (Speck et al., 2000; Kiselev,
2005) – causing the signal intensity to decrease. As the tracer clears out, the signal
intensity increases again. The measured time-dependent signal S(t) is related to the
concentration time-curve C(t) via

S(t) = S0 · e−κ·C(t)·TE (1)

where S0 is the baseline signal before tracer arrival, TE is the echo-time, and κ is
the transverse relaxivity of the contrast agent (Rosen et al., 1990).

According to the indicator-dilution theory (Meier and Zierler, 1954), the mea-
sured concentration in a tissue voxel, Cts(t), is expressed as the convolution between
the arterial input concentration to the voxel, Ca(t), and the unknown tissue impulse
response function R(t) = CBF · r(t)

Cts(t) =

∫ t

0

Ca(θ)R(t− θ)dθ. (2)

The blood volume CBV is expressed as the relative amount of tracer in the
voxel with respect to the arterial reference and is calculated as the ratio between the
integrals of the tissue and arterial concentrations

CBV =

∫ t
0
Cts(t)dt∫ t

0
Ca(t)dt

(3)

where, as for eq. (2), we omit the correction constant for the difference in hematocrit
between large and small blood vessels of the brain (Rempp et al., 1994; Østergaard
et al., 1996; Knutsson et al., 2010) and the tissue density. The mean transit time
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(MTT ) describes the average time it takes for a particle of tracer entering the vascu-
lar system, underlying a voxel, to leave it definitely. According to the central volume
theorem (Stewart, 1894; Hamilton et al., 1932) it can be expressed as

MTT =
CBV

CBF
(4)

thus, it can be calculated knowing the other parameters. In this work, in order
to compare the performance of the tested techniques, we adopt the central volume
theorem to compute the cerebral blood volume (Vonken et al., 1999b; Bjørnerud and
Emblem, 2010)

CBV =

∫
R(t)dt. (5)

The goal in perfusion deconvolution is to estimate the residue function r(t) and the
perfusion parameters CBF,CBV,MTT . These can be calculated from the knowl-
edge of R(t) and the use of eqs. (4) and (5).

In fact, in the absence of dispersion, the CBF can be estimated as the maximum
value of R(t). Indeed, the residue function r(t) specifies the fraction of tracer re-
maining in the tissue underlying the voxel during time, following a bolus injection.
As a consequence, the function has its theoretical maximum for t = 0, i.e. r(0) = 1,
which implies R(0) = CBF . The residue function then decreases during time with
the clearance of the tracer. A recent work (Mehndiratta et al., 2014b) shows that
the shape of r(t) is best described in vivo by a bi-exponential model, a finding in
agreement with previous literature (Park and Payne, 2013). This model accounts for
fast and slow flowing capillary components

rbi−exp(t) = f · e−τF t + (1− f) · e−τSt (6)

where τF and τS are the fast and slow time-rates respectively, and f specifies the
relative weight of the fast component.

The estimation of the perfusion parameters depends on the quality of the re-
covered R(t) from the measured Ca(t) and Cts(t). However, this generally requires
solving a deconvolution problem, originating from eq. (2), which is ill-posed. In addi-
tion, the measured Cts(t) can be physiologically delayed with respect to the selected
arterial input Ca(t), causing a time-delay issue. Finally, the presence of dispersion
can severely affect the shape of the response function.

2.2. Influence of dispersion: the effective response function

The bolus of tracer may undergo dispersion along the way to the voxel of interest,
where the tissue concentration Cts(t) is measured. This effect is mathematically de-
scribed as a convolution between the measured arterial input Ca(t) and the Vascular
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Table 1: Dispersion kernels and related shape parameters for the case of low, medium and high
dispersion as given by Mehndiratta et al. (2014a).

low medium high
EDK β = 1 β = 1/2 β = 1/4
LNDK µ = −1, σ = 1 µ = −0.15, σ = 0.75 µ = 0.59, σ = 0.78
GDK p = 1, s = 2 p = 3, s = 1 p = 5, s = 0.5

Transport Function (Calamante et al., 2000). Therefore the effective arterial input
C∗a(t) is

C∗a(t) = Ca ⊗ V TF (t) (7)

and the resulting tissue concentration

Cts(t) = CBF · [Ca ⊗ V TF (t)]⊗ r(t)
= CBF · Ca ⊗ [V TF ⊗ r(t)] (t)

= Ca ⊗R∗(t)
(8)

where R∗(t) = R⊗ V TF (t) is the effective dispersed tissue response function, which
corresponds to the original only in the absence of dispersion, i.e. R∗(t) = R(t) ⇐⇒
V TF (t) = δ(t). In the presence of dispersion, V TF (t) is the probability density
function of the occurrence of the vascular transit time t. The shape of VTF is an
expression of the vascular dynamic and is unknown. In the literature there are dif-
ferent models for it, called dispersion kernels (DK). These are the exponential, EDK
(Calamante et al., 2000), the lognormal, LNDK (Willats et al., 2007; Calamante,
2013), and the gamma, GDK (Chappell et al., 2013),

V TF (t) =


EDK(t, β) = βe−βt

LNDK(t, µ, σ) = 1
tσ
√

2π
e−

(ln(t)−µ)2

2σ2

GDK(t, p, s) = s1+sp

Γ(1+sp)
tspe−st

(9)

where β, µ, σ, p, s are shape parameters. For each DK a vascular mean transit time
MTTv, from the site of the measurement of the arterial concentration Ca(t) to the
voxel of interest, can be computed (Calamante et al., 2000). In the case of EDK this
simply corresponds to MTTv = 1/β: a low value of β corresponds to a pronounced
dispersion effect. Similarly, levels of dispersion can be encoded for the other DKs.
Table 1 reports the shape parameters in case of low, medium and high dispersion
as given by Mehndiratta et al. (2014a). In the presence of dispersion, data support
the effective R∗(t) instead of R(t), therefore the estimation of CBF and the other
perfusion parameters is also affected.
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2.3. Perfusion parameters in the presence of dispersion, and dispersion time

In this section, we illustrate the effect of dispersion on the measured perfusion
parameters, and propose to quantify it with the dispersion time.

We start by deriving the effective response function R∗(t) for the bi-exponential
model in eq. (6) according to eq. (8) when V TF (t) = EDK(t, β) in eq. (9)

R∗(t) =
−β

(β − τF )(β − τS)

· [(f(τF − τS) + β − τF )e−βt

+ f(τS − β)e−τF t

+ (f(β − τF )− β + τF )e−τSt] · CBF

(10)

which is valid for β > 0 and depends on the original mean transit time MTT =
f/τF + (1− f)/τS.

The influence of dispersion on the effective response function is shown in fig. 2,
where curves are generated with eq. (6) - multiplied by CBF - in the absence of
dispersion (purely decaying function), and with eq. (10) in case of dispersion (non-
monotonic curves). The top image shows that dispersion effects, such as the decrease
of the peak and the broadening of the shape, increase with the vascular mean transit
time MTTv, i.e. 1/β, in the direction of the arrow. The effective response function
tends to a purely decaying curve for MTTv → 0 (β →∞). The bottom image shows
that, for a specific value of MTTv > 0, the dispersion effects are enhanced when
MTT is high. The figure also illustrates CBF , i.e. the peak of the dispersion-free
curve in the top image, the effective blood flow CBF ∗, i.e. the peak of a dispersed
curve, the time-delay τ between Ca(t) and Cts(t), and the time-of-maximum tmax.
In these circumstances, the effective mean transit time takes into account CBF ∗;
eq. (4) then becomes MTT ∗ = CBV/CBF ∗.

