Hassan S Bakouch 
email: hnbakouch@yahoo.com
  
Abdus Saboor 
email: saboorhangu@gmail.com
  
Christophe Chesneau 
email: christophe.chesneau@unicaen.fr
  
Anwaar Saeed 
email: anwaarsaeedqureshi@gmail.com
  
A new lifetime model by mixing gamma and geometric distributions with fitting hydrologic data

Keywords: Gamma distribution, Geometric distribution, Order statistics, Record values, Estimation. Mathematics Subject Classification: MSC 2010: 2E10, 62E15, 62F10

In this paper, we propose a new distribution obtained by mixing gamma and geometric distributions. We discuss different shapes of the probability density function and the hazard rate functions. We study several statistical properties. The maximum likelihood estimation method is performed for estimating the parameters. We determine the observed information matrix and discuss inference. Illustrative three hydrologic data sets are given to show the flexibility and potentiality of the proposed distribution.

Introduction

An important aspect of statistics is the determination of flexible distributions to elaborate useful models for lifetime data. Among the existing approaches, new distributions can be obtained by mixing discrete and continuous distributions. Those using geometric distributions include the exponential geometric distribution [START_REF] Adamidis | A lifetime distribution with decreasing failure rate[END_REF], the exponential-power series distribution [START_REF] Chahkandi | On some lifetime distributions with decreasing failure rate[END_REF], the extended exponential geometric distribution [START_REF] Adamidis | On a generalization of the exponentialgeometric distribution[END_REF], the complementary exponential geometric distribution [START_REF] Louzada | The complementary exponential geometric distribution: Model, properties, and a comparison with its counterpart[END_REF], the Weibull-geometric distribution [START_REF] Barreto-Souza | The Weibull-Geometric Distribution[END_REF], the Weibull-power series distribution [START_REF] Morais | A compound class of Weibull and power series distributions[END_REF], the generalized exponential-power series distribution [START_REF] Mahmoudi | Generalized exponential-power series distributions[END_REF], the complementary exponentiated exponential geometric distribution [START_REF] Louzada | The complementary exponentiated exponential geometric lifetime distribution[END_REF], the extended Weibull-power series distribution [START_REF] Silva | The compound class of extended Weibull power series distributions[END_REF], the complementary extended Weibull-power series [START_REF] Cordeiro | The complementary extended Weibull power series class of distributions[END_REF], the exponentiated extended Weibull-power series distribution [START_REF] Tahmasebi | Exponentiated extended Weibull-power series class of distributions[END_REF], the G-geometric distribution [START_REF] Alkarni | A compound class of geometric and lifetime distributions[END_REF], the alternative G-geometric distribution [START_REF] Castellares | On the Marshall-Olkin extended distributions[END_REF], the generalized linear failure rate-geometric distribution [START_REF] Harandi | A complementary generalized linear failure rategeometric distribution[END_REF] and the linear failure rate-power series distribution [START_REF] Mahmoudi | The compound class of linear failure rate-power series distributions: Model, properties, and applications[END_REF]. We also refer to the review of [START_REF] Tahir | Compounding of distributions: a survey and new generalized classes[END_REF], and the references therein.

On the other hand, among the continuous distributions, the gamma distribution is one of the most commonly used in modeling life-time data. In practice, it has been shown to be very flexible in modeling various types of lifetime distributions. To the best of our knowledge, the mixing of the geometric distribution with the Gamma distribution (not reduced to the exponential one) has not ever been considered in the literature. Based on such a mixing, this paper offers a new distribution with two parameters, called the gamma-geometric (GG) distribution. The formulation and motivations of such distribution are as follows.

Let λ > 0, θ ∈ (0, 1) and θ = 1 -θ. We say that a random variable X follows the GG distribution with parameters (θ, λ), denoted by GG(θ, λ), if it has the probability density function (pdf) given by

f (x) = θλ 2 xe -λx 1 + θe -λx ( 1 -θe -λx ) 3 , x > 0. (1) 
The corresponding cumulative distribution function (cdf) is given by

F (x) = 1 -θe -λx 1 + λx -θe -λx (1 -θe -λx ) 2 , x > 0. (2) 
The GG distribution arises from the following stochastic representation. Let X be a random variable having the following stochastic representation:

X | {N = n} ∼ G am (2, λn), N | θ ∼ G trunc (θ), (3) 
that is N is a random variable having the truncated geometric distribution with parameter θ: P (N = n) = θ θn-1 , n = 1, 2, . . . and the distribution of X conditionally to {N = n} is the gamma distribution G am (2, λn), with a conditional pdf given by f X|{N =n} (x) = λ 2 n 2 xe -λnx , x > 0. Then X follows the GG(θ, λ) distribution; using the geometric series expansions:

