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Abstract:

Verifying the compatibility of communicating peers is a crucial issue in critical dis-

tributed systems. Unlike the synchronous world, the asynchronous world covers a

wide range of message ordering paradigms (e.g. FIFO or causal) that are instrumen-

tal to the compatibility of peer compositions. We propose a framework that takes

into account the variety of asynchronous communication models and compatibility

properties. The notions of peer, communication model, system and compatibility

criteria are formalized in TLA+ to benefit from its verification tools. We present

an implemented toolchain that generates TLA+ specifications from the behavioral

descriptions of peers and checks compatibility of the composition with respect to

given communication models and compatibility criteria.

Keywords: aynchronous communication, peer composition, compatibility check-

ing, TLA+

1 Introduction

Building systems through assembling and coordinating off-the-shelf components is a thriving

software production principle. The formal verification of the correctness of the composition of

a set of peers is crucial to this approach when it comes to critical systems. In this setting, the

interaction model can directly impact the properties of the global system. In distributed algo-

rithms research, it has long been known that the properties of the communication, and especially

the order of message delivery, is essential to the correctness of the algorithms. For instance,

the Chandy-Lamport snapshot algorithm [CL85] requires that the communication between two

processes is FIFO, and Misra’s termination detection algorithm [Mis83] works with a ring con-

taining each node once if the communication ensures causal delivery, but requires a cycle visiting

all network edges if communication is only FIFO.

Although the question of characterizing the properties of a set of combined services has been

extensively studied for quite a long time (e.g. [BZ83, LW11]), existing works are restricted, to

the best of our knowledge, to a specific interaction model (either synchronous or asynchronous,

or coupling via bounded buffers), to which their formalization and verification framework are

dedicated. Moreover the diversity of asynchronous communication models is generally ignored.



We present a framework and a ready-to-use automated toolchain, based on TLA+, that en-

ables to check LTL properties on distributed systems. A system is the conjunction of peers and

communications models (TLA+ modules) that interact through channels. Unlike many existing

approaches, explicit senders and receivers are not required which allows for a greater variety of

specifications. Although several communication models and compatibility LTL properties are

supplied, the framework can be extended at will with additional ones thanks to its modular struc-

ture and transition system base. These additions can be generic or fulfill system-specific needs

(case-by-case adaptation). Finally, it integrates well with other tools: peer specification helpers,

not part of the core framework, are provided in the presented toolchain.

The outline of this paper is the following. Section 2 introduces our views on asynchronous

communication and the choices made to model interaction. Several classic communication mod-

els are then presented. They highlight the diversity of asynchronous communication. Section 3

presents the core framework and an automated toolchain where peers are specified with transi-

tion systems derived from CCS terms. Section 4 presents a use case example and a performance

benchmark. Section 5 provides an overview of the conceptual background of this work and,

eventually, the conclusion draws perspectives after summing up this work.

2 Asynchronous communication

2.1 Intuition

Communication consists in exchanging messages whose content is not relevant outside the scope

of peers’ internal behavior. Messages are sent on channels. Channels do not have explicit sender

and receiver and are not limited to one sender/one receiver. They are nevertheless a point-to-point

communication abstraction: a given message has exactly one sender and is received only once.

Loose channels allow for richer and more elegant system specifications, where the reception of

a message can occur on a peer that depends on the communication medium’s state.

From the traditional distributed systems viewpoint, the communication medium controls the

messages deliveries. Peers cannot impose a delivery order. However, a peer specifies which

channels it listens to in order to prevent the delivery of a message it is not and never will be

concerned about. For instance, a peer that only expects to receive a message from channel a

followed by a message from channel b cannot impose the reception order (the communication

model will have to if this is essential to compatibility), but it can specify it only listens to channels

a and b, thus preventing the communication medium from imposing a message from another

channel.

2.2 Communication Models

We describe seven asynchronous communication models in table 1 and provide instance imple-

mentations, often based on queues, to illustrate them. They enforce an order of message recep-

tions in relation with the order of their emissions. For instance, in Mn−1, each peer has a unique

mailbox which is FIFO-ordered. Messages are delivered to this peer in their absolute send order-

ing, whatever the sending peers are. This contrasts with M1−1 where a queue is present between

every couple, and no order is imposed between two messages coming from different peers.



