Emilie Kaufmann

Wouter M Koolen

Monte-Carlo Tree Search by Best Arm Identification

published or not. The documents may come

Introduction

We consider two-player zero-sum turn-based interactions, in which the sequence of possible successive moves is represented by a maximin game tree T . This tree models the possible actions sequences by a collection of MAX nodes, that correspond to states in the game in which player A should take action, MIN nodes, for states in the game in which player B should take action, and leaves which specify the payoff for player A. The goal is to determine the best action at the root for player A. For deterministic payoffs this search problem is primarily algorithmic, with several powerful pruning strategies available [START_REF] Plaat | Best-first fixed-depth minimax algorithms[END_REF]. We look at problems with stochastic payoffs, which in addition present a major statistical challenge.

Sequential identification questions in game trees with stochastic payoffs arise naturally as robust versions of bandit problems. They are also a core component of Monte Carlo tree search (MCTS) approaches for solving intractably large deterministic tree search problems, where an entire sub-tree is represented by a stochastic leaf in which randomized play-out and/or evaluations are performed [START_REF] Browne | A survey of monte carlo tree search methods[END_REF]. A play-out consists in finishing the game with some simple, typically random, policy and observing the outcome for player A.

For example, MCTS is used within the AlphaGo system [START_REF] Silver | Mastering the game of go with deep neural networks and tree search[END_REF], and the evaluation of a leaf position combines supervised learning and (smart) play-outs. While MCTS algorithms for Go have now reached expert human level, such algorithms remain very costly, in that many (expensive) leaf evaluations or play-outs are necessary to output the next action to be taken by the player. In this paper, we focus on the sample complexity of Monte-Carlo Tree Search methods, about which very little is known. For this purpose, we work under a simplified model for MCTS already studied by [START_REF] Teraoka | Efficient sampling method for monte carlo tree search problem[END_REF], and that generalizes the depth-two framework of [START_REF] Garivier | Maximin action identification: A new bandit framework for games[END_REF].

A simple model for Monte-Carlo Tree Search

We start by fixing a game tree T , in which the root is a MAX node. Letting L be the set of leaves of this tree, for each ℓ ∈ L we introduce a stochastic oracle O ℓ that represents the leaf evaluation or play-out performed when this leaf is reached by an MCTS algorithm. In this model, we do not try to optimize the evaluation or play-out strategy, but we rather assume that the oracle O ℓ produces i.i.d. samples from an unknown distribution whose mean µ ℓ is the value of the position ℓ. To ease the presentation, we focus on binary oracles (indicating the win or loss of a play-out), in which the oracle O ℓ is a Bernoulli distribution with unknown mean µ ℓ (the probability of player A from the estimated value of its parent, which leads to the possible elimination of several leaves. For depth-two trees, [START_REF] Garivier | Maximin action identification: A new bandit framework for games[END_REF] propose an elimination procedure that is not round-based. In this simpler setting, an algorithm that exploits confidence intervals is also developed, inspired by the LUCB algorithm for fixed-confidence BAI [START_REF] Kalyanakrishnan | PAC subset selection in stochastic multi-armed bandits[END_REF]. Some variants of the proposed M-LUCB algorithm appear to perform better in simulations than elimination based algorithms. We now investigate this trend further in deeper trees, both in theory and in practice.

Our Contribution. In this paper, we propose a generic architecture, called BAI-MCTS, that builds on a Best Arm Identification (BAI) algorithm and on confidence intervals on the node values in order to solve the best action identification problem in a tree of arbitrary depth. In particular, we study two specific instances, UGapE-MCTS and LUCB-MCTS, that rely on confidence-based BAI algorithms [START_REF] Gabillon | Best Arm Identification: A Unified Approach to Fixed Budget and Fixed Confidence[END_REF][START_REF] Kalyanakrishnan | PAC subset selection in stochastic multi-armed bandits[END_REF]. We prove that these are (ǫ, δ)-correct and give a high-probability upper bound on their sample complexity. Both our theoretical and empirical results improve over the elimination-based state-of-the-art algorithm, FindTopWinner [START_REF] Teraoka | Efficient sampling method for monte carlo tree search problem[END_REF].

BAI-MCTS algorithms

We present a generic class of algorithms, called BAI-MCTS, that combines a BAI algorithm with an exploration of the tree based on confidence intervals on the node values. Before introducing the algorithm and two particular instances, we first explain how to build such confidence intervals, and also introduce the central notion of representative child and representative leaf.

Confidence intervals and representative nodes

For each leaf ℓ ∈ L, using the past observations from this leaf we may build a confidence interval

I ℓ (t) = [L ℓ (t), U ℓ (t)],
where U ℓ (t) (resp. L ℓ (t)) is an Upper Confidence Bound (resp. a Lower Confidence Bound) on the value V (ℓ) = µ ℓ . The specific confidence interval we shall use will be discussed later. These confidence intervals are then propagated upwards in the tree using the following construction. For each internal node s, we recursively define

I s (t) = [L s (t), U s (t)] with L s (t) = max c∈C(s) L c (t) for a MAX node s, min c∈C(s) L c (t) for a MIN node s, U s (t) = max c∈C(s) U c (t) for a MAX node s, min c∈C(s) U c (t) for a MIN node s.
Note that these intervals are the tightest possible on the parent under the sole assumption that the child confidence intervals are all valid. A similar construction was used in the OMS algorithm of [START_REF] Borsoniu | An analysis of optimistic, best-first search for minimax sequential decision making[END_REF] in a different context. It is easy to convince oneself (or prove by induction, see Appendix B.1) that the accuracy of the confidence intervals is preserved under this construction, as stated below.

Proposition 1. Let t ∈ N. One has ⋂ ℓ∈L (µ ℓ ∈ I ℓ (t)) ⇒ ⋂ s∈T (V s ∈ I s (t)).
We now define the representative child c s (t) of an internal node s as

c s (t) = argmax c∈C(s) U c (t) if s is a MAX node, argmin c∈C(s) L c (t) if s is a MIN node,
and the representative leaf ℓ s (t) of a node s ∈ T , which is the leaf obtained when going down the tree by always selecting the representative child:

ℓ s (t) = s if s ∈ L, ℓ s (t) = ℓ cs(t) (t) otherwise.
The confidence intervals in the tree represent the statistically plausible values in each node, hence the representative child can be interpreted as an "optimistic move" in a MAX node and a "pessimistic move" in a MIN node (assuming we play against the best possible adversary). This is reminiscent of the behavior of the UCT algorithm [START_REF] Kocsis | Bandit based monte-carlo planning[END_REF]. The construction of the confidence intervals and associated representative children are illustrated in Figure 1. Input: a BAI algorithm

Initialization: t = 0. while not BAIStop ({s ∈ C(s 0)}) do R t+1 = BAIStep ({s ∈ C(s 0)}) Sample the representative leaf L t+1 = ℓ Rt+1 (t)
Update the information about the arms.

t = t + 1. end Output: BAIReco ({s ∈ C(s 0)})

The BAI-MCTS architecture

In this section we present the generic BAI-MCTS algorithm, whose sampling rule combines two ingredients: a best arm identification step which selects an action at the root, followed by a confidence based exploration step, that goes down the tree starting from this depth-one node in order to select the representative leaf for evaluation.

The structure of a BAI-MCTS algorithm is presented in Figure 2. The algorithm depends on a Best Arm Identification (BAI) algorithm, and uses the three components of this algorithm:

• the sampling rule BAIStep(S) selects an arm in the set S

• the stopping rule BAIStop(S) returns True if the algorithm decides to stop • the recommendation rule BAIReco(S) selects an arm as a candidate for the best arm In BAI-MCTS, the arms are the depth-one nodes, hence the information needed by the BAI algorithm to make a decision (e.g. BAIStep for choosing an arm, or BAIStop for stopping) is information about depth-one nodes, that has to be updated at the end of each round (last line in the while loop). Different BAI algorithms may require different information, and we now present two instances that rely on confidence intervals (and empirical estimates) for the value of the depth-one nodes.

