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Abstract

In this paper, we propose a LiDAR-based robot localization method in a com-
plex oil and gas environment. Localization is achieved in six Degrees of Freedom
(DoF) thanks to a particle filter framework. A new time-efficient likelihood func-
tion, based on a pre-calculated 3D likelihood field, is introduced. Experiments are
carried out in real environments and their digitized point clouds. Six DoF real-
time localization is achieved with spatial and angular errors of less than 2.5cm and
1° respectively in a real environment of 350m3. The proposed approach focuses on
real-time performance on embedded platforms. It enabled the Vikings team to win
the first two ARGOS Challenge contests.



1 INTRODUCTION

1.1 Argos Challenge

ARGOS (Autonomous Robot for Gas and Oil Sites) Challenge1 is organized by Total in partner-
ship with ANR. The ARGOS challenge addresses objectives detailed in the Robotics 2020 Multi-
Annual Roadmap published by the SPARC(SPA, 2015). SPARC is a public-private partnership
between the European Commission and the European Robotics Community. Several key topics
have been identified in the roadmap in order to reach a massive deployment of autonomous robots
in industrial facilities. The roadmap aims at increasing Technology Readiness Levels for topics
such as robot motion, perception, localization or decisional autonomy for instance. The present
paper tackles localization challenges highlighted in the Robotics 2020 Multi-Annual Roadmap.

Introduction of autonomous robots for oil and gas infrastructure patrolling are primarily motivated
by industrial needs including :

• Constant safety standards. In fact, human tends to decrease their safety standards as they
get used to patrolling. Robots will always apply the same safety rules and expectations.

• Fully automated infrastructures already exist. Companies want to keep the platforms with-
out human. Moreover, in case of hazards (fire, gaz leaks, explosions), humans would not be
able to access the facilities. Consequently, the robot must be conceived to fulfill the ATEX
directives. The robots must be able to perform several tasks mentioned here-above.

Three contests have been organized in order to challenge five international teams. The final contest
will be held in March, 2017.

Several tasks must be performed by the robots:

• Pressure reading in manometers.

• Control valve position estimation.

• Detection and localization of abnormal heat surfaces.

• Temperature measurement.

• Pump sound processing.

• Abnormal or unexpected objects in the 3D map of the site.

• Gas leak detection.
1http://www.argos-challenge.com/



(a) Floating production storage and offloading boat. ©Serge
RUPERT Total S.A.

(b) ARGOS challenge test site

Figure 1: Complex environment targeted in ARGOS challenge : multi-storey building, pipes,
stairs. . .

The tasks can be performed either autonomously or remotely controlled. The robot must be able
to safely travel on the platform by detecting static and dynamic obstacles. It should be able to
bypass obstacles or climb stairs. The robot also has to be able to detect the emergency alarm and a
communication failure.

1.2 Autonomous Navigation

Offshore platforms have different layouts compared to other industrial sites found in the literature.
In fact, studied storage warehouses or factories often have squarish shape with machines or racks
and shelves and large alleys. A look at the facility blueprint would reveal a well organized structure.
Offshore platform environments are different. As it can be seen in Figure 1a, equipments are
everywhere. Alleys are narrow. Most of the time such facility has several storeys with stairs to
travel from one to another. The floor itself is made of gratings, which makes it irregular. Figure 1b
shows the full-scale test environment. It corresponds to a former production unit and scaffold. It is
used for the fire department training.

Robot localization is a key step in autonomous robot deployment. Given its localization, a robot
can decide how it will reach a given target, i.e. achieves path planning, path control and safely
performs given tasks. Consequently, our robot should able to precisely find its location despite the
environment complexity. Navigating in the offshore platform requires to climb stairs and conse-
quently achieve 6 DoF motion. As a result, the state of the robot must be known along the six DoF.
Figure 12 illustrates motion achieved by the robot on the platform.



The robot must be able to patrol all day long and its performance should not be influenced by
weather or daytime conditions. As a consequence, LiDAR sensors were preferred to vision sensors.
Safety concerns also require real time processing on embedded processing units. A particular focus
has been put onto algorithm implementation and processing unit capability usage.

Oil and gas platforms are really complex facilities. Everyday, hundred of thousands of tons of
highly inflammable and explosive liquids are processed. Consequently, safety standards are really
high. All facilities are surveyed and digitized in order to keep track of installation and maintenance
operations. CAD models are highly valuable tools for employee and fireman training.
As a result, autonomous robot navigation in such infrastructures can be regarded as a localization
problem rather than a Simultaneous Localization And Mapping (SLAM) since maps are a-priori
known .

2 Related works

2.1 LiDAR-based perception in industrial environments

Robot localization based on LiDAR has been largely investigated. This section is focused on
recent works dedicated to robot localization in industrial environments. (Reinke and Beinschob,
2013) proposed to use features such as corners or large lines or planes extracted from the 3D map.
However, as seen in Figure 1, offshore platform environments do not have such features in the
3D map. Researches are actually being focused on dynamic environments such as parking lot.
(Tipaldi et al., 2013) developed a method robust used in a parking lot context. The approach is
able to deal with car motions and changes in parking space occupancy. Static but challenging
environments are still an important research topic. (Jagbrant et al., 2013) and (Underwood et al.,
2015) investigated robot localization in orchards. The scene is locally complex with irregular
structure caused by trees. However, irregularities induce key points. From a larger standpoints,
orchards can be regarded as corridors delimited by trees. (Stoyanov et al., 2013) performed robot
localization in a milk production facility with a Velodyne HDL32. This scene is indoor and rather
complex due to a lot of machines and small pipes. However, it will result in a lot of key points
and large planes induced by the surrounding walls. The robot motion is performed onto a plane (3
DoF).

Offshore platform environment includes several levels, sparse environments with few walls.
Smaller and round objects are also more challenging. In fact, LiDAR beams are less likely to
hit the object surface or the ray not being reflected. To the best of our knowledge, there exists no
work publicly available that tackles problems faced in the ARGOS challenge.