Table 1: Communication Models Description

Model Specification Intuitive Implementation

Masync Fully asynchronous. No order

on message delivery is imposed.

A bag from which messages

are non-deterministically re-

trieved.

async

?
×1

Mn−n Global ordering. Messages are

delivered in their send order.

A unique FIFO queue where

all messages are put in and re-

trieved from.

n n

×1

M1−n Messages from the same peer

are delivered in their send order.

An output queue for each peer

(outbox) from which mes-

sages are instantly retrieved.

1 n

×n

Mn−1 On a given peer, messages are

received in their send order.

An input queue for each peer

(mailboxes) where messages

are instantly deposited.

n 1

×n

M1−1 Messages between two desig-

nated peers are delivered in their

send order.

A FIFO queue between each

couple of peers.

1 1

×n
2

Mcausal Messages are delivered accord-

ing to the causality of their emis-

sion [Lam78].

Using causal histo-

ries [SM94] or logical

matrix clocks [RST91].

MRSC Messages are immediately deliv-

ered after their send [CMT96].

A 1-slot unique buffer shared

by all peers.

RSC

×1

Bounded Implementations Some variations also include the possibility to count and/or limit

the number of in transit messages, locally (peer) or globally. A counter of in transit messages

is updated at send and receive events. It is used in a threefold manner. First, an enforced limit

models a bounded network where the emission of a message is not always enabled. Secondly, the

state space is reduced, thus making its exploration quicker. Thirdly, for a correct finite system,

the maximal value of the counter is the highest number of in transit messages.

Composite Models We also consider composite communication models made up of several

other models. Each one of them manages communication on its own subset of channels. This

makes it possible to ensure different ordering properties on these channel groups.

3 A Framework for the Verification of Asynchronously Communi-

cating Peers

This section presents a framework aimed at checking compatibility properties over a composition

of a set of peers and a communication model (possibly composite). Peers and communication

models are both specified using transition systems. Interactions between them are represented by
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Figure 1: Main Steps Performed by the Framework

a synchronous product. These notions are translated into TLA+ specifications where this product

appears as a conjunction of actions. The choice of TLA+ as the specification language arises

from the high-level structures (such as sets, tuples and functions) it offers. This paves the way

for evolved communication models implementations that for instance rely on nested message

histories. The "actions as predicates" approach also eases the synchronous product operation.

Figure 1 provides an overview of the different implemented steps to perform the automatic

verification of a composition. They are detailed in the following sections.

3.1 TLA+ Specification Language

TLA+ [Lam03] is a formal specification language based on untyped Zermelo-Fraenkel set theory

for specifying data structures, and on the temporal logic of actions (TLA) for specifying dynamic

behaviors. Expressions rely on standard first-order logic, set operators, and several arithmetic

modules. System properties are specified using TLA which is a variant of linear temporal logic

(LTL).

The dynamic behavior of a system is expressed as a transition system whose specification is

usually written as Init ∧✷[Next ]vars ∧F , where Init is a predicate specifying the initial states,

Next is the transition relation, usually expressed as a disjunction of actions, and F expresses

fairness conditions. Weak fairness WFv (A) means that either infinitely many A steps occur or

A is infinitely often disabled. An action formula describes the changes of state variables after a

transition. In an action formula, x denotes the value of a variable x in the origin state, and x ′

denotes its value in the destination state. UNCHANGED x means that x ′ = x .

Functions are primitive objects in TLA+. The application of function f to an expression e is

written as f [e]. [x ∈ X 7→ e] denotes the function that maps any x ∈ X to e , and [f EXCEPT ![e1] =
e2] is a function which is equal to f except at point e1, where its value is replaced with e2. Tuples

(a.k.a. sequences) are functions with domain 1..n . Tuples are written 〈a1,a2,a3〉. 〈〉 is the empty

sequence. Modules are used to structure complex specifications. They can extend other mod-

ules, importing all their declarations and definitions, or be an instantiation of another module.

MI
∆

= INSTANCE M WITH q1 ← e1,q2 ← e2 . . . is an instantiation of M , where each symbols qi

is replaced by the expression ei . MI !x references x in the instantiated module.