+∞ ∑ n=1 n 2 x n = x(1+x) (1-x) 3 , |x| < 1, the pdf of X is given by f X (x) = +∞ ∑ n=1 f X|{N =n} (x)P (N = n) = θ θ λ 2 x +∞ ∑ n=1 n 2 ( θe -λx ) n = θλ 2 xe -λx 1 + θe -λx ( 1 -θe -λx ) 3 . ( 4 
)
The stochastic representation (3) can be viewed as a natural extension of the stochastic representation (1, λn), with pdf corresponding to the one of the G-geometric class proposed by [START_REF] Alkarni | A compound class of geometric and lifetime distributions[END_REF] (applied with the exponential distribution). Ratio of two independent variables. An example of simple model using the GG distribution is given by the ratio of two independent variables as described as follows. Let Y ∼ G am (2, λ) and N ∼ G trunc (θ). Suppose that Y and N are independent. Then (2, λn). This ratio representation will be useful to determine statistical properties of the GG distribution. Note that, from the ratio representation, the cdf of X given by ( 2) can be expressed directly: using the cdf of Y : F Y (x) = 1 -e -λx -λxe -λx , x > 0, and the geometric series expansions:

X | {N = n} ∼ E xp (λn) = G am
X = Y N , follows the GG(θ, λ) distribution. It is enough to note that X | {N = n} = Y /n ∼ G am
+∞ ∑ n=0 x n = 1 1-x and +∞ ∑ n=1 nx n-1 = 1 (1-x) 2 , |x| < 1, the cdf of X is given by F X (x) = P (Y ≤ xN ) = ∞ ∑ n=1 F Y (xn)P (N = n) = 1 -θe -λx ∞ ∑ n=0 ( θe -λx ) n -λxθe -λx ∞ ∑ n=1 n( θe -λx ) n-1 = 1 -θe -λx 1 + λx -θe -λx (1 -θe -λx ) 2 .
Some limit properties for f (x) are given as:

f (x) ∼ λ 2 2 -θ θ 2 x → 0, x → 0, f (x) ∼ θλ 2 xe -λx → 0, x → +∞.
Moreover, one can show that f (x) has a unique maximum on (0, +∞) given by f (x * ) where x * satisfies the equation: 4 θλx * e λx * + (λx * -1)e 2λx * + θ2 (λx * + 1) = 0. Some plots of f (x) are given in Figure 1 for several values of (θ, λ). The rest of the paper is organized as follows. In Section 2, we give some properties of the GG distribution. The estimation by maximum likelihood is discussed in Section 3 with illustrative real data examples.

Properties of the GG distribution

In this section, we propose many features and statistical properties of the GG distribution.

The survival function and hazard rate functions

The survival function (sf) of X is given by

S(x) = 1 -F (x) = θe -λx 1 + λx -θe -λx (1 -θe -λx ) 2 , x > 0, (5) 
and the associated hazard rate function (hrf) of X is

h(x) = f (x) S(x) = λ 2 x 1 + θe -λx (1 -θe -λx )(1 + λx -θe -λx ) , x > 0. (6) Observe that h(x) ∼ λ 2 2 -θ θ 2 x → 0, x → 0, h(x) ∼ λ, x → +∞.
Some plots of h(x) are given in Figure [START_REF] Adamidis | On a generalization of the exponentialgeometric distribution[END_REF] for several values of (θ, λ). 

Quantile function

The quantile function of X is determined by inverting the cdf F (x). The p-th quantile x p of X is the real solution of the nonlinear equation:

F (x p ) = p ⇔ θe -λxp (1 + λx p -θe -λxp ) = (1 -p)(1 -θe -λxp ) 2 .

Moments

Some key features of a distribution, like mean and variance, can be investigated through its r-th moments E(X r ). For finding E(X r ), we can use the ratio representation of X: X has the same distribution of the ratio of 2 random variables: Y /N with Y ∼ G am (2, λ) and N ∼ G trunc (θ), Y and N independent. Therefore, considering the Gamma function:

Γ(ν) = ∫ +∞ 0 x ν-1 e -x dx, ν > 0, E (Y r ) = Γ(2+r) λ r
and the polylogarithm function: Li r (x) = +∞ ∑ n=1

x n n r , r > 0, |x| < 1, we have

E(X r ) = E ( Y r N r ) = E (Y r ) E ( 1 N r ) = Γ(2 + r) λ r +∞ ∑ n=1 1 n r P (N = n) = Γ(2 + r) λ r θ θ Li r ( θ).
In particular, by taking r = 1, since Li

1 (x) = -log(1 -x), we obtain E(X) = - 2θ λ θ log(θ).
The variance of X can be explicit in some cases. For instance, if

θ = 1 2 , since Li 1 ( 1 2 ) = log(2) and Li 2 ( 1 2 ) = 1 12 [π 2 -6(log(2)) 2 ], we have V ar(X) = E(X 2 ) -[E(X)] 2 = Γ(4) λ 2 Li 2 ( 1 2 
) -

[ Γ(3) λ Li 1 ( 1 
)] 2 = 1 λ 2 ( π 2 2 -7(log(2)) 2 2 
) .