2.2 Robot localization in industrial facilities

There exists two situations in robot localization:

• The environment is unknown. This problem is known as SLAM (Simultaneous Localiza-



tion And Mapping). The robot must simultaneously map the environment and locate itself
with the environment. First works on SLAM tackles simple environments such as offices or
corridors. Flat ground surfaces require 3 DoF to represent the robot state (x,y,θ ). Industrial
and outdoor applications require more DoF. For instance, 6D SLAM was investigated by
Nuchter in order to patrol in mines (Nüchter et al., 2006). The main issue with SLAM is
the map distortion resulting from approximated localization and mapping. Consequently,
loop-closure is often required to obtain a decent map of the environment and consequently
localization. The reader can refer to (Cadena et al., 2016) for an updated state-of-the art of
current SLAM techniques.

• The environment is already known, we consider an available a priori map. Safety and
accuracy required on the robot localization to patrol on offshore platform cannot allow the
use of SLAM approaches. In fact, a wrong localization can result in the falling of the robot
into the sea or from one level to another. Consequently, such facilities are often surveyed
and a 3D maps often exist for operational and training purposes.

Most of the existing works tackling robot localization in industrial facilities are emphasized on
indoor, simple and planar environments. There are numerous approaches to solve localization in
such environments. Magnetic or optic lines (Olivares-Mendez et al., 2011; Taghaboni and Tan-
choco, 1988) can be placed on the ground. The robot has to follow those lines. However, robot
motions are constrained to line following. Robots cannot avoid an obstacle being placed on the
line. In order to allow more freedoms, beacons were place onto the infrastructure. Beacons have
two drawbacks. First, they must be detected by a sensor. Secondly, they also require to equip the
facility. As mentioned by (Sabattini et al., 2013), localization based on the existing environment
would allow to expand autonomous robot applications to a larger set of situations.

Contrary to existing industrial solutions, beacon-based localization cannot be applied on oil and
gas facilities as :

1. It would be extremely complex and costly to install beacons on existing infrastructures.

2. Six degree-of-freedom motion would induce to place a huge number of beacons in order to
ensure LiDAR beam reflections.

2.3 Map data storage

3D maps are nowadays widely available. Data gathered by LiDAR correspond to 3D points. Once
a map is build from multiple surveying LiDAR measurement or LiDAR embedded on a moving
vehicle, a 3D point cloud of the environment is available.

3D data storage implies to store the data position and its value. There exists three different ways
to represent data position :

• 3D grids: the geometrical structure is implicit. Position information does not require extra
space.



• Octree: the hierarchical structure between the tree nodes is stored with pointers, requiring
extra space.

• Point array: 3D coordinates are directly stored in memory.

2.4 Contributions of our work

Our work is focused on localization with a known 3D environment. We must be able to achieve 6
DoF robot localization with constrains regarding robustness and processing capabilities. We pro-
pose an approach able to locate a robot in environments that could be regarded both as indoor and
outdoor. Offshore platforms do not correspond to outdoor environments which are often encoun-
tered in the literature such as urban environments, fields or forests. The environment structure is
itself challenging for LiDARs. Contrary to existing works ((Nuchter et al., 2004), (Nüchter et al.,
2006) and (Zhuang et al., 2013)), we do not use single layer LiDARs rotating along one axis ac-
tuated by a motor. In fact, this approach often requires to stop the robot motion to perform a full
scan of the scene. Such behavior is not compatible with the real time processing and operabil-
ity required in the ARGOS challenge. (Zhang and Singh, 2014) tackles this issue by performing
LiDAR scans rectification with an approach similar to SLAM based on key points matching. As
mentioned earlier, only view key points exist in our environment. Finally, most of the works use
different flavors of ICP in order to match the LiDAR measurements and the 3D map. Still, ICP is
not robust to environment changes and, as an iterative algorithm, would not be compatible with a
mobile platform with limited resources. Our work introduces a new representation of the environ-
ment enabling real time processing on a platform with limited memory and CPU capabilities. In
order to overcome these limitations, we replaced the environment map with a 3D representation of
LiDAR impact likelihood named 3D likelihood field. This representation allows to highly reduce
the CPU load. In order to store huge 3D look-up tables and tackle limited memory challenges, we
introduce the concept of hybrid octree.

3 Methodology

3.1 Theory of localization

The aim of localization is to determine the most probable state vector Xt, given a map M, our prior
knowledge of the environment, and a sensor unit providing measurements Zt of this environment.
The state vector Xt is defined as follows:

Xt =
[
x y z ψ θ ϕ

]T (1)

where:
x,y,z : Position in meter (m)

ψ,θ ,ϕ : Orientation in degree (◦)

Localization methods aim at finding the most likely state vector among several hypotheses.



The likelihood function expresses the probability P(Z|X,M) of obtaining a measurement Z,
given a state X a our prior knowledge of the environment M.

Ideally, the likelihood function should be :

• Able to discriminate between several hypotheses in order to be able to keep only the most
likely one.

• Monotonic and without local maxima in order to converge to the correct solution.

• With a moderate gradient in the direction of the solution in order to facilitate the conver-
gence of a hypothesis close to the solution

• Low cost in terms of calculating time in order to test a large number of hypotheses quickly.

• Independent between states in order to be able to converge in each dimension separately.

For localization applications, there are a number of filters in the literature :

• Kalman and extended Kalman filters. They require the uncertainty of state models to be
Gaussian.

• Histogram filters. Their computational complexities grow quadratically with the number
of dimensions. It is consequently difficult to use them with 6 DoF.

• Particle filters. They are not limited to unimodal probability distributions of state vectors.
The state vector space is continuous contrary to histogram filters. The number of particles
vs dimensions tends to grow exponentially rather than quadratically in the case of histogram
filters (Gordon et al., 1993; Thrun et al., 2001; Arulampalam et al., 2002; Thrun et al.,
2005).

We have therefore implemented a standard particle filter (Thrun et al., 2005) to estimate the state
vector X̂t. It issues hypotheses for X̂t, called particles, and select them according to the likelihood
function. X̂t is the result of the barycenter of the particles.