We note that the time between the beginning of the effective response function,
at time τ , and its peak, at time tmax, is sensitive to the aforementioned dispersion
effects, i.e. the joint contributions of dispersion and mean transit time. Here we refer
to that as the dispersion time τδ

τδ = tmax − τ (11)

defining the time-to-peak of R∗(t). A positive value of dispersion time (τδ > 0)
reveals the presence of dispersion whereas a value equal to zero (τδ = 0) implies the
absence of dispersion. We propose to detect and characterize dispersion effects by
calculating the dispersion time τδ directly on the effective response function. Since
this parameter depends only on the recovered R∗(t), its estimation is general and
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Figure 2: Influence of dispersion on the calculated effective response function, which includes CBF .
Top: the maximum decreases (CBF ∗), and the time of the maximum (tmax) and dispersion time
(τδ) increase with the vascular mean transit time MTTv. Bottom: tmax, τδ increase with MTT
(curves are normalized). The time-delay τ between Cts(t) and Ca(t) determines the start of the
curve.

does not assume a specific model for the underlying VTF. In the next section, we
propose to perform deconvolution with bases that approximate the response function,
even in the presence of dispersion, without making assumptions about the presence,
amount or nature of dispersion itself.

2.4. Dispersion-Compliant Bases

In this section, we introduce the Dispersion-Compliant Bases (DCB) to represent
the effective response function with or without dispersion. We propose to approx-
imate R∗(t) with a sum of N bases where each basis is constituted as a sum of
an exponential term and an exponential derivative term, with respect to the time
rate, respectively weighted by two different constants an and bn. In order to let the
bases render the most general solution we choose two different time rates αn and βn,
respectively for the exponential and derivative terms. An illustration of the bases
can be found in fig. 1. The sum of these bases can then represent any shape in the
range between a multi-exponential decay and its derivative terms. The proposed
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approximation has the following expression

R∗DCB(t) = Θ(t)
N∑
n=1

(ane
−αnt + bnte

−βnt) (12)

where Θ(t) is the Heaviside step function with no half-maximum convention, i.e.
Θ(t) = 1 ∀t ≥ 0, and where the parameters an, bn, αn and βn are unknowns to
be estimated. We note that the time-rates αn, βn enter non-linearly in the bases
formulation. The time-delay τ between Ca(t) and Cts(t) can be explicitly considered
in the response function approximation because the convolution is commutative

Ca(t− τ)⊗R∗(t) = Ca(t)⊗R∗(t− τ) (13)

therefore, when taking into account the time-delay eq. (12) becomes

R∗DCB(t) = Θ(t− τ)
N∑
n=1

[ane
−αn(t−τ) + bn(t− τ)e−βn(t−τ)] (14)

where we note that τ is an additional non-linear parameter to be estimated.

2.4.1. Deconvolution with Dispersion-Compliant Bases

The convolution problem in eq. (2) can be discretized by assuming that the tissue
Cts(t) and the arterial Ca(t) concentrations are measured on an equally spaced time
grid t1, t2, . . . , tM of size M , with ∆t = ti+1 − ti

Cts(tj) = ∆t

j∑
i=0

Ca(ti)R
∗(tj − ti) (15)

where we use R∗(t) to underline the eventual presence of dispersion effects. The
convolution in eq. (15) can be formulated in matrix form as cts = Ar, where A is the
M×M convolution matrix containing the samples of the arterial input concentration,
cts contains the M samples of the tissue concentration and r contains the M unknown
samples of the effective response function.

The unknown M×1 vector r is then computed via deconvolution. If a representa-
tion for the response function is defined, then the deconvolution problem aims to find
the related set of unknown parameters. The representation in eq. (12) has linearly
entering vector of coefficients pL = [a1, b1, a2, . . . , aN , bN ] and non-linearly entering
vector of time-rates pNL = [α1, β1, α2, . . . , αN , βN ], both of size 2N × 1 with total
number of unknowns 4N ≤ M . Therefore the response function can be represented
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as R∗(t) = g(t,pL,pNL). The convolution problem of eq. (15) can be reformulated
in matrix form as

cts = AG(pNL)pL (16)

where G(pNL) is the Dispersion-Compliant design matrix depending on pNL. Con-
sidering the maximum basis order N , the DCB design matrix and the corresponding
vector of linear coefficients pL are

G(pNL) =


e−α1t1 t1e

−β1t1 e−α2t1 · · · t1e
−βN t1

e−α1t2 t2e
−β1t2 e−α2t2 · · · t2e

−βN t2

...
...

... · · · ...
e−α1tM tMe

−β1tM e−α2tM · · · tMe
−βN tM


pL = (a1, b1, a2, . . . , bN)T

(17)

where the matrix has dimension M × 2N , and the vector 2N × 1.
The deconvolution problem incorporating eq. (12) can be solved as

p̂L, p̂NL = argmin
pL,pNL

||cts −AG(pNL)pL||2 (18)

using a gradient-descent method (see section 3.2 for more details). The deconvolu-
tion problem incorporating eq. (14) includes the time-delay as additional non-linear
parameter to be estimated. The time-delay τ is taken into account by consider-
ing the circular formulation of the convolution as for the case of cSVD (Wu et al.,
2003). The measured arterial and tissue concentration time-curves of length M are
extended by zero-padding up to a length L ≥ 2M to avoid aliasing. The circular
L× L convolution matrix Ac has then entries

Aci,j =

{
∆t · Ca(ti−j+1) for j ≤ i

∆t · Ca(tL+i−j+1) for j > i
. (19)

We note that other formulations of the circular convolution matrix can be adopted.
In general, higher order quadratures (trapezoidal or Simpson’s integration rules) may
provide more accurate approximations. We reformulate the convolution problem as
cts = AcGτ (pNL)pL, where Gτ (pNL) is the L × 2N design matrix depending on τ
and pNL extended to the circular time sampling grid. We perform the estimation of
τ via grid search over a range [τmin, τmax] seconds (chosen by the user), with a time
step τs ≤ ∆t. The estimated vectors of parameters p̂L, p̂NL can be again obtained
via gradient-descent methods when the estimated delay τ̂ is that minimizing ||cts −
AcGτ (p̂NL)p̂L||2 among all τ ∈ [τmin, τmax]. The use of functional bases like DCB
offers the advantage of computing the analytic Jacobian matrix that can be supplied
to the non-linear routine speeding up the estimation of the parameters. More details
about the implementation of DCB deconvolution are provided in section 3.2.
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3. Methods and Materials

In this section, we present the techniques used for comparison with DCB (sec-
tion 3.1) and the details about the implementation (section 3.2). We then explain
the synthetic data generation (section 3.3) and provide details on the MRI dataset
(section 3.4).

3.1. Comparing techniques

We compare our method with two techniques that are able to recover the effective
response function in the presence of dispersion. These are the widely used block-
circulant singular value decomposition, (Wu et al., 2003) and the recent state-of-the-
art CPI+VTF method (Mehndiratta et al., 2014a).