UGapE-MCTS and LUCB-MCTS

Several Best Arm Identification algorithms may be used within BAI-MCTS, and we now present two variants, that are respectively based on the UGapE [START_REF] Gabillon | Best Arm Identification: A Unified Approach to Fixed Budget and Fixed Confidence[END_REF] and the LUCB [START_REF] Kalyanakrishnan | PAC subset selection in stochastic multi-armed bandits[END_REF] algorithms. These two algorithms are very similar in that they exploit confidence intervals and use the same stopping rule, however the LUCB algorithm additionally uses the empirical means of the arms, which within BAI-MCTS requires defining an estimate Vs (t) of the value of the depth-one nodes.

The generic structure of the two algorithms is similar. At round t + 1 two promising depth-one nodes are computed, that we denote by b t and c t . Among these two candidates, the node whose confidence interval is the largest (that is, the most uncertain node) is selected:

R t+1 = argmax i∈{b t ,c t } [U i (t) -L i (t)] .
Then, following the BAI-MCTS architecture, the representative leaf of R t+1 (computed by going down the tree) is sampled: L t+1 = ℓ Rt+1 (t). The algorithm stops whenever the confidence intervals of the two promising arms overlap by less than ǫ:

τ = inf t ∈ N ∶ U c t (t) -L b t (t) < ǫ ,
and it recommends ŝτ = b τ .

In both algorithms that we detail below b t represents a guess for the best depth-one node, while c t is an "optimistic" challenger, that has the maximal possible value among the other depth-one nodes. Both nodes need to be explored enough in order to discover the best depth-one action quickly.

UGapE-MCTS.

In UGapE-MCTS, introducing for each depth-one node the index

B s (t) = max s ′ ∈C(s0) {s} U s ′ (t) -L s (t),
the promising depth-one nodes are defined as

b t = argmin a∈C(s0) B a (t) and c t = argmax b∈C(s0) {b t } U b (t).

LUCB-MCTS.

In LUCB-MCTS, the promising depth-one nodes are defined as

b t = argmax a∈C(s0) Va (t) and c t = argmax b∈C(s0) {b t } U b (t),
where Vs (t) = μℓs(t) (t) is the empirical mean of the reprentative leaf of node s. Note that several alternative definitions of Vs (t) may be proposed (such as the middle of the confidence interval I s (t), or max a∈C(s) Va (t)), but our choice is crucial for the analysis of LUCB-MCTS, given in Appendix C.

Analysis of UGapE-MCTS

In this section we first prove that UGapE-MCTS and LUCB-MCTS are both (ǫ, δ)-correct. Then we give in Theorem 3 a high-probability upper bound on the number of samples used by UGapE-MCTS. A similar upper bound is obtained for LUCB-MCTS in Theorem 9, stated in Appendix C.

Choosing the Confidence Intervals

From now on, we assume that the confidence intervals on the leaves are of the form

L ℓ (t) = μℓ (t) - β(N ℓ (t), δ) 2N ℓ (t) and U ℓ (t) = μℓ (t) + β(N ℓ (t), δ) 2N ℓ (t) . (1)
β(s, δ) is some exploration function, that can be tuned to have a δ-PAC algorithm, as expressed in the following lemma, whose proof can be found in Appendix B.2

Lemma 2. If δ ≤ max(0.1 L , 1), for the choice

β(s, δ) = ln(L δ) + 3 ln ln(L δ) + (3 2) ln(ln s + 1) (2)
both UGapE-MCTS and LUCB-MCTS satisfy

P(V (s *) -V (ŝ τ) ≤ ǫ) ≥ 1 -δ.
An interesting practical feature of these confidence intervals is that they only depend on the local number of draws N ℓ (t), whereas most of the BAI algorithms use exploration functions that depend on the number of rounds t. Hence the only confidence intervals that need to be updated at round t are those of the ancestors of the selected leaf, which can be done recursively.

Moreover, β(s, δ) scales with ln(ln(s)), and not ln(s), leveraging some tools recently introduced to obtain tighter confidence intervals [START_REF] Jamieson | lil'UCB: an Optimal Exploration Algorithm for Multi-Armed Bandits[END_REF][START_REF] Kaufmann | On the Complexity of Best Arm Identification in Multi-Armed Bandit Models[END_REF]. The union bound over L (that may be an artifact of our current analysis) however makes the exploration function of Lemma 2 still a bit over-conservative and in practice, we recommend the use of β(s, δ) = ln (ln(es) δ).

Finally, similar correctness results (with slightly larger exploration functions) may be obtained for confidence intervals based on the Kullback-Leibler divergence (see [START_REF] Cappé | Kullback-Leibler upper confidence bounds for optimal sequential allocation[END_REF]), which are known to lead to better performance in standard best arm identification problems [START_REF] Kaufmann | Information complexity in bandit subset selection[END_REF] and also depth-two tree search problems [START_REF] Garivier | Maximin action identification: A new bandit framework for games[END_REF]. However, the sample complexity analysis is much more intricate, hence we stick to the above Hoeffding-based confidence intervals for the next section.

Complexity term and sample complexity guarantees

We first introduce some notation. Recall that s * is the optimal action at the root, identified with the depth-one node satisfying V (s *) = V (s 0), and define the second-best depth-one node as s * 2 = argmax s∈C(s0) {s * } V s . Recall P(s) denotes the parent of a node s different from the root. Introducing furthermore the set Anc(s) of all the ancestors of a node s, we define the complexity term by

H * ǫ (µ) ∶= ℓ∈L 1 ∆ 2 ℓ ∨ ∆ 2 * ∨ ǫ 2 , where ∆ * ∶= V (s *) -V (s * 2) ∆ ℓ ∶= max s∈Anc(ℓ) {s0} V s -V (P(s)) (3)
The intuition behind these squared terms in the denominator is the following. We will sample a leaf ℓ until we either prune it (by determining that it or one of its ancestors is a bad move), prune everyone else (this happens for leaves below the optimal arm) or reach the required precision ǫ.

Theorem 3. Let δ ≤ min(1, 0.1 L). UGapE-MCTS using the exploration function (2) is such that, with probability larger than 1 -δ, (V (s *) -V (ŝ τ) < ǫ) and, letting ∆ ℓ,ǫ = ∆ ℓ ∨ ∆ * ∨ ǫ, τ ≤ 8H * ǫ (µ) ln L δ + ℓ 16 ∆ 2 ℓ,ǫ ln ln 1 ∆ 2 ℓ,ǫ + 8H * ǫ (µ) 3 ln ln L δ + 2 ln ln 8e ln L δ + 24e ln ln L δ + 1. Remark 4. If β(N a (t), δ) is changed to β(t, δ)
, one can still prove (ǫ, δ) correctness and furthermore upper bound the expectation of τ . However the algorithm becomes less efficient to implement, since after each leaf observation, ALL the confidence intervals have to be updated. In practice, this change lowers the probability of error but does not effect significantly the number of play-outs used.