The main steps in particle filtering for localization are as follows :

• Motion update : A kinematic model is used to move the particles (issues new hypotheses for
Xt). In this work, we use a differential drive kinematic model. We consider that the motion
measurements are contaminated with a noise proportional to the displacement, modeled by
normal distribution N (0,Σp) and an additive noise defined by N (0,Σa). We considered
the noises as being uncorrelated between the robot states. Consequently Σp and Σa are
diagonal matrices defined by vectors σ2

p and σ2
a respectively.
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Figure 2: Main steps of particule filter-based localization

• Measurement update : a measurement from a sensor allows the likelihood function to eval-
uate a probability for each hypothesis (its weight). In our case p(Z|X,M) is determined
using Equation (5) from a LiDAR measurement.

• Pose computation : X̂t is equal to the barycenter of each particle state Xt.

• Resample : The best particles are selected according to their weight and duplicated.

Section 3.2 describes a number of methods for evaluating the likelihood function. Then, we intro-
duce a pre-calculated space of LiDAR impact probabilities called likelihood fields and propose a
3D variant.

3.2 A-piori map data representation and storage

3.2.1 Likelihood theory

There are several ways of interpreting the information measured by a LiDAR. For example,
(Levinson and Thrun, 2010) use the 3D information and the infrared reflectivity to localize a car
within a pre-established map. The term ”Multi-Level Surface Maps” (Triebel et al., 2006; Pfaff
et al., 2007) is usually used for outdoor mobile robotics in a non-structured environment. It consists
of comparing the height of the near environment to a pre-established map.

We started this work with an approach similar to (Fallon et al., 2012), i.e. a 3D simulation of the
environment making it possible to calculate a distance error between the LiDAR measurements



(a) 3D point cloud from a complex oil and gas site mapping. Point cloud data
©Total S.A.
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Figure 3: 3D Likelihood field map construction : from environment mapping point cloud Fig 3a,
we use the LiDAR variance Fig 3b, to compute a local 3D likelihood field Fig 3c, and merge all of
them in a global likelihood field Fig 3d.



and the intersection of the facets of the scene: the scene is represented by a set of 3D facets. To
evaluate a hypothesis of the particle filter, we simulate ray tracing for each LiDAR impact in order
to determine the intersection with a facet of the scene. The product of the distances between the
calculated intersection and the LiDAR impact gives p(Z|X,M). Still, two problems arise:

• The environment being essentially made of a multitude of low diameter pipes, a large num-
ber of facets are needed to represent it which results in a costly ray tracing calculation for
each LiDAR point.

• Another consequence of environment composed of small objects is a likelihood function
sensitive to a variation in X. For example a very small angular shift causes a very large
variation in the likelihood score. As a result, despite a hypothesis close to the solution, the
score suggests that the hypotheses is far from the true position.

In order to tackle these two issues, we propose to extend the use of likelihood field, proposed by
(Thrun et al., 2005; El Hamzaoui, 2012), to 3D. The environment is discretized and represented by
a 3D grid, and for each object making up the scene, we calculate the probability of LiDAR impact
using a normal distribution :

phit(z|m,Ok
M) = 1

σmap
√

2π
e−

1
2

(
d

σmap

)2

(2)

where:
m : likelihood cell
d : Euclidean distance from cell m to kth ob-

stacle Ok
M in M

σmap : map uncertainty

σmap is set to take into account the map uncertainty, location uncertainty, measurement un-
certainty (caused by raw measurement error and approximation of the measurement process) and
ensures a smooth shaped likelihood function response.
Each cell m in the 3D grid of the map stores the impact likelihood as follows :

phit(m) = max
0≤k≤nobstacle

phit(z|m,Ok
M) (3)

where:
nobstacle : number of obstacles in the environment.

The likelihood field L (M), given the map M, is the 3D grid that stores all phit(m) for any m
resulting from the discretization on M.

The angular resolution of the LiDAR determines the number n of measured beams. Only a subset
L of these beams will be valid and become 3D points. In fact, objects may be too far. Missing
distances may be caused by absorbent surfaces or the low incident angles.



Thanks to Equation (3), the likelihood function p(Z|X,M) is very easy to compute. First, it is
necessary to start by projecting the LiDAR points PL into the robot coordinate frame R then in
the map coordinate frame M (Figure 16) :

PM =

[
RR→M tR→M

0 1

][
RL→R tL→R

0 1

]
·PL (4)

Secondly, values in pM are then allocated to a given m. Finally, one can calculate P(Z|X,M)
directly by re-reading the likelihood field L (M) :

p(Z|X,M) =
(∑i=L phit(mi|pi,M ∈ mi))

2

n
(5)

where:
pi,M : ith beam of the LiDAR measurement PM.

Equation (5) takes into account coding capacity limits. In fact, LiDAR impacts being independent,
the numerator should be a product. Still, as shown in (El Hamzaoui, 2012), sum operators should
be used to ensure that the probability does not quickly converge to zero.

In this section, we have investigated how 3D likelihood fields can be computed. However, 3D grids
are not the best data structure from a memory standpoint. In the following section, we investigate
how octree-like data structure (Hornung et al., 2013) can be used to obtain a compact representation
of the 3D likelihood field.

3.3 Likelihood field storage

Octrees are tree data structure.They are often used to represent 3D data. Each node has exactly 8
branches, known as octants. They can be used to store 3D point clouds of an environment (Hornung
et al., 2013). Another tree structure is named KD-tree. Contrary to Octrees, kd-tree cells are not
guaranteed to be cubical. kd-tree cells can have a large aspect ratio. Consequently, the concepts
of neighbor and neighboring distance are different and cannot directly be obtained from the data
structure. Tree structures enable to reduce the memory space occupied by the map as they do not
store the empty space like 3D occupancy grids. Octrees enable to quickly find neighbors of a given
point contrary to points that would be stored in an array.

The likelihood field represents the impact probability of a LiDAR ray. We have decided to store
the probability on one byte. The smallest value that can be stored is 1/255. When σmap = 3cm is
used, the probability goes down to zero when the ray is 19cm away from a real obstacle. Figure 4
shows none zero voxels of the likelihood field. Voxels 19cm away from objects in the map go to
zero.

