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Nevanlinna classes associated to a closed set on ∂D

1 Introduction.

We shall study classes of holomorphic functions whose zeros may appear as eigenvalues of a Schrödinger operator with a non self adjoint potential. For instance Frank and Sabin [START_REF] Frank | Restriction theorems for orthonormal functions, strichartz inequalities, and uniform sobolev estimates[END_REF] use the work of Boritchev, Golinskii and Kupin [START_REF] Boritchev | A Blaschke type condition and its application to complex Jacobi matrices[END_REF] to get interesting estimates this way.

The aim of this work is to study Blaschke type conditions relative to Nevanlinna classes associated to a closed set on the torus. In order to do this we shall use the "way of thinking of several complex variables". The methods used in several complex variables already proved their usefulness in the one variable case. For instance:

• the corona theorem of Carleson [START_REF] Carleson | Interpolation by bounded analytic functions and the corona problem[END_REF] is easier to prove and to understand thanks to the proof of T. Wolff based on L. Hörmander [START_REF] Hörmander | Generators for some rings of analytic functions[END_REF] ;

• the characterization of interpolating sequences by Carleson for H ∞ and by Shapiro & Shields for H p are also easier to prove by these methods (see [START_REF] Amar | Extension de fonctions holomorphes et courants[END_REF], last section, where they allow me to get the bounded linear extension property for the case H p ; the H ∞ case being done by Pehr Beurling [START_REF] Beurling | Research on interpolation problems[END_REF]).

So it is not too surprising that in the case of zero sets, they can also be useful.

In this work we shall define Nevanlinna classes of holomorphic functions in the unit disc D of C associated to a closed set E in the torus T and we show that the zero set of functions in these Nevanlinna classes must satisfy a Blaschke type condition.

In fact, the only thing we use with respect to u = log |f (z)| is the fact that u is a subharmonic function such that u(0) = 0. So we can replace log |f (z)| by any subharmonic function u in the unit disc and the "zeros formula" ∆ log |f | = a∈Z(f ) δ a by the Riesz measure associated to u, dµ := ∆u, which is a positive measure.

As an application we get an alternative proof of results by Favorov & Golinskii [START_REF] Favorov | Blaschke-type conditions for analytic and subharmonic functions in the unit disk: local analogs and inverse problems[END_REF]. See also Boritchev, Golinskii and Kupin [START_REF] Boritchev | On zeros of analytic functions satisfying non-radial growth conditions[END_REF].

Let E = Ē ⊂ T be a closed set and p ≥ 0, q > 0 real numbers ; set ∀z ∈ D, d(z, E) the euclidean distance from z to E and ϕ(z) := d(z, E) q . Then we define a Nevanlinna class of functions associated to E, p, q this way. For p > 0 : Definition 1.1 Let E = Ē ⊂ T. We say that an holomorphic function f in D is in the generalised Nevanlinna class N ϕ,p (D) for p > 0 if ∃δ > 0, δ < 1 such that f Nϕ,p := sup

1-δ<s<1 D (1 -|z|) p-1 ϕ(sz) log + |f (sz)| < ∞.
And, for p = 0, Definition 1.2 Let E = Ē ⊂ T. We say that an holomorphic function f is in the generalised Nevanlinna class N d(•,E) q ,0 if ∃δ > 0, δ < 1 such that

f N d(•,E) q ,0 := sup 1-δ<s<1 { T d(se iθ , E) q log + f (se iθ ) + + D d(sz, E) q-1 log + |f (sz)| + D (1 -|sz| 2 ) q-1 log + |f (sz)|} < ∞.
And we prove the Blaschke type condition, for p ≥ 0, Theorem 1.3 Let E = Ē ⊂ T. Suppose q > 0 and f ∈ N ϕ,p (D) with |f (0)| = 1, then

a∈Z(f ) (1 -|a| 2 ) 1+p ϕ(a) ≤ c(ϕ) f Nϕ,p .
As an application we get also the following results, which are special cases of results of Favorov & Golinskii [START_REF] Favorov | Blaschke-type conditions for analytic and subharmonic functions in the unit disk: local analogs and inverse problems[END_REF]. See also Boritchev, Golinskii and Kupin [START_REF] Boritchev | On zeros of analytic functions satisfying non-radial growth conditions[END_REF]. (1 -|a| 2 ) 1+p d(a, E) (q-α(E)+ǫ) + ≤ c(p, q, ǫ)K.

And in the case p = 0, Theorem 1.5 Suppose that f ∈ H(D), |f (0)| = 1 and

∀z ∈ D, log + |f (z)| ≤ K 1 d(z, E) q , then a∈Z(f )
(1 -|a| 2 )d(a, E) (q-α(E)+ǫ) + ≤ c(q, ǫ)K.

Notations.

Let E = Ē ⊂ T be a closed set ; we have T\E = j∈N (α j , β j ) where the F j := (α j , β j ) are the contiguous intervals to E. Set 2δ j the length of the arc F j .

Let Γ j := {z = re iψ ∈ D :: ψ ∈ (α j , β j )} the conical set based on F j and Γ E := {z = re iψ ∈ D ::

ψ ∈ E}. Let χ ∈ C ∞ (R), t ≤ 2 ⇒ χ(t) = 0, t ≥ 3 ⇒ χ(t) = 1. Now we define: ∀z ∈ Γ j , ψ j (z) := |z -α j | 2 |z -β j | 2 δ 2 j , η j (z) := χ( |z -α j | 2 (1 -|z| 2 ) 2 )χ( |z -β j | 2 (1 -|z| 2 ) 2 ),
and ∀z ∈ Γ j , ϕ j (z) := η j (z)ψ j (z) q + (1 -|z| 2 ) 2q , ∀z ∈ Γ E , ϕ E (z) := (1 -|z| 2 ) 2q .

Lemma 1. [START_REF] Favorov | Blaschke-type conditions for analytic and subharmonic functions in the unit disk: local analogs and inverse problems[END_REF] We have ∀z ∈ Γ j , ϕ j (z) ≥ 1 3 q d(z, {α j , β j }) 2q and ∀z ∈ Γ j , ϕ j (z) ≤ (4 q + 2 q )d(z, {α j , β j }) 2q .

Proof. We have

∀z ∈ Γ j , d(z, {α j , β j }) = min(|z -α j | , |z -β j |). Suppose that d(z, {α j , β j }) = |z -α j | then |z -β j | ≥ |z -α j | hence |z -β j | ≥ δ j . So ψ j (z) := |z -α j | 2 |z -β j | 2 δ 2 j ≥ |z -α j | 2 = d(z, {α j , β j }) 2 . Now • if η j (z) = 1, then ∀z ∈ Γ j , d(z, {α j , β j }) 2q ≤ ψ j (z) q ≤ η j (z)ψ j (z) q + (1 -|z| 2 ) 2q = ϕ j (z). • Suppose d(z, {α j , β j }) = |z -α j | then if η j (z) < 1 then either |z -α| 2 ≤ 3(1 -|z| 2 ) 2 or |z -β| 2 ≤ 3(1 -|z| 2 ) 2 . Suppose that |z -α| 2 ≤ 3(1 -|z| 2 ) 2 we have d(z, {α j , β j }) 2 = |z -α j | 2 ≤ 3(1 -|z| 2 ) 2 ⇒ (1 -|z| 2 ) 2 ≥ 1 3 d(z, {α j , β j }) 2 hence ϕ j (z) = η j (z)ψ j (z) q + (1 -|z| 2 ) 2q ≥ (1 -|z| 2 ) 2q ≥ 1 3 q d(z, {α j , β j }) 2q . If |z -β| 2 ≤ 3(1 -|z| 2 ) 2 still with d(z, {α j , β j }) = |z -α j | then |z -α j | ≤ |z -β j | ≤ 3(1 -|z| 2 ) 2 ⇒ (1 -|z| 2 ) 2 ≥ 1 3 d(z, {α j , β j }) 2
and again ϕ j (z) ≥ 1 3 q d(z, {α j , β j }) 2q . Hence in any cases we have ϕ j (z) ≥ 3 -q d(z, {α j , β j }) 2q .

For the other way, still with d(z, {α j ,

β j }) = |z -α j | , we have, if η j (z) > 0, that |z -α| 2 ≥ 2(1 -|z| 2 ) 2 hence, with z = ρe iθ , |z -β| 2 = (1 -ρ) 2 + e iθ -β 2 ≥ |z -α| 2 ≥ 2(1 -ρ 2 ) 2 hence e iθ -β 2 ≥ (1 -ρ 2 ) 2 ⇒ (1 -ρ) 2 ≤ e iθ -β 2 . So |z -β| 2 = (1 -ρ) 2 + e iθ -β 2 ≤ e iθ -β 2 + e iθ -β 2 = 2 e iθ -β 2 ≤ 2δ 2 . (1.1)
Putting it in ψ we get

ψ j (z) := |z -α j | 2 |z -β j | 2 δ 2 j ≤ 2 |z -α j | 2 = 2d(z, {α j , β j }) 2 (1.2) hence η j (z)ψ j (z) ≤ 2d(z, {α j , β j }) 2 . Because (1 -|z| 2 ) 2 ≤ 4d(z, {α j , β j }) 2 we get ϕ j (z) = η j (z)ψ j (z) q + (1 -|z| 2 ) 2q ≤ (4 q + 2 q )d(z, {α j , β j }) 2q .
Lemma 1.7 There is a function ϕ ∈ C ∞ (D) such that ϕ coincides with ϕ j and ϕ E in their domains of definition.

Proof. Clearly η j (z)ψ j (z) q is in C ∞ (Γ j ) so the question is between Γ j and Γ E . But for any s < 1 and z ∈ Γ j ∩ D(0, s) we have that, for any multi index

α ∈ N 2 , ∂ α [η j (z)ψ j (z) q ] → 0 when z → z 0 ∈ ∂Γ j ∩ D(0, s) because χ( |z -α j | 2 (1 -|z| 2 ) 2
) goes to 0 with all its derivatives when |z -

α j | 2 (1 -|z| 2 ) 2 → 0. The same for χ( |z -β j | 2 (1 -|z| 2 ) 2 ). So η j (z)ψ j (z) q extends C ∞ by 0 to Γ E ∩ D(0, s). And ϕ E (z) := (1 -|z| 2 ) 2q
is already global and C ∞ (D). (Not in C ∞ ( D) !) So ϕ j being the sum of these functions extends C ∞ to the open disc. Now we set, for 0 ≤ s < 1 and q > 0, g s (z) := (1 -|z| 2 ) p+1 ϕ(sz) ∈ C ∞ ( D) so we can apply the Green formula to it. Recall that f s (z) := f (sz).

In fact in the case of log |f s | , even if this function is not C 2 , this is quite well known but for sake of completeness we give a proof as lemma 7.9. Now, because everything works exactly the same way if we replace log |f s | by v(sz) where v is a subharmonic function in the unit disc D, we give also a proof of the Green formula in that case in lemma 7.10, in the appendix. Troughout this work we let log |f | instead of a general subharmonic function v because it is the most interesting case.