Moment generating function

As for the moments, the moment generating function of X can be obtain via the ratio representation 2 , t < λ, and the conditional expectation, we get

Y /N . Using E(e tY ) = λ 2 (λ -t)
M (t) = E(e tX ) = E(e t Y N ) = E ( E ( e t Y N | N )) = E ( λ 2 ( λ -t N ) 2 ) = λ 2 E ( N 2 (λN -t) 2 ) = λ 2 +∞ ∑ n=1 n 2 (λn -t) 2 P (N = n) = λ 2 θ +∞ ∑ n=1 n 2 (λn -t) 2 θn-1 .

Conditional and reversed moments

The r-th conditional moments of X is given by

E(X r | X > t) = 1 S(t) ( E(X r ) - ∫ t 0 x r f (x)dx ) , t > 0,
and the r-th reversed moments of X is given by

E(X r | X ≤ t) = 1 F (t) ∫ t 0 x r f (x)dx, t > 0.
The integral term can be expressed using the expansion (4). Indeed, introducing the lower incomplete gamma function

Γ(t, ν) = ∫ t 0 x ν-1 e -x dx, ν > 0, t > 0, we have ∫ t 0 x r f (x)dx = θ θ λ 2 +∞ ∑ n=1 n 2 θn ∫ t 0 x r+1 e -nλx dx = θ θ 1 λ r +∞ ∑ n=1 θn n r Γ(nλt, r + 2). ( 7 
)

Rényi entropy

An entropy plays a central role in information theory. It provides a suitable measure of randomness or uncertainty of X. For continuous distributions, Rényi entropy (see [START_REF] Rényi | On measures of entropy and information[END_REF]) can be determined as follows:

I R (γ) = 1 1 -γ log (∫ +∞ -∞ [f (x)] γ dx ) , γ > 0, γ ̸ = 1.
We have

[f (x)] γ = θ γ λ 2γ x γ e -λγx (1 + θe -λx ) γ ( 1 -θe -λx ) 3γ .
Using the generalized binomial series: (1+x

) α = +∞ ∑ k=0 ( α k ) x k , α ∈ C, | x |< 1, ( α k ) = α(α-1)(α-2)...(α-k+1) k! , we have (1 + θe -λx ) γ = +∞ ∑ k=0 ( γ k ) θk e -λkx , 1 ( 1 -θe -λx ) 3γ = +∞ ∑ ℓ=0 ( -3γ ℓ ) (-1) ℓ θℓ e -λℓx .
Hence,

[f (x)] γ = θ γ λ 2γ +∞ ∑ ℓ=0 +∞ ∑ k=0 ( -3γ ℓ )( γ k ) (-1) ℓ θℓ+k x γ e -λ(ℓ+k+γ)x .
Therefore,

I R (γ) = 1 1 -γ [ γ log(θ) + 2γ log(λ) + log ( +∞ ∑ ℓ=0 +∞ ∑ k=0 ( -3γ ℓ )( γ k ) (-1) ℓ θℓ+k ∫ +∞ 0 x γ e -λ(ℓ+k+γ)x dx )] = 1 1 -γ [ γ log(θ) + 2γ log(λ) + log ( +∞ ∑ ℓ=0 +∞ ∑ k=0 ( -3γ ℓ )( γ k ) (-1) ℓ θℓ+k Γ(γ + 1) λ γ+1 (ℓ + k + γ) γ+1 )]
.

Order statistics distributions

The order statistics are central tools in non-parametric statistics and inference. Let us now present the distributions of some fundamental order statistics related to the GG(θ, λ) distribution. Let a sample X 1 , X 2 , . . . , X n is randomly choosen from the GG(θ, λ) distribution and X 1:n ≤ X 2:n ≤ . . . ≤ X n:n are its corresponding order statistics. A pdf of X i:n is given by

f Xi:n (x) = n! (i -1)! (n -i)! f (x) n-i ∑ l=0 ( n -i l ) (-1) l [F (x)] i-1+l = n! (i -1)! (n -i)! θλ 2 xe -λx 1 + θe -λx ( 1 -θe -λx ) 3 n-i ∑ l=0 ( n -i l ) (-1) l [ 1 -θe -λx 1 + λx -θe -λx (1 -θe -λx ) 2 ] i-1+l , x > 0
The cdf of X i:n is given by

F Xi:n (x) = n! (i -1)! (n -i)! n-i ∑ l=0 ( n -i l ) (-1) l i + l [F (x)] i+l = n! (i -1)! (n -i)! n-i ∑ l=0 ( n -i l ) (-1) l i + l [ 1 -θe -λx 1 + λx -θe -λx (1 -θe -λx ) 2 ] i+l , x > 0.
A joint pdf of (X 1:n , . . . , X n:n ) is given by

f (X1:n,...,Xn:n) (x 1 , . . . , x n ) = n! n ∏ k=1 f (x k ) = n!θ n λ 2n ( n ∏ k=1 x k ) e -λ n ∑ k=1 x k n ∏ k=1 (1 + θe -λx k ) n ∏ k=1 ( 1 -θe -λx k ) 3 , 0 < x 1 < . . . < x n .
A joint pdf of (X i:n , X j:n ), i < j, is given by