3D grids are really efficient when the 3D data structure is dense. Octrees are more interesting when
the data is sparse. In fact, octrees require to store separately the values and positions represented
by pointers.



Figure 4: 3D representation of the environment stored by the octree (Figure 14a). Only regions
where the likelihood is larger than zero are represented. Storage size of the likelihood : 8 bits,
σmap = 3cm. The likelihood field presented is the map used in our experiments

(a) 2D grid (b) Hybrid Quadtree

(c) Quadtree

Figure 5: Illustration of the hybrid data structure concept in 2D. Figure 6 extends the concept in
3D.



 

Figure 6: Hybrid octree optimized for likelihood field storage.The grey pipe storage is split in two
parts. First, the octree is computed for a resolution Ro. Secondly, a 3D occupancy grid is used
to store finer resolutions up to resolution Ra. As it can be seen in Table 1, the memory size is
significantly reduced compared to a regular octree structure when applied to dense data such as
likelihood fields



We are aiming at finding a data structure that would give enough flexibility to fit both memory and
processing capability constraints. Consequently, we introduce a data structure that uses advantages
of both octrees and 3D grids

The likelihood of the offshore platform is highly sparse as most of the non empty voxels are
really close to real objects. Consequently, we propose to use a hybrid approach named hybrid
octree. An octree is used to represent a given resolution Ro. Once Ro is reached, a 3D grid stores
the information from Ro to Ra. Figure 5 shows the idea of hybrid data structure in 2D using
Quadtrees. While regular quadtrees would store cells at resolution Ra. In this example, Ra is the
finest resolution corresponding to individual cells of the 2D grid. Hybrid quadtree stops using
octree structure at resolution Ro and then store 2D grids at the leaf level. In our illustration, 2x2
grids are stored in the leafs. Figure 6 illustrates the extension of hybrid data structure to 3D, namely
the hybrid octree concept.

We now focus on information access time. The map being built offline, we do not focus on map
writing time. The data access time depends on the data structure used:

• 3D grid : 3 pointers independently of the map size stored.

• Octree : n pointers, with n being proportional to log2 of the environment size.

• Hybrid Octree : n− log2(Ro) pointers plus one indice reading of the high resolution 3D
grid. n representing the octree part is also proportional to log2 of the environment size.

Memory usage and access time of the hybrid octree depend on the size of the 3D grid as well as
the likelihood field type. Its performance is investigated in section 4.1.1.

4 Results

In this section, we first study the performance of the newly introduced data structure used to store
the preprocessd a-priori map information. Secondly, robot localization performance is evaluted on
several case studies.

4.1 Likelihood field storage performance

The performance is evaluated on the point cloud used for ARGOS lab test (Section 4.2.2). It
corresponds to a volume of 261m3 (9,8mx7mx3,8m) (Figure 14).

4.1.1 Memory consumption

The likelihood field memory consumption depends on two factors : the environment itself and
the likelihood field characteristics (spatial resolution and uncertainty in the map). The likelihood



3D
occupancy
grid size

(Ro)

Number of
nodes

Number of
3D

occupancy
grids

Maximum #
of 3D

occupancy
grids in the

tree

Occupancy
rate (%)

Memory
size (MB)

13 5105966 32747775 259940879 12.6 381.8
23 728712 4377254 32492610 13.5 83.4
43 110909 617803 4061576 15.2 45.3
83 18336 92573 507697 18.2 45.9

163 3468 14868 63462 23.4 58.3
323 727 2741 7933 34.6 85.7

Full 3D
occupancy

grid
– – – – 247.8

Table 1: Memory size of the hybrid octree on a 64 bits operating system as a function of the
occupancy grid size. Tests were carried-out in the build-up part of the likelihood in Figure 14. It
includes 9.8×7×3.8m with Ra = 1cm and 32.7 millions points to be stored.

field is built from a spatial resolution of 1cm and a σmap equals to 3cm, resulting in 32,7 million
likelihood of impacts to be stored. First, the impact of the final grid is evaluated. The grid size
is changed with respect to the powers of 2 from 1 to 32 voxels. A grid size of one actually
corresponds to an octomap structure that would store probabilities of impact in the final leafs.
Strictly speaking, regular octomaps would store occupancy states and would require to compute
probabilities of impacts. As the map is known a-priori, we directly store the impact probability
in order to avoid extra computations during the localization process. This trick allows to highly
reduce the computation cost.

Results are shown in Table 1. The occupancy rate is given by the number of grids used to store the
likelihood field over the number of grids in a regular 3D occupancy grid. We can notice that the
smallest sizes are achieved for a grid size of 4 and 8. Smaller sizes result in more pointers to be
stored. Larger sizes produce a lot of empty cells in the grid. The point cloud becomes too sparse
for larger sizes. We can notice that the hybrid octree with grid size equal to 4 or 8 enables to reduce
the storage size by 82%.

The first line of Table 1 actually corresponds to a regular octree structure as the final leafs store a
unique 8 bits probability. It can be seen that the required storage is larger than hybrid octrees. The
large difference is mainly due to the fact that probabilities are spread around the actual location of
the 3D points. The access time for a regular octree structure is displayed in Table 2, on the first
line.

The full-scale test structure includes 471.6 million of points included in a volume of 11890m3.
While a 3D occupancy grid and regular octree would use respectively 11.1GB and 4.75GB, a
hybrid octree requires 595.2 MB, i.e. a reduction of 58% for the regular octree and 94.6% for the
hybrid octree.



