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1. Introduction

An important aspect of statistics is the determination of flexible distributions to elaborate useful
models for lifetime data. Among the existing approaches, new distributions can be obtained by mixing
discrete and continuous distributions. Those using geometric distributions include the exponential geo-
metric distribution [1], the exponential-power series distribution [9], the extended exponential geomet-
ric distribution [2], the complementary exponential geometric distribution [14], the Weibull-geometric
distribution [6], the Weibull-power series distribution [18], the generalized exponential-power series
distribution [16], the complementary exponentiated exponential geometric distribution [15], the ex-
tended Weibull-power series distribution [21], the complementary extended Weibull-power series [11],
the exponentiated extended Weibull-power series distribution [23], the G-geometric distribution [3],
the alternative G-geometric distribution [8], the generalized linear failure rate-geometric distribution
[12] and the linear failure rate-power series distribution [17]. We also refer to the review of [22], and
the references therein.

On the other hand, among the continuous distributions, the gamma distribution is one of the
most commonly used in modeling life-time data. In practice, it has been shown to be very flexible
in modeling various types of lifetime distributions. To the best of our knowledge, the mixing of the
geometric distribution with the Gamma distribution (not reduced to the exponential one) has not ever
been considered in the literature. Based on such a mixing, this paper offers a new distribution with
two parameters, called the gamma-geometric (GG) distribution. The formulation and motivations of
such distribution are as follows.

Let λ > 0, θ ∈ (0, 1) and θ̄ = 1− θ. We say that a random variable X follows the GG distribution
with parameters (θ, λ), denoted by GG(θ, λ), if it has the probability density function (pdf) given by

f(x) = θλ2xe−λx 1 + θ̄e−λx(
1− θ̄e−λx

)3 , x > 0. (1)

The corresponding cumulative distribution function (cdf) is given by

F (x) = 1− θe−λx 1 + λx− θ̄e−λx

(1− θ̄e−λx)2
, x > 0. (2)

The GG distribution arises from the following stochastic representation. Let X be a random variable
having the following stochastic representation:

X | {N = n} ∼ Gam(2, λn), N | θ ∼ Gtrunc(θ), (3)

that is N is a random variable having the truncated geometric distribution with parameter θ: P (N =
n) = θθ̄n−1, n = 1, 2, . . . and the distribution of X conditionally to {N = n} is the gamma distribution
Gam(2, λn), with a conditional pdf given by fX|{N=n}(x) = λ2n2xe−λnx, x > 0. Then X follows the

GG(θ, λ) distribution; using the geometric series expansions:
+∞∑
n=1

n2xn = x(1+x)
(1−x)3 , |x| < 1, the pdf of

X is given by

fX(x) =
+∞∑
n=1

fX|{N=n}(x)P (N = n) =
θ

θ̄
λ2x

+∞∑
n=1

n2(θ̄e−λx)n = θλ2xe−λx 1 + θ̄e−λx(
1− θ̄e−λx

)3 . (4)

The stochastic representation (3) can be viewed as a natural extension of the stochastic representation
X | {N = n} ∼ Exp(λn) = Gam(1, λn), with pdf corresponding to the one of the G-geometric class
proposed by [3] (applied with the exponential distribution).
Ratio of two independent variables. An example of simple model using the GG distribution
is given by the ratio of two independent variables as described as follows. Let Y ∼ Gam(2, λ) and
N ∼ Gtrunc(θ). Suppose that Y and N are independent. Then

X =
Y

N
,

2



follows the GG(θ, λ) distribution. It is enough to note that X | {N = n} = Y/n ∼ Gam(2, λn). This
ratio representation will be useful to determine statistical properties of the GG distribution.

Note that, from the ratio representation, the cdf of X given by (2) can be expressed directly: using

the cdf of Y : FY (x) = 1− e−λx − λxe−λx, x > 0, and the geometric series expansions:
+∞∑
n=0

xn = 1
1−x

and
+∞∑
n=1

nxn−1 = 1
(1−x)2 , |x| < 1, the cdf of X is given by

FX(x) = P (Y ≤ xN) =

∞∑
n=1

FY (xn)P (N = n)

= 1− θe−λx
∞∑

n=0

(θ̄e−λx)n − λxθe−λx
∞∑

n=1

n(θ̄e−λx)n−1

= 1− θe−λx 1 + λx− θ̄e−λx

(1− θ̄e−λx)2
.