With the "zero" formula: ∆ log |f s | = a∈Z(fs) δ a we get a∈Z(fs)

g s (a) = D log |f (sz)| △g s (z) + T (g s ∂ n log |f (sz)| -log |f (sz)| ∂ n g s ).
Because g s = 0 on T, we get:

a∈Z(fs) g s (a) = D log |f (sz)| △g s (z) - T log f (se iθ ) ∂ n g s (e iθ ).
If, moreover p > 0, ∂ n g s = 0 on T, hence We have to compute

△g s (z) log |f (sz)| = △g s (z) log + |f (sz)| -△g s (z) log -|f (sz)| . We have ∆g s = 4 ∂∂g s hence ∆g s (z) = ∆[(1 -|z| 2 ) p+1 ϕ(sz)] = ϕ(sz)∆[(1 -|z| 2 ) p+1 ] + (1 -|z| 2 ) p+1 ∆[ϕ(sz)]+ +8ℜ[∂((1 -|z| 2 ) p+1 ) ∂(ϕ(sz))].
Recall that, with ϕ A,j (z) := η j (z)ψ j (z) q and ϕ C,j := (1 -|z| 2 ) 2q , ∀z ∈ Γ j , ϕ j (z) := ϕ A,j (z) + ϕ C,j (z) ; we start with the last term.

2 Estimates on ϕ C,j (z

) := (1 -|z| 2 ) 2q . In this case g C,s (z) := (1 -|z| 2 ) p+1 ϕ C (sz) = (1 -|z| 2 ) p+1 (1 -|sz| 2 ) 2q . So we have to compute ∆[(1 -|z| 2 ) p+1 ϕ C (z)] = A 1 + A 2 + A 3 with: A 1 := (1 -|sz| 2 ) 2q ∆((1 -|z| 2 ) p+1 ) = = -4(p + 1)(1 -|z| 2 ) p (1 -|sz| 2 ) 2q + 4p(p + 1)(1 -|z| 2 ) p-1 |z| 2 (1 -|sz| 2 ) 2q ; A 2 := (1 -|z| 2 ) p+1 ∆((1 -|sz| 2 ) 2q ) = -8sq(1 -|z| 2 ) p+1 (1 -|sz| 2 ) 2q-1 + 8q(2q -1)(1 -|z| 2 ) p+1 |z| 2 (1 -|sz| 2 ) 2q-2 ; A 3 := 8ℜ[∂((1 -|z| 2 ) p+1 ) ∂((1 -|sz| 2 ) 2q )] = = 16sq(p + 1)(1 -|z| 2 ) p (1 -|sz| 2 ) 2q-1 |z| 2 .
We shall consider the terms ∆g C,s (z) log + |f (sz)| . We shall use Lemma 2.1 For p > 0 we have:

∀z ∈ D, ∆g C,s (z) ≤ c(p, q)(1 -|z| 2 ) p-1 |z| 2 (1 -|sz| 2 ) 2q
. And for p = 0 we have: ∀z ∈ D, ∆g C,s (z) ≤ c(q) |z| 2 (1 -|sz| 2 ) 2q-1 , with c(q) := 8q(2q -1) + 16q(p + 1) (hence c(0) = 0).

Proof.

We have

A 1 ≤ 4p(p + 1)(1 -|z| 2 ) p-1 |z| 2 (1 -|sz| 2 ) 2q , because -4(p + 1)(1 -|z| 2 ) p (1 -|sz| 2 ) 2q is negative. A 2 ≤ 8q(2q -1)(1 -|z| 2 ) p+1 |z| 2 (1 -|sz| 2 ) 2q-2 , because -8sq(1 -|z| 2 ) p+1 (1 -|sz| 2 ) 2q-1 is negative. So adding, we get ∆g C,s (z) ≤ 4p(p + 1)(1 -|z| 2 ) p-1 |z| 2 (1 -|sz| 2 ) 2q + +8q(2q -1)(1 -|z| 2 ) p+1 |z| 2 (1 -|sz| 2 ) 2q-2 + +16sq(p + 1)(1 -|z| 2 ) p (1 -|sz| 2 ) 2q-1 |z| 2 . If p > 0 we use (1 -|z| 2 ) ≤ (1 -|sz| 2 ) to get (1 -|z| 2 ) p+1 |z| 2 (1 -|sz| 2 ) 2q-2 ≤ (1 -|z| 2 ) p-1 |z| 2 (1 -|sz| 2 ) 2q , and (1 -|z| 2 ) p (1 -|sz| 2 ) 2q-1 |z| 2 ≤ (1 -|z| 2 ) p-1 |z| 2 (1 -|sz| 2 ) 2q . If p = 0 we keep (1 -|z| 2 ) |z| 2 (1 -|sz| 2 ) 2q-2 ≤ |z| 2 (1 -|sz| 2 ) 2q-1 , So, setting, for p > 0,
c(p, q) := 4p(p + 1) + 8q(2q -1) + 16q(p + 1), and c(q) := 8q(2q -1) + 16q(p + 1), which ends the proof of the lemma. Proposition 2.2 We have, for p > 0,

D ∆g C,s (z) log + |f (sz)| ≤ c(p, q) D (1 -|z| 2 ) p-1 ϕ C (sz) log + |f (sz)|.
And for p = 0,

D ∆g C,s (z) log + |f (sz)| ≤ c(q) D (1 -|sz| 2 ) 2q-1 log + |f (sz)| with c(0) = 0.
Proof. Integrating the estimates of lemma 2.1 we get the proposition.

In order to consider the terms containing log -|f (sz)| we shall need:

Lemma 2.3 We have, for p ≥ 0 and any s ≥ 1/2, ∀z ∈ D, -∆g C,s (z) ≤ -4p(p + 1)(1 -|z| 2 ) p-1 |z| 2 (1 -|sz| 2 ) 2q + +4[(p + 1) + 2sq](1 -|z| 2 ) p (1 -|sz| 2 ) 2q .
Proof. With -∆g C,s (z) we get:

-A 1 ≤ 4(p + 1)(1 -|z| 2 ) p (1 -|sz| 2 ) 2q - -4p(p + 1)(1 -|z| 2 ) p-1 |z| 2 (1 -|sz| 2 ) 2q ; -A 2 = 8sq(1 -|z| 2 ) p+1 (1 -|sz| 2 ) 2q-1 - -8q(2q -1)(1 -|z| 2 ) p+1 |z| 2 (1 -|sz| 2 ) 2q-2 ; and, -A 3 = -16sq(p + 1)(1 -|z| 2 ) p (1 -|sz| 2 ) 2q-1 |z| 2 .
We have two cases:

• 2q -1 ≥ 0 then -A 2 ≤ 8sq(1 -|z| 2 ) p+1 (1 -|sz| 2 ) 2q-1 . • 2q -1 < 0 then: 8q(1 -2q)(1 -|z| 2 ) p |z| 2 (1 -|sz| 2 ) 2q-1 - -16sq(p + 1)(1 -|z| 2 ) p (1 -|sz| 2 ) 2q-1 |z| 2 = = -[16sq(p + 1) -8q(1 -2q)](1 -|z| 2 ) p (1 -|sz| 2 ) 2q-1 |z| 2 . But [16sq(p + 1) -8q(1 -2q)] = 16sq -8q + 16sqp + 16q 2 ≥ 8q(2s -1) ≥ 0 provided that s ≥ 1/2.
So in any cases, with s ≥ 1/2, we get for p > 0,

∀z ∈ D, -∆g C,s (z) ≤ -4p(p + 1)(1 -|z| 2 ) p-1 |z| 2 (1 -|sz| 2 ) 2q + +4(p + 1)(1 -|z| 2 ) p (1 -|sz| 2 ) 2q + +8sq(1 -|z| 2 ) p+1 (1 -|sz| 2 ) 2q-1 ≤ ≤ -4p(p + 1)(1 -|z| 2 ) p-1 |z| 2 (1 -|sz| 2 ) 2q + +4[(p + 1) + 2sq](1 -|z| 2 ) p (1 -|sz| 2 ) 2q . And for p = 0, ∀z ∈ D, -∆g C,s (z) ≤ 4[1 + 2sq](1 -|sz| 2 )
2q . So we proved the lemma. 

Proof.

Passing in polar coordinates we get 

D (1 -|z| 2 ) p (1 -|sz| 2 ) 2q log -|f (sz)| = 1 0 (1 -ρ 2 ) p (1 -s 2 ρ 2 ) 2q { T log -f (sρe iθ ) }ρdρ ;
log -f (sρe iθ ) ≤ T log + f (sρe iθ ) so D (1 -|z| 2 ) p (1 -|sz| 2 ) 2q log -|f (sz)| ≤ D (1 -|z| 2 ) p (1 -|sz| 2 ) 2q log + |f (sz)|. Now using lemma 2.3, - D ∆g C,s (z) log -|f (sz)| ≤ -4p(p + 1) D (1 -|z| 2 ) p-1 |z| 2 (1 -|sz| 2 ) 2q log -|f (sz)|+ +4[(p + 1) + 2sq] D (1 -|z| 2 ) p (1 -|sz| 2 ) 2q log -|f (sz)| ≤ ≤ 4[(p + 1) + 2sq] D (1 -|z| 2 ) p (1 -|sz| 2 ) 2q log -|f (sz)| ≤ ≤ 4[(p + 1) + 2sq] D (1 -|z| 2 ) p (1 -|sz| 2 ) 2q log + |f (sz)|.
This ends the proof of the proposition.

3 Estimates on ϕ A,j (z) := ψ j (sz) q η j (sz).

We set g A,s (z) := (1 -|z| 2 ) p+1 j∈N 1 Γ j (z)ϕ A,j (sz),
and we have seen that

g A,s (z) ∈ C ∞ (D.) We shall compute △g A,s (z) log |f (sz)| = △g A,s (z) log + |f (sz)| -△g A,s (z) log -|f (sz)| . We have ∆g A,s = 4 ∂∂g A,s hence here: ∀z ∈ Γ j , ∆[(1 -|z| 2 ) p+1 ϕ A,j (sz)] = ϕ A,j (sz)∆[(1 -|z| 2 ) p+1 ]+ +(1 -|z| 2 ) p+1 ∆[ϕ A,j (sz)]+ +8ℜ[∂((1 -|z| 2 ) p+1 ) ∂(ϕ A,j (sz))] =: =: A 1 + A 2 + A 3 .

Lemma 3.1 We have:

A

1 := ϕ A,j (sz)∆[(1 -|z| 2 ) p+1 ] = 4p(p + 1)(1 -|z| 2 ) p-1 |z| 2 ϕ A,j (sz)- -4(p + 1)(1 -|z| 2 ) p ϕ A,j (sz) =: =: A ′ 1 -A ′′ 1 with, for z ∈ Γ j , A ′ 1 := 4p(p + 1)(1 -|z| 2 ) p-1 |z| 2 ϕ A,j (sz) ≤ 2 2q ×4p(p + 1)(1 -|z| 2 ) p-1 |z| 2 d(sz, E) 2q . A" 1 := 4(p + 1)(1 -|z| 2 ) p ϕ A,j (sz) ≤ 2 2q ×4(p + 1)(1 -|z| 2 ) p d(sz, E) 2q . Proof. A simple computation of ∆[(1 -|z| 2 ) p+1 ] = 4∂ ∂[(1 -|z| 2 ) p+1
] with lemma 1.6 gives the result.