The technique based on singular value decomposition uses the discretized ver-
sion of the convolution in eq. (2) and calculate the pseudoinverse of the convolution
matrix via SVD. This normally produces oscillations in the solution, due to noise,
which are reduced using a threshold on the singular values (Østergaard et al., 1996).
Among the several SVD versions proposed in literature, we adopt oSVD which iter-
atively seeks a solution that renders an oscillations index below a specified threshold
Wu et al. (2003). The oSVD approach offers the advantage of being insensitive to
time-delay and recovers the effective response function in the presence of dispersion
(Mehndiratta et al., 2014a).

The CPI+VTF deconvolution (Mehndiratta et al., 2014a) is a method based on
control point interpolation that overcomes the limitation of its ancestor CPI (Mehndi-
ratta et al., 2013) by allowing the estimation of the effective response function in
case of dispersion. The CPI technique uses consecutive control points opportunely
constrained to represent the non-dispersed response function. Its CPI+VTF evo-
lution uses this representation and convolves it with the gamma dispersion kernel
(GDK) in eq. (9), which is the model selected for the VTF, allowing the estimation
of the dispersion-free CBF and MTT . This method revealed to be more effective
than other approaches in the presence of dispersion (Mehndiratta et al., 2014a). Par-
ticularly the effectiveness of CPI+VTF was proved in synthetic experiments where
the ground-truth dispersion kernel was the GDK, EDK or LNDK. On the other
hand, CPI performs better on dispersion-free data than CPI+VTF (Mehndiratta
et al., 2014a). For this reason, we adopt CPI instead of CPI+VTF when performing
synthetic experiments in the absence of dispersion (see section 4.1).

3.2. Implementation

The oSVD and CPI+VTF techniques were set up following indications as given
respectively in Wu et al. (2003) and Mehndiratta et al. (2014a).
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For oSVD, we point out that in this work, as indicated in Wu et al. (2003), the
oscillations index threshold was found as the one minimizing the estimation error
of CBF ∗ on the entire generated synthetic dataset, which comprises all the tested
CBF , MTT , delays, dispersion kernels and levels. For this reason, in the following
in silico experiments oSVD will often show the best performance in CBF ∗ estimates.

The CPI and CPI+VTF techniques rely on a previous mono-exponential non-
linear deconvolution to identify the initial guess for the subsequent non-linear routine
(Mehndiratta et al., 2013, 2014a). In this work, we used CBF and MTT estimates
found with oSVD as initial guess for the mono-exponential deconvolution.

For DCB, the maximum basis order was chosen after performing some synthetic
experiments to determine N such that it renders a good compromise between ex-
plaining the variety in the data, i.e. the different dispersion kernels (exponential,
gamma, and lognormal), and robustness to noise. The idea is to find the minimum
order that allows us to minimize the estimation error of the peak of the effective
residue function, i.e. CBF ∗, in the presence of noise. To do so, we synthetically gen-
erated effective response functions R∗(t) obtained by convolving the bi-exponential
r(t) of eq. (6) with each of the various dispersion kernels: gamma (GDK), expo-
nential (EDK), and lognormal (LNDK). For the bi-exponential r(t), we chose the
median normal tissue parameters given by Mehndiratta et al. (2014b): f = 0.97,
τF = 0.68 and τS = 0.05. For the dispersion kernel parameters we adopted the val-
ues corresponding to low, medium, and high dispersion (table 1). Secondly, for each
generated R∗(t) – resulting from the combination of dispersion kernel and intensity –
we performed 100 DCB fittings with each order N ∈ {2, 3, 4, 5, 6, 7, 8} corresponding
to as many noisy realizations in the case of high noise regime, with SNR = 10. The
order N = 5 was found to be the minimum order reducing the CBF ∗ estimation error
below threshold. The initial guess for DCB parameters was based on oSVD results to
approximate a mono-exponential decay, particularly pL = [CBFoSV D, 0, . . . , 0] and
αn, βn = 1/MTToSV D ∀n ∈ [1, N ]. To obtain the dispersion-free perfusion parameters
CBF and MTT from the DCB solution, a CPI+VTF model fitting was performed
on the effective dispersed response function. This model has been preferred to others
to allow a homologous comparison between techniques.

The estimation of the parameters for CPI+VTF and DCB deconvolutions was
solved considering the minimization of the l2 reconstruction norm with respect to the
tissue concentration Cts(t). The techniques were implemented using in-house soft-
ware written in MATLAB3, and the non-linear optimization was performed using the
trust-region-reflective algorithm within the lsqnonlin function, which improves per-

3MATLAB Release 2015a, The MathWorks, Inc., Natick, Massachusetts, United States.
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Figure 3: The relationship between the arterial input Ca(t) and the tissue concentration Cts(t).
Dashed lines indicate the non-dispersed case, i.e. the convolution kernel (response function) is
only represented by the product CBF · r(t). Blue, red and green colors indicate the effect of the
exponential (EDK), gamma (GDK) and lognormal (LNDK) dispersion kernels respectively, which
are defined according to eq. (9). The presence of the time-delay τ is indicated with an arrow.

formance over Levenberg-Marquardt in case the initial guess is far from the solution.

3.3. In silico data

In this section, we describe the simulation of the MR arterial and tissue signals
and concentrations used for the experiments in silico. The signals are obtained from
the simulated concentration curves when CBF ,CBV , MTT , time-delay τ , disper-
sion kernel (GDK,EDK,LNDK), and dispersion level (none, low, medium, high as
specified in table 1) are set. An illustration of the relationship between the generated
arterial and tissue concentrations is shown in fig. 3.

The arterial concentration is calculated as the gamma-variate function (Starmer
and Clark, 1970)

Ca(t) =

{
0 for t ≤ t0

γ0(t− t0)ν · e−(t−t0)/ξ for t > t0
(20)

with corresponding parameters – reported in table 2 – set according to the findings
in Meijs et al. (2015). The tissue concentration Cts(t) is obtained by convolution
between the arterial concentration Ca(t) with the effective response function R∗(t),
according to eq. (15). This corresponds to the bi-exponential model (multiplied by
CBF ) in eq. (6), or to its convolution with the selected dispersion kernel at the
selected dispersion level. The parameters f, τF , τS of the residue function in eq. (6)
were set according to the optimal median values given by Mehndiratta et al. (2014b).
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The time-rates τF , τS were varied together in percentage to render the desired value
of MTT = f/τF + (1− f) /τS. The concentration time-curves are then converted
into the corresponding signal intensities via eq. (1). The transverse relaxivity κ
is fixed according to Østergaard et al. (1996). For the arterial and tissue signals,
the pre-injection baseline signal S0 and the echo-time TE are chosen according to
Wirestam and St̊ahlberg (2005). Signals are obtained to simulate a repetition time
TR = 1s and corrupted by Gaussian noise with zero mean and standard deviation
σ = S0/SNR before being reconverted into concentration time-curves. Table 2
reports the values of the parameters used for the experiments. Presented results are
obtained for SNR = 50 (Boutelier et al., 2012; Mehndiratta et al., 2014a), which
corresponds to an effective baseline SNR on the tissue signal around 16.7.