3.2 System Model

A system is composed of a set of indexed peers P1, . . . ,Pn and a communication model M (pos-

sibly composite). They are specified using transition systems labelled by communication events.



Communication occurs when matching transitions in M and one of the Pi are synchronized and

the Pj (j 6= i) stutter. Internal actions τ can occur without synchronization. Since delivery is

stable in our models described in table 1, a minimal progress property (weak fairness in TLA+)

prevents infinite stuttering.

Channels are used instead of explicit sender and receiver. Thus, peer transitions are only char-

acterized by the nature of the communication (send "!" or receive "?") and the concerned channel

(e.g.
c!
−→). Peer states are characterized by program counters in TLA+ modules (e.g. figure 2).

The state of a composition P1, . . . ,Pn is an array of program counters which carries Pi ’s state

at index i . As for M , a send (resp. receive) transition accounts for a peer that has sent (resp.

received) a message. However, unlike peers, M also requires information about the identity of

the peer concerned by the communication operation to guarantee interesting ordering properties.

For instance,
3,c!
−−→ in M is to be synchronized with a

c!
−→ transition in P3. A TLA+ module cor-

responding to a communication model is specified using state variables and transition predicates

that implement the rules of message ordering. The notion of listened channels mentioned in 2.1

is also taken into account as additional information in the case of receive transitions, both in

the peers and communication models. For instance, in M ,
2,a?,{a,b,e}
−−−−−−−→ accounts for the recep-

tion of a message on channel a by P2 in a context where P2 listens to channels a , b, and e . It

is to be synchronized with a
a?,{a,b,e}
−−−−−−→ transition in P2. Although the inner functioning of the

peers is often irrelevant when it comes to checking the compatibility of a composition, modeling

data passing can be of interest and easily handled by additional fields on the transitions. Such

cases include lifting indeterminism, creating, or transmitting channels. Peers would have to be

specified accordingly in a more complex manner than with basic program counters.

Figure 2 shows an example of a system composed of two peers. The module instantiates the

causal communication model to get the send and receive actions. The two peers are respectively

initialized in states 11 and 14. Two transitions departs from state 14, depending on the reception

channel.

3.3 Causal Commununication Model (Mcausal ) Implementation

As an example, figure 3 shows the TLA+ module corresponding to an implementation of the

causal communication model Mcausal . The causal order [Lam78] is the weakest partial order

which contains both the peer local order and the send-receive order. Message histories are used

to keep track of this order. The state variables are net the set of in transit messages, and H the

array composed of a history (message set) for each peer. A message consists of a channel, the

sender id, and a snapshot of the sender’s history at send1. The reception predicate requires that

no in transit message (whose channel is listened to) appears in the history snapshot of the to-be-

received message. Thus it garantees that messages are not received in an order that would violate

the causality of their emission. The local history of each peer is updated in a way that describes

the causal ordering: at send and receive, the message is added in the peer local history (see

"∪{message}" at α and "∪{〈c1,p1,h1〉}" at β ); the link between send and receive is performed

when merging the message’s history to the receiver’s local history (see "∪h1" at β ).

1 Messages are unique because a peer history is strictly increasing.



MODULE composition

EXTENDS Naturals, peermanagement

CONSTANTS N

VARIABLES net

Vars
∆

= 〈peers, net〉
Com

∆

= INSTANCE causal WITH CHANNEL ←{“a”, “b”}

Init
∆

= Com !Init ∧peers = 〈11, 14〉 Initial states: First peer: state11 Second peer: state14

First peer: a!.b!

t1(peer)
∆

= trans(peer , 11, 12)∧Com !send(peer , “a”) First peer: state11
a!
−→ state12

t2(peer)
∆

= trans(peer , 12, 13)∧Com !send(peer , “b”) First peer: state12
b!
−→ state13

Second peer: a?.b?

t3(peer)
∆

= trans(peer , 14, 15)∧Com !receive(peer , “a”, {“b”, “a”}) Second peer: state14
a!
−→ state15

t4(peer)
∆

= trans(peer , 15, 16)∧Com !receive(peer , “b”, {“b”}) Second peer: state15
b?
−→ state16

t5(peer)
∆

= trans(peer , 14, 17)∧Com !receive(peer , “b”, {“b”, “a”}) Second peer: state14
b?
−→ state17