Some limit properties for f(x) are given as:

f(x) ∼ λ2 2− θ

θ2
x → 0, x → 0, f(x) ∼ θλ2xe−λx → 0, x → +∞.

Moreover, one can show that f(x) has a unique maximum on (0,+∞) given by f(x∗) where x∗ satisfies
the equation: 4θ̄λx∗e

λx∗ +(λx∗ − 1)e2λx∗ + θ̄2(λx∗ +1) = 0. Some plots of f(x) are given in Figure 1
for several values of (θ, λ). The rest of the paper is organized as follows. In Section 2, we give some
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Figure 1: Plots of the GG density function

.

properties of the GG distribution. The estimation by maximum likelihood is discussed in Section 3
with illustrative real data examples.

2. Properties of the GG distribution

In this section, we propose many features and statistical properties of the GG distribution.

2.1. The survival function and hazard rate functions

The survival function (sf) of X is given by

S(x) = 1− F (x) = θe−λx 1 + λx− θ̄e−λx

(1− θ̄e−λx)2
, x > 0, (5)
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and the associated hazard rate function (hrf) of X is

h(x) =
f(x)

S(x)
= λ2x

1 + θ̄e−λx

(1− θ̄e−λx)(1 + λx− θ̄e−λx)
, x > 0. (6)

Observe that

h(x) ∼ λ2 2− θ

θ2
x → 0, x → 0, h(x) ∼ λ, x → +∞.

Some plots of h(x) are given in Figure (2) for several values of (θ, λ).
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Figure 2: Plots of the GG hazard rate function

.

2.2. Quantile function

The quantile function of X is determined by inverting the cdf F (x). The p-th quantile xp of X is
the real solution of the nonlinear equation:

F (xp) = p ⇔ θe−λxp(1 + λxp − θ̄e−λxp) = (1− p)(1− θ̄e−λxp)2.

2.3. Moments

Some key features of a distribution, like mean and variance, can be investigated through its r-th
moments E(Xr). For finding E(Xr), we can use the ratio representation of X: X has the same
distribution of the ratio of 2 random variables: Y/N with Y ∼ Gam(2, λ) and N ∼ Gtrunc(θ), Y

and N independent. Therefore, considering the Gamma function: Γ(ν) =
∫ +∞
0

xν−1e−xdx, ν > 0,

E (Y r) = Γ(2+r)
λr and the polylogarithm function: Lir(x) =

+∞∑
n=1

xn

nr
, r > 0, |x| < 1, we have

E(Xr) = E
(
Y r

Nr

)
= E (Y r)E

(
1

Nr

)
=

Γ(2 + r)

λr

+∞∑
n=1

1

nr
P (N = n) =

Γ(2 + r)

λr

θ

θ̄
Lir(θ̄).

In particular, by taking r = 1, since Li1(x) = − log(1− x), we obtain

E(X) = − 2θ

λθ̄
log(θ).

The variance of X can be explicit in some cases. For instance, if θ = 1
2 , since Li1(

1
2 ) = log(2) and

Li2(
1
2 ) =

1
12 [π

2 − 6(log(2))2], we have

V ar(X) = E(X2)− [E(X)]2 =
Γ(4)

λ2
Li2

(
1

2

)
−
[
Γ(3)

λ
Li1

(
1

2

)]2
=

1

λ2

(
π2

2
− 7(log(2))2

)
.
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2.4. Moment generating function
As for the moments, the moment generating function ofX can be obtain via the ratio representation

Y/N . Using E(etY ) =
λ2

(λ− t)2
, t < λ, and the conditional expectation, we get

M(t) = E(etX) = E(et
Y
N ) = E

(
E
(
et

Y
N | N

))
= E

(
λ2(

λ− t
N

)2
)

= λ2E

(
N2

(λN − t)
2

)

= λ2
+∞∑
n=1

n2

(λn− t)
2P (N = n) = λ2θ

+∞∑
n=1

n2

(λn− t)
2 θ̄

n−1.