3D occupancy grid size (Ro) Tree depth Acces time (ms) Pointwise access
time (ns)

13 11 64.96 33.8
23 10 62.32 32.4
43 9 59.72 31.1
83 8 55.68 29.0

163 7 53.64 27.9
323 6 51.08 26.6

Full 3D occupancy grid – 25.56 13.3

Table 2: Access time performance of the hybrid octree for 19.2 million point and one core of an
Intel i7-4700MQ @ 2.4GHz CPU

To validate the storage efficiency, we also applied our approach to road environment. A HDL64e
was used to scan an area of 398.7mx256.2mx14.7m around the lab. A 5cm resolution was used to
build the likelihood field from 229 million of points. The hybrid octree uses 403.5MB while the
3D occupancy grid requires 11.2GB. The hybrid octree enables to save 96.4% of memory. We can
notice that the larger the environment is, the more efficient the hybrid octree is with respect to a
3D occupancy grid.

4.1.2 Likelihood access time

In this section, we focus on the likelihood reading time as we consider that the likelihood field is
built offline. Consequently, the robot missions would only require to read the likelihood of impacts.
The theoretical access time depends on the octree depth. The hybrid octree depth depends on the
environmental size and the choosen grid size :

Phybrid−octree = dlog2
max∀i Dimi

Ra
e− log2Ro (6)

With : Ra : Hybrid octree resolution. Ro : 3D grid size. Dim : Environment size

It is difficult to estimate the processing time as modern computers use cache memories and various
hardware optimization techniques. Consequently, Equation 6 is theoretical as the performance
actually depends on the octree implementation itself. Only a real measurement can give the actual
performance.

As a result, we ran new experiments on the likelihood used in the previous section. The average
access time is measured from 19.2 million LiDAR impacts simulated in the small-scale test struc-
ture. We discarded random 3D points as it could have resulted in empty space reading. It would
result in less pointers and data to read and consequently faster access time. For instance, a 3D
coordinate could result in the first pointer to be empty causing the reading to end.

In order to avoid any bias, the experiments were repeated 25 times. Figure 7 and Table 2 present
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Figure 7: Memory consumption and processing time of the hybrid octree with respect to the 3D
occupancy grid size. The best performance is achieved for occupancy grids of 4x4 or 8x8 elements.
A regular grid map requires 248MB and results in a point access time of 13.3 microseconds

the results. As expected, a shallower tree produces a longer access time. Grid size of 4 and 8
gives a reading time 2.2 times larger than the 3D occupancy grid. This performance is fair with
respect to the hybrid octree complexity. A grid size of 8 seems to be the best choice given our
environment as it corresponds to the elbow criterion. Moreover, the hybrid octree, while requiring
a memory space, gives reading times for single and multiple layers LiDAR compatible with real
time applications:

• Sick LMS511, angular resolution: 0.5◦, field of view: 190◦, 381 rays per scan: 11 mi-
croseconds.

• Velodyne VLP16, angular resolution: 1◦, field of view: 360x30, 5760 rays per scan: 167
microseconds.

Reading times are given for these two specific models as they will be investigated in the next
Section.

4.2 Robot localization performance

We developed this localization approach for the ARGOS challenge. First, we directly tested our
approach on the real oil and gas site. Unfortunately, this site was not equipped with ground truth.
As a result, we evaluated the localization precision in our lab. One mock-up of petrochemical



(a) Jaguar used for lab and single-layer versus multi-layer com-
parison

(b) Viking v1.2, VLP16 rear mounted,
april 2016 at the competition site

Figure 8: Robots used to test our localization approach

facility was installed in the lab. Finally, we tune the algorithm main parameters with simulated
trajectories in the real environment acquired with a Leica scanner.

The main steps are :

• Oil and gas site, contest in Lacq (France) : large real industrial facility on several levels,
various lighting and weather conditions, numerous persons around the robot.

• Lab : precision evaluation in a mock-up of the petrochemical facility and ground truth with
a Vicon system

• Simulations in the real environment : performance generalization and robustness to param-
eters and initial conditions.

Experiments were carried-out on two different platforms respectively named Jaguar and Viking
(c.f Figure 8). The Viking robot was used during the ARGOS challenge contest. Experiments in
the lab were achieved with the Jaguar robot2. Two LiDAR were evaluated in the Lab environment
(c.f Figure 9). Number of layers measured by the LiDAR were investigated with a Sick LMS511
and Velodyne VLP16 respectively named SL LiDAR and ML LiDAR in the rest of this paper.

4.2.1 Oil and gas facility

As mentioned previously, the industrial site enables to perform a field test of the robot. The in-
dustrial site (c.f. Figure 1b) is full-scale facility. Extra challenges were introduced with dynamic
objects such as people around the robot (c.f. Figure 10a) and difficult weather conditions including
sunny weather variants and firemen spraying the robot (c.f. Figure 13). Extra static obstacles were
also introduced randomly by the jury (c.f. Figure 10b)

2http://jaguar.drrobot.com/specification_V4.asp



(a) Single layer lidar, Sick LMS511
: 190◦fov. ©Sick AG

(b) Multiple layers lidar: Velo-
dyne VLP16, 16 layer, -15◦to 15◦,
360◦fov. ©Velodyne Inc.

Figure 9: LiDARs used in our experiments

The method was used during the Argos Challenge on the Viking Platform. It took place outdoor in
the environment which gave the surveyed point cloud in Figure 3a. The robot ran for about 16 hours
correspoding to a distance of 7.8km, with a mix of manual and autonomous control (Figure 11).
Localization was performed at 20Hz, with 18084 LiDAR points processed every second and 500
particles. The embedded CPU was a intel i7-4600U 2.1GHz, and CPU load was 16%. The Viking
robot won the first two years of the ARGOS Challenge.

The particle filter was the same for all experiments. The number of particles was set to 500.
Resampling was performed in order to avoid particle deprivation. We added Gaussian additive
noise in order to add variability in the particle states.

Lacq facility map data includes 471 millions of points for a corresponding hybrid octree structure
of 595.5 MB.

No localization failure occurred despite large environment modifications added by the jury and
dynamic obstacles such as numerous people in the scene. The localization performance seems
fair enough to perform remote robot control and autonomous tasks such as obstacle localization
and manometer readings from a PTZ camera. The next section will highlight the precision of our
approach.

4.2.2 Lab performances quantification

The industrial test site did not provide a ground truth system. As a result, we performed comple-
mentary experiments in the lab equipped with a Vicon system to assess the localization accuracy
(Figure 14b).