Fairness
∆

= ∀ i ∈ 1 . . N : (WFVars(t1(i))∧WFVars(t2(i))∧WFVars(t3(i))∧WFVars(t4(i))∧WFVars(t5(i)))
∧WFVars(Com ! internal ∧UNCHANGED peers)

Next
∆

= ∃ i ∈ 1 . . N : (t1(i)∨ t2(i))∨ t3(i))∨ t4(i))∨ t5(i))∨ (Com ! internal ∧UNCHANGED peers)
Spec

∆

= Init ∧✷[Next ]Vars ∧Fairness

Figure 2: Generated TLA+ Module:
a!

//
b!

// Composed with
a?

//

b?
((

b?
//

3.4 Compatibility

We define two universal peer states: 0 the terminal state, and ⊥ the faulty state. 0 characterizes a

peer that has reached a point where the tasks it was supposed to perform are done. ⊥ is reached

after an unexpected reception (that is to say a reception, imposed by the communication model,

that is not correctly handled by a peer). Whether a transition leads to 0, ⊥, or another state is

part of the peer specification. A compatibility property is given as an LTL formula. We denote

si the state of peer i and the following predicates are defined:

0∀
∆

= ∀i ∈ 1..n : si = 0 peers are all in the terminal state

0i
∆

= si = 0 termination of peer i

⊥∃
∆

= ∃i ∈ 1..n : si =⊥ an unexpected message has been delivered

The following compatibility properties are defined:

System Termination The system always reaches a terminal state. System |= ♦�0∀
Peer Termination Peer i always reaches a terminal state. System |= ♦�0i

No faulty receptions No unexpected reception ever occurs. System |=�¬⊥∃

No forever blocking communication At any time, at least one communication event

is possible (except if terminated or after a faulty reception).

System |=�(0∀∨⊥∃∨ ENABLED(R)) where R is the system transition relation.

In the figure 2 example: if we replace states 13 and 16 by 0, and 17 by ⊥, Mcausal makes it

impossible to reach ⊥ and the four mentioned compatibility properties hold.



MODULE causal

EXTENDS Naturals, FiniteSets

CONSTANTS CHANNEL, N The channels managed by the model and the number of peers

VARIABLES net , H

Init
∆

= ∧net = {}∧H = [i ∈ 1 . . N 7→ {}] Network and histories are initially empty

send(peer , chan)
∆

= Emission from peer of a message on channel chan

LET message
∆

= 〈chan, peer , H [peer ]〉IN Message content: channel, sender, and sender current history

∧ net ′ = net ∪{message} The message is added to the network

∧ H ′ = [H EXCEPT ! [peer ] = H [peer ]∪{message}] α : This send is made part of the peer history

receive(peer , chan, listened)
∆

= Reception, on peer, of a message on chan

∃〈c1, p1, h1〉 ∈ net : There is an in transit message such that

∧c1= chan The channels match

∧¬(∃〈c2, p2, h2〉 ∈ net : c2 ∈ listened ∧〈c2, p2, h2〉 ∈ h1) No in transit message of interest is in conflict

∧net ′ = net \〈c1, p1, h1〉 It is retrived from the in transit messages

∧H ′ = [H EXCEPT ! [peer ] = H [peer ]∪h1∪{〈c1, p1, h1〉}] β : The peer history is updated

Figure 3: TLA+ Module Associated to the Causal Communication Model

3.5 User Friendliness

Explicitly defining even quite simple peer transition systems can be cumbersome. One may

want to step back and provide more abstract specifications. The proposed framework provides

alternate ways to assist peers specification.

3.5.1 Peer Alternative Specification

A peer can alternatively be defined by a process specified with a CCS term. The peer transition

system is derived from the CCS term using the standard CCS rules [Mil99, p.39] and excluding

the synchronous communication rule. The translation from a CCS term to a transition system

is achieved through the Edinburgh Concurrency Workbench [CPS93]. On-the-fly construction

of the transition systems would make incompatibility detection more efficient as the complete

transition system may be unnecessary for a counter-example, but proving compatibility would

still require the entire peers transitions. PlusCal specifications, for instance, could also offer

practical alternatives to CCS and the explicit generation of transitions.