2.5. Conditional and reversed moments
The r-th conditional moments of X is given by

E(Xr | X > t) =
1

S(t)

(
E(Xr)−

∫ t

0

xrf(x)dx

)
, t > 0,

and the r-th reversed moments of X is given by

E(Xr | X ≤ t) =
1

F (t)

∫ t

0

xrf(x)dx, t > 0.

The integral term can be expressed using the expansion (4). Indeed, introducing the lower incomplete

gamma function Γ(t, ν) =
∫ t

0
xν−1e−xdx, ν > 0, t > 0, we have∫ t

0

xrf(x)dx =
θ

θ̄
λ2

+∞∑
n=1

n2θ̄n
∫ t

0

xr+1e−nλxdx =
θ

θ̄

1

λr

+∞∑
n=1

θ̄n

nr
Γ(nλt, r + 2). (7)

2.6. Rényi entropy
An entropy plays a central role in information theory. It provides a suitable measure of randomness

or uncertainty of X. For continuous distributions, Rényi entropy (see [20]) can be determined as
follows:

IR(γ) =
1

1− γ
log

(∫ +∞

−∞
[f(x)]γdx

)
, γ > 0, γ ̸= 1.

We have

[f(x)]γ = θγλ2γxγe−λγx (1 + θ̄e−λx)γ(
1− θ̄e−λx

)3γ .
Using the generalized binomial series: (1+x)α =

+∞∑
k=0

(
α
k

)
xk, α ∈ C, | x |< 1,

(
α
k

)
= α(α−1)(α−2)...(α−k+1)

k! ,

we have

(1 + θ̄e−λx)γ =
+∞∑
k=0

(
γ

k

)
θ̄ke−λkx,

1(
1− θ̄e−λx

)3γ =
+∞∑
ℓ=0

(
−3γ

ℓ

)
(−1)ℓθ̄ℓe−λℓx.

Hence,

[f(x)]γ = θγλ2γ
+∞∑
ℓ=0

+∞∑
k=0

(
−3γ

ℓ

)(
γ

k

)
(−1)ℓθ̄ℓ+kxγe−λ(ℓ+k+γ)x.

Therefore,

IR(γ) =
1

1− γ

[
γ log(θ) + 2γ log(λ) + log

(
+∞∑
ℓ=0

+∞∑
k=0

(
−3γ

ℓ

)(
γ

k

)
(−1)ℓθ̄ℓ+k

∫ +∞

0

xγe−λ(ℓ+k+γ)xdx

)]

=
1

1− γ

[
γ log(θ) + 2γ log(λ) + log

(
+∞∑
ℓ=0

+∞∑
k=0

(
−3γ

ℓ

)(
γ

k

)
(−1)ℓθ̄ℓ+k Γ(γ + 1)

λγ+1(ℓ+ k + γ)γ+1

)]
.
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2.7. Order statistics distributions

The order statistics are central tools in non-parametric statistics and inference. Let us now present
the distributions of some fundamental order statistics related to the GG(θ, λ) distribution. Let a
sample X1, X2, . . . , Xn is randomly choosen from the GG(θ, λ) distribution and X1:n ≤ X2:n ≤ . . . ≤
Xn:n are its corresponding order statistics. A pdf of Xi:n is given by

fXi:n (x) =
n!

(i− 1)! (n− i)!
f(x)

n−i∑
l=0

(
n− i

l

)
(−1)

l
[F (x)]

i−1+l

=
n!

(i− 1)! (n− i)!
θλ2xe−λx 1 + θ̄e−λx(

1− θ̄e−λx
)3 n−i∑

l=0

(
n− i

l

)
(−1)

l

[
1− θe−λx 1 + λx− θ̄e−λx

(1− θ̄e−λx)2

]i−1+l

,

x > 0

The cdf of Xi:n is given by

FXi:n (x) =
n!

(i− 1)! (n− i)!

n−i∑
l=0

(
n− i

l

)
(−1)

l

i+ l
[F (x)]

i+l

=
n!

