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For ξ ∈ 0, 1 2 , let E ξ be the perfect symmetric set associated with ξ, that is

.

Let q ≥ 3 be an integer and s be a nonnegative real number. We show that any invertible operator T on a Banach space with spectrum contained in E 1/q that satisfies

, n → +∞ for some β < b(1/q), also satisfies the stronger property T -n = O n s , n → +∞. We also show that this result is false for E ξ when 1/ξ is not a Pisot number and that the constant b(1/q) is sharp. As a consequence we prove that, if ω is a submulticative weight such that ω

, for some constants C > 0 and β < b(1/q), then E 1/q satisfies spectral synthesis in the Beurling algebra of all continuous functions f on the unit circle T such that +∞ n=-∞ | f (n)|ω(n) < +∞.

Introduction.

Let T be an invertible operator defined on a Banach space with spectrum (Sp(T )) contained in the unit circle T. Several results show that growth conditions on ( T n ) n≥0 and geometric or arithmetic conditions on Sp(T ) induce a certain behavior on the negative powers ( T -n ) n≥0 . For example, it is shown by the author in [START_REF] Zarrabi | Contractions à spectre dénombrable et propriétés d'unicité des fermés dénombrables du cercle[END_REF], that if sup n≥0 T n < +∞ and if Sp(T ) is countable then sup √ n > 0. See also [START_REF] Batty | Extensions of semigroups of operators[END_REF]Theorem 5.6] for a similar result on representations of groups by operators. For ξ ∈ 0, 1 2 , Let E ξ be the perfect symmetric set associated with ξ, that is

E ξ = exp 2iπ(1 -ξ) +∞ n=1
ǫ n ξ n-1 : ǫ n = 0 or 1 (n ≥ 1) , and let b(ξ) = log 1 ξlog 2 2 log 1 ξlog 2

.

Notice that E 1/3 is the classical triadic Cantor set. Let q ≥ 3 be an integer. J. Esterle showed in [8, p. 79] that if sup n≥0 T n < +∞ and Sp(T ) ⊂ E 1/q then sup n≥0 T -n < +∞ or lim sup n→+∞ log T -n n β = +∞, for every β < b(1/q). On the other hand it is proved in [9, Theorem 2.2 ] that the constant b(1/q) is sharp. For further results of this type see [START_REF] Agrafeuil | Idéaux fermés de certaines algèbres de Beurling et application aux opérateurs à spectre dénombrable[END_REF], [START_REF] Agrafeuil | On the growth of powers of operators with spectrum contained in Cantor sets[END_REF], [START_REF] Agrafeuil | KellayTauberian type theorem for operators with interpolation spectrum for Hölder classes[END_REF], [START_REF] Esterle | Uniqueness, strong forms of uniqueness and negative powers of contractions[END_REF], [START_REF] Esterle | Distributions on Kronecker sets, strong forms of uniqueness, and closed ideals of A +[END_REF], [START_REF] El-Fallah | Sous-espaces biinvariants pour certains shifts pondérés[END_REF], [START_REF] Zarrabi | Contractions à spectre dénombrable et propriétés d'unicité des fermés dénombrables du cercle[END_REF]. In this paper we are interested by operators with spectrum contained in E ξ and such that ( T n ) n≥0 has a polynomial growth. Let s be a nonnegative real number. We show (Theorem 2.2) that if

T n = O n s , n → +∞,
T -n = O e n β , n → +∞ for some β < b(1/q), and if Sp(T ) ⊂ E 1/q , then T satifies the stronger condition

T -n = O n s , n → +∞.
This extends the result in [8, p. 79] for the case s = 0 and improves significantly [2, Corollary 2.5], where it is proved that, under the same assumptions, T -n = O n r , n → +∞ for every r > s + 1/2.

On the other hand we show (Propositions 2.3 and 2.4) that the above result is false for E ξ when 1/ξ is not a Pisot number and that the constant b(1/q) is sharp.