Table 2: Parameters used for in silico experiments.

t0 γ0 ν ξ f (κ · TE)a Sa0 (κ · TE)ts Sts0 TR
10s 1 3.66 1.8 0.97 0.1123 600 0.4751 200 1s

3.4. In vivo data

The MR perfusion data was acquired from a 65-years-old female with left M1
distal occlusion three hours after onset. A total of 10ml of Gadolinium was adminis-
trated with rate 3ml/s, with 20ml of saline chase at the same speed. A 256×256×15
volume with 60 time samples was acquired with a 1.5T Siemens device using a Spin-
Echo sequence with TE = 52ms and TR = 1.5 s. The ratio between arterial and
tissue transverse relaxivities is κarterial/κtissue = 0.04 (Boutelier et al., 2012; Rohrer
et al., 2005).

4. In Silico Experiments and Results

In this section, we present the ensemble of experiments performed to validate
our method based on DCB deconvolution and the related results. We first present a
comparison in the absence of dispersion between DCB, oSVD, and the state-of-the-
art CPI (section 4.1). Secondly, we study the influence of dispersion on the results
obtained with non-parametric methods, particularly showing the drawbacks of oSVD
in such a case (section 4.2). We then perform an extensive comparison of DCB with
oSVD and CPI+VTF deconvolutions including all the dispersion kernels and levels
(section 4.3). Finally, as an application of DCB deconvolution, we use it as a pre-
processing step to improve the dispersion-free estimates of CBF and MTT obtained
with CPI+VTF model fitting (section 4.4).
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Figure 4: Dispersion-free comparison of CBF (first row, a,b,e,f ) and MTT (second row, c,d,g,h)
estimates, obtained with oSVD (purple), CPI (yellow) and DCB (blue). Data-point correspond to
the average over 1000 repetitions, and bars indicate above and below average standard deviations.
In each column, one of the ground-truth parameters (MTT or CBF ) is varied according to the
graphs’ x-axis, while the other (CBF or MTT ) is kept constant to the value indicated in the
bottom under the tag “GT”.On the left (a,b,c,d), the GT values correspond to a low cerebral blood
flow (CBF = 10 ml/100g/min) and high mean transit time (MTT ≈ 21s) regime. A pathological
scenario can be identified for low CBF and high MTT , i.e. the right side of images a,c and the
left side of images b,d. In this condition, DCB shows the best attachment to the ground-truth
(dashed lines). On the right (e,f,g,h), the GT values correspond to a normal scenario (CBF = 30
ml/100g/min and MTT = 4s). DCB results remain closer to the ground-truth. Moreover, DCB
deconvolution reduces the standard deviation of CBF estimates as MTT increases (e) and reduces
the overestimation of MTT at any CBF (h).

4.1. Dispersion-free comparison with oSVD and CPI

In this section, we compare DCB with oSVD and CPI deconvolution methods in
the absence of dispersion and delay. We compare with CPI because it is designed
for dispersion-free data and performs better than its dispersion-compliant evolution
CPI+VTF (Mehndiratta et al., 2014a). In fig. 4 we compare CBF (first row) and
MTT (second row) estimates for two scenarios. In the left images (a,b,c,d), the
ground-truth values (“GT” tag in the bottom) are fixed to render a low cerebral blood
flow (CBF = 10 ml/100g/min in a,c) and high mean transit time (MTT = 21s in
b,d) regime. In the right images (e,f,g,h) the GT values (CBF = 30 ml/100g/min
in e,g and MTT = 4s in f,h) comply with a normal tissue scenario. On top of
each column it is reported the perfusion parameter that is varied in the x-axis. A
summary of the results follows.
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4.1.1. Results

The results in fig. 4 show that DCB (blue) and CPI (yellow) perform overall better
than oSVD (purple). For instance, results in normal tissue scenario obtained with
oSVD confirm the well-known CBF underestimation (e,f ) and MTT overestimation
(g,h). However when the actual SNR is low, oSVD (also aided by the optimal setting
described in section 3.2) helps the estimation. Indeed, in the left side of the image
(a) oSVD renders the best estimates of CBF , whereas DCB has the highest standard
deviation. This is due to the very low effective signal-to-noise ratio – low CBF , low
MTT and SNR = 50 – which penalizes the higher flexibility of DCB compared to
CPI and to the robustness to noise of oSVD. On the other hand, oSVD has the worst
performance in MTT estimation.

In general, CPI and DCB have similar performance. However, in normal tissue
scenario DCB reduces the standard deviation in CBF estimation as MTT increases
(e), and shows the best recovery of MTT as the CBF increases (h). Moreover, in the
low CBF and high MTT regime (a,b,c,d) a pathological scenario can be identified
for low CBF and prolonged MTT , that is the right side of images (a,c) and the
left side of images (b,d). In this condition, DCB shows the best attachment to the
ground-truth (dashed lines). Overall, DCB deconvolution performs better or at least
comparably to CPI on dispersion-free data, whereas both of the techniques improve
results compared to oSVD. This result is relevant for DCB: in fact, it is more general
than CPI since it is designed to handle both dispersion-free and dispersed scenarios.

4.2. Influence of dispersion on DCB and oSVD results

In this section, we compare the two non-parametric approaches to deconvolution,
DCB and oSVD, in the presence of increasing levels of dispersion. For this experiment
we use the EDK dispersion kernel varying the vascular mean transit time (MTTv =
1/β) in range MTTv ∈ [1, 10]s. The ground-truth R∗(t) was calculated with eq. (10).
Signals are generated with time-step ∆t = 0.1s and then down-sampled to obtain
a repetition time TR = 1s. The tested delay values are 0, 1, 2, 3, 4, 5 seconds
(Mehndiratta et al., 2014a) but for DCB the delay is researched in a broader range
[−2, 7]s with τs = 1s. Other tested parameters are MTT ∈ {4, 8, 12, 16}s and
CBF ∈ {15, 30, 45, 60}ml/100g/min. The comparison is performed by calculating
the mean error and standard deviation over 1000 noisy realizations. In fig. 5, the
left and the central images report the relative errors for CBF ∗ and MTT ∗, and the
right image reports the absolute error for the time of maximum tmax of the effective
response function R∗(t). The right image additionally reports the absolute error of
the dispersion time τδ calculated with DCB deconvolution.
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Estimation error as dispersion increases

Figure 5: Estimation error (mean and standard deviation) obtained with DCB and oSVD deconvo-
lution as the amount of dispersion increases in abscissa with the vascular mean transit time MTTv.
The figure reports the relative estimation errors of the effective perfusion parameters: CBF ∗ (left)
and MTT ∗ (central). The barplot in the right image reports absolute errors of the time of maxi-
mum tmax of the effective response function and, only for DCB, the dispersion time τδ (see fig. 2).
The synthetic data was generated accounting for a dispersed response function with exponential
dispersion kernel (EDK), i.e. eq. (10), varying CBF , MTT and delay τ as specified in section 4.2.
The DCB results remain more stable than oSVD ones as dispersion increases and show a globally
improved estimation of the tested parameters.