We have, just using ∆ = 4∂ ∂,

A 2 := (1 -|z| 2 ) p+1 ∆[ϕ A,j (sz)] = (1 -|z| 2 ) p+1 ∆[η j (sz)ψ j (sz) q ] = = (1 -|z| 2 ) p+1 η j (sz)∆[ψ j (sz) q ]+ +(1 -|z| 2 ) p+1 ψ j (sz) q ∆[η j (sz)]+ +(1 -|z| 2 ) p+1 8ℜ[∂(η j (sz)) ∂(ψ j (sz) q )] =: A 2,1 + A 2,2 + A 2,3 . Lemma 3.2 We have ∀z ∈ Γ j , A 2,1 (s, z) := (1 -|z| 2 ) p+1 η j (sz)∆[ψ j (sz) q ] = = 4q 2 (1 -|z| 2 ) p+1 η j (sz) |sz -α j | 2q-2 |sz -β j | 2q-2 δ 2q j {|sz -β j | 2 + |sz -α j | 2 + 2ℜ[(sz -α j )(z -βj )]}. Hence ∀z ∈ Γ j , A 2,1 (s, z) ≥ 0 and, for s ≥ 1/2, ∀z ∈ Γ j , A 2,1 (s, z) ≤ 4 2q+2 q 2 (1 -|z| 2 ) p cd(sz, E) 2q-1 .
Proof. We just apply lemma 7.1 with ∆ = 4∂ ∂, to get the first assertion. Then we apply remark 7.2 to get ∀z ∈ Γ j , A 2,1 (z) ≥ 0. Now for the third assertion we notice that η j (sz) ≤ 1 then, using (1.1) in lemma 1.6 with 0 < η j (z), we get |sz -

α j | ≤ √ 2δ j and |sz -β j | ≤ √ 2δ j , hence ∀z ∈ Γ j , |A 2,1 (s, z)| ≤ 8×4 2q q 2 (1 -|z| 2 ) p+1 cd(sz, E) 2q {|sz -β j | -2 + |sz -α j | -2 } using lemma 1.6. But (1 -|z| 2 ) ≤ 2 |z -γ| for any γ ∈ T so we get ∀z ∈ Γ j , |A 2,1 (s, z)| ≤ 4 2q+2 q 2 (1 -|z| 2 ) p cd(sz, E) 2q-1 , which ends the proof of the lemma. We set χ α (z) := χ( |z -α| 2 (1 -|z| 2 ) 2 ), χ β (z) := χ( |z -β| 2 (1 -|z| 2 ) 2
) and we set |χ

′ | := max(|χ ′ α | , χ ′ β ) and |χ ′′ | := max(|χ ′′ α | , χ ′′ β ). Lemma 3.3 We have ∀z ∈ Γ j , A 2,2 (s, z) := (1 -|z| 2 ) p+1 ψ j (sz) q ∆[η j (sz)] ⇒ ⇒ |A 2,2 (s, z)| (|χ ′ | + |χ ′′ |)(1 -|z| 2 ) p ψ j (sz) q-1/2 (|χ ′ | + |χ ′′ |)(1 -|z| 2 ) p d(sz, E) 2q-1 . And, for p > 0, |A 2,2 (s, z)| (|χ ′ | + |χ ′′ |)(1 -|z| 2 ) p-1 d(sz, E) 2q . Proof. We have ∂ ∂[η j (sz)] = χ α (z)∂ ∂[χ β (z)] + χ β (z)∂ ∂[χ α (z)] + 2ℜ[∂χ α (z) ∂[χ β (z)]
. and by lemma 7.4:

∂[χ α (z)] ≤ 3 |χ ′ ()| (λ + 1)(1 -|z| 2 ) -1 . ∂ ∂χ β (|χ ′ | + |χ ′′ |)(1 -|z| 2 ) -2 . So |∆η j | (|χ ′ | + |χ ′′ |)(1 -|z| 2 ) -2 hence |A 2,2 (s, z)| = (1 -|z| 2 ) p+1 ψ j (sz) q |∆[η j (sz)]| (1 -|z| 2 ) p+1 ψ j (sz) q (|χ ′ | + |χ ′′ |)(1 -|sz| 2 ) -2 . Because (1 -|z| 2 ) ≤ (1 -|sz| 2 ) we get |A 2,2 (s, z)| (|χ ′ | + |χ ′′ |)(1 -|z| 2 ) p-1 ψ j (sz) q . Now by lemma 7.3 we get, if ∆η j = 0, ∀z ∈ Γ j , 2(1 -|z| 2 ) 2 ≤ ψ j (z) ≤ 3(1 -|z| 2 ) 2 and |A 2,2 (s, z)| (|χ ′ | + |χ ′′ |)(1 -|z| 2 ) p ψ j (sz) q-1/2 . Because (1 -|z| 2 ) ≤ d(z, E) we get, for p > 0, (1 -|z| 2 ) p ψ j (sz) q-1/2 ≤ (1 -|z| 2 ) p-1 d(sz, E) 2q .
It remains to use lemma 1.6 to get the result.

Lemma 3.4 We have ∀z ∈ Γ j , A 2,3 := (1 -|z| 2 ) p+1 8ℜ[∂(η j (sz)) ∂(ψ j (sz) q )] ⇒ ⇒ |A 2,3 | |χ ′ | (1 -|z| 2 ) p ψ j (sz) q-1/2 |χ ′ | (1 -|z| 2 ) p d(sz, E) 2q-1 .
Proof. We use exactly the same estimates as above for ∂η j and ∂ψ j .

Lemma 3.5 We have

A 3 := 8ℜ[∂((1 -|z| 2 ) p+1 ) ∂(ϕ A,j (sz))] ≤ |χ ′ | (1 -|z| 2 ) p ψ q-1/2 j + 16q(p + 1)(1 -|z| 2 ) p ψ q-1/2 j |χ ′ | (1 -|z| 2 ) p d(sz, E) 2q-1 + 16q(p + 1)(1 -|z| 2 ) p d(sz, E) 2q-1 . and -A 3 |χ ′ | (1 -|z| 2 ) p ψ q-1/2 j + 8(p + 1)(1 -|z| 2 ) p-1/2 qψ q j |χ ′ | (1 -|z| 2 ) p d(sz, E) 2q-1 + 8q(p + 1)(1 -|z| 2 ) p-1/2 d(sz, E) 2q .
Proof.

We have ∂(ϕ A,j (sz)) = ψ q j ∂η j + η j ∂(ψ q j ) For the term ψ j ∂η j we proceed exactly as in lemma 3.3 to get

ψ q j ∂η j |χ ′ | (1 -|z| 2 ) p ψ q-1/2 j . So it remains B := 8η j ℜ[∂((1 -|z| 2 ) p+1 ) ∂(ψ q j )(sz))] = = -8(p + 1)(1 -|z| 2 ) p η j (sz)ℜ[z ∂(ψ q j )(sz))].
For this term we have by lemma 7.1

∂(ψ j ) q (z) = q (z -α j ) |z -α j | 2q-2 |z -β j | 2q δ 2q j + q (z -β j ) |z -α j | 2q |z -β j | 2q-2 δ 2q j hence B = B 1 + B 2 with B 1 := -8(p + 1)(1 -|z| 2 ) p η j (sz)q |sz -α j | 2q-2 |sz -β j | 2q δ 2q j ℜ[z(sz -α j )]
and

B 2 := -8(p + 1)(1 -|z| 2 ) p η j (sz)q |sz -α j | 2q |sz -β j | 2q-2 δ 2q j ℜ[z(sz -β j )].
Now we shall apply lemma 7.5 to get that ℜ[z(sz -

α j )] ≤ 0 iff D( α j 2 , 1 2 
) so

B 1 ≥ 0 ⇐⇒ z ∈ Γ j ∩ D( α j 2 , 1 2 
). The same way

B 2 ≥ 0 ⇐⇒ z ∈ Γ j ∩ D( β j 2 , 1 2 ) 
.

If z / ∈ D( α j 2 , 1 2 
), then we have that

(1 -|z| 2 ) ≤ 2 |z -α j | 2 so we get ∀z ∈ Γ j ∩ D( α j 2 , 1 2 ) c , -B 1 ≤ 8q(p + 1)(1 -|z| 2 ) p ψ q j |(sz -α j )| -1 ≤ ≤ 8q(p + 1)(1 -|z| 2 ) p-1/2 ψ q j .
The same way:

∀z ∈ Γ j ∩ D( β j 2 , 1 2 ) c , -B 2 ≤ 8q(p + 1)(1 -|z| 2 ) p ψ q j |(sz -β j )| -1 ≤ ≤ 8q(p + 1)(1 -|z| 2 ) p-1/2 ψ q j . Hence we get ∀z ∈ Γ j , -B ≤ 16q(p + 1)(1 -|z| 2 ) p-1/2 ψ q j . Now we have B 1 ≥ 0 ⇐⇒ z ∈ Γ j ∩ D( α j 2 , 1 2 
), so

B 1 ≤ 8(p + 1)(1 -|z| 2 ) p η j (sz)q |sz -α j | 2q-2 |sz -β j | 2q δ 2q j |sz -α j | ≤ ≤ 8(p + 1)(1 -|z| 2 ) p q |(sz -α j )| -1 ψ q j .
And the same way

B 2 ≤ 8(p + 1)(1 -|z| 2 ) p η j (sz)q |sz -β j | 2q-2 |sz -α j | 2q δ 2q j |sz -β j | ≤ ≤ 8(p + 1)(1 -|z| 2 ) p q |(sz -β j )| -1 ψ q j . Hence B ≤ 8(p + 1)(1 -|z| 2 ) p q(|(sz -α j )| -1 + |(sz -β j )| -1 )ψ q j . So we get ∀z ∈ Γ j , A 3 := 8ℜ[∂((1 -|z| 2 ) p+1 ) ∂(ϕ A,j (sz))] |χ ′ | (1 -|z| 2 ) p ψ q-1/2 j + 16q(p + 1)(1 -|z| 2 ) p-1/2 ψ q j . And -A 3 |χ ′ | (1 -|z| 2 ) p ψ q-1/2 j + 8q(p + 1)(1 -|z| 2 ) p-1/2 ψ q j .
It remains to use lemma 1.6 to get the result.

We shall estimate △g A,s (z) log + |f (sz)| .