Comparison with previous work

To the best of our knowledge1 , the FindTopWinner algorithm [START_REF] Teraoka | Efficient sampling method for monte carlo tree search problem[END_REF] is the only algorithm from the literature designed to solve the best action identification problem in any-depth trees. The number of play-outs of this algorithm is upper bounded with high probability by

ℓ∶∆ ℓ >2ǫ 32 ∆ 2 ℓ ln 16 L ∆ ℓ δ + 1 + ℓ∶∆ ℓ ≤2ǫ 8 ǫ 2 ln 8 L ǫδ + 1
One can first note the improvement in the constant in front of the leading term in ln(1 δ), as well as the presence of the ln ln(1 ∆ ℓ,ǫ 2) second order term, that is unavoidable in a regime in which the gaps are small [START_REF] Jamieson | lil'UCB: an Optimal Exploration Algorithm for Multi-Armed Bandits[END_REF]. The most interesting improvement is in the control of the number of draws of 2ǫ-optimal leaves (such that ∆ ℓ ≤ 2ǫ). In UGapE-MCTS, the number of draws of such leaves is at most of order (ǫ ∨ ∆ 2 *) -1 ln(1 δ), which may be significantly smaller than ǫ -1 ln(1 δ) if there is a gap in the best and second best value. Moreover, unlike FindTopWinner and M-LUCB [START_REF] Garivier | Maximin action identification: A new bandit framework for games[END_REF] in the depth two case, UGapE-MCTS can also be used when ǫ = 0, with provable guarantees.

Regarding the algorithms themselves, one can note that M-LUCB, an extension of LUCB suited for depth-two tree, does not belong to the class of BAI-MCTS algorithms. Indeed, it has a "reversed" structure, first computing the representative leaf for each depth-one node: ∀s ∈ C(s 0), R s,t = ℓ s (t) and then performing a BAI step over the representative leaves: Lt+1 = BAIStep(R s,t , s ∈ C(s 0)). This alternative architecture can also be generalized to deeper trees, and was found to have empirical performance similar to BAI-MCTS. M-LUCB, which will be used as a benchmark in Section 4, also distinguish itself from LUCB-MCTS by the fact that it uses an exploration rate that depends on the global time β(t, δ) and that b t is the empirical maximin arm (which can be different from the arm maximizing Vs). This alternative choice is not yet supported by theoretical guarantees in deeper trees.

Finally, the exploration step of BAI-MCTS algorithm bears some similarity with the UCT algorithm [START_REF] Kocsis | Bandit based monte-carlo planning[END_REF], as it goes down the tree choosing alternatively the move that yields the highest UCB or the lowest LCB. However, the behavior of BAI-MCTS is very different at the root, where the first move is selected using a BAI algorithm. Another key difference is that BAI-MCTS relies on exact confidence intervals: each interval I s (t) is shown to contain with high probability the corresponding value V s , whereas UCT uses more heuristic confidence intervals, based on the number of visits of the parent node, and aggregating all the samples from descendant nodes. Using UCT in our setting is not obvious as it would require to define a suitable stopping rule, hence we don't include a comparison with this algorithm in Section 4. A hybrid comparison between UCT and FindTopWinner is proposed in [START_REF] Teraoka | Efficient sampling method for monte carlo tree search problem[END_REF], providing UCT with the random number of samples used by the the fixed-confidence algorithm. It is shown that FindTopWinner has the advantage for hard trees that require many samples. Our experiments show that our algorithms in turn always dominate FindTopWinner.

Proof of Theorem 3.

Letting E t = ⋂ ℓ∈L (µ ℓ ∈ I ℓ (t)) and E = ⋂ t∈N E t , we upper bound τ assuming the event E holds, using the following key result, which is proved in Appendix D.

Lemma 5. Let t ∈ N. E t ∩ (τ > t) ∩ (L t+1 = ℓ) ⇒ N ℓ (t) ≤ 8β(N ℓ (t),δ) ∆ 2 ℓ ∨∆ 2 * ∨ǫ 2 .
An intuition behind this result is the following. First, using that the selected leaf ℓ is a representative leaf, it can be seen that the confidence intervals from s D = ℓ to s 0 are nested (Lemma 11). Hence if E t holds, V (s k) ∈ I ℓ (t) for all k = 1, . . . , D, which permits to lower bound the width of this interval (and thus upper bound N ℓ (t)) as a function of the V (s k) (Lemma 12). Then Lemma 13 exploits the mechanism of UGapE to further relate this width to ∆ * and ǫ.

Another useful tool is the following lemma, that will allow to leverage the particular form of the exploration function β to obtain an explicit upper bound on N ℓ (τ). This result is a consequence of Theorem 16 stated in Appendix F, that uses the fact that for C ≥ln(0.1) and a ≥ 8, it holds that 3 2

C(1 + ln(aC)) C (1 + ln(aC)) -3 2 ≤ 1.7995564 ≤ 2.
On the event E, letting τ ℓ be the last instant before τ at which the leaf ℓ has been played before stopping, one has N ℓ (τ -1) = N ℓ (τ ℓ) that satisfies by Lemma 5

N ℓ (τ ℓ) ≤ 8β(N ℓ (τ ℓ), δ) ∆ 2 ℓ ∨ ∆ 2 * ∨ ǫ 2 . Applying Lemma 6 with a = a ℓ = 8 ∆ 2 ℓ ∨∆ 2 * ∨ǫ 2 and C = ln L δ + 3 ln ln L δ leads to N ℓ (τ -1) ≤ a ℓ (C + 2 ln(1 + ln(a ℓ C))) .
Letting ∆ ℓ,ǫ = ∆ ℓ ∨ ∆ * ∨ ǫ and summing over arms, we find

τ = 1 + ℓ N ℓ (τ -1) ≤ 1 + ℓ 8 ∆ 2 ℓ,ǫ ⎛ ⎜ ⎝ ln L δ + 3 ln ln L δ + 2 ln ln ⎛ ⎜ ⎝ 8e ln L δ + 3 ln ln L δ ∆ 2 ℓ,ǫ ⎞ ⎟ ⎠ ⎞ ⎟ ⎠ = 1 + ℓ 8 ∆ 2 ℓ,ǫ ⎛ ⎜ ⎝ ln L δ + 2 ln ln 1 ∆ 2 ℓ,ǫ ⎞ ⎟ ⎠ + 8H * ǫ (µ) 3 ln ln L δ + 2 ln ln 8e ln L δ + 24e ln ln L δ .
To conclude the proof, we remark that from the proof of Lemma 2 (see Appendix B.2) it follows that on E, V (s *) -V (ŝ τ) < ǫ and that E holds with probability larger than 1δ.

Experimental Validation

In this section we evaluate the performance of our algorithms in three experiments. We evaluate on the depthtwo benchmark tree from [START_REF] Garivier | Maximin action identification: A new bandit framework for games[END_REF], a new depth-three tree and the random tree ensemble from [START_REF] Teraoka | Efficient sampling method for monte carlo tree search problem[END_REF]. We compare to the FindTopWinner algorithm from [START_REF] Teraoka | Efficient sampling method for monte carlo tree search problem[END_REF] in all experiments, and in the depth-two experiment we include the M-LUCB algorithm from [START_REF] Garivier | Maximin action identification: A new bandit framework for games[END_REF]. Its relation to BAI-MCTS is discussed in Section 3.3. For our BAI-MCTS algorithms and for M-LUCB we use the exploration rate β(s, δ) = ln L δ + ln(ln(s) + 1) (a stylized version of Lemma 2 that works well in practice), and we use the KL refinement of the confidence intervals (1). To replicate the experiment from [START_REF] Teraoka | Efficient sampling method for monte carlo tree search problem[END_REF], we supply all algorithms with δ = 0.1 and ǫ = 0.01. For comparing with [START_REF] Garivier | Maximin action identification: A new bandit framework for games[END_REF] we run all algorithms with ǫ = 0 and δ = 0.1 L (undoing the conservative union bound over leaves. This excessive choice, which might even exceed one, does not cause a problem, as the algorithms depend on δ L = 0.1). In none of our experiments the observed error rate exceeds 0.1.