4.2.1. Results

The DCB results show overall an improved stability compared to oSVD. The
oSVD estimation error for all of the tested parameters in fig. 5 increases with the
vascular mean transit time MTTv, i.e. the dispersion level. On the contrary DCB
performance for CBF ∗ improves with MTTv (fig. 5, left). The results related to the
time parameters in fig. 5 (right) show that average absolute error for the estimation
of tmax falls below 1s which is sensibly lower than oSVD error at any MTTv. The
image also shows the absolute error for the dispersion time τδ obtained with DCB
deconvolution. The dispersion time is a parameter derived from the joint estimation
of the time of maximum tmax and the time delay τ , therefore the error on τδ accounts
for both of the error contributions. The error on τδ estimation is also indicative of
the performance of DCB deconvolution in characterizing dispersion, as discussed
in section 2.3. We note that the DCB mean absolute error falls approximately
within 1s which corresponds to the temporal resolution, i.e. the repetition time
TR, used for the experiment. The oSVD technique scores the best performance in
CBF ∗ estimation at low MTTv, likely because of its implementation as discussed in
section 3.2, but renders a higher error for MTT ∗.

Results globally show that deconvolution with DCB is more robust, with respect
to dispersion, than with oSVD. Moreover, the results give an indication of the bias
in the estimation of the effective parameters with oSVD as dispersion increases. In

18



the next section, we propose a more extensive experiment, to compare all of the
dispersion-compliant techniques (DCB, oSVD, and CPI+VTF), accounting for the
other dispersion kernels in eq. (9), i.e. GDK and LNDK, and for the dispersion levels
encoded in table 1.

4.3. Comparison with oSVD and CPI+VTF in presence of dispersion

In this experiment, we compare the performance of DCB, oSVD and CPI+VTF in
estimating the parameters CBF ∗, MTT ∗, tmax, τ , τδ and the fitting error. Ground-
truth signals are generated as described in section 4.2. However, this experiment
takes into account dispersion. Particularly, the data is generated taking into ac-
count all of the three dispersion kernels (GDK, EDK, and LNDK), as described in
section 3.3 and illustrated in fig. 3, and the three dispersion levels (low, medium,
and high) reported in table 1. The DCB, oSVD, and CPI+VTF deconvolutions are
performed for 100 different noisy realizations for each combination of CBF , MTT ,
τ , dispersion kernel and dispersion level. Results in figs. 6 and 7 are presented in the
form of error boxplots4.

In the first part of the experiment, we compute the estimates of CBF ∗, MTT ∗,
tmax, τ , τδ and the fitting error, when the ground-truth data is generated with all of
the dispersion kernels but at different dispersion levels. Images in fig. 6 report the
error boxplots for each estimated parameter and for each, when applicable, deconvo-
lution technique adopted (oSVD, DCB, CPI+VTF). Each row from the first to the
fifth corresponds to a different estimated parameter whereas the sixth row reports
the reconstruction error with respect to the effective response function. The first
column starting from the left of fig. 6, framed within a black rectangle, shows error
boxplots obtained when considering results at all of the dispersion levels. Columns
from the second to the fourth are related to low, medium and high levels of dispersion
respectively.

In the second part of the experiment, we compute the estimates when the ground-
truth data is generated considering all of the dispersion levels but with different
dispersion kernels. Columns from the first to the third of fig. 7 show results when

4Each boxplot is a comprise of lower and upper whiskers within which all of the results not
considered as outliers are contained. The bottom and top horizontal sides of the box indicate
the 25th and 75th percentile of the results respectively. The central horizontal line of the box
indicates the median whereas the height of the notch-like concavity in its correspondence describes
the confidence region: boxes related to different techniques with non-overlapping confidence regions
along the vertical axis show medians with 5% significant difference. The percentage of outliers is
reported on top of the upper whisker.
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the underlying vascular transport function (VTF) corresponds to GDK, LNDK and
EDK respectively.

4.3.1. Results

Deconvolution with DCB performs globally better than the compared techniques
in the presence of dispersion, as shown in the first column of fig. 6. Indeed, for the
tested parameters MTT ∗, tmax, τ and τδ the median of the blue boxplot is lower than
the comparing ones, with 5% significant difference. Also the whiskers and horizontal
sides (25th and 75th percentiles) generally compare favorably for DCB. An exception
to the trend is the great performance of oSVD for CBF ∗ estimation, noticed also
in Mehndiratta et al. (2014a), which is counterbalanced by a poorer performance
w.r.t. MTT ∗. However, here the oscillation index for oSVD is chosen optimally (see
section 3.2), which explains the result at least in part. Overall DCB scores the best
results even if it generally leads to a higher percentage of outliers (number on top
of each boxplot). CPI+VTF performs comparably to oSVD for the estimation of
MTT ∗ and outperforms it with respect to tmax.

Results obtained with the three techniques show different trends as the dispersion
level increases. The trend for the same technique also changes based on the consid-
ered parameter, i.e. each row of fig. 6. For instance, the time of maximum tmax
estimation performance of both oSVD and CPI+VTF improves with the amount
of dispersion, whereas DCB results look more stable and show lower or comparable
errors. DCB shows a similar stability also for the effective mean transit time MTT ∗.

Results for delay τ and dispersion time τδ (fourth and fifth row of fig. 6) look sim-
ilar as expected. Indeed, for both of the parameters the median error of DCB (blue
boxplots) is lower than that of CPI+VTF (red boxplots). DCB error distribution
tends to spread towards larger values as dispersion increases (see the 75th percentile),
whereas the median of CPI+VTF tends to decrease. However DCB deconvolution
distinctly outperforms CPI+VTF at low and medium dispersion levels. Finally, the
fitting error results (last row of fig. 6) favor DCB over CPI+VTF. However, we note
that the general higher number of outliers for DCB might reveal more instability
than the comparing techniques.

In the second part of the experiment, the results are illustrated separately for
each adopted dispersion kernel (GDK, LNDK, and EDK) while accounting for all
of the dispersion levels, as shown in fig. 7. Again, similar considerations as before
apply to oSVD results, which reflect the trade-off between CBF ∗ and MTT ∗ esti-
mation. With any dispersion kernel, results for effective mean transit time MTT ∗

and time of maximum tmax show that DCB deconvolution outperforms oSVD and
CPI+VTF. We note that for these parameters DCB performs better than or compa-
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Figure 6: Error boxplots of parameters in presence of dispersion (see fig. 2 for reference) obtained
with DCB (blue), oSVD (purple) and CPI+VTF (red) deconvolution. Results account for all the
dispersion kernels GDK, LNDK, and EDK in eq. (9). The first framed column reports the averaged
results of all the tested dispersion levels according to table 1, whereas columns from the second to
the fourth report results considering separately low, medium and high dispersion. Each boxplot
reports the median value (central line) with 5% confidence region (notch-like concavity), 25th and
75th percentile (bottom and top sides of the box), outliers-free region (between bottom and top
whiskers), and outliers percentage. The data was generated varying dispersion kernel, CBF , MTT
and τ as specified in section 4.3. Results show lower error for DCB almost everywhere.
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Figure 7: Error boxplots of parameters in presence of dispersion (see fig. 2 for reference) obtained
with DCB (blue), oSVD (purple) and CPI+VTF (red) deconvolution. Results account for all the
low, medium and high dispersion levels in table 1. Columns from the first to the third respectively
report results related to dispersed data generated with the gamma (GDK), lognormal (LNDK) and
exponential (EDK) dispersion kernels defined in eq. (9). Boxplots report statistics as described
for fig. 6. The data was generated varying dispersion level, CBF , MTT and τ as specified in
section 4.3.
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rably to CPI+VTF also when data is generated using the gamma dispersion kernel
(GDK), which is the kernel inherently assumed by the VTF model-based technique.
When considering the gamma dispersion kernel (GDK), DCB deconvolution shows
a performance loss in delay τ and dispersion time τδ estimation. On the other hand
DCB remarkably improves τ and τδ estimates for data based on lognormal (LNDK)
and exponential (EDK) kernels. Fitting errors generally favor DCB deconvolution
over CPI+VTF with the expected exception of the GDK case, where the difference
is not significant (last row of fig. 7).

