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THE INITIAL VALUE PROBLEM FOR THE EULER EQUATIONS OF

INCOMPRESSIBLE FLUIDS VIEWED AS A CONCAVE

MAXIMIZATION PROBLEM

YANN BRENIER

Abstract

We consider the Euler equations of incompressible fluids [2, 7] and attempt to solve
the initial value problem with the help of a concave maximization problem. We show
that this problem, which shares a similar structure with the optimal transport problem
with quadratic cost, in its ”Benamou-Brenier” formulation [3, 1, 10], always admits a
relaxed solution that can be interpreted in terms of sub− solution of the Euler equations
in the sense of convex integration theory [5]. Moreover, any smooth solution of the Euler
equations can be recovered from this maximization problem, at least for short times.

Keywords. Fluid mechanics, partial differential equations, calculus of variation, optimal
transport, Euler equations

Introduction

Let us fix a time interval [0, T ] and denote by D the periodic box D = R
d/Zd. The

Euler model [2, 7] of an incompressible fluid of unit mass density, moving in D during the
time interval [0, T ], without external forces, assumes the existence of a square-integrable,
divergence-free vector field V , over [0, T ]×D, such that (written in coordinates, with the
usual implicit summation over repeated lower and upper indices) ∂tV

i + ∂j(V
iV j) is a

gradient field. In weak form, this means

(0.1)

∫

[0,T ]×D

∂iϕ(t, x)V
i(t, x)dxdt = 0,

for all smooth function ϕ over [0, T ]×D, which encodes that V is divergence-free and

(0.2)

∫

[0,T ]×D

(

∂jAiV
iV j + ∂tAiV

i
)

(t, x)dxdt+

∫

D

P i
0(x)Ai(0, x)dx = 0,

for all smooth divergence-free vector fields A on [0, T ] × D, vanishing at t = T , which
includes (weakly) the initial condition that V is P0 at time t = 0, P0 being a given L2

divergence-free vector field on D.
Our goal is to solve, by a concave maximization method, the initial value problem for

the Euler model with as initial condition a fixed divergence-free vector field P0, square
integrable over D and of zero spatial mean. The idea is very simple: we try to find a
divergence-free vector field V , weak solution to the Euler equation with initial condition
P0, of minimal kinetic energy. This leads to the saddle-point problem
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(0.3) I[P0] = inf
V

sup
A,ϕ

∫

[0,T ]×D

1

2
|V |2 + ∂jAiV

iV j + (∂tAi + ∂iϕ)V
i +

∫

D

P i
0Ai(0, ·)

over all L2 vector fields V on [0, T ] ×D, all smooth divergence-free vector fields A van-
ishing at t = T , and all smooth real functions ϕ. We may interpret (A,ϕ) as Lagrange
multipliers for the constraint that V is a weak solution to the Euler equations with initial
condition P0, in the sense of (0.1,0.2). Investigating problem (0.3) looks silly since the
Euler equation to be solved is already included as a constraint! Furthermore, for smooth
solutions of the Euler equation on the periodic box, the kinetic energy is constant in
time and, therefore, depends only on the data P0, so that...there seems to be nothing to
minimize! However, for a fixed initial condition, weak solutions are not unique and the
conservation of energy is generally not true as well known since the celebrated results of
Scheffer, Shnirelman, De Lellis and Székelyhidi [8, 9, 5]. Therefore, since, in addition,
weak solutions always exist, following Wiedemann [11], the minimization problem is def-
initely not meaningless.

In this paper, we mostly investigate the dual problem obtained by exchanging the in-
fimum and the supremum in (0.3), leading to a concave maximization problem which will
be shown to be solvable in section 2, after a suitable reformulation of the concept of weak
solutions established in section 1. The resulting maximization problem roughly reads

sup
(E,B)

−
∫

[0,T ]×D

E · (Id + 2B)−1 · E + 2P0 · E

where Id denotes the d× d identity matrix, E and B are respectively valued in R
d and in

the space of d× d symmetric matrices, and subject to

∂tB = LE, B(t = T, ·) = 0,

L being a suitable first-order constant coefficient (pseudo-)differential operator on D,
namely (in coordinates)

Lk
ijEk =

1

2
(∂jEi + ∂iEj) + ∂i∂j(−△)−1∂kEk, where ∂

k = δkj∂j and △ = δij∂i∂j .