Proposition 3.6 We have △g A,s (z) 4p(p + 1)(1 -|z| 2 ) p-1 d(sz, E) 2q + (1 -|z| 2 ) p d(sz, E) 2q-1 .
Proof. By use of △g A,s (z) = A 1 + A 2 + A 3 and by the previous lemmas, we get for z ∈ Γ j ,

A 1 = A ′ 1 -A ′′ 1 ≤ A ′ 1 = 4p(p + 1)(1 -|z| 2 ) p-1 |z| 2 η j (sz)ψ q j (sz) ≤ ≤ 4p(p + 1)(1 -|z| 2 ) p-1 d(sz, E) 2q . Then A 2 = A 2,1 + A 2,2 + A 2,3 , and, for s ≥ 1/2, 0 ≤ A 2,1 (s, z) ≤ 4 2q+2 q 2 (1 -|z| 2 ) p c(λ)d(sz, E) 2q-1 . |A 2,2 (s, z)| (1 -|z| 2 ) p d(sz, E) 2q-1 . |A 2,3 | |χ ′ | (1 -|z| 2 ) p d(sz, E) 2q-1 . Hence, for ∀z ∈ Γ j , A 2 (1 -|z| 2 ) p d(sz, E) 2q-1 . Finally A 3 (1 -|z| 2 ) p d(sz, E) 2q-1 + 16q(p + 1)(1 -|z| 2 ) p-1/2 d(sz, E) 2q (1 -|z| 2 ) p d(sz, E) 2q-1 . So we get △g A,s (z) 4p(p + 1)(1 -|z| 2 ) p-1 d(sz, E) 2q + (1 -|z| 2 ) p d(sz, E) 2q-1
, which proves the proposition. Now we shall estimate -△g A,s (z) log -|f (sz)| . We set:

P D,A,-(s) := D (1 -|z| 2 ) p-1 |z| 2 ϕ A (sz) log -|f sz|, P D,A,+ (s) := D (1 -|z| 2 ) p-1 ϕ A (sz) log + |f sz|, P -(δ, u, s) := D\D(0,u) (1 -|z| 2 ) p-1+δ ϕ A (sz) log -|f sz|. and P + (δ, u, s) := D(0,u) (1 -|z| 2 ) p-1+δ ϕ A (sz) log + |f sz|. Proposition 3.7 We have, for p > 0, - D △g A,s (z) log -|f (sz)| ≤ 2 2q P D,A,+ (s) + 2×4 q (1 -u 2 ) -2q P + ( 1 2 , u, s).
Proof. By use of △g A,s (z) = A 1 + A 2 + A 3 and by the previous lemmas, we get for ∀z ∈ Γ j ,

-A 1 =: -A ′ 1 + A ′′ 1 = -4p(p + 1)(1 -|z| 2 ) p-1 |z| 2 ϕ A,j (sz)+ +4(p + 1)(1 -|z| 2 ) p d(sz, E) 2q . Now -A 2 = -A 2,1 -A 2,2 -A 2,3 ≤ -A 2,2 -A 2,3 , because A 2,1 ≤ 0.
We have

|A 2,2 | (|χ ′ | + |χ ′′ |)(1 -|z| 2 ) p d(sz, E) 2q-1 and |A 2,3 | |χ ′ | (1 -|z| 2 ) p d(sz, E) 2q-1 so -A 2 (|χ ′ | + |χ ′′ |)(1 -|z| 2 ) p d(sz, E) 2q-1 . Now -A 3 |χ ′ | (1 -|z| 2 ) p d(sz, E) 2q-1 + 8q(p + 1)(1 -|z| 2 ) p-1/2 d(sz, E) 2q . So grouping the terms we get -△g A,s (z) (|χ ′ | + |χ ′′ |)(1 -|z| 2 ) p d(sz, E) 2q-1 + 8q(p + 1)(1 -|z| 2 ) p-1/2 d(sz, E) 2q - -4p(p + 1)(1 -|z| 2 ) p-1 |z| 2 ϕ A,j (sz) + 4(p + 1)(1 -|z| 2 ) p ϕ A,j (sz). and -△g A,s (z) log -|f (sz)| (|χ ′ | + |χ ′′ |)(1 -|z| 2 ) p d(sz, E) 2q-1 log -|f (sz)| + +8q(p + 1)(1 -|z| 2 ) p-1/2 d(sz, E) 2q log -|f (sz)| - -4p(p + 1)(1 -|z| 2 ) p-1 |z| 2 ϕ A,j (sz) log -|f (sz)| + +4(p + 1)(1 -|z| 2 ) p ϕ A,j (sz) log -|f (sz)| . For the first term, because on (|χ ′ | + |χ ′′ |) = 0 we have d(sz, E) ≤ 3(1 -|sz| 2 ), we get B 1 := (|χ ′ | + |χ ′′ |)(1 -|z| 2 ) p d(sz, E) 2q-1 log -|f (sz)| (1 -|z| 2 ) p (1 -|sz| 2 ) 2q-1 log -|f (sz)| hence, passing in polar coordinates, D B 1 1 0 (1 -ρ 2 ) p (1 -s 2 ρ 2 ) 2q-1 { T log -f (sρe iθ ) }ρdρ.
By the subharmonicity of log |f (sz)| and |f (0

)| = 1, we get T log -f (sρe iθ ) ≤ T log + f (sρe iθ ) , hence D B 1 D (1 -|z| 2 ) p (1 -|sz| 2 ) 2q-1 log + |f (sz)|.
For B 2 := 8q(p + 1)(1 -|z| 2 ) p-1/2 d(sz, E) 2q log -|f (sz)| , we use the substitution lemma 7.7 with δ = 1/2, to get:

D B 2 ≤ 4 q (1 -u 2 ) -2q P + ( 1 2 , u) + (1 -u 2 ) 1/4 u -2 P -( 1 4 
, u, s).

For p > 0, because ϕ A (z) d(z, E) 2q , we get:

D B 2 4 q (1 -u 2 ) -2q D(0,u) (1 -|z| 2 ) p-1/2 d(sz, E) 2q log + |f sz|+ +(1 -u 2 ) 1/4 u -2 D (1 -|z| 2 ) p-3/4 |z| 2 ϕ A (sz) log -|f sz|.
The same for the last term with δ = 1 and we get that

B 4 := 4(p + 1)(1 -|z| 2 ) p d(sz, E) 2q log -|f (sz)| verifies D B 4 4 q (1 -u 2 ) -2q P + (1, u, s) + (1 -u 2 ) 1/2 u -2 P -( 1 2 , u, s).
Now it remains the "good" term

B 3 := -4p(p + 1)(1 -|z| 2 ) p-1 |z| 2 ϕ A,j (sz) log -|f (sz)| and, if p > 0, we choose 1 -u 2 small enough to get that (1 -u 2 ) 1/4 u -2 D (1 -|z| 2 ) p-3/4 |z| 2 ϕ A (sz) log -|f sz|+ +(1 -u 2 ) 1/2 u -2 D (1 -|z| 2 ) p-1/2 |z| 2 ϕ A (sz) log -|f sz|- -4p(p + 1) D (1 -|z| 2 ) p-1 |z| 2 ϕ A (sz) log -|f (sz)| ≤ 0.

So it remains:

-

D △g A,s (z) log -|f (sz)| ≤ D (1 -|z| 2 ) p (1 -|sz| 2 ) 2q-1 log + |f (sz)|+ +2 q (1 -u 2 ) -2q P + ( 1 2 , u, s)+ +2 q (1 -u 2 ) -2q P + (1, u, s) ≤ ≤ D (1 -|z| 2 ) p (1 -|sz| 2 ) 2q-1 log + |f (sz)|+ +2×4 q (1 -u 2 ) -2q P + ( 1 2 , u, s). Now (1 -|z| 2 ) ≤ (1 -|sz| 2 ), and (1 -|sz| 2 ) 2q ≤ 2 2q ϕ A (sz) so we get D (1 -|z| 2 ) p (1 -|sz| 2 ) 2q-1 log + |f (sz)| ≤ 2 2q D (1 -|z| 2 ) p-1 ϕ A (sz) log + |f (sz)|,
so putting it, we get

- D △g A,s (z) log -|f (sz)| ≤ 2 2q D (1 -|z| 2 ) p-1 ϕ A (sz) log + |f (sz)|+ +2×4 q (1 -u 2 ) -2q P + ( 1 2
, u), which ends the proof. Proposition 3.8 We have, for p = 0,

- D △g A,s (z) log -|f (sz)| D (1 -|sz| 2 ) 2q-1 log + |f (sz)|+ +2×4 q (1 -u 2 ) -2q D(0,u) (1 -|z| 2 ) -1/2 d(sz, E) 2q log + |f sz|+ +2(1 -u 2 ) 1/4 u -2 D\D(0,u) (1 -|z| 2 ) -3/4 |z| 2 ϕ A (sz) log -|f sz|.
Proof. For p = 0, there is no "good" term and we have

D B 1 D (1 -|sz| 2 ) 2q-1 log + |f (sz)|. And D B 2 4 q (1 -u 2 ) -2q D(0,u) (1 -|z| 2 ) -1/2 d(sz, E) 2q log + |f sz|+ +(1 -u 2 ) 1/4 u -2 D\D(0,u) (1 -|z| 2 ) -3/4 |z| 2 ϕ A (sz) log -|f sz|.
The same for the last term with δ = 1 and we get

B 4 := 4d(sz, E) 2q log -|f (sz)| verifies D B 4 4 q (1 -u 2 ) -2q P + (1, u) + (1 -u 2 ) 1/2 u -2 P -( 1 2 , u, s).
So adding:

- D △g A,s (z) log -|f (sz)| D (1 -|sz| 2 ) 2q-1 log + |f (sz)|+ +4 q (1 -u 2 ) -2q D(0,u) (1 -|z| 2 ) -1/2 d(sz, E) 2q log + |f sz|+ +4 q (1 -u 2 ) -2q D(0,u) d(sz, E) 2q log + |f sz|+ +(1 -u 2 ) 1/4 u -2 D\D(0,u) (1 -|z| 2 ) -3/4 |z| 2 ϕ A (sz) log -|f sz|+ +(1 -u 2 ) 1/2 u -2 D\D(0,u) (1 -|z| 2 ) -1/2 |z| 2 ϕ A (sz) log -|f sz|.
And -

D △g A,s (z) log -|f (sz)| D (1 -|sz| 2 ) 2q-1 log + |f (sz)|+ +2×4 q (1 -u 2 ) -2q D(0,u) (1 -|z| 2 ) -1/2 d(sz, E) 2q log + |f sz|+ +2(1 -u 2 ) 1/4 u -2 D\D(0,u) (1 -|z| 2 ) -3/4 |z| 2 ϕ A (sz) log -|f sz|,
which ends the proof.