(a) Dynamic environment with numerous persons (b) White boards not in the map introduced by the jury

Figure 10: Static and dynamic changes introduced by the jury

Figure 11: Bird-eye view of the trajectories of Viking robot. Thick blue lines and points correspond
to map elements located at heights between 0.3m and 0.9m. Thin colored lines correspond to
different trajectories. They represent 16h and 7.8km. Straight lines represent wrong robot location
initializations. Some missions did not start at the default starting region of interest (ROI). Starting
ROI were manually updated after robot starts.



 

Figure 12: 6 DoF motions faced by the robot during the ARGOS contest. Top: stair climbing in
the contest site. Bottom: obstacle management in the lab

(a) (b) (c)

Figure 13: The robot in rainy conditions



(a) Point cloud from Leica C10 (b) Picture of our Lab

Figure 14: Irseem autonomous navigation laboratory including a oil and gas facility mock-up
equipped with Vicon ground truth

Impact of the LiDAR technology (SL versus ML) was also investigated.

A Jaguar robot was used to test planar trajectories (Figure 8a), and the Viking robot for 6D motions
(Figure 12). Contrary to the Jaguar, the VLP16 is installed looking backward. 110◦ of its horizontal
FOV is occluded by a mast. The data was collected in the Autonomous Naviguation Laboratory
of IRSEEM. As it can be seen in Figure 14b, a part of the room is equipped with a mock-up
of oil and gas facilities. A 20-camera VICON T40S3 is installed in the room and provides a 6
DoF localization ground truth. While the robot position ground truth was recorded at 100Hz,
robot odometry and LiDAR measurements were recorded at 25Hz. RTMaps4 was used to record
and synchronize the data provided by the robot sensors. The 350m3 Autonomous Naviguation
Laboratory was mapped with a Leica ScanStation C105. The Leica measurement uncertainty is
given with a 6mm standard deviation. The resulting point cloud was then processed in order to
obtain its likelihood field (Section 3.2).

The similarity between the true state Xt and the state estimated by the particle filter X̂t is computed
separately for the position and orientation parts of the state vector. The Euclidean distance is used
to compare the positions and the 3D solid angle is used for the orientations. The 3D solid angle Ω

is computed as follows:

Ω = arccos
Xt · X̂t

‖Xt‖ ·‖X̂t‖
(7)

Several planar trajectories (A-D, Figure 15) were recorded with a SL LMS511 LiDAR on the
Jaguar platform. An other 6D trajectory E was performed with Viking platform, including step
climbing/downing and obstacle crossing. Because of track drifting, the motion update is aided by

3http://www.vicon.com/System/TSeries
4http://intempora.com/
5http://www.leica-geosystems.fr/fr/Leica-ScanStation-C10_79411.htm
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Robot(R)  

Lidar(L)  

Vicon(VL)  

 

Map(M) 

Vicon(VG)  

 

Figure 16: Reference frames used in the lab experiments

a low cost IMU. The IMU is only used during motion update to estimate the rotations about the x-
axis and y-axis while rotations about the z-axis are estimated from the differential drive kinematic
model. As it can be seen in Figure 16, the LiDAR reference frame is not at the same place than
the robot mechanical center. Consequently, a transformation is required to project the LiDAR
measurements into the robot reference frame.

500 particles were used to localize the robot. Results are presented in Table 3. In order to com-
pare the performance in the first and second environments, we have adopted two data sampling
approaches.

The first approach uses all the data provided by the sensors over four sequences (A-C,E). It results
in a localization every 3 to 7mm. During sequences A-C, the performance is in the same order
of magnitude than simulated robot trajectories in the first environment. In sequence E, with 6D
motions and ML LiDAR, the performance is also close to simulation.



Sequence D tests the influence of spatial sampling instead of temporal sampling. Localization is
done every 13cm. We used sequence A and subsampled the LiDAR measurements and integrated
the odometry information in order to reach 13cm displacements. The position error is still really
close to our first experiments. It can be explained by our lack of transformation between the
LiDAR measurements and the robot mechanical center. Still, the error remains low. As a result,
our localization approach is robust to both types of sampling and environments.

Table 3: Real experimentations results in 350m3 Irseem autonomous navigation laboratory, 500
particles

Sequence
number and
length (m)

sampling
type

Position error (m) Orientation error (◦)

initial mean std RMSE mean std RMSE

A : 14.97

25Hz

0.57 0.0106 0.0054 0.0119 0.963 0.567 1,117

B : 17.71 0.82 0.0192 0.0128 0.0231 0.804 0.389 0.893

C : 8.71 0.28 0.0178 0.0096 0.0202 0.890 0.435 0.991

D : 14.97 0.13m 0.57 0.0279 0.0185 0.0334 0.959 1.699 1.951

E : 22.5 25Hz 0.15 0.0236 0.0113 0.0261 0.292 0.162 0.334

This section confirms the localization precision obtained on the real test site. The localization
method works on different robot platforms. Evaluation of algorithm intrinsic parameters being
difficult to assess from real experiments, we simulated robot motions and measurements in the real
environment point cloud.

4.2.3 Simulation evaluations

We ran simulation to assess the impact of various parameters in a decoupled manner. Simulation
was preferred as real test conditions might not allow to purely decouple the following aspects :

• Discriminant property of the likelihood function.

• Localization convergence speed.

• Influence LiDAR measurement noise.

• Influence of the particle number.

Influence of such parameters was evaluated on both SL and ML LiDARs.

We simulated robot trajectories in a digitized environment resulting from the point cloud provided
by the ARGOS Challenge organizers (Figure 3a). The resulting environment was also used as the



Table 4: Likelihood function robustness evaluation with SNR

Pose1 Pose2
SL ML SL ML

Number of
LiDAR beams

per
measurements

381 5760 381 5760

Ratio of valid
LiDAR beams 0.90 0.61 0.47 0.60

D
oF
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at
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ns

tx, ty 40.32 18.29 5.11 17.84
tx, tz 31.69 41.66 22.55 44.10
ty, tz 14.85 25.64 18.47 27.75
tx,Rz 36.77 14.24 3.54 14.14
tx,Ry 23.66 23.14 6.9 24.55
tx,Rx 24.75 19.19 11.26 17.79
ty,Ry 5.52 10.24 6.73 11.52
ty,Rx 6.56 11.28 11.16 10.52

map during the test performed in the real environment. Both LiDAR technologies were simulated
using ray tracing algorithm with a Gaussian noise N (0,σ2

lidar).