Figure 3 shows the benchmark tree from [10, Section 5] and the performance of four algorithms on it. We see that the special-purpose depth-two M-LUCB performs best, very closely followed by both our new arbitrarydepth LUCB-MCTS and UGapE-MCTS methods. All three use significantly fewer samples than FindTopWinner. Figure 4 (displayed in Appendix A for the sake of readability) shows a full 3-way tree of depth 3 with leafs drawn uniformly from [0, 1]. Again our algorithms outperform the previous state of the art by an order of magnitude. Finally, we replicate the experiment from [START_REF] Teraoka | Efficient sampling method for monte carlo tree search problem[END_REF]Section 4]. To make the comparison as fair as possible, we use the proven exploration rate from (2). On 10K full 10-ary trees of depth 3 with Bernoulli leaf parameters drawn uniformly at random from [0, 1] the average numbers of samples are: LUCB-MCTS 141811, UGapE-MCTS 142953 and FindTopWinner 2254560. To closely follow the original experiment, we do apply the union bound over leaves to all algorithms, which are run with ǫ = 0.01 and δ = 0.1. We did not observe any error from any algorithm (even though we allow 10%). Our BAI-MCTS algorithms deliver an impressive 15-fold reduction in samples.

Lower bounds and discussion

Given a tree T , a MCTS model is parameterized by the leaf values, µ ∶= (µ ℓ) ℓ∈L , which determine the best root action:

s * = s * (µ). For µ ∈ [0, 1] L , We define Alt(µ) = {λ ∈ [0, 1] L ∶ s * (λ) ≠ s * (µ)}.
Using the same technique as [START_REF] Garivier | Optimal best arm identification with fixed confidence[END_REF] for the classic best arm identification problem, one can establish the following (non explicit) lower bound. The proof is given in Appendix E.

Theorem 7. Assume ǫ = 0. Any δ-correct algorithm satisfies

E µ [τ] ≥ T * (µ)d(δ, 1 -δ), where T * (µ) -1 ∶= sup w∈Σ L inf λ∈Alt(µ) ℓ∈L w ℓ d (µ ℓ , λ ℓ) (4)
with

Σ k = {w ∈ [0, 1] i ∶ ∑ k i=1 w i = 1} and d(x, y) = x ln(x y) + (1 -x) ln((1 -x) (1 -y))
is the binary Kullback-Leibler divergence. This result is however not directly amenable for comparison with our upper bounds, as the optimization problem defined in Lemma 7 is not easy to solve. Note that d(δ, 1 -δ) ≥ ln(1 (2.4δ)) [START_REF] Kaufmann | On the Complexity of Best Arm Identification in Multi-Armed Bandit Models[END_REF], thus our upper bounds have the right dependency in δ. For depth-two trees with K (resp. M) actions for player A (resp. B), we can moreover prove the following result, that suggests an intriguing behavior. Lemma 8. Assume ǫ = 0 and consider a tree of depth two with µ = (µ i,j) 1≤i≤K,1≤j≤M such that ∀(i, j), µ 1,1 > µ i,1 , µ i,1 < µ i,j . The supremum in the definition of T * (µ) -1 can be restricted to ΣK,M ∶= {w ∈ Σ K×M ∶ w i,j = 0 if i ≥ 2 and j ≥ 2} and

T * (µ) -1 = max w∈ ΣK,M min i=2,...,K a=1,...,M w 1,a d µ 1,a , w 1,a µ 1,a + w i,1 µ i,1 w 1,a + w i,1 +w i,1 d µ i,1 , w 1,a µ 1,a + w i,1 µ i,1 w 1,a + w i,1 .
It can be extracted from the proof of Theorem 7 (see Appendix E) that the vector w * (µ) that attains the supremum in (4) represents the average proportions of selections of leaves by any algorithm matching the lower bound. Hence, the sparsity pattern of Lemma 8 suggests that matching algorithms should draw many of the leaves much less than O(ln(1 δ)) times. This hints at the exciting prospect of optimal stochastic pruning, at least in the asymptotic regime δ → 0.

As an example, we numerically solve the lower bound optimization problem (which is a concave maximization problem) for µ corresponding to the benchmark tree displayed in Figure 3 to obtain T * (µ) = 259.9 and w * = (0.3633, 0.1057, 0.0532), (0.3738, 0, 0), (0.1040, 0, 0).

With δ = 0.1 we find kl(δ, 1 -δ) = 1.76 and the lower bound is E µ [τ] ≥ 456.9. We see that there is a potential improvement of at least a factor 4.

Future directions An (asymptotically) optimal algorithm for BAI called Track-and-Stop was developed by [START_REF] Garivier | Optimal best arm identification with fixed confidence[END_REF]. It maintains the empirical proportions of draws close to w * (μ), adding forced exploration to ensure μ → µ. We believe that developing this line of ideas for MCTS would result in a major advance in the quality of tree search algorithms. The main challenge is developing efficient solvers for the general optimization problem (4). For now, even the sparsity pattern revealed by Lemma 8 for depth two does not give rise to efficient solvers. We also do not know how this sparsity pattern evolves for deeper trees, let alone how to compute w * (µ).

B.2 Proof of Lemma 2

Let E t = ⋂ ℓ∈L (µ ℓ ∈ I ℓ (t)) and E = ⋂ t∈N E t .
Using Proposition 1, on E t , for all s ∈ T , V s ∈ I s (t). If the algorithm stops at some time t, as L b t (t) > U c t (t) -ǫ, the outputted action, ŝτ = b t , satisfies L ŝτ (t) > U s ′ (t) -ǫ, for all s ′ ≠ ŝτ . As E holds, one obtains

V (ŝ τ) ≥ max s ′ ≠ŝτ V (s ′) -ǫ,
and ŝτ is an ǫ-maximin action. Hence, the algorithm is correct on E. The error probability is thus upper bounded by

P (E c) ≤ P ∃ℓ ∈ L, ∃t ∈ N ∶ μℓ (t) -µ ℓ > β(N ℓ (t), δ) (2N ℓ (t)) ≤ ℓ∈L P ∃s ∈ N ∶ 2s(μ ℓ,s -µ ℓ) 2 > β(s, δ) ≤ 2 L P ∃s ∈ N ∶ S s > 2σ 2 sβ(s, δ) ,
where S s = X 1 + ⋅ ⋅ ⋅ + X s is a martingale with σ 2 -subgaussian increments, with σ 2 = 1 4. It was shown in [START_REF] Kaufmann | On the Complexity of Best Arm Identification in Multi-Armed Bandit Models[END_REF] that for δ ≤ 0.1, if

β(t, δ) = ln 1 δ + 3 ln ln 1 δ + (3 2) ln(ln(s) + 1),
one has P ∃s ∈ N ∶ S s > 2σ 2 sβ(s, δ) ≤ δ, which concludes the proof.

C Sample complexity analysis of LUCB-MCTS

We provide an analysis of a slight variant of LUCB-MCTS that may stop at even rounds only and for t ∈ 2N draws the representative leaf of the two promising depth-one nodes:

L t+1 = ℓ b t (t) and L t+2 = ℓ c t (t). (5)
The stopping rule is then τ

= inf t ∈ 2N * ∶ U c t (t) -L b t (t) < ǫ .
For this algorithm, our sample complexity guarantee features a slightly different complexity term. For a leaf ℓ = s 0 s 1 . . . s D , we first introduce

∆ℓ = max s∈Anc(ℓ) {s0,s1} V (s) -V (P(s)) ,
a quantity that differs from ∆ ℓ only by the fact that the maximum doesn't take into account the gap between the root and the depth-one ancestor of ℓ. Then H * ǫ (µ) is defined similarly as H * ǫ (µ) by

H * ǫ (µ) = ℓ∈L 1 ∆2 ℓ ∨ ∆ 2 * ∨ ǫ 2 .
Theorem 9. Let δ ≤ min(1, 0.1 L). LUCB-MCTS using the exploration function (2) and selecting the two promising leaves at each round is such that, with probability larger than 1 -δ, (V (s *) -V (ŝ τ) < ǫ) and

τ ≤ 16 H * ǫ (µ) ln L δ + 3 ln ln L δ + 2 ln ln 16e H * ǫ (µ) ln L δ + 3 ln ln L δ .
Proof. The analysis follows the same lines as that of UGapE-MCTS, yet it relies on a slightly different key result, proved in the next section. Letting E t = ∩ ℓ∈L (µ ℓ ∈ I ℓ (t)) as in the proof of Theorem 3 and defining E = ∩ t∈2N * E t , one can state the following.