(i− 1)! (n− i)!

n−i∑
l=0

(
n− i

l

)
(−1)

l

i+ l

[
1− θe−λx 1 + λx− θ̄e−λx

(1− θ̄e−λx)2

]i+l

, x > 0.

A joint pdf of (X1:n, . . . , Xn:n) is given by

f(X1:n,...,Xn:n)(x1, . . . , xn) = n!
n∏

k=1

f(xk) = n!θnλ2n

(
n∏

k=1

xk

)
e
−λ

n∑
k=1

xk

n∏
k=1

(1 + θ̄e−λxk)

n∏
k=1

(
1− θ̄e−λxk

)3 ,
0 < x1 < . . . < xn.

A joint pdf of (Xi:n, Xj:n), i < j, is given by

f(Xi:n,Xj:n)(xi, xj) =
n!

(i− 1)! (n− j)! (j − i− 1)
[F (xi)]

i−1[F (xj)− F (xi)]
j−i−1[S(xj)]

n−jf(xi)f(xj)

=
n!

(i− 1)! (n− j)! (j − i− 1)

[
1− θe−λxi

1 + λxi − θ̄e−λxi

(1− θ̄e−λxi)2

]i−1

×
[
θe−λxi

1 + λxi − θ̄e−λxi

(1− θ̄e−λxi)2
− θe−λxj

1 + λxj − θ̄e−λxj

(1− θ̄e−λxj )2

]j−i−1

×
[
θe−λxj

1 + λxj − θ̄e−λxj

(1− θ̄e−λxj )2

]n−j

θ2λ4xixje
−λ(xi+xj)

1 + θ̄e−λxi(
1− θ̄e−λxi

)3 1 + θ̄e−λxj(
1− θ̄e−λxj

)3 ,
0 < xi < xj .

2.8. Record values distributions

Record values arise in a wide varity of real-life applications as hydrology, industry, lifetesting, eco-
nomics, among the others. See, for instance, [4], [5] and [10]. We now present important distributions
related to record values using the GG(θ, λ) distribution as baseline. Let X1, X2, . . . , be a sequence of
i.i.d. random variables having the GG(θ, λ) distribution. We define a sequence of record times U(n)
as follows: U(1) = 1, U(n) = min{j; j > U(n − 1), Xj > XU(n−1)} for n ≥ 2. We define the i-th
upper record value by Ri = XU(i), with R1 = X1. A pdf of Ri is given by

fRi(x) =
1

(i− 1)!
[− log(S(x))]i−1f(x)

=
1

(i− 1)!

[
− log

(
θe−λx 1 + λx− θ̄e−λx

(1− θ̄e−λx)2

)]i−1

θλ2xe−λx 1 + θ̄e−λx(
1− θ̄e−λx

)3 , x > 0.
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A joint pdf of (R1, . . . , Rn) is given by

f(R1,...,Rn)(x1, . . . , xn) = f(xn)

n−1∏
k=1

h(xk) = θλ2nxne
−λxn

1 + θ̄e−λxn(
1− θ̄e−λxn

)3
×

(
n−1∏
k=1

xk

) n−1∏
k=1

(1 + θ̄e−λxk)

n−1∏
k=1

(1− θ̄e−λxk)(1 + λxk − θ̄e−λxk)

, 0 < x1 < . . . < xn.

A joint pdf of (Ri, Rj), i < j, is given by

f(Ri,Rj)(xi, xj) =
1

(i− 1)!(j − i− 1)!
[− log(S(xi))]

i−1 [log(S(xi))− log(S(xj))]
j−i−1

h(xi)f(xj)

=
1

(i− 1)!(j − i− 1)!

[
− log

(
θe−λxi

1 + λxi − θ̄e−λxi

(1− θ̄e−λxi)2

)]i−1

×
[
log

(
θe−λxi

1 + λxi − θ̄e−λxi

(1− θ̄e−λxi)2

)
− log

(
θe−λxj

1 + λxj − θ̄e−λxj

(1− θ̄e−λxj )2

)]j−i−1

× λ2xi
1 + θ̄e−λxi

(1− θ̄e−λxi)(1 + λxi − θ̄e−λxi)
× θλ2xje

−λxj
1 + θ̄e−λxj(
1− θ̄e−λxj

)3 , 0 < xi < xj .