Likelihood Function

The ideal properties expected for the likelihood function used in the particle filter stated in Sec-
tion 3.1 depends not only on the formula of the likelihood but also on both the environment and
sensor. Figure 17 illustrates the case of a translation along the vertical axis. To highlight the char-
acteristics of the likelihood function, we took a reference point in the environment and vary 2 DoF
(from [−1m,1m] for translations ti and [−20◦,20◦] for rotations Ri). We define this interval as I.
We use the signal-to-noise ratio (SNR) as an indicator of the likelihood robustness. It is computed
as ratio between the value of the likelihood function at the reference point Xre f over the average
on the interval considered :

SNR =
p(Z|Xre f ,M)

p(Z|Xi,M, i ∈ I)
(8)

The evaluation in Table 4 was carried out for 2 different poses :

• Pose1 : the single-layer LiDAR cuts the guard rail which goes around the structure.

• Pose2 = Pose1 +
[
0 0 −0.1 0 0 0

]T : under the guard rail, the single-layer only has
the impacts on one side.

The SNR of the ML is much more constant between the two poses. In fact, the root mean squared
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Figure 17: Likelihood evaluation for single layer (SL) and multi layers (ML) LiDAR in a corridor
of the oil and gas environment Figure 3a



deviations between Pose1 and Pose2 are 15.52 and 1.54 for the SL and ML LiDARs respectively.
The SL is disturbed by the distribution of the impacts as its field of view is limited to a line.

Figure 17a shows that the SL LiDAR in our environment is not very discriminating with regard to
translations along the z-axis. The ML LiDAR achieves a better performance (Figure 17b). Overall,
the likelihood computation with the ML LiDAR shows that the information provided is more robust
and discriminant.

Convergence study
To test the convergence of our approach, we consider the situation of a ”lost” robot. We initialize
the particle filter to a given pose Xinit with an error (εpos) from the true position Xtruth and we
observe the behavior of the localization algorithm as follows :

Xinit = Xtruth + εpos (9)

The performance evaluation is done with the same metrics as in Section 4.2.2: euclidean distance
for position and 3D solid angle for orientation.

In this case, there is no information for the motion update, but just an additive noise to ensure
convergence. The particles are initially spread with N (0,Σi) with Σi a diagonal covariance matrice
defined but σi = abs(εpos). Noises in the state transition model are set to σp = 0 and σa = σi/10.

Figure 19 shows the accuracy of convergence with regard to position and orientation as a function
of the number of particles for an initial positional error of εpos =

[
0.2 −0.2 0.05 2 −2 5

]T .
The convergence is calculated over 200 iterations of measurement update, and the result is de-
termined with the mean and standard deviation of the last 50 iterations. These tests are repeated
8 times in order to overcome the variability of the results when the number of particles is low.
The average of the 8 tests is shown. The LiDAR measurement noise is randomly sampled from
N (0,σlidar) with σlidar = 0.01m. The ideal number of particles is between 250 and 500.

Different studies are proposed in Figure 20. While the number of particles is set to 500, we vary
the LiDAR noise σlidar. The methodology (convergence over 200 iterations and multiple tests)
is similar in all respects. The accuracy of our method using the multi-layer LiDAR is hardly
influenced at all by the noise of the sensor, only the localization error variance increases. On
the other hand, the single layer LiDAR, which does not have a larger view of the environment is
strongly disturbed.

Robustness to larger initial positionning error has also been carried out by significantly altering
εpos. For example with εpos =

[
1 1 0.1 5 −5 5

]T , the ML always converges while the
SL no longer converges. With a more moderate position error but the same orientation error,
εpos =

[
0.5 0.5 0.05 5 −5 5

]T , the SL converges correctly for the orientation or position
but rarely both at the same time. While for a strong position error and a smaller orientation error,
εpos =

[
0.5 0.5 0.05 1 −1 5

]T it converges every time. The single-layer LiDAR is much
more sensitive than the multi-layer LiDAR to the DoFs over which it only partially perceives the
environment : tz, Rx and Ry.
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Figure 18: Single-layer and multi-layer position and orientation convergence : 1000 particles,
σlidar=1cm
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Figure 19: Mean and standard deviation convergence precision with respect to the number of
particles.
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Figure 20: Mean and standard deviation convergence precision versus σlidar.

SL LiDAR ML LiDAR
mean std RMSE mean std RMSE

x-y plane error (m) 0.0326 0.0041 0.0328 0.0050 0.0025 0.0055
z direction error (m) 0.0145 0.0049 0.0153 0.0046 0.0018 0.0049

3D error (m) 0.0369 0.0043 0.037 0.0071 0.0024 0.0075

Table 5: In-plane and out-of-plane mean absolute errors in meter averaged over eight runs during
convergence. The numbers in brackets refers to the standard deviation. Particle set size set to 500.



Table 6: Localization performance on a 22.1m trajectory with 500 particles and σlidar = 1cm.

Position error (m) Orientation error (◦) computation time
mean std RMSE mean std RMSE Intel i2640M-2.8GHz (ms)

SL 0.0223 0.0145 0.0265 0.45 0.81 0.926 0.9 (381 lidar impacts)
ML 0.0157 0.0120 0.0197 0.31 0.44 0.538 2.2 (5760 lidar impacts)

Table 5 shows the error components along the x-y plane and out-of-plane error. It corresponds to
the average performance over 8 convergence studies. It can be seen that the SL LiDAR error with
respect to the ML LiDAR error is in the same order of magnitude than in previous results. Still,
as the ML LiDAR is based on several layers, allowing to have a wider FOV along the z-axis, one
could imagine that the ratio z-axis error over x-y-plane error would be in favor of the ML LiDAR.
Strictly speaking, this ratio is equal to 0.44 for the SL LiDAR and 0.92 for the ML LiDAR. Still, the
error is so small for the ML LiDAR that we could not conclude that this result is truly meaningful.