3.5.2 Faulty Reception Completion

The faulty receptions completion (FRC) consists in revealing the unexpected receptions in a

peer and mark them as faulty by adding a corresponding transition toward ⊥. It makes peers

fit the intuitive viewpoint where the communication medium impose messages: if a peer is not

interested in a channel at a given time, it will never be later.

For each state s where a receive transition exists, the future channels of s is the set of channels

corresponding to possible future receptions. For each channel c in the future channels that is not

already specified as an alternative choice in this state, such a choice is provided by a transition

towards ⊥ and labeled by c? : s
c?
−→⊥. These are called faulty receptions.
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Figure 4: Faulty Receptions Completion Example

Student

Secretary

Teacher

Supervisor

studentname

studentname

resit

ok

examreq

materials

exam
answers

mark

studentname

studentname

resit

ko

cancel

mark

Student

Secretary

Teacher

Supervisor

Figure 5: Expected Executions Examples

For instance, let us consider the peer represented on the left in figure 4. The future channels

are indicated next to each state. When there is no departing reception of a future channel, a

faulty transition is added which results in the peer represented on the right. When composed

with a peer a! · b! · c! ·0 and M1−1, the faulty receptions are impossible (because the send order

must be respected) and the peer always ends up in the far-right state (which may be of interest;

e.g. 0 the terminal state). This cannot be guaranteed with Masync for example.

4 Experiments and Results

This section presents a concrete example which illustrates the interest of a diversity of asyn-

chronous models, and some benchmark results which show the usability of the framework for

larger systems.



Supervisor
∆

= studentname! · studentname! · resit! · (ok? ·0+ ko? · cancel ! ·mark ! ·0)

Secretary
∆

= studentname? ·mark? ·0

Student
∆

= resit? · (τ · ko! ·0+ τ ·StudentOK )
StudentOK

∆

= ok ! · examreq! ·materials? · exam? ·answers! ·0

Teacher
∆

= studentname? · (cancel? ·0+ examreq? ·TeacherExam)
TeacherExam

∆

= materials! · exam! ·answers? ·mark ! ·0

Figure 6: Supervisor-Secretary-Student-Teacher Specification

4.1 Practical Example

Let us consider an examination management system composed of a student, a supervisor, a

secretary, and a teacher. When the supervisor notices that a student has failed and can resit, he

sends the name of the student to the teacher and the secretary, and the resit information to the

student. If the student chooses to resit, he answers ok and asks the teacher for the exam. The

teacher then sends the needed materials and then the exam, after which the student sends back

his answers, then the teacher sends a mark to the secretary. If the student declines to resit, he

informs the supervisor who sends a cancel message to the teacher and the former mark to the

secretary. Sample executions are depicted in figure 5 and the system is specified in figure 6.

We consider the models defined in table 1 and the composite model Mcomp :

Mcomp =







Mcausal {studentname,resit ,examreq ,cancel ,mark}
M1−1 {materials,exam}
Masync {ok ,ko,answers} (no constraint)

In this example, studentname is a channel over which two messages are sent and from which

they are received by different services (teacher and secretary). In addition, mark is a channel

over which only one message is to transit, but it may be emitted by different services (supervisor

and teacher). Therefore, compatibility, especially termination of the secretary service, is not

trivial. Consequently, in addition to the generic compatibility properties defined in 3.4, we also

consider the termination of the secretary and we check if all messages have been received upon

full termination.

Consider the properties needed to make this work as intended. There is a causal dependency

between the studentname message and the examreq message (the request for the exam must

not arrive before the student name). This causal dependency comes from the resit message,

which follows the studentname message and is the cause of the examreq message. Causal

communication is thus required. Moreover, if a cancel message is sent, it should be received

after the student’s name by the teacher. Therefore, cancel is part of this causal group. The

same holds for the mark channel, since the secretary first expects a studentname . Finally, the

materials and the exam are sent in two separate messages and are not expected to be received

in the reverse order by the student.