Lemma 10. Let t ∈ 2N. E t ∩ (τ > t) ⇒ ∃ℓ ∈ {L t+1 , L t+2 } ∶ N ℓ (t) ≤ 8β(t, δ) ∆2 ℓ ∨ ∆ 2 * ∨ ǫ 2 .
Let T be a deterministic time. We upper bound τ assuming the event E holds. Using Lemma 10 and the fact that for every even t, (τ δ > t) = (τ δ > t + 1) by definition of the algorithm, one has

min(τ, T) = T t=0 1 (τ >t) = 2 t∈2N t≤T 1 (τ δ >t) = 2 t∈2N t≤T 1 ∃ℓ∈{Lt+1,Lt+2}∶N ℓ (t)≤2β(t,δ) (∆2 ℓ ∨∆ * ǫ 2) ≤ 2 t∈2N t≤T ℓ∈L 1 (Lt+1=ℓ)∪(Lt+2=ℓ) 1 (N ℓ (t)≤8β(T,δ) (∆2 ℓ ∨∆ 2 * ǫ 2)) ≤ 16 ℓ∈L 1 ∆2 ℓ ∨ ∆ 2 * ∨ ǫ 2 β(T, δ) = 16 H * ǫ (µ)β(T, δ).
For any T such that 16 H * ǫ (µ)β(T, δ) < T , one has min(τ, T) < T , which implies τ < T . Therefore Using that P(E) ≥ 1 -δ and that the algorithm is correct on E yields the conclusion.

τ ≤ sup{t ∈ N ∶ 16 H * ǫ (µ)β(t, δ) ≥ t}. Just like

D Proof of Lemma 5 and Lemma 10

We first state Lemma 12, that holds for both UGapE and LUCB-MCTS and is a consequence of the definition of the exploration procedure. This result builds on the following lemma, that expresses the fact that along a path from the root to a representative leaf, the confidence intervals are nested.

Lemma 11. Let t ∈ N and s 0 , s 1 , . . . , s D be a path from the root down to a leaf ℓ = s D .

(ℓ s1 (t) = s D) ⇒ (∀k = 2, . . . , D, I s k-1 (t) ⊆ I s k (t))
Lemma 12. Let t ∈ N and s 0 , s 1 , . . . , s D be a path from the root down to a leaf ℓ = s D . If E t holds and ℓ is selected at round t + 1 (UGapE) or if t is even and ℓ ∈ {L t+1 , L t+2 } (LUCB), then

2β(N ℓ (t), δ) N ℓ (t) ≥ max k=2...D V (s k) -V (s k-1) .
UGapE-MCTS: proof of Lemma 5. The following lemma is specific to UGapE-MCTS. We let s 0 , s 1 , . . . , s D be a path down to a leaf ℓ = s D .

Lemma 13. Let t ∈ N. If E t holds and UGapE-MCTS has not stopped after t observations, that is (τ > t),

(L t+1 = ℓ) ⇒ ⎛ ⎜ ⎝ 8β(N ℓ (t), δ) N ℓ (t) ≥ max (∆ * , V (s 0) -V (s 1), ǫ) ⎞ ⎟ ⎠
Putting together Lemma 12 and Lemma 13 and using that

∆ ℓ = max V (s 0) -V (s 1), max k=2...D V (s k) -V (s k-1)
one obtains

E t ∩ (τ > t) ∩ (L t+1 = ℓ) ⇒ ⎛ ⎜ ⎝ 8β(N ℓ (t), δ) N ℓ (t) ≥ max (∆ ℓ , ∆ * , ǫ) ⎞ ⎟ ⎠ ,
which yields the proof of Lemma 5 by inverting the bound.

LUCB-MCTS: proof of Lemma 10. The following lemma is specific to the LUCB-MCTS algorithm. It can be viewed as a generalization of Lemma 2 in [START_REF] Kalyanakrishnan | PAC subset selection in stochastic multi-armed bandits[END_REF].

Lemma 14. Let t ∈ 2N and let γ ∈ [V (s * 2), V (s *)]
. If E t holds and LUCB-MCTS has not stopped after t observations, that is (τ > t), then

∃ℓ ∈ {L t+1 , L t+2 } ∶ (γ ∈ I ℓ (t)) ∩ ⎛ ⎜ ⎝ 2β(t, δ) N ℓ (t) ≥ ǫ ⎞ ⎟ ⎠ . Choosing γ = V (s *)+V (s * 2) 2
and letting s ℓ be the depth-one ancestor of ℓ, on E t it holds that V (s ℓ) ∈ I ℓ (t) (by Lemma 11) and

(γ ∈ I ℓ (t)) ⇒ ⎛ ⎜ ⎝ 2β(t, δ) N ℓ (t) ≥ V (s ℓ) -γ ⎞ ⎟ ⎠ ⇒ ⎛ ⎜ ⎝ 2β(t, δ) N ℓ (t) ≥ V (s *) -V (s * 2) 2 ⎞ ⎟ ⎠ . Recall ∆ * = V (s *) -V (s * 2)
. By Lemma 14, on E t ∩ (τ > t), there exists ℓ ∈ {L t+1 , L t+2 } such that

8β(t, δ) N ℓ (t) ≥ max(∆ * , ǫ). (6)
Moreover, noting that for a leaf ℓ = s 0 , s 1 , . . . , s D ,

∆ℓ = max k=2,...,D V (s k) -V (s k-1) a consequence of Lemma 12 is that for ℓ ∈ {L t+1 , L t+2 }, 2β(t, δ) N ℓ (t) ≥ ∆ℓ . (7)
Combining (6) and (7) yields

E t ∩ (τ > t) ⇒ ∃ℓ ∈ {L t+1 , L t+2 } ∶ 8β(t, δ) N ℓ (t) ≥ max ∆ℓ , ∆ * , ǫ ,
which yields the proof of Lemma 10 by inverting the bound.

D.1 Proof of Lemma 11.

The leaf ℓ is the representative of the depth 1 node s 1 , therefore the path s 1 , . . . , s D is such that c s k-1 (t) = s k for all k = 2, . . . , D. Using the way the representative are build, we now show that ∀k ∈ {2, . . . , D},

I s k-1 (t) ⊆ I s k (t). If s k-1 is a MAX node, U s k-1 (t) = U s k (t) by definition and L s k-1 (t) = max s∈C(s k-1) L s (t) ≥ L s k (t). Similarly, if s k-1 is a MIN node, L s k-1 (t) = L s k (t) by definition and U s k-1 (t) = min s∈C(s k-1) U s (t) ≤ U s k (t), so that in both cases I s k-1 (t) ⊆ I s k (t).
D.2 Proof of Lemma 12.

Let ℓ ∈ L be a leaf that is sampled based on the information available at round t. In particular, as ℓ is a representative leaf of the depth 1 node s 1 , the path s 1 , . . . , s D is such that

c s k-1 (t) = s k for all k = 2, . . . , D. Let k = 2, . . . , D. If s k-1 ∈ {2, .
. . , D} is a MAX node, it holds by definition of the representative children that, for all s ′ ∈ C(s k-1),

U s k (t) ≥ U s ′ (t).
Now, from Lemma 11 one has U ℓ (t) ≥ U s k (t) and from Proposition 1 as E t holds, one has

∀s ∈ T , V s ∈ I s (t). (8)
Using these two ingredients yields

U ℓ (t) ≥ V (s ′) L ℓ (t) + 2 β(N ℓ (t), δ) 2N ℓ (t) ≥ V (s ′) L s k (t) + 2 β(N ℓ (t), δ) 2N ℓ (t) ≥ V (s ′) V (s k) + 2 β(N ℓ (t), δ) 2N ℓ (t) ≥ V (s ′). Thus 2β(N ℓ (t), δ) N ℓ (t) ≥ max s ′ ∈C(s k-1) V (s ′) -V (s k) = V (s k-1) -V (s k) ≥ 0. If s k-1 is a MIN node, a similar reasoning show that 2β(N ℓ (t), δ) N ℓ (t) ≥ V (s k) -V (s k-1) ≥ 0.
Putting everything together yields

2β(N ℓ (t), δ) N ℓ (t) ≥ max k=2,...,D V (s k) -V (s k-1) .