2.9. Residuals life functions

The residual life functions play a fundamental role in survival or reliability studies. See, for
instance, [7], [13] and [19]. We now present some related mathematical objects with a potential of
interest in the context of the GG(θ, λ) distribution.

The residual life is described by the conditional random variable R(t) = X − t | X > t, t ≥ 0. The
sf of the residual lifetime R(t) is given by

SR(t)
(x) =

S(x+ t)

S(t)
= e−λx (1 + λ(x+ t)− θ̄e−λ(x+t))(1− θ̄e−λt)2

(1− θ̄e−λ(x+t))2(1 + λt− θ̄e−λt)
, x > 0.

The associated cdf is given by

FR(t)
(x) = 1− e−λx (1 + λ(x+ t)− θ̄e−λ(x+t))(1− θ̄e−λt)2

(1− θ̄e−λ(x+t))2(1 + λt− θ̄e−λt)
, x > 0.

Then, the corresponding pdf is given by

fR(t)
(x) = λ2(x+ t)e−λx (1 + θ̄e−λ(x+t))(1− θ̄e−λt)2(

1− θ̄e−λ(x+t)
)3

(1 + λt− θ̄e−λt)
, x > 0.

The associated hrf is given by

hR(t)
(x) = λ2(x+ t)

1 + θ̄e−λ(x+t)(
1− θ̄e−λ(x+t)

)
(1 + λ(x+ t)− θ̄e−λ(x+t))

x > 0,

and the mean residual life is defined as

K(t) = E(R(t)) = E(X − t | X > t) =
1

S(t)

(
E(X)−

∫ t

0

xf(x)dx

)
− t.

The integral term can be expressed as (7) with r = 1.
On the other hand, the variance residual life is given by

V (t) = V ar(R(t)) = V ar(X − t | X > t) =
1

S(t)

(
E(X2)−

∫ t

0

x2f(x)dx

)
− t2 − 2tK(t)− [K(t)]2.

7



Again, the integral term can be expressed as (7) with r = 2.
The reverse residual life is described by the conditional random variable R(t) = t − X | X ≤ t,

t ≥ 0. The sf of the reversed residual lifetime R(t) is given by

SR(t)
(x) =

F (t− x)

F (t)
=

(1− θ̄e−λt)2
[
(1− θ̄e−λ(t−x))2 − θe−λ(t−x)(1 + λ(t− x)− θ̄e−λ(t−x))

]
(1− θ̄e−λ(t−x))2

[
(1− θ̄e−λt)2 − θe−λt(1 + λt− θ̄e−λt)

] , 0 < x ≤ t.

The associated cdf is given by

FR(t)
(x) = 1−

(1− θ̄e−λt)2
[
(1− θ̄e−λ(t−x))2 − θe−λ(t−x)(1 + λ(t− x)− θ̄e−λ(t−x))

]
(1− θ̄e−λ(t−x))2

[
(1− θ̄e−λt)2 − θe−λt(1 + λt− θ̄e−λt)

] , 0 < x ≤ t.

Therefore, the corresponding pdf is given by

fR(t)
(x) =

θλ2(t− x)e−λ(t−x)(1 + θ̄e−λ(t−x))(1− θ̄e−λt)2(
1− θ̄e−λ(t−x)

)3 [
(1− θ̄e−λt)2 − θe−λt(1 + λt− θ̄e−λt)

] , 0 < x ≤ t,

and the associated hrf is given by

hR(t)
(x) =

θλ2(t− x)e−λ(t−x)(1 + θ̄e−λ(t−x))(1− θ̄e−λ(t−x))2(
1− θ̄e−λ(t−x)

)3 [
(1− θ̄e−λ(t−x))2 − θe−λ(t−x)(1 + λ(t− x)− θ̄e−λ(t−x))

] , 0 < x ≤ t.

The mean reversed residual life is defined as

L(t) = E(R(t)) = E(t−X | X ≤ t) = t− 1

F (t)

∫ t

0

xf(x)dx.

