Fast oxidation processes from emission to ambient air introduction of aerosol emitted by residential log wood stoves
Résumé
Little is known about the impact of post-combustion processes, condensation and dilution, on the aerosol concentration and chemical composition from residential wood combustion. The evolution of aerosol emitted by two different residential log wood stoves (old and modern technologies) from emission until it is introduced into ambient air was studied under controlled “real” conditions. The first objective of this research was to evaluate the emission factors (EF) of polycyclic aromatic hydrocarbons (PAH) and their nitrated and oxygenated derivatives from wood combustion. These toxic substances are poorly documented in the literature. A second objective was to evaluate the oxidation state of the wood combustion effluent by studying these primary/secondary compounds. EFs of Σ37PAHs and Σ27Oxy-PAHs were in the same range and similar to those reported in literature (4–240 mg kg−1). Σ31Nitro-PAH EFs were 2–4 orders of magnitude lower (3.10−2-8.10−2 mg kg−1) due to the low temperature and low emission of NO2 from wood combustion processes. An increase of equivalent EF of PAH derivatives was observed suggesting that the oxidation state of the wood combustion effluent from the emission point until its introduction in ambient air changed in a few seconds. These results were confirmed by the study of both, typical compounds of SOA formation from PAH oxidation and, PAH ratio-ratio plots commonly used for source evaluation.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...