f (Xi:n,Xj:n) (x i , x j ) = n! (i -1)! (n -j)! (j -i -1) [F (x i )] i-1 [F (x j ) -F (x i )] j-i-1 [S(x j )] n-j f (x i )f (x j ) = n! (i -1)! (n -j)! (j -i -1) [ 1 -θe -λxi 1 + λx i -θe -λxi (1 -θe -λxi ) 2 ] i-1 × [ θe -λxi 1 + λx i -θe -λxi (1 -θe -λxi ) 2 -θe -λxj 1 + λx j -θe -λxj (1 -θe -λxj ) 2 ] j-i-1 × [ θe -λxj 1 + λx j -θe -λxj (1 -θe -λxj ) 2 ] n-j θ 2 λ 4 x i x j e -λ(xi+xj ) 1 + θe -λxi ( 1 -θe -λxi ) 3 1 + θe -λxj ( 1 -θe -λxj ) 3 , 0 < x i < x j .

Record values distributions

Record values arise in a wide varity of real-life applications as hydrology, industry, lifetesting, economics, among the others. See, for instance, [START_REF] Ahsanullah | Record Statistics[END_REF], [START_REF] Arnold | [END_REF] and [START_REF] Chandler | The distribution and frequency of record values[END_REF]. We now present important distributions related to record values using the GG(θ, λ) distribution as baseline. Let X 1 , X 2 , . . . , be a sequence of i.i.d. random variables having the GG(θ, λ) distribution. We define a sequence of record times U (n) as follows:

U (1) = 1, U (n) = min{j; j > U (n -1), X j > X U (n-1) } for n ≥ 2. We define the i-th upper record value by R i = X U (i) , with R 1 = X 1 . A pdf of R i is given by f Ri (x) = 1 (i -1)! [-log(S(x))] i-1 f (x) = 1 (i -1)! [ -log ( θe -λx 1 + λx -θe -λx (1 -θe -λx ) 2 )] i-1 θλ 2 xe -λx 1 + θe -λx ( 1 -θe -λx ) 3 , x > 0.
A joint pdf of (R 1 , . . . , R n ) is given by

f (R1,...,Rn) (x 1 , . . . , x n ) = f (x n ) n-1 ∏ k=1 h(x k ) = θλ 2n x n e -λxn 1 + θe -λxn ( 1 -θe -λxn ) 3 × ( n-1 ∏ k=1 x k ) n-1 ∏ k=1 (1 + θe -λx k ) n-1 ∏ k=1 (1 -θe -λx k )(1 + λx k -θe -λx k ) , 0 < x 1 < . . . < x n .
A joint pdf of (R i , R j ), i < j, is given by

f (Ri,Rj ) (x i , x j ) = 1 (i -1)!(j -i -1)! [-log(S(x i ))] i-1 [log(S(x i )) -log(S(x j ))] j-i-1 h(x i )f (x j ) = 1 (i -1)!(j -i -1)! [ -log ( θe -λxi 1 + λx i -θe -λxi (1 -θe -λxi ) 2 )] i-1 × [ log ( θe -λxi 1 + λx i -θe -λxi (1 -θe -λxi ) 2
) -log

( θe -λxj 1 + λx j -θe -λxj (1 -θe -λxj ) 2 )] j-i-1 × λ 2 x i 1 + θe -λxi (1 -θe -λxi )(1 + λx i -θe -λxi ) × θλ 2 x j e -λxj 1 + θe -λxj ( 1 -θe -λxj ) 3 , 0 < x i < x j .

Residuals life functions

The residual life functions play a fundamental role in survival or reliability studies. See, for instance, [START_REF] Bryson | Some criteria for aging[END_REF], [START_REF] Hollander | Tests for mean residual life[END_REF] and [START_REF] Muth | Reliability models with positive memory derived from the mean residual life function[END_REF]. We now present some related mathematical objects with a potential of interest in the context of the GG(θ, λ) distribution.

The residual life is described by the conditional random variable R

(t) = X -t | X > t, t ≥ 0. The sf of the residual lifetime R (t) is given by S R (t) (x) = S(x + t) S(t) = e -λx (1 + λ(x + t) -θe -λ(x+t) )(1 -θe -λt ) 2 (1 -θe -λ(x+t) ) 2 (1 + λt -θe -λt ) , x > 0.
The associated cdf is given by

F R (t) (x) = 1 -e -λx (1 + λ(x + t) -θe -λ(x+t) )(1 -θe -λt ) 2 (1 -θe -λ(x+t) ) 2 (1 + λt -θe -λt ) , x > 0.
Then, the corresponding pdf is given by

f R (t) (x) = λ 2 (x + t)e -λx (1 + θe -λ(x+t) )(1 -θe -λt ) 2 ( 1 -θe -λ(x+t) ) 3 (1 + λt -θe -λt ) , x > 0.
The associated hrf is given by

h R (t) (x) = λ 2 (x + t) 1 + θe -λ(x+t) ( 1 -θe -λ(x+t) ) (1 + λ(x + t) -θe -λ(x+t) ) x > 0,
and the mean residual life is defined as

K(t) = E(R (t) ) = E(X -t | X > t) = 1 S(t) ( E(X) - ∫ t 0 xf (x)dx ) -t.
The integral term can be expressed as [START_REF] Bryson | Some criteria for aging[END_REF] with r = 1.