Figure 7 presents the results. It confirms that causality is needed to ensure compatibility of the

composition but not required over the whole set of channels. The considered composite model is

restrictive enough. In this example, with that composite communication model, model checking



Mn−n M1−n Mn−1 Mcausal M1−1 Masync Mcomp

Termination ✔ ✔ ✔ ✔ ✕ ✕ ✔

Termination with an empty network ✔ ✔ ✔ ✔ ✕ ✕ ✔

Partial termination (secretary) ✔ ✔ ✔ ✔ ✕ ✕ ✔

No faulty receptions ✔ ✔ ✔ ✔ ✕ ✕ ✔

No forever blocking communication ✔ ✔ ✔ ✔ ✕ ✕ ✔

Figure 7: Compatibility Results
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Figure 8: Runtime for the Studied System

generates 135 distinct states.

4.2 Benchmarking

Studied system We study the composition of two peers derived and completed from the fol-

lowing CCS terms: (a1! · . . . ·aN !.b?)M and ((a1?‖ . . .‖aN ?) ·b!)M . It consists in transmitting M

series of N messages (emitted in the same order and that can be received in any order) separated

by a synchronization message. We check for termination and observe the number of generated

states and runtime. This benchmark is relevant to study looping systems consisting in sections

where ordering may be crucial, explicitly sequenced by synchronization points. Depending on

the communication model, results are expected to vary. Indeed, without constraint (Masync), all

the reception interleavings are possible, while other models like M1−1 impose a single path that

corresponds to the send order. These are two extreme cases. We rely on a bag-based implemen-

tation for Masync and a sequence-based implementation for M1−1. The tests ran on a machine

with 2×4 cores Intel Xeon CPU E5-2690 v3 at 2.60GHz and 23GiB of RAM.

Results The results are presented in figures 8 and 9. They show that the number of states and

runtime increase linearly with M the number of critical sequences. They increase exponentially

when it comes toN because it accounts for the maximum number of in transit messages at a given

time and all the possible receptions that have to be tried during model-checking. M corresponds



 0
 50

 100
 150

 200
 250

 300

 0 10 20 30 40 50 0

 2x106

 4x106

 6x106

 8x106

 1x107

 1.2x107

st
a
te

s

Async - Bag implementation

M

N

st
a
te

s

 0
 50

 100
 150

 200
 250

 300

 0 50 100 150 200 250 300
 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

st
a
te

s

FIFO - queue implementation

M

N
st

a
te

s

Figure 9: Number of Distinct States in the Studied System

to the number of repetitions of the scenario, thus the linear profile. These results show that in

practice, systems should scale up well because high degrees of chaos, for instance when more

than 20 messages are to transit on a communication medium at the same time (N & 20), are

seldom met.

5 Related Work

5.1 Compatibility Checking

Compatibility of services / software components has largely been studied, with two main goals:

Can services communicate and provide more complex services? And can one service be replaced

by another one (substitutability)?

These two notions of compatibility are different. In the first case, the services must be com-

plementary, whereas in the second case they should provide the same functionality. Classically,

either the notion of simulation (as in [ADF08]) or the notion of trace inclusion (as in [CLB08]) is

used to express this sameness. In this taxonomy, we can also include different models of failure

traces [GGH+10], where refusal sets may be used to model (preservation of) process receiving

capabilities and therefore absence of forever pending messages. We are mainly interested in

the first problem. Many approaches exist to verify behavioral compatibility of web services or

software components.

Different formalisms are used to represent the services: finite-state machines [DOS12, CLB08,

BCT04, FUMK04], process algebra [DWZ+06, BCPV04, CPT01], Petri nets [LFS+11, TFZ09,

Mar03]. Different criteria are used to represent compatibility: deadlock freedom [DOS12,

FUMK04], unspecified receptions [BZ83, DOS12], at least one execution leads to a terminal

state [DOS12, BCT04, DWZ+06, LFS+11], all the executions lead to a terminal state [BCT04,

BCPV04], no starvation [FUMK04], divergence [BCPV04]. Domain application conditions are

also used [CLB08, CPT01]. The communication models used are synchronous [DOS12, BCT04,

FUMK04, DWZ+06, BCPV04, CPT01] or FIFO n-1 [BBO12, OSB13].