Surprisingly enough, this problem looks very similar to the Monge optimal mass transport
problem with quadratic cost in its ”Benamou-Brenier” formulation [3, 1, 10], which would
read

inf
ρ,Q

∫

[0,T ]×D

Q · ρ−1 ·Q,

where ρ and Q are respectively valued in R+ and R
d and subject to ∂tρ+ ∂iQ

i = 0, while
ρ is prescribed at t = 0 and t = T . Presumably, the maximization problem can be treated
by the same numerical method as the one used in [3].

Next, in section 3, we will establish the consistency result that any local smooth so-
lution of the Euler equations can be recovered, from the maximization problem, for short
enough times T .
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Finally, in section 4, we will make a connection between the maximization problem and
the theory of sub-solutions to the Euler equations which has recently attracted a lot of
interest after the celebrated work of De Lellis and Székelyhidi [5] in the framework of
Convex Integration theory.

Acknowledgment. This work has been partly supported by the grant ISOTACE ANR-
12-MONU-0013 (2012-2016). The author thanks Nassif Ghoussoub for exciting discussions
(held at the Erwin Schrödinger Institute in the summer of 2016) about his new theory of
”optimal ballistic transport” [6], which were certainly influential for the present paper.
He is also grateful to the Schrödinger Institute and to the CNRS-INRIA MOKAPLAN
team for their help during the preparation of this work.

1. Reformulation of the weak formulation of the Euler equations

We first revisit definition (0.1,0.2) of weak solutions to the Euler equations by sub-
stituting for (A,ϕ) the smooth fields (E,B) respectively valued in R

d and in the set of
symmetric d× d matrices, defined (in coordinates) on [0, T ]×D by

Ei = ∂tAi + ∂iϕ , Bij =
1

2
(∂jAi + ∂iAj).

We first observe that B(T, ·) = 0, while (E,B) satisfy the compatibility condition:

∂tBij =
1

2
(∂jEi + ∂iEj)− ∂i∂jϕ.

Since A is divergence free, B is trace-less and, therefore,

△ϕ = ∂kEk, with notations : ∂k = δjk∂j , △ϕ = ∂k∂k.

Thus, in short, (E,B) are just subject to constraint

(1.4) ∂tB = LE, B(T, ·) = 0.

where L is the constant (pseudo-)differential operator of order 1 defined by

(1.5) Lk
ijEk =

1

2
(∂jEi + ∂iEj) + ∂i∂j(−△)−1∂kEk, where ∂

k = δkj∂j and △ = δij∂i∂j .

Constraint (1.4) can be, as well, written in weak form:

(1.6)

∫

(t,x)∈[0,T ]×D

Bij(t, x)ζ
′(t)ψij(x)− Ek(t, x)ζ(t)

(

∂jψ
kj − ∂k(−△)−1∂i∂jψ

ij
)

(x) = 0

for all smooth functions ζ on [0, T ] vanishing at t = 0 and all smooth functions ψ on D
valued in the set of d × d symmetric matrices. Notice that expression (1.6) still makes
sense as (E,B) are just bounded Borel measures over [0, T ] × D. Later on, we will use
the class, denoted by EB, of such measures subject to (1.6).

Next, in order to reformulate (0.1,0.2) entirely in terms of (E,B) instead of (A,ϕ) we
have to express the time-boundary term

∫

D
P0 · A(0) in terms of (B,E). We have

A(0, x) = −
∫ T

0

∂tA(t, x)dt,
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since A(T, ·) = 0. Thus
∫

D

P0 ·A(0) = −
∫

[0,T ]×D

P0 · ∂tA = −
∫

[0,T ]×D

P0 · E

(by definition of E, using that P0 is divergence-free with zero spatial mean). Finally, using
(E,B) instead of (A,ϕ), in definitions (0.1,0.2), we conclude:

Proposition 1.1. Given a divergence-free zero-mean L2-vector-field P0 on D, an L2

vector-field V over [0, T ]×D is a weak solution to the Euler equations with initial condition
P0, in the sense of (0.1,0.2), if and only if

(1.7)

∫

[0,T ]×D

V iV jBij + (V i − P i
0)Ei = 0,

for all smooth fields (E,B) respectively valued in R
d and in the set of symmetric d × d,

that are subject to constraint (1.4), namely

B(T, ·) = 0, ∂tBij =
1

2
(∂jEi + ∂iEj) + ∂i∂j(−△)−1∂kEk.