On the other hand, the variance residual life is given by

V (t) = V ar(R (t) ) = V ar(X -t | X > t) = 1 S(t) ( E(X 2 ) - ∫ t 0 x 2 f (x)dx ) -t 2 -2tK(t) -[K(t)] 2 .
Again, the integral term can be expressed as [START_REF] Bryson | Some criteria for aging[END_REF] with r = 2. The reverse residual life is described by the conditional random variable R (t) = t -X | X ≤ t, t ≥ 0. The sf of the reversed residual lifetime R (t) is given by

S R (t) (x) = F (t -x) F (t) = (1 -θe -λt ) 2 [ (1 -θe -λ(t-x) ) 2 -θe -λ(t-x) (1 + λ(t -x) -θe -λ(t-x) ) ] (1 -θe -λ(t-x) ) 2 [ (1 -θe -λt ) 2 -θe -λt (1 + λt -θe -λt ) ] , 0 < x ≤ t.
The associated cdf is given by

F R (t) (x) = 1 - (1 -θe -λt ) 2 [ (1 -θe -λ(t-x) ) 2 -θe -λ(t-x) (1 + λ(t -x) -θe -λ(t-x) ) ] (1 -θe -λ(t-x) ) 2 [ (1 -θe -λt ) 2 -θe -λt (1 + λt -θe -λt ) ] , 0 < x ≤ t.
Therefore, the corresponding pdf is given by

f R (t) (x) = θλ 2 (t -x)e -λ(t-x) (1 + θe -λ(t-x) )(1 -θe -λt ) 2 ( 1 -θe -λ(t-x) ) 3 [ (1 -θe -λt ) 2 -θe -λt (1 + λt -θe -λt ) ] , 0 < x ≤ t,
and the associated hrf is given by

h R (t) (x) = θλ 2 (t -x)e -λ(t-x) (1 + θe -λ(t-x) )(1 -θe -λ(t-x) ) 2 ( 1 -θe -λ(t-x) ) 3 [ (1 -θe -λ(t-x) ) 2 -θe -λ(t-x) (1 + λ(t -x) -θe -λ(t-x) ) ] , 0 < x ≤ t.
The mean reversed residual life is defined as

L(t) = E(R (t) ) = E(t -X | X ≤ t) = t - 1 F (t) ∫ t 0 xf (x)dx.
The integral term can be expressed as [START_REF] Bryson | Some criteria for aging[END_REF] with r = 1.

The variance reversed residual life is given by

W (t) = V ar(R (t) ) = V ar(t -X | X ≤ t) = 2tL(t) -[L(t)] 2 -t 2 + 1 F (t) ∫ t 0 x 2 f (x)dx,
Again, the last integral can be expressed as [START_REF] Bryson | Some criteria for aging[END_REF] with r = 2.

Estimation with hydrologic data examples

In this section, we estimate the unknown parameters of the GG distribution using the method of maximum likelihood. Moreover, three hydrologic data sets are given to show the flexibility and potentiality of the proposed distribution.

Maximum likelihood estimation

Let X 1 , X 2 , . . . , X n be a random sample of size n from the GG(θ, λ) distribution with observed values x 1 , x 2 , . . . , x n . Set Θ = {θ, λ}. The likelihood function associated to x 1 , . . . , x n is given by

L(Θ) = n ∏ i=1 f (x i ) = n ∏ i=1 ( θλ 2 x i e -λxi 1 + θe -λxi ( 1 -θe -λxi ) 3 ) = θ n λ 2n ( n ∏ i=1 x i ) e λ n ∑ i=1 xi n ∏ i=1 ( e λxi + 1 -θ ) n ∏ i=1 (e λxi -1 + θ) 3 .
The maximum likelihood estimators (MLEs) of θ and λ are obtained by maximization of L(Θ), or alternatively, the log-likelihhod defined by

ℓ(Θ) = log(L(Θ)) = n log(θ) + 2n log(λ) + n ∑ i=1 log(x i ) + λ n ∑ i=1 x i + n ∑ i=1 log(e λxi + 1 -θ) -3 n ∑ i=1 log(e λxi -1 + θ).
It follows that the MLEs are the simultaneous solutions of the equations according to (θ, λ):

∂ℓ(Θ) ∂θ = n θ - n ∑ i=1 1 e λxi + 1 -θ -3 n ∑ i=1 1 e λxi -1 + θ = 0 and ∂ℓ(Θ) ∂λ = 2n λ + n ∑ i=1 x i + n ∑ i=1 e λxi x i e λxi + 1 -θ -3 n ∑ i=1 e λxi x i e λxi -1 + θ = 0.
Since we have no analytic forms, numerical methods, as the quasi-Newton algorithm, can be applied to determine the estimators. The observed information matrix is given by