Overall, the median errors reveal that DCB deconvolution performs better than
CPI+VTF and oSVD when considering all the dispersion kernels at any dispersion
level (fig. 6). Results for the single dispersion kernels (fig. 7) show parameter-specific
tendencies, such in the case of delay and dispersion time for the GDK, but generally
confirm the positive performance of DCB deconvolution.

4.4. DCB as pre-processing step for CPI+VTF

The CPI+VTF technique, since it relies on a model of the VTF, offers the advan-
tage of estimating the dispersion-free CBF and MTT directly in the deconvolution
procedure. In this work, we propose instead to estimate these parameters in two
steps: first, we obtain R∗(t) via DCB deconvolution; second, we perform CPI+VTF
model fitting directly on the recovered R∗(t). We perform experiments that show
the advantage of estimating CBF and MTT with this second method. The com-
parison is performed when the ground-truth data is generated accounting for all of
the dispersion kernels at different dispersion levels (fig. 8), and for all the dispersion
levels with different dispersion kernels fig. 9, as described in section 4.3.

4.4.1. Results

Results in fig. 8 show that both DCB and CPI+VTF globally render similar errors
of the dispersion-free cerebral blood flow CBF (first row and column). Although
CPI+VTF reduces the error at low dispersion, globally and at medium and high
dispersion DCB shows the best performance. Indeed, the error with CPI+VTF
increases with the level of dispersion. In addition, a previous deconvolution with
DCB followed by the CPI+VTF model fitting considerably reduces the estimation
error of the mean transit time MTT at all the dispersion levels (globally a 50% error
reduction), as shown in the first column of fig. 8. Also in this case, the amount
of error with CPI+VTF increases with the dispersion level. The comparison that
considers different dispersion kernels (GDK, LNDK, EDK), shown in fig. 9, brings
evidence of the benefit of pre-processing data with DCB for the joint estimation of
CBF and MTT . Overall, the pre-processing with DCB allows a clear improvement
in the recovery of dispersion-free parameters, for all dispersion levels and kernels.
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Figure 8: Error boxplots of the actual dispersion-free CBF (first row) and MTT (second row)
parameters obtained in presence of dispersion with DCB (blue) and CPI+VTF (red). In the case
of DCB, results are obtained by fitting the inherent CPI+VTF model to the effective response
function previously calculated via DCB deconvolution. Results are presented considering all the
dispersion kernels for different dispersion levels as in fig. 6. Pre-processing data with DCB has a
beneficial effect on the joint estimation of CBF and MTT estimation, at any level of dispersion.
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Figure 9: Error boxplots of the actual dispersion-free CBF (first row) and MTT (second row)
parameters obtained in presence of dispersion with DCB (blue) and CPI+VTF (red). DCB results
are obtained as described for fig. 8. Results are presented considering all the dispersion levels for
different dispersion kernels as in fig. 7. Pre-processing data with DCB has a beneficial effect on the
joint estimation of CBF and MTT estimation, with any dispersion kernel.

24



H
Y

P
O

P
E
R

F
U

S
E
D

 R
O

I

IS
O

P
E
R

F
U

S
E
D

 R
O

I

Healthy/infarcted
tissue segmentation

Figure 10: Top left: manual segmentation of healthy isoperfused tissue (light blue) and infarcted
hypoperfused region (red) based on MTT ∗ maps of fig. 12. Top right: signals corresponding to
the arterial input function, manually selected in the branch of the right middle cerebral artery
(see yellow dot), and to a voxel in the hypoperfused region (green dot). Bottom left and right:
average tissue residue function (response function normalized by CBF ∗), estimated with DCB
(solid line), CPI+VTF (dashed line), and oSVD (dotted line) for the isoperfused region (left) and
the hypoperfused one (right). The DCB render a dispersion-free shape in the healthy tissue whereas
oSVD and CPI+VTF show a dispersed profile. Moreover, in the infarcted tissue DCB and oSVD
show a smoother and more dispersed profile than CPI+VTF.

5. In Vivo results

We manually segmented a slice of the real dataset into healthy isoperfused and
infarcted hypoperfused regions. The segmentation is reported in the top left corner
of fig. 10. The measured Ca(t), i.e. the arterial input function (AIF), was manually
selected within the healthy region in the branch of the right middle cerebral artery.
The top right image of fig. 10 shows the signals corresponding to the AIF and to a
voxel in the infarcted region. In order to give an idea of data quality we also provide
an estimation of the SNR. This is based on the baseline signals, i.e. before tracer
arrival, and is expressed as SNR = E[Sa0 ]/σts0 , where E[Sa0 ] is the expectation of the
selected arterial baseline signal and σts0 is the calculated standard deviation of the
baseline tissue signal in each voxel. Figure 11 shows the SNR map for a slice of
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SNR map

Figure 11: Estimated Signal to Noise Ratio (SNR) map of the selected slice (left), and the histogram
of the SNR values for the entire acquired volume (right). The mean SNR is greater than 50.

interest (left) and the histogram of the SNR values for the whole acquired volume
(right). The mean SNR is above 50.

We estimated the response function and the perfusion parameters with oSVD,
DCB and CPI+VTF. For DCB and CPI+VTF, results are obtained searching for the
time-delay τ in range [0, 15]s, with τs = TR = 1.5s. The bottom images of fig. 10
report the mean residue functions, i.e. response functions normalized by CBF ∗,
obtained with the three techniques for the healthy (left) and infarcted (right) regions.

Images in fig. 12 report the CBF,CBV,MTT and tmax maps obtained with the
three tested methods. Maps of delay τ and dispersion time τδ for DCB and CPI+VTF
(and absolute difference) are shown in fig. 13. In fact, these maps are not supported
by oSVD deconvolution. Finally, fig. 14 reports the maps of actual dispersion-free
cerebral blood flow CBF and mean transit time MTT obtained with CPI+VTF
model fitting on the response function obtained with DCB (first column) and with
CPI+VTF deconvolution directly (second column). The absolute difference maps
are reported in the third column. In the case of DCB the model fitting is performed
only on voxels where the dispersion time is not null (τδ > 0), that is only for the
voxels where dispersion is detected. Indeed, in non-dispersed voxels the effective
perfusion parameters are also the actual dispersion-free ones, i.e. CBF = CBF ∗

and MTT = MTT ∗. In figs. 12 to 14, large vessels were removed using a threshold
on CBV values, i.e. voxels with CBV > 3% are set to zero (Boutelier et al., 2012),
whereas cerebro spinal fluid (CSF) was previously removed. No subsequent filtering
or smoothing was applied.