The integral term can be expressed as (7) with r = 1.
The variance reversed residual life is given by

W (t) = V ar(R(t)) = V ar(t−X | X ≤ t) = 2tL(t)− [L(t)]2 − t2 +
1

F (t)

∫ t

0

x2f(x)dx,

Again, the last integral can be expressed as (7) with r = 2.

3. Estimation with hydrologic data examples

In this section, we estimate the unknown parameters of the GG distribution using the method
of maximum likelihood. Moreover, three hydrologic data sets are given to show the flexibility and
potentiality of the proposed distribution.

3.1. Maximum likelihood estimation

Let X1, X2, . . . , Xn be a random sample of size n from the GG(θ, λ) distribution with observed
values x1, x2, . . . , xn. Set Θ = {θ, λ}. The likelihood function associated to x1, . . . , xn is given by

L(Θ) =
n∏

i=1

f(xi) =
n∏

i=1

(
θλ2xie

−λxi
1 + θ̄e−λxi(
1− θ̄e−λxi

)3
)

= θnλ2n

(
n∏

i=1

xi

)
e
λ

n∑
i=1

xi

n∏
i=1

(
eλxi + 1− θ

)
n∏

i=1

(eλxi − 1 + θ)
3
.

The maximum likelihood estimators (MLEs) of θ and λ are obtained by maximization of L(Θ), or
alternatively, the log-likelihhod defined by

ℓ(Θ) = log(L(Θ)) = n log(θ) + 2n log(λ) +
n∑

i=1

log(xi) + λ
n∑

i=1

xi

+
n∑

i=1

log(eλxi + 1− θ)− 3
n∑

i=1

log(eλxi − 1 + θ).
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It follows that the MLEs are the simultaneous solutions of the equations according to (θ, λ):

∂ℓ(Θ)

∂θ
=

n

θ
−

n∑
i=1

1

eλxi + 1− θ
− 3

n∑
i=1

1

eλxi − 1 + θ
= 0

and

∂ℓ(Θ)

∂λ
=

2n

λ
+

n∑
i=1

xi +
n∑

i=1

eλxixi

eλxi + 1− θ
− 3

n∑
i=1

eλxixi

eλxi − 1 + θ
= 0.

Since we have no analytic forms, numerical methods, as the quasi-Newton algorithm, can be applied
to determine the estimators. The observed information matrix is given by

J(Θ) =

(
Jθ θ(Θ) Jθ λ(Θ)
Jλ θ(Θ) Jλλ(Θ)

)
,

where

Jθ θ(Θ) = −∂2ℓ(Θ)

∂θ2
=

n

θ2
+

n∑
i=1

1

(eλxi + 1− θ) 2
− 3

n∑
i=1

1

(eλxi − 1 + θ) 2
,

Jθ λ(Θ) = −∂2ℓ(Θ)

∂θ∂λ
= −

n∑
i=1

eλxixi

(eλxi + 1− θ) 2
− 3

n∑
i=1

eλxixi

(eλxi − 1 + θ) 2
,

Jλλ(Θ) = −∂2ℓ(Θ)

∂λ2
=

2n

λ2
+

n∑
i=1

(
e2λxix2

i

(eλxi + 1− θ) 2
− eλxix2

i

eλxi + 1− θ

)

− 3
n∑

i=1

(
e2λxix2

i

(eλxi − 1 + θ) 2
− eλxix2

i

(eλxi − 1 + θ)

)
.

This matrix is a key mathematical tool to obtain approximate confidence intervals or Wald tests for
θ and λ in the case of a large sample.

3.2. Illustrative hydrologic data examples

In this section, we fit the GG distribution to three hydrologic data sets and compare with the
Weibull, Gumbel, Exponentiated Exponential, Generalized Gumbel, Kappa and Weibull Geometric
distributions for three data sets. Most of those distributions have received great attention for fitting
hydrology data, like rainfall data, precipitation data and flood data. More precisely, the densities of
the compared distributions are given as follows.:

• Weibull distribution with pdf:

f(x) =
k

λ

(x
λ

)k−1

e−(
x
λ )

k

, λ > 0, k > 0, x > 0.