D.3 Proof of Lemma 13.

We first prove the following intermediate result, that generalizes Lemma 4 in [START_REF] Gabillon | Best Arm Identification: A Unified Approach to Fixed Budget and Fixed Confidence[END_REF].

Lemma 15. For all t ∈ N * , the following holds

if R t+1 = b t then U c t (t) ≤ U b t (t) if R t+1 = c t then L c t (t) ≤ L b t (t)
Proof. Assume c t is selected (i.e. R t+1 = c t) and L c t (t) > L b t (t). As the confidence interval on V (c t) is larger than the confidence intervals on V (b t) (c t is selected), this also yields

U c t (t) > U b t (t). Hence B b t (t) = U c t (t) -L b t (t) > U b t (t) -L c t (t).
Also, by definition of c t , U c t (t) ≥ U b (t). Hence

B b t (t) > max b≠c t U b (t) -L c t (t) = B c t (t),
which contradicts the definition of b t . Thus, we proved by contradiction that L c t (t) ≥ L b t (t).

A similar reasoning can be used to prove that

R t+1 = b t ⇒ U c t (t) ≤ U b t (t).
A simple consequence of Lemma 15 is the fact that, on E t ∩ (τ > t),

(L t+1 = ℓ) ⇒ ⎛ ⎜ ⎝ 2β(N ℓ (t), δ) N ℓ (t) > ǫ ⎞ ⎟ ⎠ . (9)
Indeed, as the algorithm doesn't stop after t rounds, it holds that U c t (t) -L b t (t) > ǫ. If ℓ is the arm selected at round t + 1, ℓ = ℓ Rt+1 (t) and one can prove using Lemma 15 that U Rt+1 (t) -L Rt+1 (t) > ǫ (by distinguishing two cases). Finally, as E t holds, by Lemma 11, I Rt+1 (t) ⊆ I ℓ (t). Hence U ℓ (t) -L ℓ (t) > ǫ, and (9) follows using the particular form of the confidence intervals.

To complete the proof, we now show that

(L t+1 = ℓ) ⇒ ⎛ ⎜ ⎝ 8β(N ℓ (t), δ) N ℓ (t) > max(∆ * , V (s 0) -V (s 1) ⎞ ⎟ ⎠ . (10)
by distinguishing several cases.

Case 1: s * ∉ Anc(ℓ) and R t+1 = c t . Using that the algorithm doesn't stop yields

L c t (t) -U b t (t) + 2(U c t (t) -L c t (t)) > ǫ. As E t holds, L c t (t) ≤ V (c t) = V (s 1) and U b t (t) ≥ V (b t). Therefore, if b t = s * it holds that 2(U c t (t) -L c t (t)) > V (s *) -V (s 1) + ǫ. If b t ≠ s * , by definition of c t one has U c t (t) ≥ U s * (t) ≥ V (s *), hence L c t (t) + (U c t (t) -L c t (t)) ≥ V (s *) V (s 1) + (U c t (t) -L c t (t)) ≥ V (s *).
Thus, recalling that V (s 0) = V (s *), whatever the value of b t , one obtains

2(U c t (t) -L c t (t)) ≥ V (s 0) -V (s 1).
From Lemma 11 the width of I c t (t) is upper bounded by the width of I ℓ (t), hence

2 (U ℓ (t) -L ℓ (t)) ≥ V (s 0) -V (s 1). (11)
Case 2: s * ∉ Anc(ℓ) and R t+1 = b t . As s * ≠ b t , by definition of c t one has

U c t (t) ≥ U s * (t) ≥ V (s *).
Hence, using Lemma 15,

U b t (t) -L b t (t) ≥ U c t (t) -L b t (t) ≥ V (s *) -V (s 1),
as E t holds. Finally, by Lemma 11,

U ℓ (t) -L ℓ (t) ≥ V (s 0) -V (s 1). (12
)
Case 3: s * ∈ Anc(ℓ) and R t+1 = b t . One has b t = s * . Using that the algorithm doesn't stop yields

L c t (t) -U b t (t) + 2(U b t (t) -L b t (t)) > ǫ. As E t holds, U b t (t) ≤ V (s *) and L c t (t) ≤ V (c t) ≤ V (s * 2). Therefore, if b t = s * it holds that 2(U b t (t) -L b t (t)) > V (s *) -V (s * 2) + ǫ.
and by Lemma 11

2 (U ℓ (t) -L ℓ (t)) ≥ V (s *) -V (s * 2). (13
)
Case 4: s * ∈ Anc(ℓ) and R t+1 = c t . One has c t = s * . Using Lemma 15 yields

U c t (t) -L c t (t) ≥ U c t (t) -L b t (t) ≥ V (s *) -V (s * 2),
as E t holds and V (b t) ≤ V (s * 2). Finally, by Lemma 11,

U ℓ (t) -L ℓ (t) ≥ V (s *) -V (s * 2). (14)
Combining (11)-(14), we see that in all four cases

2(U ℓ (t) -L ℓ (t)) ≥ max(V (s *) -V (s * 2), V (s 0) -V (s 1)), as for s * ∉ Anc(ℓ), V (s 0) -V (s 1) = V (s *) -V (s 1) ≥ V (s *) -V (s * 2
), and for s * ∈ Anc(ℓ), V (s 0) -V (s 1) = 0. Using the expression of the confidence intervals and recalling that ∆ * = V (s *) -V (s * 2), one obtains

4 β(N ℓ (t), δ) 2N ℓ (t) ≥ max(∆ * , V (s 0) -V (s 1))
which proves [START_REF] Garivier | Maximin action identification: A new bandit framework for games[END_REF].

D.4 Proof of Lemma 14.

Fix γ ∈ [V (s * 2), V (s *)] and assume E t ∩ (τ > t) holds. We assume (by contradiction) that γ doesn't belong to I Lt+1 (t) nor to I Lt+2 (t). There are four possibilities:

• L Lt+1 (t) > γ and L Lt+2 (t) > γ. As E t holds and L t+1 and L t+2 are representative, it yields that there exists two nodes s ∈ C(s 0) such that V s > γ, which contradicts the definition of γ.

• U Lt+1 (t) < γ and U Lt+2 (t) < γ. From the definition of c t+1 , it yields that for all s ∈ C(s 0), U s (t) < γ and as E t holds one obtains V s < γ for all s ∈ C(s 0), which contradicts the definition of γ.

• L Lt+1 (t) > γ and γ > U Lt+2 (t). This implies that L Lt+1 (t) > U Lt+2 (t) and that L b t (t) > U c t (t) (by Lemma 11 and the fact that L t+1 and L t+2 are representative leaves). This yields (τ ≤ t) and a contradiction.

• U Lt+1 (t) < γ and γ < L Lt+2 (t). This implies in particular that μLt+1 (t) < μLt+2 (t). Thus V (b t , t) < V (c t , t), which contradicts the definition of b t .

Hence, we just proved by contradiction that there exists ℓ ∈ {L t+1 , L t+2 } such that γ ∈ I ℓ (t). To prove Lemma 14, it remains to establish the following three statements.

1.