J(Θ) = ( J θ θ (Θ) J θ λ (Θ) J λ θ (Θ) J λ λ (Θ)
) ,

where

J θ θ (Θ) = - ∂ 2 ℓ(Θ) ∂θ 2 = n θ 2 + n ∑ i=1 1 (e λxi + 1 -θ) 2 -3 n ∑ i=1 1 (e λxi -1 + θ) 2 , J θ λ (Θ) = - ∂ 2 ℓ(Θ) ∂θ∂λ = - n ∑ i=1 e λxi x i (e λxi + 1 -θ) 2 -3 n ∑ i=1 e λxi x i (e λxi -1 + θ) 2 , J λ λ (Θ) = - ∂ 2 ℓ(Θ) ∂λ 2 = 2n λ 2 + n ∑ i=1 ( e 2λxi x 2 i (e λxi + 1 -θ) 2 - e λxi x 2 i e λxi + 1 -θ ) -3 n ∑ i=1 ( e 2λxi x 2 i (e λxi -1 + θ) 2 - e λxi x 2 i (e λxi -1 + θ)
) .

This matrix is a key mathematical tool to obtain approximate confidence intervals or Wald tests for θ and λ in the case of a large sample.

Illustrative hydrologic data examples

In this section, we fit the GG distribution to three hydrologic data sets and compare with the Weibull, Gumbel, Exponentiated Exponential, Generalized Gumbel, Kappa and Weibull Geometric distributions for three data sets. Most of those distributions have received great attention for fitting hydrology data, like rainfall data, precipitation data and flood data. More precisely, the densities of the compared distributions are given as follows.:

• Weibull distribution with pdf:

f (x) = k λ ( x λ ) k-1 e -( x λ ) k , λ > 0, k > 0, x > 0.
• Gumbel distribution with pdf:

f (x) = e -e -x-µ σ -x-µ σ σ , σ > 0, x, µ ∈ R.
• Exponentiated Exponential (EE) distribution [START_REF] Ahuja | The generalized Gompertz-Verhulst family of distributions[END_REF] with pdf:

f (x) = αλ ( 1 -e -λx ) (α-1) e -λx , α, λ, x > 0.
• Generalized Gumbel (GGu) distribution [START_REF] Cooray | Generalized Gumbel distribution[END_REF] with pdf:

f (x) = α ( 1 -e -e -x-µ σ ) α-1 ( e -x-µ σ ) e -e -x-µ σ σ , α, σ > 0, µ, x ∈ R.
• Kappa distribution [START_REF] Mielke | Another Family of Distributions for Describing and Analyzing Precipitation Data[END_REF] with pdf:

f (x) = αθ β ( x β ) θ-1 ( α + ( x β ) αθ ) -(α+1) α , α, θ, β, x > 0.
• Weibull geometric (WG) distribution [START_REF] Barreto-Souza | The Weibull-Geometric Distribution[END_REF] with pdf:

f (x) = αβ α (1 -p)x α-1 e -(βx) α ( 1 -p e -(βx) α ) -2 , p ∈ (0, 1), α, β, x > 0.
For goodness-of-fit we have two main test statistics, i.e., information criterion and empirical distribution. The measures Akaike information criterion (AIC) [START_REF] Akaike | A new look at the statistical model identification[END_REF], corrected Akaike information criterion (AICC) [START_REF] Hurvich | Regression and time series model selection in small samples[END_REF], Hannan-Quinn information criterion (HQIC) [START_REF] Hannan | The Determination of the order of an autoregression[END_REF], and consistent Akaike information criterion (CAIC) [START_REF] Bozdogan | Model selection and Akaikes information criterion, The general theory and its analytical extensions[END_REF] are widely used information criterion for selecting the appropriate model among different others models. The Anderson-Darling (A * ) due to Anderson and Darling [START_REF] Anderson | Asymptotic theory of certain "goodness-of-fit" criteria based on stochastic processes[END_REF], the Cramérvon Mises (W * ) due to Cramér and Mises [START_REF] Cramer | On the composition of elementary errors II[END_REF] and the Kolmogorov Smirnov (KS) statistics due to Kolmogorov [START_REF] Kolmogorov | Sulla determinazione empirica di una legge di distribuzione[END_REF] with their p-values to compare the fitted models. These statistics are used to evaluate how a particular distribution with cdf, for a given data set, fits the corresponding empirical distribution. The distribution with better fit than the others will be the one having the smallest statistics and largest p-value.