In addition, in the new definition (1.7) of weak solutions, we may extend the range of
trial fields (E,B) to the class EB2,∞ which is the intersection of L2 × L∞ with the class
EB of all bounded Borel measures on [0, T ]×D satisfying (1.6).

The proof is straightforward: the first statement directly follows from the previous
calculations, while the second one follows from the rather obvious property that EB2,∞ is
just the L2×L∞ weak-* closure of the class EBsmooth of its own smooth elements. [Indeed,

every (E,B) in EB2,∞ can be approximated, as closely as needed, by (Ẽ, B̃) ∈ EBsmooth

in two steps: we first, mollify E on [0, T ] × D and get Ẽ; then, we just set B̃(t, x) =

−
∫ T

t
LẼ(s, x)ds so that (1.4), and therefore (1.6), is still satisfied by (Ẽ, B̃), while B̃

stays close to B.]

2. A concave maximization problem

Using the new definition (1.7) of weak solutions we found in the previous section, we
may formulate the original minimization problem (0.3) just as

(2.8) I[P0] = inf
V

sup
(E,B)∈EB2,∞

∫

[0,T ]×D

1

2
V iV j(δij + 2Bij) + (V i − P i

0)Ei,

Since inf sup ≥ sup inf, we get the lower bound

I[P0] ≥ J [P0] = sup
(E,B)∈EB2,∞

inf
V

∫

[0,T ]×D

1

2
V iV j(δij + 2Bij) + (V i − P i

0)Ei.

In this ”dual” problem, the infimum over all L2 vector fields V on [0, T ]×D × R
d is very

easy to deal with. Indeed, it is certainly equal to −∞ unless

(2.9) Id + 2B ≥ 0, a.e. in [0, T ]×D,

in the sense of symmetric matrices. Next, we observe that, because (E,B) belongs to
EB2,∞, B must be trace-free. Indeed, this follows from (1.4), using definition (1.5) of L.
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So, denoting by λ(α) ∈ R the eigenvalues of B, for α ∈ {1, · · ·, d}, we have (using (2.9)):

0 ≤ 1 + 2λ(α) ≤
d

∑

β=1

(1 + 2λ(β)) = d,

and, therefore,

(2.10) −Id ≤ 2B ≤ (d− 1)Id,

which provides an a priori L∞ bound for B (since B is valued in the set of symmetric
matrices). We also get

(2.11) (Id + 2B)−1 ≥ d−1
Id.

and, after minimization in V ,

(2.12) J [P0] = sup
(E,B)∈EB2,∞

−K[E,B]−
∫

[0,T ]×D

P0 · E,

where

(2.13) K[E,B] =
1

2

∫

[0,T ]×D

E · (Id + 2B)−1 · E.

This immediately implies J [P0] ≥ 0 (just by taking E = B = 0).
Here, we emphasize that (2.12) is a concave maximization problem in (E,B). Indeed, we
can write, point-wise in (t, x),

E · (Id + 2B)−1 · E = sup
M,Z

2EiZ
i − (δij + 2Bij)M

ij

where M and Z are respectively d× d symmetric matrices and vectors in R
d subject to

(2.14) Z ⊗ Z ≤M,

in the sense of symmetric matrices. This allows us to give a more precise definition of K,
namely

(2.15) K[E,B] = sup
M≥Z⊗Z

1

2

∫

[0,T ]×D

2EiZ
i − (δij + 2Bij)M

ij ∈ [−∞, 0],

where the infimum is performed over all pairs (Z,M) of continuous functions on [0, T ]×D,
respectively valued in R

d and in the set of symmetric matrices M . Notice that definition
(2.15) makes sense already as (E,B) is just a pair of bounded Borel measures on [0, T ]×D,
and a fortiori as (E,B) belong to L2 × L∞. In both cases, K is a lower semi-continuous
convex function of (E,B) valued in [0,+∞]. Next, because of the lower bound (2.11), we
get an L2 a priori bound for E. Indeed, by definition (2.13) of K, we have:

1

2d

∫

[0,T ]×D

|E|2 ≤ K[E,B].