Localization
To test the complete localization process, we simulated a robot loop trajectory in the first floor
pathways. It results in 160 robot poses associated with the corresponding odometry (Figure 21a)
and LiDAR measurements of the environment in Figure 3a. Its length is 22.1m. The LiDAR noise
was set to σlidar = 0.01m. The odometry is contaminated with σp =

[
0.1 0 0 0 0 0.2

]T

(Figure 21b). The results are obtained with 500 particles. The initial position is altered from
εpos =

[
0.5 −0.5 0.05 1 −1 5

]T (Figure 21c).

Despite an initial position error of 0.71m and orientation error of 5.1◦, the average position error is
less than 3cm and the average orientation error is less than a degree as shown in Table 6. The ML
LiDAR outperforms the SL in mean position error and standard deviation.

As it can be seen in Table 6, the calculation times of the likelihood function obtained with Matlab
is low.

Results found in simulation show robustness of our approach confirming the absence of localization
failure in the industrial facility (Section 4.2.3). This section also highlights that the ML LiDAR
outperforms the SL LiDAR in complex environment with 6DoF trajectories.

5 Conclusion

In this paper, we proposed a fast and robust 6 DoF localization approach based on an extension of
likelihood fields to 3D spaces. The likelihood field is stored in an optimized data structure intro-
duced in this paper. Our results suggest that the proposed data-structure and associated likelihood
function are more suited to applications involving complex environments and embedded systems.
The performance was successfully validated during the ARGOS challenge contest. Further inves-
tigations were carried-out in a lab as well as simulations in order to show the robustness.
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Figure 21: Localization study in simulated oil and gas environment for the single-layer LiDAR,
with 500 particles and σlidar = 1cm.



Several experimental foundings were highlighted during this study. First, despite a challenging
environment made of pipes and few reflective objects, LiDAR measurements are not so noisy and
sufficient enough to give good results when used in the localization process. We used only LiDAR
impacts to localize our robots. Out-of-sight measurements or the fact that a measurement was
empty and expected as empty in the map was not used in the likelihood. Consequently, localiza-
tion might be performed from few cues in the environment. Secondly, performing multitasking
operation on an embedded system can be done while exploiting a large amount of LiDAR data to
perform localization in real time while leaving enough processing power to achieve the other tasks.
The performance was validated both in lab and on real infrastructures. Thirdly, 6DoF localization
based on particle filters requires a lot of care. In fact, as shown in Section 4.2.3, the particle set
size and the different noise levels involved in the particle filter must be properly tuned in order
to maximize the performance. In our case, a set size of 500 particles was found to be enough as
it does not improve the positioning performance. Forthly, a lot of effort must be focused on the
measurement update of the particle filter in order to reach real-time processing with low CPU and
memory usage. The proposed solution implies an innovative map data storage structure. It exploits
the fact that a map of the environment is already available.

Future works will focus on managing huge scene such as petroleum refineries involving online
loading of several octrees depending on the robot position. We will also investigate if our frame-
work can be transposed to other domains such as underground parking garages.
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Pfaff, P., Kümmerle, R., Joho, D., Stachniss, C., Triebel, R., and Burgard, W. (2007). Navigation
in combined outdoor and indoor environments using multi-level surface maps. WS on Safe
Navigation in Open and Dynamic Environments, IROS, 7.

Reinke, C. and Beinschob, P. (2013). Strategies for contour-based self-localization in large-scale
modern warehouses. In Intelligent Computer Communication and Processing (ICCP), 2013
IEEE International Conference on, pages 223–227. IEEE.

Sabattini, L., Digani, V., Secchi, C., Cotena, G., Ronzoni, D., Foppoli, M., and Oleari, F. (2013).
Technological roadmap to boost the introduction of agvs in industrial applications. In Intelli-
gent Computer Communication and Processing (ICCP), 2013 IEEE International Conference
on, pages 203–208. IEEE.

Stoyanov, T., Saarinen, J., Andreasson, H., and Lilienthal, A. J. (2013). Normal distributions
transform occupancy map fusion: Simultaneous mapping and tracking in large scale dynamic
environments. In Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ International Con-
ference on, pages 4702–4708. IEEE.

Taghaboni, F. and Tanchoco, J. (1988). A lisp-based controller for free-ranging automated guided
vehicle systems. The International Journal Of Production Research, 26(2):173–188.



Thrun, S., Burgard, W., Fox, D., et al. (2005). Probabilistic robotics, volume 1. MIT press
Cambridge.

Thrun, S., Fox, D., Burgard, W., and Dellaert, F. (2001). Robust monte carlo localization for
mobile robots. Artificial Intelligence, 128(1):99 – 141.

Tipaldi, G. D., Meyer-Delius, D., and Burgard, W. (2013). Lifelong localization in changing
environments. International Journal of Robotics Research, 32(14):1662–1678.

Triebel, R., Pfaff, P., and Burgard, W. (2006). Multi-level surface maps for outdoor terrain mapping
and loop closing. In 2006 IEEE/RSJ International Conference on Intelligent Robots and
Systems, pages 2276–2282.

Underwood, J. P., Jagbrant, G., Nieto, J. I., and Sukkarieh, S. (2015). Lidar-based tree recognition
and platform localization in orchards. Journal of Field Robotics, 32(8):1056–1074.

Zhang, J. and Singh, S. (2014). Loam: Lidar odometry and mapping in real-time. In Robotics:
Science and Systems Conference (RSS).

Zhuang, Y., Jiang, N., Hu, H., and Yan, F. (2013). 3-d-laser-based scene measurement and place
recognition for mobile robots in dynamic indoor environments. Instrumentation and Mea-
surement, IEEE Transactions on, 62(2):438–450.