Some information about the data sets are given below as: The first data set is taken from engineering department and is presented by Linhart and Zucchini [START_REF] Linhart | Model Selection[END_REF]. The data points are [START_REF] Tahmasebi | Exponentiated extended Weibull-power series class of distributions[END_REF]261,87,[START_REF] Bryson | Some criteria for aging[END_REF]120,[START_REF] Louzada | The complementary exponential geometric distribution: Model, properties, and a comparison with its counterpart[END_REF]62,47,225,71,246,[START_REF] Silva | The compound class of extended Weibull power series distributions[END_REF]42,[START_REF] Rényi | On measures of entropy and information[END_REF][START_REF] Arnold | [END_REF][START_REF] Harandi | A complementary generalized linear failure rategeometric distribution[END_REF]120,[START_REF] Cordeiro | The complementary extended Weibull power series class of distributions[END_REF][START_REF] Alkarni | A compound class of geometric and lifetime distributions[END_REF][START_REF] Louzada | The complementary exponential geometric distribution: Model, properties, and a comparison with its counterpart[END_REF]71,[START_REF] Cordeiro | The complementary extended Weibull power series class of distributions[END_REF][START_REF] Louzada | The complementary exponential geometric distribution: Model, properties, and a comparison with its counterpart[END_REF][START_REF] Cordeiro | The complementary extended Weibull power series class of distributions[END_REF][START_REF] Mahmoudi | Generalized exponential-power series distributions[END_REF]90,[START_REF] Adamidis | A lifetime distribution with decreasing failure rate[END_REF][START_REF] Mahmoudi | Generalized exponential-power series distributions[END_REF]52,95 The second data contains of annual maximum stream amounts. The data is available in U.S. Geological Survey (USGS) website (http : //nwis.waterdata.usgs.gov). The data points are 144,179,105,280,81,35,320,248,159,570,278,315,327,182,186,102,[START_REF] Anderson | Asymptotic theory of certain "goodness-of-fit" criteria based on stochastic processes[END_REF]350,435,520,715,1600,660,173,239,667,44,82,70,68,69,42,[START_REF] Mahmoudi | Generalized exponential-power series distributions[END_REF]450,333,114,121,175,299,102,93,287,64,36,438,63,146,48,37,214,[START_REF] Cooray | Generalized Gumbel distribution[END_REF]161,104,115,[START_REF] Cramer | On the composition of elementary errors II[END_REF]109,128,[START_REF] Bozdogan | Model selection and Akaikes information criterion, The general theory and its analytical extensions[END_REF] The third data describes the maximum rainfall of Pakistan from 1981 to 2010. The data points are 21.7, 172.9, 69.5, 96. 5, 12.6, 265.5, 154, 28, 142.8, 14.2, 74.8, 32.5, 25, 28.5, 113.8, 25.7, 116.3, 28, 16.9, 6, 9, 17.6, 47.3, 55, 129, 72, 92, 28, 113, 194 For the first data set, Table 1 gives us estimates of the parameters of the considered models with their corresponding standard errors. Table 2 presents their goodness-of-fit statistics. Concerning the GG model, the MLEs corresponding to the data are given by θ = 0.155401 and λ = 0.0124595, and the following information criterion are obtained: AIC = 306.205, AICC = 306.649, HQIC = 307.101 and CAIC = 306.649. These values are the smallest in comparison to those obtained for the other models. On the other hand, we have A * = 0.51583, W * = 0.0892352, KS = 0.114073 with p = 0.829838, which are also the best. The superiority of the GG model, in terms of goodness-of-fit statistics, in comparison to the others, is also observed for second data set (estimates are given in Table 3 and goodness of fit statistics in Table 4) and the third data set (estimates are given in Table 5 and goodness of fit statistics in Table 6). 
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 1 Figure 1: Plots of the GG density function .

Table 1 :

 1 Estimates of the parameters (standard errors in parentheses) for aeroplane data

	Distributions	Estimates		
	GG(θ, λ)	0.155401	0.012459	
		(0.039411)	(0.002647)	
	Weibul(λ, k)	54.6134	0.853587	
		(12.361500)	(0.119402)	
	Gumbel(µ, σ)	31.360100	40.609000	
		(0.039411)	(6.566440)	
	EE(α, λ)	0.809287	0.014543	
		(0.188512)	(0.003720)	
	GGu(α, σ, µ)	1.611330	63.122100	58.019100
		(0.361676)	(13.339200)	(12.796100)
	Kappa(α, θ, β)	1.035070	1.271930	29.742000
		(0.827705)	(0.695590)	(12.688400)
	WG( λ , a , b)	0.793447	0.007379	1.137020
		(0.281986)	(0.005622)	(0.251924)

Table 2 :

 2 Goodness of fit statistics for aeroplane data

	Distributions	Log(L)	AIC	AICC	HQIC	CAIC
	GG(θ, λ)	-151.102	306.205	306.649	307.101	306.649
	Weibul(λ, k)	-151.937	307.874	308.318	308.770	308.318
	Gumbel(µ, σ)	-161.982	327.964	328.408	328.860	328.408
	EE(α, λ)	-152.201	308.401	308.846	309.298	308.846
	GGu(α, σ, µ)	-164.116	334.233	335.156	335.577	335.156
	Kappa(α, θ, β)	-152.183	310.367	311.290	311.712	311.290
	WG( λ , a , b)	-151.278	308.557	309.480	309.902	309.480
	Distributions	A *	W *	KS	p	
	GG(θ, λ)	0.51583	0.0892352	0.114073	0.829838	
	Weibul(λ, k)	0.567419	0.0990543	0.153363	0.480628	
	Gumbel(µ, σ)	5.90727	0.931143	0.355422	0.00102163	
	EE(α, λ)	0.691402	0.123059	0.171971	0.337505	
	GGu(α, σ, µ)	8.98938	1.39876	0.39446	0.000176396	
	Kappa(α, θ, β)	0.477954	0.0885657	0.121557	0.767156	
	WG( λ , a , b)	0.476917	0.0869025	0.125281	0.734085	