So, for any ε−maximizer (E,B) ∈ EB2,∞ of (2.12), we get

0 ≤ J [P0] ≤ ε−K[E,B]−
∫

[0,T ]×D

P0 · E ≤ ε− 1

4d

∫

[0,T ]×D

(2|E|2 + 4dP0 · E)

= ε− 1

4d

∫

[0,T ]×D

(|E|2 + |E + 2dP0|2 − 4d2|P0|2) ≤ ε− 1

4d

∫

[0,T ]×D

(|E|2 − 4d2|P0|2)



6

which provides the a priori bound, for every ε−maximizer (E,B) ∈ EB2,∞ of (2.12),

(2.16)

∫

[0,T ]×D

|E|2 ≤ 4dε+ 4d2T

∫

D

|P0|2.

We also deduce

0 ≤ J [P0] ≤ Td

∫

[0,T ]×D

|P0|2.

[Indeed 0 ≤ J [P0] ≤ ε− 1

4d

∫

[0,T ]×D

(|E|2 − 4d2|P0|2) ≤ ε+ Td

∫

D

|P0|2.]

By definition (2.15), K is lower semi-continuous with respect to the weak-* topology of
L∞ × L2, while

E →
∫

[0,T ]×D

P0 · E,

is continuous (since P0 is given in L2) and EB2,∞ is weak-* closed in L∞ × L2. Thus, we
conclude that the maximization problem (2.12) always has at least an optimal solution
(E,B) in class EB2,∞, since its ε−maximizers stay confined in a fixed ball (and therefore
a weak-* compact subset) of L∞ × L2, as ε goes to zero.

In addition, let us observe that, for any (E,B) in EB2,∞,
∫

D

(Bij(t1, ·)− Bij(t0, ·))ψij ≤
√
t1 − t0 ||E||L2([0,T ]×D)||L∗ψ||L∞(D)

for all t0 ≤ t1 in [0, T ] and or all smooth functions ψ on D, valued in the set of d × d
symmetric matrices, where

(L∗)kijψ
ij = ∂jψ

kj − ∂k(−△)−1∂i∂jψ
ij

(because of (1.4) and, more precisely, (1.6)). Thus any maximizer (E,B) must satisfy
∫

D

(Bij(t1, ·)−Bij(t0, ·))ψij ≤ 2d
√
T
√
t1 − t0 ||P0||L2(D)||L∗ψ||L∞(D),

because of (2.16). This shows that B belongs to C1/2([0, T ], C1(D)′w∗).

So, we have finally obtained:

Theorem 2.1. Let P0 ∈ L2(D,Rd) be a divergence-free vector field of zero spatial mean.
Let EB∞,2 be the class of all L2 × L∞ fields (E,B) on [0, T ] × D, respectively valued in
R

d and in the set of symmetric d× d matrices, that are subject to constraint

B(T, ·) = 0, ∂tBij =
1

2
(∂jEi + ∂iEj) + ∂i∂j(−△)−1∂kEk

(or, more precisely, (1.6)). Then the maximization problem

J [P0] = sup
(E,B)∈EB2,∞

−
∫

[0,T ]×D

(

1

2
E · (Id + 2B)−1 · E + P0 · E

)

(or, more precisely, (2.12,2.15)), always admits a solution (E,B). In addition,

spect(B) ⊂ [−1/2, (d− 1)/2],

∫

[0,T ]×D

|E|2 ≤ 4d2T

∫

D

|P0|2, 0 ≤ J [P0] ≤ Td

∫

D

|P0|2,
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and B belongs to C1/2([0, T ], C1(D)′w∗).