We also report quantitative results for the iso- and hypo-perfused regions shown
in the top left image of fig. 10. Particularly, we generated histograms of CBF ,
CBF ∗, MTT and MTT ∗ for DCB, CPI+VTF, and oSVD when applicable. These
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are shown in fig. 15 (isoperfused) and in fig. 16 (hypoperfused).
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Figure 12: Maps of a 256×256 MR stroke case slice reporting the parameters CBF ∗ (ml/100g/min),
CBV (%), MTT ∗ (s), and tmax (s) calculated on the effective response function R∗(t) obtained
with oSVD (first column), DCB (central column) and CPI+VTF (right column) deconvolution.
Voxels with CBV > 3% were set to background to remove large vessels.
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Figure 13: Maps of a 256 × 256 MR stroke case slice reporting delay τ (s) and dispersion time
τδ (s) calculated on the effective response function R∗(t) obtained with DCB (left column) and
CPI+VTF (central column) deconvolution. The absolute difference map is reported in the right
column. As for fig. 12 voxels with CBV > 3% were set to background to remove the contribution
of large vessels whereas CSF was previously removed. Contrary to CPI+VTF, the DCB map of
dispersion time displays several voxels with τδ = 0 implying absence of dispersion (see section 2.3).
For DCB, dispersion-free voxels are mainly concentrated in the left hemisphere, contralaterally to
the infarcted region.

5.1. Results

In general, all the techniques show decreased values of CBF ∗ (first row of fig. 12)
in the infarcted hypoperfused region (right side region in top left image of fig. 10) and
corresponding increased MTT ∗. The maps shown fig. 12 are qualitatively similar,
but oSVD shows less contrast between the regions for both of the parameters. This is
quantified in the histograms reported in figs. 15 and 16. The maps of dispersion time
τδ in fig. 13 show that DCB detects none or little dispersion in the healthy region,
whereas CPI+VTF renders dispersed response functions almost everywhere. A more
direct evidence of this is given by the shape of the mean residue functions in the bot-
tom left image of fig. 10. On the other side, DCB renders a more dispersed response
function within the infarcted region (bottom right image of fig. 10), in agreement
with oSVD findings. Qualitatively, dispersion-free maps in fig. 14, generated with
CPI+VTF and DCB, report similar information. However, the DCB-based estimates
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Figure 14: Maps of a 256×256 MR stroke case slice of figs. 12 and 13 reporting the actual dispersion-
free CBF (ml/100g/min) and MTT (s) obtained with DCB (left column) and CPI+VTF (central
column) deconvolution. The absolute difference map is reported in the right column. The DCB
maps of CBF and MTT report respectively the corresponding CBF ∗ and MTT ∗ values of fig. 12
for voxels where no dispersion has been detected in the dispersion time map of fig. 13, i.e. τδ = 0.
In voxels where dispersion is detected DCB results of CBF and MTT are obtained by fitting the
CPI+VTF inherent model to the effective response function obtained via previous deconvolution
with dispersion-compliant bases (DCB), as for fig. 8.

of MTT within the hypoperfused region are more compatible with a dispersion-free
scenario. Indeed, after removing the bias due to dispersion, the dispersion-free MTT
should not be larger than the apparent effective one, i.e. MTT ≤ MTT ∗. In the
following, we discuss results in detail.

Cerebral Blood Flow

Maps of CBF ∗ obtained with oSVD look smoother but seem to be visually less
discriminating than those obtained with DCB and CPI+VTF (first row of fig. 12).
Indeed, a comparison between the CBF ∗ histograms in the first row of fig. 15 and
fig. 16 reveals that the change in width of the oSVD distribution between iso- and
hypo-perfused regions is smaller than with the other techniques. In fact, both DCB
and CPI+VTF show a more evident change in spread with a support extending up
to 100ml/100g/min in the isoperfused Region Of Interest (ROI) that reduces to
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Figure 15: Histograms of CBF ∗, CBF , MTT ∗, and MTT corresponding to the voxels within the
isoperfused healthy ROI of fig. 10 for CPI+VTF (first column), DCB (central column) and, when
applicable, oSVD (right column). Images also report the mode, mean and median values.
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Figure 16: Histograms of CBF ∗, CBF , MTT ∗, and MTT corresponding to the voxels within the
hypoperfused infarcted ROI of fig. 10 for CPI+VTF (first column), DCB (central column) and,
when applicable, oSVD (right column). Images also report the mode, mean and median values.
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approximately 40ml/100g/min in the hypoperfused one. In the isoperfused ROI the
CBF ∗ histograms of the compared techniques are different from each other (fig. 15).
The oSVD shows the lowest median and the smallest spread whereas CPI+VTF
shows the highest median and largest spread. The histogram of DCB presents an in-
termediate situation. In general, CBF ∗ histograms for oSVD, DCB, and CPI+VTF
are in better agreement with each other in the hypoperfused ROI (fig. 16) than in
the healthy isoperfused one.

Mean Transit Time

All of the methods reveal that MTT ∗ increases in the hypoperfused area (third
row of fig. 12) in accordance with the infarcted condition of the tissue. However, the
DCB and CPI+VTF maps show the greatest contrast between healthy and infarcted
regions. This is supported by the MTT ∗ histograms in figs. 15 and 16 (third row),
where the ratio of the medians between hypo/iso-perfused regions is approximately
8.5s/2s for DCB and CPI+VTF, and only 7.5s/4s for oSVD. We also note that
the distribution of MTT ∗ for the isoperfused ROI is different among the techniques.
With this regard, CPI+VTF renders estimates which have a lower bound (MTT ∗

histogram of fig. 15), whereas DCB and oSVD estimates reach lower values. Indeed,
these two techniques are not constrained to render non-negative solutions of the
response function, which could explain in part this phenomenon.

Time of maximum, delay and dispersion time

Maps of the time of maximum tmax of the effective response function, shown
in the last row of fig. 12, reveal to be discriminating between the iso- and hypo-
perfused ROIs with all of the tested techniques. The tmax values obtained with DCB
visually look smaller than with oSVD, which typically overestimates (see results
in figs. 5, 6 and 9). In the hypoperfused region oSVD and CPI+VTF maps look
visually similar whereas the DCB map shows a reduced amount of high estimates
(red areas). In the isoperfused region both oSVD and DCB show voxels where
tmax = 0 whereas CPI+VTF almost never renders such a value. This is reflected also
in the dispersion time τδ maps of fig. 13 (second row), where CPI+VTF finds τδ > 0
almost everywhere. This phenomenon may constitute a bias for CPI+VTF because it
implies that every voxel in the healthy region presents an effective response function
with a dispersed shape. The mean residue function recovered with CPI+VTF, shown
in the bottom left image of fig. 10, confirms this “dispersion-detecting” trend. Indeed,
DCB renders a dispersion-free shape in the healthy tissue whereas CPI+VTF shows
a dispersed profile. It is interesting to note that in the infarcted area DCB shows
a smoother and more dispersed profile, which is in better agreement with oSVD
than with CPI+VTF (bottom right image). We note that oSVD solution, when
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the response function is smooth as in the case of high dispersion, is a good solution
since the high-frequency cutoff likely removes only noise and not discontinuities, as
opposed to what would happen in the case of an exponential response function.

The delay τ map for CPI+VTF in fig. 13 also depicts no variability within the
isoperfused region, whereas DCB presents positive delays more frequently. In addi-
tion, DCB seems to render lower delays in the hypoperfused ROI, which has to be
ascribed to corresponding lower values of tmax. In the isoperfused region, DCB seems
to split the time of maximum contributions more on the delay than on the dispersion
time compared to CPI+VTF. Globally, oSVD seems to overestimate tmax. To sum-
marize, DCB renders in average a dispersion-free response function profile within the
healthy region, as opposed to oSVD and CPI+VTF, and a smooth dispersed profile
within the infarcted one.