Proposition 3.9 We have, for p > 0,

D △g A,s (z) log |f (sz)| [2 2q + 4p(p + 1) + 2]P D,A,+ (s) + 2×4 q (1 -u 2 ) -2q P + ( 1 2 , u, s), Proof. From △g A,s (z) log |f (sz)| = △g A,s (z) log + |f (sz)| -△g A,s (z) log -|f (sz)| using proposition 3.6 we have, using (1 -|z| 2 ) ≤ 2d(sz, E), △g A,s (z) log + |f (sz)| 4p(p + 1)(1 -|z| 2 ) p-1 d(sz, E) 2q log + |f sz| + +(1 -|z| 2 ) p d(sz, E) 2q-1 log + |f sz| ≤ ≤ [4p(p + 1) + 2](1 -|z| 2 ) p-1 d(sz, E) 2q log + |f sz| .
And using proposition 3.7 we have

- D △g A,s (z) log -|f (sz)| ≤ 2 2q P D,A,+ (s) + 2×4 q (1 -u 2 ) -2q P + ( 1 2 , u, s). Hence D △g A,s (z) log |f (sz)| 2 2q P D,A,+ (s) + 2×4 q (1 -u 2 ) -2q P + ( 1 2 , u, s)+ +[4p(p + 1) + 2] D (1 -|z| 2 ) p-1 d(sz, E) 2q log + |f sz|, so D △g A,s (z) log |f (sz)| [2 2q + 4p(p + 1) + 2]P D,A,+ (s) + 2×4 q (1 -u 2 ) -2q P + ( 1 2 , u, s),
which ends the proof. [START_REF] Boritchev | On zeros of analytic functions satisfying non-radial growth conditions[END_REF] The case p > 0.

Recall that ∀z ∈ Γ j , ϕ j (z) := η j (z)ψ j (z

) q + (1 -|z| 2 ) 2q , ∀z ∈ Γ E , ϕ E (z) := (1 -|z| 2 ) 2q
, and by lemma 1.7 we have that there is a function ϕ ∈ C ∞ (D) such that ϕ coincides with ϕ j and ϕ E in their domains of definition. Moreover we have for 0 ≤ s < 1 and q > 0, g s (z) := (1 -|z| 2 ) p+1 ϕ(sz) ∈ C ∞ ( D) so we can apply the Green formula to it. Recall that f s (z) := f (sz).

With the "zero" formula: ∆ log |f s | = a∈Z(fs) δ a we get a∈Z(fs)

g s (a) = D log |f (sz)| △g s (z) + T (g s ∂ n log |f (sz)| -log |f (sz)| ∂ n g s ).
So, because g s = 0 on T, So we have to compute

△g s (z) log |f (sz)| = △g s (z) log + |f (sz)| -△g s (z) log -|f (sz)| . We have ∆g s = 4 ∂∂g s hence ∆g s (z) = ∆[(1 -|z| 2 ) p+1 ϕ(sz)] = ϕ(sz)∆[(1 -|z| 2 ) p+1 ] + (1 -|z| 2 ) p+1 ∆[ϕ(sz)]+ +8ℜ[∂((1 -|z| 2 ) p+1 ) ∂(ϕ(sz))].
Recall that, with ϕ A,j (z) := η j (z)ψ j (z) q and ϕ C,j (z) := (1 -|z| 2 ) 2q , we have ∀z ∈ Γ j , ϕ j (z) := ϕ A,j (z) + ϕ C,j (z), and g C,s (z

) := (1 -|z| 2 ) p+1 ϕ C (sz) = (1 -|z| 2 ) p+1 (1 -|sz| 2 ) 2q , and g A,s (z) := (1 -|z| 2 ) p+1 j∈N 1 Γ j (z)ϕ A,j (sz).
Now we are in position to apply the previous results. By proposition 2.2 we get:

D ∆g C,s (z) log + |f (sz)| ≤ c(p, q) D (1 -|z| 2 ) p-1 ϕ C (sz) log + |f (sz)|.
And by proposition 2.4 we get:

- D ∆g C,s (z) log -|f (sz)| ≤ 4[(p + 1) + 2sq] D (1 -|z| 2 ) p (1 -|sz| 2 ) 2q log + |f (sz)|.
So adding:

D ∆g C,s (z) log |f (sz)| ≤ c(p, q) D (1 -|z| 2 ) p-1 ϕ C (sz) log + |f (sz)|+ +4[(p + 1) + 2sq] D (1 -|z| 2 ) p (1 -|sz| 2 ) 2q log + |f (sz)|.
Now by proposition 3.9 we get:

D △g A,s (z) log |f (sz)| [2 2q + 4p(p + 1) + 2] D (1 -|z| 2 ) p-1 ϕ A (sz) log + |f sz|+ +2×4 q (1 -u 2 ) -2q D(0,u) (1 -|z| 2 ) p-1/2 ϕ A (sz) log + |f sz|.
Adding, because ϕ = ϕ A + ϕ C , we get Theorem 4.1 We have:

D △g s (z) log |f (sz)| D (1 -|z| 2 ) p-1 ϕ(sz) log + |f sz|.
Proof. This is clear because, in the second term:

(1 And we proved the Blaschke type condition:

-|z| 2 ) p-1/2 ϕ(sz) log + |f sz| ≤ (1 -|z| 2 ) p-1 ϕ(sz) log + |f sz| .
Theorem 4.3 Let E = Ē ⊂ T. Suppose q > 0 and f ∈ N ϕ,p (D) with |f (0)| = 1, then a∈Z(f ) (1 -|a| 2 ) 1+p ϕ(a) ≤ c(ϕ) f Nϕ,p . Corollary 4.4 Let E = Ē ⊂ T. Suppose q ∈ R and f ∈ N d(•,E) q ,p (D) with |f (0)| = 1, then a∈Z(f ) (1 -|a| 2 ) 1+p d(a, E) q ≤ c(ϕ) f N d(•,E) q ,p .
Proof. By use of lemma 1.8, we have the constant in being independent of s < 1. It remains to apply lemma 7.11 to get that, for any 1 > δ > 0 we have:

a∈Z(f ) (1 -|a| 2 ) p+1 ϕ(a) ≤ sup 1-δ<s<1 D (1 -|z| 2 ) p-1 ϕ(sz) log + |f (sz)|,
which ends the proof of theorem 4.3.

To prove corollary 4.4, we use lemma 1.6 and lemma 1.7 which give that ϕ(z) is equivalent to d(z, E) 2q . [START_REF] Carleson | Interpolation by bounded analytic functions and the corona problem[END_REF] The case p = 0.

This time we have g s (z

) := (1 -|z| 2 )ϕ(sz) ∈ C ∞ ( D) hence a∈Z(fs) g s (a) = D log |f (sz)| △g s (z) - T log f (se iθ ) ∂ n g s (e iθ ), with ∂ n g s (z) = -2ϕ(sz) + (1 -|z| 2 )∂ n ϕ(sz), so ∀e iθ ∈ T, ∂ n g s (e iθ ) = -2ϕ(se iθ ) hence a∈Z(fs) g s (a) = D log |f (sz)| △g s (z) + 2 T ϕ(e iθ ) log f (se iθ ) . (5.3) 
Now we are in position to apply the previous results. By proposition 2.2, we get:

D ∆g C,s (z) log + |f (sz)| ≤ c(q) D (1 -|sz| 2 ) 2q-1 log + |f (sz)|.
By proposition 2.4, with p = 0, we get:

- D ∆g C,s (z) log -|f (sz)| ≤ 4[1 + 2sq] D (1 -|sz| 2 ) 2q log + |f (sz)|.
So, adding:

D ∆g C,s (z) log |f (sz)| ≤ c(q) D (1 -|sz| 2 ) 2q-1 log + |f (sz)|.
By proposition 3.6 with p = 0, we get:

△g A,s (z) d(sz, E) 2q-1 , hence D ∆g A,s (z) log + |f (sz)| D d(sz, E) 2q-1 log + |f (sz)|.

By proposition 3.8 we get:

- D △g A,s (z) log -|f (sz)| D (1 -|sz| 2 ) 2q-1 log + |f (sz)|+ +2×4 q (1 -u 2 ) -2q D(0,u) (1 -|z| 2 ) -1/2 d(sz, E) 2q log + |f sz|+ +2(1 -u 2 ) 1/4 u -2 D\D(0,u) (1 -|z| 2 ) -3/4 |z| 2 ϕ A (sz) log -|f sz|.

So adding we get

D ∆g A,s (z) log |f (sz)| D d(sz, E) 2q-1 log + |f (sz)| + D (1 -|sz| 2 ) 2q-1 log + |f (sz)|+ +2×4 q (1 -u 2 ) -2q D(0,u) (1 -|z| 2 ) -1/2 d(sz, E) 2q log + |f sz|+ +2(1 -u 2 ) 1/4 u -2 D\D(0,u) (1 -|z| 2 ) -3/4 |z| 2 ϕ A (sz) log -|f sz|.
Combining these results, we proved: Proposition 5.1 We have:

D ∆g s (z) log |f (sz)| D d(sz, E) 2q-1 log + |f (sz)| + D (1 -|sz| 2 ) 2q-1 log + |f (sz)|+ +2×4 q (1 -u 2 ) -2q D(0,u) (1 -|z| 2 ) -1/2 d(sz, E) 2q log + |f sz|+ +4(1 -u 2 ) 1/2 sup su<t<s T ϕ A (te iθ ) log -f (te iθ )dθ .

Proof.

It remains to deal with the term in log -|f sz| . We have, passing in polar coordinates,

D\D(0,u) (1 -|z| 2 ) -3/4 |z| 2 ϕ A (sz) log -|f sz| = 1 u (1 -ρ 2 ) -3/4 { T ϕ A (sρe iθ ) log -f sρe iθ ρdρ ≤ ≤ sup su<t<s T ϕ A (te iθ ) log -f (te iθ )dθ 1 u (1 -ρ 2 ) -3/4 ρdρ ≤ ≤ 2(1 -u 2 ) 1/4 sup su<t<s T ϕ A (te iθ ) log -f (te iθ )dθ .

Hence we get

2(1 -u 2 ) 1/4 u -2 D\D(0,u) (1 -|z| 2 ) -3/4 |z| 2 ϕ A (sz) log -|f sz| ≤ ≤ 4(1 -u 2 ) 1/2 sup su<t<s T ϕ A (te iθ ) log -f (te iθ )dθ
which ends the proof. Now we shall use the relation (5.3) which says:

a∈Z(fs) g s (a) = D log |f (sz)| △g s (z) + 2 T ϕ(e iθ ) log f (se iθ ) .
So we have, using proposition 5.1,

a∈Z(fs) g s (a) D d(sz, E) 2q-1 log + |f (sz)| + D (1 -|sz| 2 ) 2q-1 log + |f (sz)|+ +2×4 q (1 -u 2 ) -2q D(0,u) (1 -|z| 2 ) -1/2 d(sz, E) 2q log + |f sz|+ +4(1 -u 2 ) 1/2 sup su<t<s T ϕ A (te iθ ) log -f (te iθ )dθ + +2 T ϕ(se iθ ) log + f (se iθ ) -2 T ϕ(se iθ ) log -f (se iθ ) .
So the "good" term is now -2 T ϕ(se iθ ) log -f (se iθ ) .