Remark 2.1. Notice that all the a priori bounds found for problem (2.12) are still valid
when addressing the relaxed maximization problem

(2.17) sup
(E,B)∈EB

−K[E,B]−
∫

[0,T ]×D

P0 · E,

where we only require (E,B) to be plain bounded Borel measures and no longer in the
space L2 × L∞, while K should be understood as in (2.15) and P0 is restricted to be in
the class of continuous divergence-free vector fields, with zero-mean, on D, so that

E →
∫

[0,T ]×D

P0 · E,

is still well defined and continuous. Since the ε−maximizers of this relaxed problem must
satisfy the same a priori bounds (2.10,2.16) as the ones of (2.12), they necessarily belong
to the subspace L2 × L∞, which implies that both problems (2.12) and (2.17) admit the
same optimal value J [P0] and the same maximizers.
In the last section of this paper, the relaxed problem (2.17) will be reformulated and solved
(at least in the case when P0 is continuous) by a duality method which will establish a
link with the concept of sub-solution used by De Lellis and Székelyhidi in their approach
of the Euler equations by ”Convex Integration” [5].

3. Recovery of smooth classical solutions to the Euler equations

We want now to show that the optimization problem (2.12) addressed in the previous
section is consistent with the classical theory of local smooth solutions of the initial value
problem for the Euler equations. More precisely:

Theorem 3.1. Let V be a smooth solution to the Euler equations with initial condition
P0 and let A be the unique solution of the linear final-value problem

(3.18) ∂tAi + (δij + ∂jAi + ∂iAj)V
j + ∂iϕ = 0, ∂jAj = 0, A(T, ·) = 0.

If T is small enough the matrix-valued field δij + ∂jAi + ∂iAj stays uniformly bounded
away from zero in [0, T ]×D and, then, the pair (E,B) defined by

Ei = ∂tAi + ∂iϕ , Bij =
1

2
(∂jAi + ∂iAj)

is a a maximizer for the concave maximization problem (2.12), while V can be recovered
as V = −(Id + 2B)−1E.

Proof of Theorem 3.1. Let V be a smooth solution to the Euler equations, which
implies that V is weak solution in the sense of Proposition 1.1. Let us solve the linear
final-value problem (3.18), which means that A is a time-dependent divergence-free vector
of zero spatial mean, vanishing at t = T such that, in coordinates,

∂tAi + (δij + ∂jAi + ∂iAj)V
j + ∂iϕ = 0, in [0, T ]×D,

∫

D

Ai(t, ·) = 0, ∀t ∈ [0, T ],

for some scalar field ϕ, which can be alternately written

∂tAi + V j∂jAi − Aj∂iV
j + ∂iψ + Vi = 0, ∂jAj = 0, A(T, ·) = 0,

∫

D

Ai(t, ·) = 0,
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(where ψ is just ϕ+AjV
j). Because V is supposed to be smooth, this linear problem can

be solved by standard methods and admits a unique smooth solution A on [0, T ]×D. In
addition, there is a positive time T0 depending only on V , such that, as long as 0 < T ≤ T0,
the field of symmetric matrices δij+∂jAi+∂iAj , which is just δij at time T , stays bounded
away from 0, uniformly in (t, x) ∈ [0, T ]×D. In this case, we deduce from (3.18)

(3.19) E = −(Id + 2B) · V, V = −(Id + 2B)−1 · E,
where Bij = ∂jAi + ∂iAj and Ei = ∂tAi + ∂iϕ. Thus, using notation (2.13), namely

K[E,B] =
1

2

∫

[0,T ]×D

E · (Id + 2B)−1 · E,

we get

2K[E,B] = −
∫

[0,T ]×D

V · E =

∫

[0,T ]×D

V · (Id + 2B) · V =

∫

[0,T ]×D

2V · B · V + |V |2.

By definition, (E,B) are smooth and satisfies constraint (1.4), namely

∂tB = LE, B(T, ·) = 0.

Using that V is a weak solution of the Euler equations in the sense of Proposition (1.1),
we get (1.7), namely

∫

[0,T ]×D

V · B · V + (V − P0) ·E = 0.

Thus

2K[E,B] =

∫

[0,T ]×D

2P0 · E − 2V · E + |V |2 = 4K[E,B] +

∫

[0,T ]×D

2P0 · E + |V |2,

which shows

−K[E,B]−
∫

[0,T ]×D

P0 · E =
1

2

∫

[0,T ]×D

|V |2.