Dispersion-free parameters

The maps of the actual dispersion-free perfusion parameters in fig. 14 obtained
with DCB and CPI+VTF show similar contrast between healthy and infarcted ROIs,
but present substantial differences. For instance, we note that the CPI+VTF map of
CBF reports higher values than the corresponding DCB ones in the isoperfused re-
gion (see segmentation in fig. 10). This is confirmed in fig. 15: CBF histogram
of DCB shows a higher density for values lower than 50ml/100g/min, whereas
with CPI+VTF the histogram spreads and presents a higher density of values above
75ml/100g/min. On the other hand, CBF histograms (DCB and CPI+VTF) in the
hypoperfused region bear similar information (fig. 16). The MTT maps in fig. 14
of DCB and CPI+VTF present differences particularly in the hypoperfused region,
where the DCB map shows lower values. To clarify, in the presence of dispersion -
detected by both the techniques as shown in the second row of fig. 13 - the dispersion-
free MTT could be expected to be lower than the corresponding effective MTT ∗,
due to the underestimation of the cerebral blood flow. However, with CPI+VTF,
the value of MTT in the dispersion-positive hypoperfused region is higher than the
corresponding MTT ∗. Indeed, in the passage from the MTT ∗ to MTT the his-
togram of CPI+VTF (third and fourth rows of fig. 16) we see an increased density
of values above 20s. On the other hand, the median and mean values of the DCB
histogram sensibly decrease. To summarize, DCB pre-processing renders lower CBF
estimates within the healthy region, where it detects no dispersion, and lower MTT
estimates within the infarcted region, where dispersion is detected in agreement with
pathological conditions.
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6. Discussion

In DSC-MRI, data can generally contain voxels with no dispersion, dispersed vox-
els within healthy tissue (Østergaard et al., 1998; Calamante et al., 2000), and voxels
where dispersion is the result of a pathological scenario such as a steno-occlusive dis-
ease (Calamante et al., 2003b). Dispersion is related to macrovascular phenomena
and constitutes a confounding factor for the measurement of the microvascular re-
sponse function and tissue perfusion.

In this work, we developed a deconvolution technique, based on Dispersion-
Compliant Bases (DCB), that handles dispersed data without, at the same time,
making assumptions about the macrovascular process, i.e. it does not adopt a model
of the vascular transport function. The DCB method is in this sense “dispersion
insensitive”, i.e. it allows recovering the effective response function when data is
dispersed or dispersion-free. Interestingly, DCB performed comparably better than
oSVD and CPI in the dispersion-free experiments depicted in fig. 4, and globally
rendered a higher accuracy than oSVD and CPI+VTF in the presence of dispersion,
as shown in figs. 6 and 7. In addition, DCB pre-processing helped the separation of
micro- and macrovascular effects in silico, i.e. it reduced the error of the dispersion-
free CBF and MTT estimates obtained via CPI+VTF model fitting, as shown in
figs. 8 and 9. We note that in some synthetic experiments DCB renders a higher
number of outliers, which is probably due to less stability in the low SNR regime com-
pared to oSVD (which was performed with an optimal oscillation index as described
in section 3.2) and CPI+VTF. However we think that integrating DCB deconvolu-
tion in a denoising framework that accounts for neighborhood information, such as
the total variation method in Fang et al. (2015), could help improving stability.

We believe that dispersion should be taken into account when performing DSC-
MRI deconvolution. Indeed, dispersion can induce broadening of the effective re-
sponse function, as shown in fig. 2, and neglecting it could lead to overestimation
of MTT and underestimation of CBF (Calamante et al., 2000). To this regard, we
propose to use the dispersion time τδ for dispersion detection and characterization.
This, in practice, can only be achieved with DCB and CPI+VTF, since oSVD does
not allow estimating time-delay, τ , and time of maximum, tmax, which are required
for the calculation of the dispersion time. However, synthetic results in figs. 6 and 7
suggest that DCB deconvolution globally renders better estimates of τδ. Also in real
data, DCB deconvolution managed to correctly recover voxels with zero dispersion
time, which implies voxels where no dispersion occurs. These non-dispersed voxels
are mainly concentrated in the healthy isoperfused region, where CPI+VTF ren-
ders τδ > 0 almost everywhere instead. Consequently, all the voxels processed with
CPI+VTF have to be interpreted as dispersed, as demonstrated by the correspond-
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ing shape of the mean residue function in the bottom left image of fig. 10. This
might be the cause of the higher CBF values, observed within the healthy region,
when compared to DCB deconvolution (maps in fig. 14 and histograms in fig. 15).
In fact, the pre-processing with DCB deconvolution offers the advantage of selecting
the voxels affected by dispersion – when τδ > 0 – so that we can avoid fitting a VTF
model based technique (such as CPI+VTF or others) in dispersion-free voxels, thus
reducing the risk of overfitting. Conceptually, if the reported DCB dispersion time
map in fig. 13 is correct, as suggested by the synthetic experiments in fig. 6, it means
that CPI+VTF detects dispersed shapes where there is no dispersion, which might
lead to a consequent overestimation of the dispersion-free CBF (see the absolute
difference map in fig. 14). To this regard, in this work CPI+VTF was not imple-
mented with the original bayesian variational method as reported in Chappell et al.
(2009), and this constitutes a limitation of our study. Indeed, we did not implement
the a priori information elaborated in Mehndiratta et al. (2014a), which is designed
to bias the estimation of the effective response function towards a dispersed shape
with high probability for low-to-medium level of dispersion. However, we think that
such a bias could emphasize the “dispersion-detecting” behavior of CPI+VTF in the
healthy region.

The computational cost of DCB and CPI+VTF is higher than oSVD. However
for a comparable number of parameters adopted, DCB is significantly faster than
CPI+VTF thanks to its analytic Jacobian. The atomic cost per iteration for each
voxel is 0.014s for oSVD, 0.67s for DCB and 0.83s for CPI+VTF on an IntelrCoreTM

i7-3840QM 2.80GHz CPU, with 32GB RAM. However, the techniques are suitable
for code optimization and parallel computing.

The proposed Dispersion-Compliant Bases method (DCB) allows us to explain
data without assumptions about the presence, amount, or nature of dispersion. The
method reconstructs plausible response functions (fig. 10) in healthy and pathological
scenarios. Moreover, it globally renders better estimates of the effective perfusion
parameters, and its use as a pre-processing step boosts the precision of dispersion-free
estimates of CBF and MTT .

7. Conclusion

In this work, we describe a deconvolution method based on Dispersion-Compliant
Bases which is capable of detecting the presence of dispersion and recovering the cor-
responding effective response function. The method proves to be accurate in both
dispersion-free and dispersed scenarios. It improves the estimation of the effec-
tive perfusion parameters in the presence of dispersion and reduces the error of the
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dispersion-free mean transit time and cerebral blood flow estimates. We believe that
the presented bases approach to DSC-MRI deconvolution brings added value to the
state-of-the-art and better explains the data, which is a fundamental step before
inferring any model-related property.
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