Table 3 :

 3 Estimates of the parameters (standard errors in parentheses) for carnero data

	Distributions	Estimates		
	GG(θ, λ)	0.336657	0.00480789	
		(0.0567315)	(0.000630488)	
	Weibul(λ, k)	229.722	1.05334	
		(30.3587)	(0.100504)	
	Gumbel(µ, σ)	133.735	132.415	
		(18.0217)	(15.0402)	
	EE(α, λ)	1.27283	0.00520083	
		(0.234449)	(0.000861595)	
	GGu(α, σ, µ)	70.6639	1229.31	2083.55
		(5.77893)	(73.4427)	(55.7163)
	Kappa(α, θ, β)	0.885474	1.88622	136.533
		(0.63983)	(0.937705)	(35.2732)
	WG( λ , a , b)	0.952363	0.00108257	1.64806
		(0.06844)	(0.00071915)	(0.224096)

Table 4 :

 4 Goodness of fit statistics for carnero data

	Distributions	Log(L)	AIC	AICC	HQIC	CAIC
	GG(θ, λ)	-369.200	742.400	742.618	744.005	742.618
	Weibul(λ, k)	-371.839	747.678	747.896	749.283	747.896
	Gumbel(µ, σ)	-381.104	766.207	766.426	767.813	766.426
	EE(α, λ)	-371.153	746.305	746.523	747.910	746.523
	GGu(α, σ, µ)	-410.482	826.963	827.408	829.371	827.408
	Kappa(α, θ, β)	-369.537	745.075	745.519	747.483	745.519
	WG( λ , a , b)	-369.040	744.080	744.524	746.488	744.524
	Distributions	A *	W *	KS	p	
	GG(θ, λ)	0.26411	0.0282419	0.0586334	0.988461	
	Weibul(λ, k)	0.563524	0.0712539	0.0869865	0.772452	
	Gumbel(µ, σ)	3.94994	0.727	0.197178	0.0219974	
	EE(α, λ)	0.570699	0.0915234	0.0938397	0.686709	
	GGu(α, σ, µ)	25.9378	4.87121	0.419101	2.8×10 -9	
	Kappa(α, θ, β)	0.314206	0.0400859	0.0737592	0.910551	
	WG( λ , a , b)	0.248297	0.0308173	0.067118	0.956358	

Table 5 :

 5 Estimates of the parameters (standard errors in parentheses) for jiwani data

	Distributions	Estimates		
	GG(θ, λ)	0.453529	0.0182027	
		(0.105628)	(0.00303367)	
	Weibul(λ, k)	77.5581	1.16238	
		(12.8831)	(0.165544)	
	Gumbel(µ, σ)	45.4199	43.7452	
		(8.35456)	(6.80433)	
	EE(α, λ)	1.34541	0.0163824	
		(0.340988)	(0.00365062)	
	GGu(α, σ, µ)	10.4962	156.021	226.737
		(1.5249)	(17.0742)	(16.1174)
	Kappa(α, θ, β)	0.881944	1.83423	46.7766
		(1.20898)	(1.74096)	(23.4308)
	WG( λ , a , b)	0.648328	0.00815663	1.40982
		(0.454225)	(0.00451551)	(0.333492)

Table 6 :

 6 Goodness of fit statistics for jiwani data

	Distributions	Log(L)	AIC	AICC	HQIC	CAIC
	GG(θ, λ)	-157.521	319.042	319.487	319.939	319.487
	Weibul(λ, k)	-158.359	320.717	321.162	321.614	321.162
	Gumbel(µ, σ)	-162.542	329.084	329.529	329.981	329.529
	EE(α, λ)	-158.223	320.446	320.891	321.343	320.891
	GGu(α, σ, µ)	-166.937	339.874	340.797	341.219	340.797
	Kappa(α, θ, β)	-159.344	324.688	325.611	326.033	325.611
	WG( λ , a , b)	-158.038	322.077	323.000	323.422	323.000
	Distributions	A *	W *	KS	p	
	GG(θ, λ)	0.4193	0.0798668	0.141087	0.589015	
	Weibul(λ, k)	0.517542	0.095075	0.165072	0.387045	
	Gumbel(µ, σ)	2.10048	0.349666	0.265105	0.0294899	
	EE(α, λ)	0.54145	0.102138	0.167958	0.365793	
	GGu(α, σ, µ)	5.2192	0.858108	0.321454	0.00405898	
	Kappa(α, θ, β)	0.567106	0.101475	0.141822	0.582326	
	WG( λ , a , b)	0.503657	0.0945876	0.153904	0.476065