(γ ∈ I Lt+1 (t)) ∩ (γ ∈ I Lt+2 (t)) ⇒ ∃ℓ ∈ {L t+1 , L t+2 } ∶ 2β(t,δ) N ℓ (t) > ǫ 2. (γ ∈ I Lt+1 (t)) ∩ (γ ∉ I Lt+2 (t)) ⇒ 2β(t,δ) N L t+1 (t) > ǫ 3. (γ ∉ I Lt+1 (t)) ∩ (γ ∈ I Lt+2 (t)) ⇒ 2β(t,δ) N L t+2 (t) > ǫ Statement 1. As the algorithm doesn't stop, U c t (t) -L b t (t) > ǫ. Hence U Lt+2 (t) -L Lt+1 (t) > ǫ μLt+2 (t) + β(N Lt+2 (t), δ) 2N Lt+2 (t) -μLt+1 (t) + β(N Lt+1 (t), δ) 2N Lt+1 (t) > ǫ β(N Lt+2 (t), δ) 2N Lt+2 (t) + β(N Lt+1 (t), δ) 2N Lt+1 (t) > ǫ
using that by definition of b t , μLt+2 (t) < μLt+1 (t). Hence, there exists ℓ ∈ {L t+1 , L t+2 } such that

β(N ℓ (t), δ) 2N ℓ (t) > ǫ 2 ⇒ 2β(t, δ) N ℓ (t) > ǫ.
Statement 2. We consider two cases and first assume that γ ∈ I Lt+1 (t) and γ ≥ U Lt+2 (t). Using the fact that the algorithm doesn't stop at round t, the following events hold

(U Lt+2 (t) -L Lt+1 (t) > ǫ) ∩ (U Lt+1 (t) > γ) ∩ (U Lt+2 (t) ≤ γ) ⇒ (U Lt+2 (t) -L Lt+1 (t) > ǫ) ∩ (U Lt+1 (t) > γ) ∩ (U Lt+2 (t) -L Lt+1 (t) + L Lt+1 (t) ≤ γ) ⇒ (U Lt+1 (t) > γ) ∩ (L Lt+1 (t) ≤ γ -ǫ) ⇒ (U Lt+1 (t) -L Lt+1 (t) > ǫ) ⇒ ⎛ ⎜ ⎝ 2β(t, δ) N Lt+1 (t) > ǫ ⎞ ⎟ ⎠ .
The second case is γ ∈ I Lt+1 (t) and γ ≤ L Lt+2 (t). Then the following holds

(U Lt+2 (t) -L Lt+1 (t) > ǫ) ∩ (L Lt+1 (t) ≤ γ) ∩ (L Lt+2 (t) ≥ γ) ⇒ (L Lt+1 (t) ≤ γ) ∩ (U Lt+2 (t) + L Lt+2 (t) -L Lt+1 (t) > γ + ǫ) ⇒ (L Lt+1 (t) ≤ γ) ∩ ⎛ ⎜ ⎝ 2μ Lt+2 (t) -μLt+1 (t) + 2β(N Lt+1 (t), δ) 2N Lt+1 (t) > γ + ǫ ⎞ ⎟ ⎠ ⇒ (L Lt+1 (t) ≤ γ) ∩ ⎛ ⎜ ⎝ μLt+1 (t) + 2β(N Lt+1 (t), δ) 2N Lt+1 (t) > γ + ǫ ⎞ ⎟ ⎠ ⇒ (U Lt+1 (t) -L Lt+1 (t) > ǫ) ,
where the third implication uses the fact that μLt+2 (t) ≤ μLt+1 (t). Statement 3. We consider two cases and first assume that γ ∈ I Lt+2 (t) and γ ≤ L Lt+1 (t). Using the fact that the algorithm doesn't stop at round t, the following events hold

(U Lt+2 (t) -L Lt+1 (t) > ǫ) ∩ (L Lt+1 (t) ≥ γ) ∩ (L Lt+2 (t) ≤ γ) ⇒ (U Lt+2 (t) > γ + ǫ) ∩ (L Lt+2 (t) ≤ γ) ⇒ (U Lt+2 (t) -L Lt+2 (t) > ǫ) ⇒ ⎛ ⎜ ⎝ 2β(t, δ) N Lt+2 (t) > ǫ ⎞ ⎟ ⎠ .
The second case is γ ∈ I Lt+2 (t) and γ ≥ U Lt+1 (t). Then the following holds

(U Lt+2 (t) -L Lt+1 (t) > ǫ) ∩ (U Lt+2 (t) ≥ γ) ∩ (γ ≥ U Lt+1 (t)) ⇒ (U Lt+2 (t) -(L Lt+1 (t) + U Lt+1 (t)) > ǫ -γ) ∩ (U Lt+2 (t) ≥ γ) ⇒ ⎛ ⎜ ⎝ μLt+2 (t) + 2β(N Lt+2 (t), δ) 2N Lt+2 (t) -2μ Lt+1 (t) > ǫ -γ ⎞ ⎟ ⎠ ∩ (U Lt+2 (t) ≥ γ) ⇒ ⎛ ⎜ ⎝ -μ Lt+2 (t) + 2β(N Lt+2 (t), δ) 2N Lt+2 (t) > ǫ -γ ⎞ ⎟ ⎠ ∩ (U Lt+2 (t) ≥ γ) ⇒ (U Lt+2 (t) -L Lt+2 (t) > ǫ) ,
where the third implication uses the fact that μLt+2 (t) ≤ μLt+1 (t). where N ℓ (t) is the number of draws of the leaf ℓ until round t. Using Lemma 1 of [START_REF] Kaufmann | On the Complexity of Best Arm Identification in Multi-Armed Bandit Models[END_REF], for any event E in the filtration generated by τ , E µ [L τ (µ, λ)] ≥ d(P µ (E), P λ (E)).

E Proof of the lower bounds

As the strategy is δ-correct, letting E = (ŝ τ = s * (µ)) one has P µ (E) ≥ 1 -δ and P λ (E) ≤ δ (under this model, s * (µ) is not the best action at the root under the model parameterized by λ). Using monotonicity properties of the Bernoulli KL-divergence, one obtains, for any λ ∈ Alt(µ), = 1. This concludes the proof.

One can also note that for an algorithm to match the lower bound, all the inequalities above should be equalities. In particular one would need w * ℓ (µ) ≃

Eµ[N ℓ (τ)] Eµ[τ]
, where w * ℓ (µ) is a maximizer in the definition of T * (µ) -1 in (4).

E.2 Proof of Lemma 8

In the particular case of a depth-two tree with K actions for player A and M actions for player B, T * (µ) -1 = sup

Indeed, in the rightmost constrained minimization problem, all the λ k,m on which no constraint lie can be set to µ k,m to minimize the corresponding term in the sum. Using tools from constrained optimization, one can prove that

Figure 1 :

 1 Figure 1: Construction of confidence interval and representative child (in red) for a MAX node.

Figure 2 :

 2 Figure 2: The BAI-MCTS architecture

Lemma 6 .

 6 Let β(s) = C + 3 2 ln(1 + ln(s)) and define S = sup{s ≥ 1 ∶ aβ(s) ≥ s}. Then S ≤ aC + 2a ln(1 + ln(aC)).

Figure 3 :

 3 Figure3: The 3 × 3 tree of depth 2 that is the benchmark in[START_REF] Garivier | Maximin action identification: A new bandit framework for games[END_REF]. Shown below the leaves are the average numbers of pulls for 4 algorithms: LUCB-MCTS (0.89% errors, 2460 samples), UGapE-MCTS (0.94%, 2419), FindTopWinner (0%, 17097) and M-LUCB (0.14%, 2399). All counts are averages over 10K repetitions with ǫ = 0 and δ = 0.1 ⋅ 9.