By definition of problems (2.8) and (2.12), we have on one hand

(3.20)

∫

[0,T ]×D

1

2
|V |2 ≥ I[P0] ≥ J [P0]

and, on the other hand,

J [P0] ≥ −K[E,B]−
∫

[0,T ]×D

P0 · E.

So, we conclude that
∫

[0,T ]×D

1

2
|V |2 = I[P0] = J [P0] = −K[E,B]−

∫

[0,T ]×D

P0 · E,

which means that there is no duality gap and that (E,B) is a maximizer of problem
(2.12), from which V can be recovered as V = −(Id+2B)−1 ·E. This completes the proof
of Theorem 3.1.
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4. Convex duality and sub-solutions of the Euler equations

Our last result establishes a link between the relaxed concave maximization problem
(2.17) and the concept of sub-solution for the Euler equations, as discussed in [5] in
the context of ”Convex Integration”. Here, we limit ourself to sub-solutions that are
continuous on [0, T ]×D.

Definition 4.1. We say that a pair of continuous functions (Z,M) on [0, T ]×D, respec-
tively valued in R

d and in the space of d× d symmetric matrices, is a sub-solution to the
Euler equations with initial condition P0 if
i) M ≥ Z ⊗ Z, holds true point-wise in [0, T ]×D, in the sense of symmetric matrices;
ii) for every smooth divergence-free vector fields A on [0, T ] × D, of zero spatial mean,
that vanishes at t = T and each smooth functions ϕ on [0, T ]×D, we have

(4.21)

∫

(t,x)∈[0,T ]×D

∂iϕ(t, x)Z
i(t, x) = 0,

(4.22)

∫

(t,x)∈[0,T ]×D

(

∂tAi(t, x)Z
i(t, x) + ∂iAj(t, x)M

ij(t, x)
)

= −
∫

D

Ai(0, x)P
i
0(x)dx.

Just as we did for weak solutions, we get:

Proposition 4.2. (Z,M) is a continuous sub-solution of the Euler equations with initial
condition P0 if and only if M ≥ Z ⊗ Z and

(4.23)

∫

[0,T ]×D

M ijBij + (Z i − P i
0)Ei = 0,

for all smooth fields (E,B) respectively valued in R
d and in the set of symmetric d × d

matrices, that are subject to constraint (1.4), namely

B(T, ·) = 0, ∂tBij =
1

2
(∂jEi + ∂iEj) + ∂i∂j(−△)−1∂kEk.

Let us now state the main result of this last section:

Theorem 4.3. Let P0 be a continuous divergence-free vector-field, with zero spatial mean,
on D. Then the infimum of

1

2

∫

[0,T ]×D

δijM
ij

over all continuous sub-solutions (Z,M) of the Euler equations with initial condition P0

(in the sense of Proposition 4.2) is finite and just equal to the optimal value of the relaxed
problem (2.17), namely

J [P0] = max
(E,B)∈EB

−
∫

[0,T ]×D

P0 · E +
1

2
E · (Id + 2B)−1 · E,

where EB is the class of all Borel measures subject to constraint (1.6).
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Proof of Theorem 4.3. The infimum considered at the beginning of Theorem 4.3 can
be expressed exactly as

inf
(Z,M)

K1(Z,M) +K2(Z,M)

where K1 and K2 are the following convex functions

(4.24) K1(Z,M) =

∫

[0,T ]×D

1

2
δijM

ij or +∞

whether or not M ≥ Z ⊗ Z is satisfied point-wise, in the sense of symmetric matrices,

(4.25) K2(Z,M) = K3(Z − P0,M)

(4.26) K3(Z,M) = sup {
∫

[0,T ]×D

EiZ
i +BijM

ij , (E,B) ∈ EBsmooth},

where EBsmooth denotes the class of all smooth pairs (E,B) defined on [0, T ] × D with
values respectively taken in R

d and in the set of d× d symmetric matrices, which satisfy
constraint (1.4), namely

∂tB = LE, B(T, ·) = 0,

where L is the linear operator defined by (1.5). Notice that B is identically trace-free
(since δijLk

ij = 0 and B(T, ·) = 0) which implies K3(Z,M) = 0, whenever Z = 0 and M
is identically diagonal, a property that we will use in a moment.