We shall set P T,+ (t 0 ) := sup 0≤s≤t 0 T ϕ(se iθ ) log + f (se iθ ) . and P T,-(t 0 ) := sup

0≤s≤t 0 T ϕ(se iθ ) log -f (se iθ ) .
Because γ(s) := T ϕ(se iθ ) log -f (se iθ ) is continuous for s ∈ [0, t 0 ] by lemma 7.8 in the appendix, the sup is achieved for a s 0 ∈ [0, t 0 ] and we have

P T,-(t 0 ) = T ϕ(s 0 e iθ ) log -f (s 0 e iθ ) .
Fix t 0 < 1 and set:

P D,+ (s) := D d(sz, E) 2q-1 log + |f (sz)| + D (1 -|sz| 2 ) 2q-1 log + |f (sz)|+ +2×4 q (1 -u 2 ) -2q D(0,u) (1 -|z| 2 ) -1/2 d(sz, E) 2q log + |f sz|+ +2 T ϕ(se iθ ) log + f (se iθ ) .
Then we get, with the s 0 ≤ t 0 associated to t 0 , a∈Z(fs)

g t 0 (a) + a∈Z(fs) g s 0 (a) P D,+ (t 0 ) + P D,+ (s 0 )+ +4(1 -u 2 ) 1/2 sup t 0 u<t<t 0 T ϕ A (te iθ ) log -f (te iθ )dθ + +4(1 -u 2 ) 1/2 sup s 0 u<t<s 0 T ϕ A (te iθ ) log -f (te iθ )dθ - -2 T ϕ(t 0 e iθ ) log -f (t 0 e iθ ) -2 T ϕ(s 0 e iθ ) log -f (t 0 e iθ ) .
But, because P T,-(t 0 ) = T ϕ(s 0 e iθ ) log -f (s 0 e iθ ) and s 0 ≤ t 0 , we get:

sup t 0 u<t<t 0 T ϕ A (te iθ ) log -f (te iθ )dθ ≤ P T,-(t 0 )
and sup

s 0 u<t<s 0 T ϕ A (te iθ ) log -f (te iθ )dθ ≤ P T,-(t 0 ), so 8(1 -u 2 ) 1/2 P T,-(t 0 ) -2 T ϕ(s 0 e iθ ) log -f (t 0 e iθ ) ≤ ≤ (8(1 -u 2 ) 1/2 -2) T ϕ(s 0 e iθ ) log -f (t 0 e iθ ) . So choosing u < 1 such that 8(1 -u 2 ) 1/2 -2 ≤ 0, i.e. u ≥ 15 16
which is independent of t 0 , we get 

∀t 0 < 1,
2×4 q (1 -u 2 ) -2q D(0,u) (1 -|z| 2 ) -1/2 d(sz, E) 2q log + |f sz| ≤ ≤ 2×4 q ( 16 15 ) q [ D d(sz, E) 2q-1 log + |f (sz)| + D (1 -|sz| 2 ) 2q-1 log + |f (sz)|]. So P D,+ (s) ≤ c(q)[ D d(sz, E) 2q-1 log + |f (sz)| + D (1 -|sz| 2 ) 2q-1 log + |f (sz)|] + P T,+ (s). 
So we are lead to the definition, replacing 2q by q :

Definition 5.2 Let E = Ē ⊂ T. We say that an holomorphic function f is in the generalised Nevanlinna class

N d(•,E) q ,0 if ∃δ > 0, δ < 1 such that f N d(•,E) q ,0 := sup 1-δ<s<1 { T d(se iθ , E) q log + f (se iθ ) + + D d(sz, E) q-1 log + |f (sz)| + D (1 -|sz| 2 ) q-1 log + |f (sz)|} < ∞.
And we proved the Blaschke type condition:

Theorem 5.3 Let E = Ē ⊂ T. Suppose q > 0 and f ∈ N ϕ,0 (D) with |f (0)| = 1, then a∈Z(f ) (1 -|a| 2 )ϕ(a) ≤ c(ϕ) f N ϕ,0 . Corollary 5.4 Let E = Ē ⊂ T. Suppose q > 0 and f ∈ N d(•,E) q ,0 (D) with |f (0)| = 1, then a∈Z(f ) (1 -|a| 2 )d(a, E) q ≤ c(E, q) f N d(•,E) q ,0 .
Proof. For the theorem we apply inequality (5.4) ∀t <

g t (a) P D,+ (t) + P D,+ (s),

and for the corollary we recall that ϕ(z) ≃ d(z, E) q .

6 Application : L ∞ bounds.

We shall examine two cases.

• Case p > 0.

Let E = Ē ⊂ T ; its Ahern-Clark type α(E) is defined the following way:

α(E) := sup{α ∈ R :: |{t ∈ T :: d(t, E) < x}| = O(x α ), x → +0}
, where |A| denotes the Lebesgue measure of the set A.

Our hypothesis is

log |f (z)| ≤ K (1 -|z|) p 1 d(z, E) q , z ∈ D, p, q ≥ 0.
We want to apply corollary 4.4 so we have, with ϕ(z) := d(z, E) q-α(E)+ǫ :

a∈Z(f ) (1 -|a| 2 ) 1+p ϕ(a) ≤ c(ϕ) f Nϕ,p ,
and we shall compute f Nϕ,p , i.e. f Nϕ,p := sup

1-δ≤s<1 D (1 -|z| 2 ) p-1 d(sz, E) q-α(E)+ǫ log + |f (sz)|.

The hypothesis gives

∀z ∈ D, log + |f (z)| ≤ K (1 -|z| 2 ) p 1 d(z, E) q (z)
, so we have

D (1 -|z| 2 ) p-1 d(sz, E) q-α(E)+ǫ log + |f (sz)| ≤ K D (1 -|z| 2 ) ǫ-1 d(sz, E) -α(E) .
We set

Γ n := E n ×(1 -2 -n , 1) and γ n := Γ n \Γ n+1 . Then we get D (1 -|z| 2 ) ǫ-1 d(sz, E) -α(E) = n∈N γn (1 -|z| 2 ) ǫ-1 d(sz, E) -α(E) ≤ n∈N 2 -(ǫ-1)n 2 nα(E) γn dm(z) ≤ n∈N 2 -(ǫ-1)n 2 nα(E) |E n | 2 -n = n∈N 2 -ǫn =: c(ǫ) < ∞ because ǫ > 0. So corollary 4.4 gives a∈Z(f ) (1 -|a| 2 ) 1+p d(a, E) q-α(E)+ǫ) ≤ c(p, q, ǫ) f Nϕ,p , hence we get a∈Z(f ) (1 -|a| 2 ) 1+p d(a, E) q-α(E)+ǫ ≤ c(p, q, ǫ) f Nϕ,p ≤ Kc(ǫ)c(p, q, ǫ).
So we proved:

Theorem 6.1 Suppose that f ∈ H(D), |f (0)| = 1 and ∀z ∈ D, log + |f (z)| ≤ K (1 -|z| 2 ) p 1 d(z, E) q , then we have, with any ǫ > 0, a∈Z(f ) (1 -|a| 2 ) 1+p d(a, E) (q-α(E)+ǫ) + ≤ c(p, q, ǫ)K. • Case p = 0.
For this case we want to apply corollary 5.4. So let

∀z ∈ D, log + |f (z)| ≤ K 1 d(z, E) q . We have Theorem 6.2 Suppose that f ∈ H(D), |f (0)| = 1 and ∀z ∈ D, log + |f (z)| ≤ K 1 d(z, E) q , then a∈Z(f ) (1 -|a| 2 )d(a, E) (q-α(E)+ǫ) + ≤ c(q, ǫ)K.

Proof.

We have to verify

sup 1-δ≤s<1 T d(se iθ , E) q-α(E)+ǫ log + f (se iθ ) dθ < ∞ and sup 1-δ≤s<1 D d(sz, E) q-α(E)-1+ǫ log + |f (sz)| < ∞.
For the first one, we have

T d(se iθ , E) q-α(E)+ǫ log + f (se iθ ) ≤ K T d(se iθ , E) ǫ-α(E)
.

Set E n := {x ∈ T :: d(x, E) ≥ 2 -n } and F n := E n \E n+1 . we have T d(se iθ , E) ǫ-α(E) dθ = n∈N Fn d(se iθ , E) ǫ-α(E) dθ ≤ n∈N Fn 2 -n(ǫ-α(E)) dθ ≤ n∈N 2 -n(ǫ-α(E)) Fn dθ ≤ n∈N 2 -nǫ < ∞
by the very definition of α(E) and because ǫ > 0.

For the second one we set

Γ n := E n ×(1 -2 -n , 1) and γ n := Γ n \Γ n+1 . We get D d(sz, E) q-α(E)-1+ǫ log + |f (sz)| = D d(sz, E) q-α(E)-1+ǫ log + |f (sz)| ≤ D d(sz, E) ǫ-α(E)-1 . But n∈N γn d(sz, E) ǫ-α(E)-1 ≤ n∈N γn 2 -n(ǫ-α(E)-1) ≤ n∈N 2 -n(ǫ-α(E)-1) γn dm(z) ≤ n∈N 2 -n(ǫ-α(E)-1) |E n | ×(2 -n ) ≤ n∈N 2 -nǫ < ∞,
because ǫ > 0. We end the proof as in the case p > 0.

These results give alternative proofs of some of the results by Favorov & Golinskii [START_REF] Favorov | Blaschke-type conditions for analytic and subharmonic functions in the unit disk: local analogs and inverse problems[END_REF].

7 Appendix.

When there is no ambiguities, we shall forget the index j.

Lemma 7.1 We have ∂(ψ j ) q (z) = q (z -α j ) |z -α j | 2q-2 |z -β j | 2q δ 2q j + q (z -β j ) |z -α j | 2q |z -β j | 2q-2 δ 2q j . And ∂ ∂(ψ j ) q = q 2 |z -α j | 2q-2 |z -β j | 2q-2 δ 2q j {|z -α j | 2 + |z -β j | 2 + 2ℜ[(z -α j )(z -βj )]}.
Proof.