Figure 4 :

 4 Figure 4: Our benchmark 3-way tree of depth 3. Shown below the leaves are the numbers of pulls of 3 algorithms: LUCB-MCTS (0.72% errors, 1551 samples), UGapE-MCTS (0.75%, 1584), and FindTopWinner (0%, 20730). Numbers are averages over 10K repetitions with ǫ = 0 and δ = 0.1 ⋅ 27.

 in the analysis of UGapE-MCTS, the conclusion now follows from Lemma 6, applied with a = 16 H * ǫ (µ) and C = ln(L δ) + 3 ln ln(L δ), which yields τ ≤ 16 H * ǫ (µ) ln

E. 1

 1 Proof of Theorem 7Theorem 7 follows from considering the best possible change of distribution λ ∈ Alt(µ). The expected loglikelihood ratio of the observations until τ under a model parameterized by µ and a model parameterized byλ is E µ [L τ (µ, λ)] = ℓ∈L E µ [N ℓ (τ)]d(µ ℓ , λ ℓ),

 ℓ∈L E µ [N ℓ (τ)]d(µ ℓ , λ ℓ) ≥ d(1 -δ, δ).Then, one can writeinf λ∈Alt(µ) ℓ∈L E µ [N ℓ (τ)]d(µ ℓ , λ ℓ) ≥ d(1 -δ, δ) E µ [τ] inf λ∈Alt(µ) ℓ∈L E µ [N ℓ (τ)] E µ [τ] d(µ ℓ , λ ℓ) ≥ d(1 -δ, δ) E µ [τ] ⎛ ⎝ sup w∈Σ L inf λ∈Alt(µ) ℓ∈L E µ [N ℓ (τ)] E µ [τ] d(µ ℓ , λ ℓ) ⎞ ⎠ ≥ d(1 -δ, δ), using that ∑ ℓ∈L Eµ[N ℓ (τ)] Eµ[τ]

 m d(µ k,m , λ k,m).From the particular structure of µ, the best action at the root is action i = 1. Hence Alt(µ) = {λ ∶ ∃a ∈ {1, . . . , M }, ∃i ∈ {2, . . . , K} ∶ ∀j ∈ {1, . . . , M }, λ 1,a < λ i,j }.It follows thatT * (µ) -1 = sup w∈Σ K×M min a∈{1,...,M} i∈{2,...,K} inf λ∶∀j,λ1,a<λi,j K k=1 M m=1 w k,m d(µ k,m , λ k,m) a d(µ 1,a , λ 1,a) + M j=1w i,j d(µ i,j , λ i,j)

F+ 3 2 ln 1 + 2 ≤ aC + 3 2 a 2 , that is ln 1 + 2 ≤ 2 . 2 = 2 ≤ ln 1 + 2 ln(1 + 2 = 3 2 2 ≤ 3 2 2 = C (1 + 2 ln (1 +

 12221222212123232121 a,i (µ, w) = inf (λ1,a,(λi,j)j)∈C a d(µ 1,a , λ 1,a) + M j=1 w i,j d(µ i,j , λ i,j) the setC = {(µ ′ , µ ′) ∈ [0, 1] M+1 ∶ ∃j 0 ∈ {1, . . . , K}, ∃c ∈ [µ i,j0 , µ 1,a] ∶ µ ′ = µ ′ 1 = ⋅ ⋅ ⋅ = µ ′ j0 = c and µ ′ j = µ i,j for j > j 0 }. Letting H(µ ′ , µ ′ , w, w) = w 1,a d(µ 1,a , µ ′) + ∑ M j=1 w i,j d(µ i,j , µ ′ j) one can easily show that for all (µ ′ , µ ′) ∈ C, H(µ ′ , µ ′ , w, w) ≤ H(µ ′ , µ ′ , w, w),which holds by assumption. Then we need to plug in the right hand side. Here we need to show that a C ln aC + 3 2 a ln(1 + ln(aC)) C(1 + ln(aC)) C (1 + ln(aC)) -3 ln(1 + ln(aC)) C(1 + ln(aC)) C (1 + ln(aC)) -3 ln aC + 3 2 a ln(1 + ln(aC)) C(1 + ln(aC)) C (1 + ln(aC)) -3 ln(1 + ln(aC)) C(1 + ln(aC)) C (1 + ln(aC)) -3 To show this, we use ln(1 + x) ≤ x twice to show ln 1 + ln aC + 3 2 a ln(1 + ln(aC)) C(1 + ln(aC)) C (1 + ln(aC)) -3 ln 1 + ln(aC) + ln 1 + 3 2 ln(1 + ln(aC)) (1 + ln(aC)) C (1 + ln(aC)) -3 ln(aC) + 3 ln(aC)) (1 + ln(aC)) C (1 + ln(aC)) -3 ln (1 + ln(aC)) + ln 1 + ln(1 + ln(aC)) C (1 + ln(aC)) -3 ln (1 + ln(aC)) + ln(1 + ln(aC)) C (1 + ln(aC)) -3 ln(aC)) C (1 + ln(aC)) -3 ln(aC)) as desired.

In a recent paper,[START_REF] Huang | Structured best arm identification with fixed confidence[END_REF] independently proposed the LUCBMinMax algorithm, that differs from UGapE-MCTS and LUCB-MCTS only by the way the best guess b t is picked. The analysis is very similar to ours, but features some refined complexity measure, in which ∆ ℓ (that is the maximal distance between consecutive ancestors of the leaf, see (3)) is replaced by the maximal distance between any ancestors of that leaf. Similar results could be obtained for our two algorithms following the same lines.

Acknowledgments. Emilie Kaufmann acknowledges the support of the French Agence Nationale de la Recherche (ANR), under grants ANR-16-CE40-0002 (project BADASS) and ANR-13-BS01-0005 (project SPADRO). Wouter Koolen acknowledges support from the Netherlands Organization for Scientific Research (NWO) under Veni grant 639.021.439.

A Numerical Results for a Depth Three Tree

The results for our experiments on a depth-three tree are displayed in Figure 4.

B Confidence Intervals B.1 Proof of Proposition 1

The proof proceeds by induction. Let the inductive hypothesis be H d ="for all the nodes s at (graph) distance d from a leaf, V s ∈ I s (t)".

H 0 clearly holds by definition of E t . Now let d such that H d holds and let s be at distance d + 1 of a leaf. Then all s ′ ∈ C(s) are at distance at most d from a leaf and using the inductive hypothesis,

Assume that s is a MAX node. Using that

As the tree T is finite, we conclude by induction that ∀s ∈ T , V s ∈ I s (t).

where w is constructed from w by putting all the weight on the smallest arm:

wi,1 = j≥1 w 1,j and wi,j = 0 for j ≥ 2.

This is because the largest d(µ i,j , c) is d(µ i,1 , c) as µ i,1 ≤ µ i,j ≤ c for j ≤ j 0 . Hence taking the infimum, one obtains F a,i (µ, w) ≤ F a,i (µ, w).

Repeating this argument for all i, one can construct w such that ∀i ≥ 2, wi,1 = j≥1 w i,j and wi,j = 0 for j ≥ 2

and F a,i (µ, w) ≤ F a,i (µ, w) for all a, i. Thus, the supremum in 15 is necessarily attained for w in the set

which concludes the proof.

F Inverting Bounds

Consider the exploration rate

where we assume C ≥ 1, so that β(1) = C ≥ 1. Now fix some a ≥ 1, and let us define

The goal is to get a tight upper bound on S. We claim that Theorem 16.

where the upper bound is only non-trivial if C (1 + ln(aC)) > 3 2 , which, for example, is implied by C > 1.23696. Proof. The requirement aβ(s) ≥ s is monotone in s, in that it holds for small s (including s = 1) and fails for large s. So to show the theorem it suffices to show that aβ(s) ≥ s holds at s given by the left-hand-side, while it fails for s equal to the right-hand side.

First, we need to establish that aβ(s) ≥ s for s equal to the left-hand side expression of the theorem. That is, we need to show a C + which is equivalent (the simplification is entirely mechanical) to aC ≥ 1