There is a rather obvious point (Z,M), namely

Z(t, x) = P0(x), M(t, x) = (1 + |P0(x)|2)Id, ∀(t, x) ∈ [0, T ]×D,

at which K1 is finite and continuous while K2 is just finite.

[Indeed, on one hand, ξ · (M − Z ⊗ Z) · ξ = (1 + |P0|2)|ξ|2 − (P0 · ξ)2 ≥ |ξ|2, for all
ξ ∈ R

d, which implies that M ≥ Z ⊗ Z holds true in a neighborhood (for the sup-norm)
of (Z,M) and, therefore, by definition (4.24),

K1(Z,M) =

∫

[0,T ]×D

1

2
δijM

ij

is finite and continuous in that neighborhood. On the other hand,

K2(Z,M) = K3(Z − P0,M) = K3(0,M) = 0,

since M is diagonal, as just noticed above.]

This is enough to apply Rockafellar’s duality theorem (as stated in Chapter 1 of Brezis’
book [4]) and deduce

(4.27) inf
(Z,M)

K1(Z,M) +K2(Z,M) = max
(E,B)

−K∗
1 (−E,−B)−K∗

2 (E,B),

where the minimization is performed over the Banach space of all pairs of continuous
functions (Z,M) valued in R

d and in the space of d × d symmetric matrices, while the
maximization is performed over the dual Banach space of all pairs of bounded Borel
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measures (E,B), still valued in R
d and in the space of d× d symmetric matrices. In this

relation, K∗
1 , K

∗
2 denote the Legendre-Fenchel transform of K1 and K2, namely

K∗
1 (E,B) = sup

(Z,M)

−K1(Z,M) +

∫

[0,T ]×D

Z iEi +M ijBij

K∗
2 (E,B) = sup

(Z,M)

−K2(Z,M) +

∫

[0,T ]×D

Z iEi +M ijBij .

In the duality equality (4.27), the calculation of K∗
1(−E,−B) is easy. Indeed,

K∗
1 (−E,−B) = sup

M≥Z⊗Z

∫

[0,T ]×D

−Z iEi −
1

2
M ij(δij + 2Bij)

is equal to +∞, unless Id + 2B ≥ 0 in the sense of symmetric matrices, in which case

K∗
1 (−E,−B) = sup

Z

∫

[0,T ]×D

−Z iEi −
1

2
(δij + 2Bij)Z

iZj,

which we can write in the more compact (but less precise) form:

K∗
1 (−E,−B) =

1

2

∫

[0,T ]×D

E · (Id + 2B)−1 · E ∈ [0,+∞].

Let us now compute K∗
2 . We find (by definition (4.25)

K∗
2 (E,B) = sup

(Z,M)

−K3(Z − P0,M) +

∫

[0,T ]×D

EiZ
i +BijM

ij

= K∗
3 (E,B) +

∫

[0,T ]×D

EiP
i
0.

By definition of K3 in (4.26), K∗
3 (E,B) is just zero or +∞ whether or not (E,B) belongs

to the weak-* closure of class EBsmooth. This closure is nothing but the class EB of all
bounded Borel measures (E,B) valued in R

d and in the space of d×d symmetric matrices
that satisfy constraint (1.4), or, more precisely (1.6). [The reason being the same as the
one for which EB∞,2 is the weak-* closure of class EBsmooth in L

2×L∞ as already explained
when proving Proposition 1.1 in section 1.] Therefore, the duality equality (4.27) exactly
gives the result stated in Theorem 4.3 which completes the proof.
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[1] L. Ambrosio, N. Gigli, G. Savaré, Gradient flows in metric spaces and in the space of probability

measures, Lectures in Mathematics ETH Zürich, Birkhäuser , 2008.
[2] V.I. Arnold, B. Khesin, Topological methods in hydrodynamics, Applied Mathematical Sciences, 125,

Springer-Verlag 1998.
[3] J.-D. Benamou, Y. Brenier, A Computational Fluid Mechanics solution to the Monge-Kantorovich

mass transfer problem, Numer. Math. 84 (2000) 375-393.
[4] H. Brezis, Analyse Fonctionnelle Appliquée , Masson, Paris, 1974.
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