On the specific point of faulty reception completion (section 3.5.2), this is reminiscent of

Brand and Zafiropulo’s unspecified reception approach [BZ83]. In their work, if a state can

receive a given message, then a successor state (accessible via send events) must also accept this

message. In other words, for a system to be correct w.r.t. unspecified reception (and thus for

compatibility), if a message can be received at a given state, its reception must also be specified

at later states. In our work, we reverse the proposition: if a message can be received at a given

state, the communication model may deliver it earlier and the system must expect this situation.

The faulty reception completion ensures that fault transitions are introduced to get this property.

To sum up, although some works use several compatibility criteria, all of them are dedicated to

one communication model, mostly the synchronous model. None of them proposes a verification

parameterized by both the compatibility criteria and multiple communication models. Moreover,

only a few approaches provide a tool to automatically check the composition. Compared to these

works, we propose a unified formalization of several communication models and compatibility

criteria, and a framework which makes it possible to check the correctness of a composition in a

unified manner, using any combination of the communication models. Lastly, the prototype tool

returns an invalid execution counterexample when a compatibility criterion is not met.

5.2 System Description

5.2.1 IO Automata

Input/output automata [Lyn96] provide a generic way to describe components that interact with

each other thanks to input and output actions. Those actions are partitioned into tasks over

which fairness properties can be defined in the same way fairness properties can be set over

TLA+ actions. Components can either describe processes or communication channels. They

can also be composed and some output actions can be made internal (hiding) in order to specify

complex systems. IO automata can model asynchronous systems in a broad sense. IO automata

provide a powerful framework to describe distributed systems, but are less practical to verify

properties about them. Furthermore, few tools have been developed to make use of IO automata

and perform modeling and property checking.

5.2.2 Process Calculi

One of the interest of process calculi is their algebraic representation which is simple, concise

and powerful. The processes are described by a term under an algebra. They are constructed

from other processes thanks to composition operators (parallel composition, sequence, alterna-

tive. . . ). The basic processes represent elementary actions, which are most often communication

operations (send or receive).

CCS [Mil82] is an early and seminal calculus that we chose for its simplicity. Its main disad-

vantage for our work is that communications are synchronous, so we had to adapt its semantics.

Milner also defined the π-calculus [Mil99]. The main difference is the introduction of param-

eters: channels can be communicated through channels themselves. This can describe systems

with dynamic configurations. Still, the π-calculus is also synchronous.

Richer process calculi exist, such as the Join-calculus [FG96] (and its extension to mobil-

ity [FGL+96]) based on the reflexive CHAM (CHemical Abstract Machine) [BB92] and also



the Ambient calculus [CG98]. They can describe separated membranes/domains, where pro-

cesses interact with each other within a domain or perform explicit actions to move into or out

of domains. These calculi are mainly used to model mobility, distribution, firewalls and security

properties. But they are not fitted to our concerns for two reasons. Firstly, modelling distribu-

tion is not straightforward (usually a mix of local communications and moves between domains)

whereas we want to keep it as simple as possible, as distribution is at the core of our concerns.

Secondly, they are not parameterized over communication models and directly encoding them

would also be cumbersome.

6 Conclusion and Perspectives

This paper presents a framework to check the compatibility of asynchronously communicating

peers. It provides a general approach on the diversity of asynchronous communication and takes

part in our current study and comparison of the asynchronous communication models. Their

differences indeed play a major role in the compatibility of peer compositions as highlighted

by the studied use case. The framework enables one to check concrete examples that hint at

similarity between different models or reveal their differences.

In the considered approach, point-to-point asynchronous communication occurs between peers

through channels without explicit sender and receiver. A communication model manages the

communication events and induces properties on the transmission. Being able to associate chan-

nels of a peer composition to different communication models makes it possible to study which

setup and which implementations, for given peers and compatibility properties, offer the lowest

overhead or the fewest constraints. Formalizing and studying these notions is part of an ongoing

work which also aims at automating the process. Extending the asynchronous models by intro-

ducing broadcast (analogous to a message consumed by more than one peer) and communication

failures (mainly message loss) is planned too.

Finally, thanks to its modular conception and the reliance on transition systems, the framework

is easily extensible and adaptable. Alternative ways to ease peer specification using CCS terms

and a completion step on the derived transition system have been integrated to the automated

toolchain. It accounts for the flexibility and adaptability of the developed tool. Benchmarking

results also shows that the tool scales up well.
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