We have ∀z ∈ Γ, ψ(z) q = |z -α| 2q |z -β| 2q δ 2q so

∂(ψ) q (z) = q (z -α) |z -α| 2q-2 |z -β| 2q δ 2q + q (z -β) |z -α| 2q |z -β| 2q-2 δ 2q . And ∂ ∂(ψ) q (z) = q 2 |z -α| 2q-2 |z -β| 2q δ 2q + q 2 |z -α| 2q |z -β| 2q-2 δ 2q + +2q 2 |z -α| 2q-2 |z -β| 2q-2 δ 2q ℜ[(z -α)(z -β)] = = q 2 |z -α| 2q-2 |z -β| 2q-2 δ 2q {|z -β| 2 + |z -α| 2 + 2ℜ[(z -α)(z -β)]}. Remark 7.2 We notice that: ∂ ∂(ψ j ) q (z) ≥ 0 because |z -β| 2 + |z -α| 2 + 2ℜ[(z -α)(z -β)] ≥ |z -β| 2 + |z -α| 2 -2 |z -α| |z -β| ≥ 0. Lemma 7.3 If η ′ j = 0 or if η ′′ j = 0, we have: ∀z ∈ Γ j , 2(1 -|z| 2 ) 2 ≤ ψ j (z) ≤ 3(1 -|z| 2 ) 2 . Proof. If η ′ j = 0 we have • χ ′ j = 0 which implies 2 ≤ ψ j (z) (1 -|z| 2 ) 2 ≤ 3 hence 2(1 -|z| 2 ) 2 ≤ ψ j (z) ≤ 3(1 -|z| 2 ) 2 .
The same for the second derivatives, which ends the proof of the lemma. Lemma 7. [START_REF] Boritchev | On zeros of analytic functions satisfying non-radial growth conditions[END_REF] We have

∂[χ( |z -α| 2 (1 -|z| 2 ) 2 )] ≤ 9 |χ ′ ()| (1 -|z| 2 ) -1 . and ∂ ∂χ (|χ ′ | + |χ ′′ |)(1 -|z| 2 ) -2 .
Proof. We have

∂[χ( |z -α j | 2 (1 -|z| 2 ) 2 )] = χ ′ () ∂[ |z -α j | 2 (1 -|z| 2 ) 2 ] = χ ′ ()[ (z -α j ) (1 -|z| 2 ) 2 + 2z |z -α j | 2 (1 -|z| 2 ) 3 ]. But if χ ′ () = 0 then 2 ≤ |z -α j | 2 (1 -|z| 2 ) 2 ≤ 3 hence ∂[χ( |z -α j | 2 (1 -|z| 2 ) 2 )] ≤ |χ ′ ()| [ √ 3 + 6](1 -|z| 2 ) -1 ≤ 9 |χ ′ ()| (1 -|z| 2 ) -1 . Now ∂ ∂[χ( |z -α j | 2 (1 -|z| 2 ) 2 )] = ∂{χ ′ ()[ (z -α j ) (1 -|z| 2 ) 2 + 2z |z -α j | 2 (1 -|z| 2 ) 3 ]} = = ∂{χ ′ ()}[ (z -α j ) (1 -|z| 2 ) 2 + 2z |z -α j | 2 (1 -|z| 2 ) 3 ] + χ ′ ()∂{ (z -α j ) (1 -|z| 2 ) 2 + 2z |z -α j | 2 (1 -|z| 2 ) 3 }.
And ∂χ ′ () = χ"()[

(z-ᾱj ) (1-|z| 2 ) 2 + 2z |z-α j | 2 (1-|z| 2 ) 3 ]. so |∂χ ′ ()| ≤ 9 |χ ′′ ()| (1 -|z| 2 ) -1 .

And a straightforward computation gives

∂{ (z -α j ) (1 -|z| 2 ) 2 + 2z |z -α j | 2 (1 -|z| 2 ) 3 } (1 -|z| 2 ) -2 .
So the lemma is proved.

Lemma 7.5 Let η ∈ T, then we have ℜ(z(z -η)) ≤ 0 iff z ∈ D ∩ D( η 2 , 1 2 ). 
Proof. We set z = ηt, then we have

z(z -η) = ηt (ηt -η) = t(t -1). Hence ℜ(z(z -η)) = ℜ( t(t -1)) = ℜ(r 2 -re iθ ) = r 2 -r cos θ. Hence with t = x + iy = re iθ, x = r cos θ, y = r sin θ, we get ℜ( t(t -1)) ≤ 0 ⇐⇒ x 2 + y 2 -x ≤ 0 which means (x, y) ∈ D( 1 2 , 1 2 ) hence z ∈ D ∩ D( η 2 , 1 2 
).

Lemma 7.6 (Substitution 1) We have, for δ > 0 and u ∈]0, 1[, and |f (0

)| = 1, D (1 -|z| 2 ) p-1+δ (1 -|sz| 2 ) 2q log -|f (sz)| ≤ ≤ (1 -u 2 ) δ u -2 D (1 -|z| 2 ) p-1 |z| 2 (1 -|sz| 2 ) 2q log -|f (sz)|+ + D (1 -|z| 2 ) p-1 (1 -|sz| 2 ) 2q log + |f (sz)|.
Proof. We have

D (1 -|z| 2 ) p-1+δ (1 -|sz| 2 ) 2q log -|f (sz)| = = D(0,u) (1 -|z| 2 ) p-1+δ (1 -|sz| 2 ) 2q log -|f (sz)|+ + D\D(0,u) (1 -|z| 2 ) p-1+δ (1 -|sz| 2 ) 2q log -|f (sz)|.
For the first term, passing in polar coordinates, we get

I 1 = u 0 (1 -ρ 2 ) p-1+δ (1 -s 2 ρ 2 ) 2q { T log -f (sρe iθ ) }ρdρ. (7.5)
The subharmonicity of log |f (sz)| gives

0 = log |f (0)| ≤ T log f (sρe iθ ) = T log + f (sρe iθ ) - T log -f (sρe iθ ) , hence T log -f (sρe iθ ) ≤ T log + f (sρe iθ ) .
Putting it in (7.5) we get

I 1 ≤ u 0 (1 -ρ 2 ) p-1+δ (1 -s 2 ρ 2 ) 2q { T log + f (sρe iθ ) }ρdρ ≤ ≤ D(0,u) (1 -|z| 2 ) p-1+δ (1 -|sz| 2 ) 2q log + |f (sz)|. (7.6)
For the second term, we have

I 2 := D\D(0,u) (1 -|z| 2 ) p-1+δ (1 -|sz| 2 ) 2q log -|f (sz)| ≤ ≤ (1 -u 2 ) δ u -2 D\D(0,u) (1 -|z| 2 ) p-1 |z| 2 (1 -|sz| 2 ) 2q log -|f (sz)|.
This ends the proof.

Lemma 7.7 (Substitution 2) We have, for δ > 0 and any u, 0 < u < 1,

D (1 -|z| 2 ) p-1+δ ϕ A (sz) log -|f sz| ≤ ≤ 4 q (1 -u 2 ) -2q D(0,u) (1 -|z| 2 ) p-1+δ ϕ A (sz) log + |f (sz)|+ +(1 -u 2 ) δ/2 u -2 D\D(0,u) (1 -|z| 2 ) p+δ/2-1 |z| 2 ϕ A (sz) log -|f (sz)|.
Proof. We have:

D (1 -|z| 2 ) p-1+δ ϕ A (sz) log -|f (sz)| = = D(0,u) (1 -|z| 2 ) p-1+δ ϕ A (sz) log -|f (sz)|+ + D\D(0,u) (1 -|z| 2 ) p-1+δ ϕ A (sz) log -|f (sz)|.
For the first term we get

I 1 := D(0,u) (1 -|z| 2 ) p-1+δ ϕ A (sz) log -|f (sz)|. Because ∀α ∈ T, |sz -α| ≤ 2 we get ϕ A,j (sz) = η j (z) |z -α j | 2q |z -β j | 2q δ 2q j
, hence, in order to have

η j (z) = 0, we have |z -α| 2 ≥ 2(1 -|z| 2 ) 2 and |z -β| 2 ≥ λ(1 -|z| 2 ) 2 . But, with (1.2), ψ j (z) := |z -α j | 2 |z -β j | 2 δ 2 j ≤ 2 |z -α j | 2 ≤ 4 hence ϕ A,j (sz) = η j (z)ψ j (z) q ≤ 4 q . So we get I 1 ≤ 4 q D(0,u) (1 -|z| 2 ) p-1+δ log -|f (sz)|.
and we can apply inequality (7.6) to get

I 1 ≤ 4 q D(0,u) (1 -|z| 2 ) p-1+δ log + |f (sz)| ; but ∀z ∈ D(0, u), 1 ≤ (1 -u 2 ) -2q ϕ A (sz) so I 1 ≤ 4 q (1 -u 2 ) -2q D(0,u) (1 -|z| 2 ) p-1+δ ϕ A (sz) log + |f (sz)| ≤ ≤ 4 q (1 -u 2 ) -2q P + (δ, u).
For the second one

I 2 := D\D(0,u) (1 -|z| 2 ) p-1+δ ϕ A (sz) log -|f (sz)| ≤ ≤ (1 -u 2 ) δ/2 u -2 D\D(0,u) (1 -|z| 2 ) p+δ/2-1 |z| 2 ϕ A (sz) log -|f (sz)|.
Adding we get

D (1 -|z| 2 ) p-1+δ ϕ A (sz) log -|f sz| ≤ 4 q (1 -u 2 ) -2q D(0,u) (1 -|z| 2 ) p-1+δ log + |f (sz)|+ +(1 -u 2 ) δ/2 u -2 D\D(0,u) (1 -|z| 2 ) p+δ/2-1 |z| 2 ϕ A (sz) log -|f (sz)|.
Which ends the proof of the lemma.

Lemma 7.8 Let ϕ be a continuous function in the unit disc D. We have that:

s ≤ t ∈]0, 1[→ γ(s) := T ϕ(se iθ ) log -f (se iθ ) dθ is a continuous function of s ∈ [0, t].
Proof. Because s ≤ t < 1, the holomorphic function in the unit disc f (se iθ ) has only a finite number of zeroes say N(t). As usual we can factor out the zeros of f to get

f (z) = N j=1 (z -a j )g(z)
where g(z) has no zeros in the disc D(0, t). Hence we get

log |f (z)| = N j=1 log |z -a j | + log |g(z)| . Let a j = r j e α j , r j > 0 because |f (0)| = 1, then it suffices to show that γ(s) := T ϕ(se iθ ) log -se iθ -re iα dθ is continuous in s near s = r, because T ϕ(se iθ ) log -g(se iθ ) dθ is clearly continuous. To see that γ(s) is continuous at s = r, it suffices to show γ(s n ) → γ(r) when s n → r. But ∀θ = 0, ϕ(se iθ ) log se iθ -r → ϕ(re iθ ) log re iθ -r and log 1 |se iθ -r| ≤ c ǫ se iθ -r -ǫ with ǫ > 0. So choosing ǫ < 1, we get that log 1 |se iθ -r| ∈ L 1 (T)
uniformly in s. Because ϕ(se iθ ) is continuous uniformly in s ∈ [0, t] we get also ϕ(se iθ ) log 1 |se iθ -r| ∈ L 1 (T) uniformly in s. So we can apply the dominated convergence theorem of Lebesgue to get the result.