• Gumbel distribution with pdf:

f(x) =
e−e−

x−µ
σ − x−µ

σ

σ
, σ > 0, x, µ ∈ R.

• Exponentiated Exponential (EE) distribution [24] with pdf:

f(x) = αλ
(
1− e−λx

)(α−1)
e−λx, α, λ, x > 0.

• Generalized Gumbel (GGu) distribution [25] with pdf:

f(x) =

α

(
1− e−e−

x−µ
σ

)α−1 (
e−

x−µ
σ

)
e−e−

x−µ
σ

σ
, α, σ > 0, µ, x ∈ R.
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• Kappa distribution [26] with pdf:

f(x) =
αθ

β

(
x

β

)θ−1
(
α+

(
x

β

)αθ
)−(α+1)

α

, α, θ, β, x > 0.

• Weibull geometric (WG) distribution [6] with pdf:

f(x) = αβα(1− p)xα−1e−(βx)α
(
1− p e−(βx)α

)−2

, p ∈ (0, 1), α, β, x > 0.

For goodness-of-fit we have two main test statistics, i.e., information criterion and empirical distri-
bution. The measures Akaike information criterion (AIC) [27], corrected Akaike information criterion
(AICC) [28], Hannan–Quinn information criterion (HQIC) [29], and consistent Akaike information
criterion (CAIC) [30] are widely used information criterion for selecting the appropriate model among
different others models. The Anderson-Darling (A∗) due to Anderson and Darling [31], the Cramér–
von Mises (W ∗) due to Cramér and Mises [32] and the Kolmogorov Smirnov (KS) statistics due to
Kolmogorov [33] with their p-values to compare the fitted models. These statistics are used to evaluate
how a particular distribution with cdf, for a given data set, fits the corresponding empirical distribu-
tion. The distribution with better fit than the others will be the one having the smallest statistics
and largest p-value.

Some information about the data sets are given below as:
The first data set is taken from engineering department and is presented by Linhart and Zucchini [34].
The data points are
23, 261, 87, 7, 120, 14, 62, 47, 225, 71, 246, 21, 42, 20, 5, 12, 120, 11, 3, 14, 71, 11, 14, 11, 16, 90, 1,
16, 52, 95

The second data contains of annual maximum stream amounts. The data is available in U.S.
Geological Survey (USGS) website (http : //nwis.waterdata.usgs.gov).
The data points are 144, 179, 105, 280, 81, 35, 320, 248, 159, 570, 278, 315, 327, 182, 186, 102, 31,
350, 435, 520, 715, 1600, 660, 173, 239, 667, 44, 82, 70, 68, 69, 42, 16, 450, 333, 114, 121, 175, 299,
102, 93, 287, 64, 36, 438, 63, 146, 48, 37, 214, 25, 161, 104, 115, 32, 109, 128, 30

The third data describes the maximum rainfall of Pakistan from 1981 to 2010. The data points are

21.7, 172.9, 69.5, 96.5, 12.6, 265.5, 154, 28, 142.8, 14.2, 74.8, 32.5, 25, 28.5, 113.8, 25.7, 116.3, 28,
16.9, 6, 9, 17.6, 47.3, 55, 129, 72, 92, 28, 113, 194

For the first data set, Table 1 gives us estimates of the parameters of the considered models with
their corresponding standard errors. Table 2 presents their goodness-of-fit statistics. Concerning the
GG model, the MLEs corresponding to the data are given by θ̂ = 0.155401 and λ̂ = 0.0124595, and the
following information criterion are obtained: AIC = 306.205, AICC = 306.649, HQIC = 307.101 and
CAIC = 306.649. These values are the smallest in comparison to those obtained for the other models.
On the other hand, we have A∗ = 0.51583, W ∗ = 0.0892352, KS = 0.114073 with p = 0.829838, which
are also the best. The superiority of the GG model, in terms of goodness-of-fit statistics, in compar-
ison to the others, is also observed for second data set (estimates are given in Table 3 and goodness
of fit statistics in Table 4) and the third data set (estimates are given in Table 5 and goodness of fit
statistics in Table 6).
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