Lemma 7.9 Suppose that g s (z) ∈ C ∞ ( D) and f ∈ H(D) then, with s < 1, f s (z) := f (sz), we have:

a∈Z(fs) g s (a) = D log |f s (z)| △g s (z) + T (g s ∂ n log |f s (z)| -log |f s (z)| ∂ n g s ).
Proof. To apply the Green formula we need C 2 ( D) functions, so we shall use an approximation of log |f s (z)| . First because s < 1, we have that f s has a finite number of zeroes in D and we take an ǫ > 0 small enough to have the discs ∀a ∈ Z(f s ), D(a, ǫ) disjoint. Then we consider

u ǫ (z) := log |f s (z)| (1 - a∈Z(fs) χ a (z, ǫ)), with χ a (z, ǫ) := 0 for z / ∈ D(a, ǫ), χ a (z, ǫ) = 1 for z ∈ D(a, ǫ/2), 0 ≤ χ a (z, ǫ) ≤ 1 and χ a (z, ǫ) ∈ C ∞ ( D).
Then, because Z(f s ) is finite, we have that u ǫ is in C ∞ ( D) and we can apply the Green formula to g s and u ǫ . we have

D (g s (z)△u ǫ (z) -u ǫ (z)△g s (z)) = T (g s (e iθ )∂ n u ǫ (e iθ ) -u ǫ (e iθ )∂ n g s (e iθ )).
Clearly ∆u ǫ = 0 outside Lemma 7.10 Suppose that g s (z) ∈ C ∞ ( D) and u is a subharmonic function in the disc D ; then, with ∀s < 1, u s (z) := u(sz), we have:

D g s (z)dµ(z) = D u s (z)△g s (z) + T (g s ∂ n u s -u s ∂ n g s ),
where µ s := ∆u s is the positive Riesz measure associated to u s .

Proof.

First recall that µ := ∆u, the Riesz measure associated to the subharmonic non trivial function u in the disc D, is finite on the compact sets of D because u ∈ L 1 loc (D) implies that u ∈ D ′ (D) hence ∆u ∈ D ′ (D) ; so take a function ϕ ∈ D(D) which is 1 on the compact K ⋐ D and ϕ ≥ 0. Then, because ∆u is a positive measure, we get

∆u, ϕ = D ϕ(z)dµ(z) ≥ K dµ(z) hence µ(K) ≤ ∆u, ϕ < ∞.
The idea is to start with the measure µ := ∆u and, because s < 1, we can cut it by a smooth function γ s (z) ∈ C ∞ c (D), such that γ(z) = 1 in D(0, s). Then we regularise γµ by convolution with : χ ǫ (ρe iθ ) := a ǫ (ρ)b ǫ (θ), with For the third term We fix 1δ < r < 1, r < s < 1, then, because Z(f ) ∩ D(0, r) ⊂ Z(f ) ∩ D(0, s) and ϕ ≥ 0, we have This proves the first part. The proof of the second one is just identical.

Theorem 1 . 4

 14 Suppose that f ∈ H(D), |f (0)| = 1 and ∀z ∈ D, log + |f (z)| ≤ K (1 -|z| 2 ) p 1 d(z, E) q ,then we have, with any ǫ > 0, p > 0, a∈Z(f )

  a∈Z(fs) g s (a) = D log |f (sz)| △g s (z). So we proved Lemma 1.8 Let p > 0 and f ∈ H(D) we have a∈Z(fs) g s (a) = D log |f (sz)| △g s (z).

Proposition 2 . 4

 24 We have with |f (0)| = 1 and p ≥ 0, -D ∆g C,s (z) log -|f (sz)| ≤ 4[(p + 1) + 2sq] D (1 -|z| 2 ) p (1 -|sz| 2 ) 2q log + |f (sz)|.

  by the subharmonicity of log |f (sz)| and the fact |f (0)| = 1, we get

T

  

D

  log |f (sz)| △g s (z) -T log f (se iθ ) ∂ n g s (e iθ ). If, moreover p > 0, ∂ n g s = 0 on T, hence a∈Z(fs) g s (a) = D log |f (sz)| △g s (z).

So we are lead to Definition 4 . 2

 42 Let E = Ē ⊂ T. We say that an holomorphic function f is in the generalised Nevanlinna class N ϕ,p (D) for p > 0 if ∃δ > 0, δ < 1 such that f Nϕ,p := sup 1-δ<s<1 D (1 -|z|) p-1 ϕ(sz) log + |f (sz)| < ∞.

  a∈Z(fs) g s (a) = D log |f (sz)| △g s (z), hence, by theorem 4.1, a∈Z(fs) g s (a) D (1 -|z| 2 ) p-1 ϕ(sz) log + |f sz|,

  a∈Z(fs) g t 0 (a) ≤ a∈Z(fs) g t 0 (a) + a∈Z(fs) g s 0 (a) P D,+ (t 0 ) + P D,+ (s 0 ).(5.4)In fact we have, for u = 15 16 ,

  a∈Z(fs)D(a, ǫ) and in D(a, ǫ) we get, because g s (z) is continuous in D,D(a,ǫ) g s (z)△u ǫ (z) → ǫ→0 g s (a).We have alsoD u ǫ (z)△g s (z) → ǫ→0 D log |f s (z)| △g s (z), T u ǫ (e iθ )∂ n g s (e iθ ) → ǫ→0 T log |f s (z)| ∂ n g s ,and T g s (e iθ )∂ n u ǫ (e iθ ) → ǫ→0 T (g s ∂ n log |f s (z)|, which prove the lemma.

  ≤ a(t) ≤ 1, a ∈ C ∞ c ([0, 1[), t ≤ 1/2 ⇒ a(t) ≤ b(t) ≤ 1, a ∈ C ∞ c ([0, 2π[), t ≤ 1/2 ⇒ b(t) = 1.So we set the potential:U(z) := D log |z -ζ| γdµ(ζ) = log |•| * (γµ)and we have ∆U(z) = γ(z)µ(z) in distributions sense, and we regulariseU ǫ := χ ǫ * U ⇒ ∆U ǫ = χ ǫ * ∆U. Now we have that ∆(u -U) = µγµ = 0 in D(0, s) so H := u -U is harmonic in D(0, s) hence smooth.On the other hand we have, because U ǫ is C ∞ , that the Green formula is applicable soD (g s (z)△U ǫ (sz) -U ǫ (sz)△g s (z)) = T (g s (e iθ )∂ n U ǫ (se iθ ) -U ǫ (se iθ )∂ n g s (e iθ )).And from u = U + H, we get u = H + lim ǫ→0 U ǫ so it remains to see what happen to each term. For the first oneD g s (z)△U ǫ (sz) = D g s (z)(χ ǫ * △U)(sz) = D (g s * χ ǫ )(ζ)△U)(sζ).But (g s * χ ǫ )(ζ) → g s (ζ) uniformly in D, because g s is smooth on D, and ∆U(sz) = γ(sz)µ(sz) = µ(sz) is a bounded measure in D so we get D g s (z)△U ǫ (sz) → ǫ→0 D g s (z)△U ǫ (sz) = D g s (z)dµ(sz).

For

  the second one:D U ǫ (sz)△g s (z) = D U(sζ)(△g s * χ ǫ ) → ǫ→0 D U(sz)△g s (z), as above because (∆g s * χ ǫ )(ζ) → ∆g s (ζ) uniformly in D, because ∆g s is smooth on D.

1 0a( 1 -- a s 2 )

 112 ǫ (ρs)∂ n U(ρe iϕ )]ρdρ → ǫ→0 ∂ n U(se iϕ )as a measure on T, so, because (g s * b ǫ )(ϕ) → ǫ→0 g s (e iϕ ) uniformly on T because g s (e iθ ) ∈ C ∞ (T), we getT g s (e iθ )(χ ǫ * ∂ n U)(se iθ )dθ → ǫ→0 T g s (e iθ )∂ n U)(se iθ )dθ.For the last term, we get the same way:T U ǫ (se iθ )∂ n g s (e iθ ) → ǫ→0 T ∂ n g s (e iθ )U(se iθ )dθ.So we getD (g s (z)△U(sz) -U(sz)△g s (z)) = T (g s (e iθ )∂ n U(se iθ ) -U(se iθ )∂ n g s (e iθ )). Now we replace U by U = u + H with H harmonic in D(0, s) to get D (g s (z)△u(sz) -[u + H](sz)△g s (z)) = = T (g s (e iθ )∂ n [u + H](se iθ ) -[u + H](se iθ )∂ n g s (e iθ )), but because H is C ∞ we get, applying the Green formula to it D -H(sz)△g s (z)) = T (g s (e iθ )∂ n H(se iθ ) -H(se iθ )∂ n g s (e iθ )), so it remains D (g s (z)△u(sz)u(sz)△g s (z)) = T (g s (e iθ )∂ n u(se iθ )u(se iθ )∂ n g s (e iθ )),which proves the lemma. Lemma 7.11 Let ϕ(z) be a positive function in D and f ∈ H(D) ; set f s (z) := f (sz) and suppose that:∀s < 1,a∈Z(fs) (1 -|a| 2 ) p+1 ϕ(sa) ≤ D |z| 2 ) p-1 ϕ(sz) log + |f (sz)|,then, for any 1 > δ > 0 we havea∈Z(f ) (1 -|a| 2 ) p+1 ϕ(a) ≤ sup 1-δ<s<1 D (1 -|z| 2 ) p-1 ϕ(sz) log + |f (sz)|.We have also: let ϕ(z), ψ(z) be positive continuous functions in D and f ∈ H(D) such that:∀s < 1, a∈Z(f )∩D(0,s) (1 -|a| 2 )ϕ(sa) ≤ D ϕ(sz) log + |f (sz)| + T ψ(se iθ ) log + f (se iθ ) then, for any 1 > δ > 0 we have a∈Z(f ) (1 -|a| 2 )ϕ(a) ≤ sup 1-δ<s<1 D ϕ(sz) log + |f (sz)| + sup 1-δ<s<1 T ψ(se iθ ) log + |f (sz)|.Proof. We have a ∈ Z(f s ) ⇐⇒ f (sa) = 0, i.e. b := sa ∈ Z(f ) ∩ D(0, s). Hence the hypothesis is ∀s < 1, a∈Z(f )∩D(0,s) (1 p+1 ϕ(a) ≤ D (1 -|z| 2 ) p-1 ϕ(sz) log + |f (sz)|.

2 )( 1 - 2 ) 1 - a s 2 )

 21212 p+1 ϕ(a) ≤ a∈Z(f )∩D(0,s) |z| 2 ) p-1 ϕ(z) log + |f (z)|.In D(0, r) we have a finite fixed number of zeroes of f, and, because (1 -a s p+1 is continuousin s ≤ 1 for a ∈ D, we have ∀a ∈ Z(f ) ∩ D(0, r), lim s→1 (p+1 = (1 -|a| 2 ) p+1 . Hence a∈Z(f )∩D(0,r) (1 -|a| 2 ) p+1 ϕ(a) ≤ sup 1-δ<s<1 D (1 -|z| 2 ) p-1 ϕ(sz) log + |f (sz)|.Because the right hand side is independent of r < 1 and ϕ is positive in D so the sequence S(r) :=a∈Z(f )∩D(0,r) (1 -|a| 2 ) p+1 ϕ(a)is increasing with r, we geta∈Z(f ) (1 -|a| 2 ) p+1 ϕ(a) ≤ sup 1-δ<s<1 D(1 -|z| 2 ) p-1 ϕ(sz) log + |f (sz)|.