In section 3, we apply Theorem 2.2 to show that the sets E 1/q satisfy spectral synthesis in certain Beurling weighted algebras. First, we recall some notations and definitions. Let ω = ω(n) n∈Z be a weight, that is a real sequence such that ω(n) ≥ 1 and ω(n + m) ≤ ω(n)ω(m) for m, n ∈ Z. We define the Banach algebra

A ω (T) = f ∈ C(T) : f ω = +∞ n=-∞ | f (n)|ω(n) < +∞ ,
where f (n) is the n th Fourier coefficient of f , and C(T) the space of all continuous functions on T. In this paper, we will consider only regular algebras, that is algebras A ω (T) for which the weight satisfies n∈Z log ω(n) 1 + n 2 < +∞ (see [13, ex. 7, p. 118]). Let E be a closed subset of T. We define the closed ideal

I ω (E) = f ∈ A s (T) : f = 0 on E ,
and the ideal J ω (E) to be the closure in A ω (T) for the norm ω of the set

f ∈ A ω (T) : f = 0 on a neighborhood of E .
We say that a function f satisfies spectral synthesis for

E in A ω (T) if f ∈ J ω (E), and that E satisfies spectral synthesis in A ω (T) if J ω (E) = I ω (E).
Let I be a closed ideal of A ω (T) such that h(I) = E, where [13, p. 224]). Thus the set E satisfies spectral synthesis in A ω (T) if and only if every closed ideal

h(I) = {z ∈ T : f (z) = 0, ∀ f ∈ I}. Then J ω (E) ⊂ I ⊂ I ω (E) (see
I of A ω (T) such that h(I) = E is equal to I ω (E).
In the case where the weight ω is defined by ω(n) = (1 + |n|) s for all n ∈ Z, with s a nonnegative real number, we denote by A s (T), s the algebra A ω (T), ω , and by I s (E) and J s (E) the closed ideals I ω (E) and J ω (E). We remark that A 0 (T) = A(T) is in fact the classical Wiener algebra.

In [START_REF] Herz | Spectral synthesis for the Cantor set[END_REF], C. S. Herz proved that E 1/q satisfies spectral synthesis in the Wiener algebra A(T) (see also [11, p. 58-59]). In [START_REF] Esterle | Distributions on Kronecker sets, strong forms of uniqueness, and closed ideals of A +[END_REF], J. Esterle showed that E 1/q satisfies spectral synthesis in A ω (T) for all weights ω such that ω(n) = 1 (n ≥ 0) and ω(-n) = O e n β , n → +∞, for some β < b(1/q). Here we extend this result (Theorem 3.5) to a larger class of weights, that is, weights satisfying ω(n) = (1 + n) s (n ≥ 0), and

C -1 (1 + |n|) s ≤ ω(-n) ≤ Ce n β , (n ≥ 0), for some constants s ≥ 0, C > 0 and β < b(1/q).
2. Behavior of powers of operators with spectrum in Cantor sets.

Let ξ ∈ 0, 1 2 . We write T \ E ξ = n≥0 L n , where the L n are the contiguous arcs to E. We know from the construction of E ξ (see [12, Chapitre I]) that for every k ≥ 1, there are exactly 2 k-1 arcs among the L n , which are of length 2πξ k-1 (1 -2ξ). Hence, for a real number γ, 

n≥0 |L n | γ = k≥1 2 k-1 2πξ k-1 (1 -2ξ) γ = (2π(1 -2ξ)) γ 2ξ γ k≥1 (2ξ γ ) k . So,
We denote by A ∞ (D) the set of all functions holomorphic in the unit disk D and infinitely differentiable in the closed disk D.

Lemma 2.1. Let s be a nonnegative real, q ≥ 3 be an integer and ω be a weight such that

ω(n) = (1 + n) s , n ≥ 0,
and ω(-n) = O(e n β ), n → +∞, for some β < b(1/q). Then there exists an outer fonction f ∈ A ∞ (D) such that f (0) = 1 and for every nonnegative integer m, f (z q m ) ∈ J ω (E 1/q ). Proof. Let γ be a real number such that β < γ < b(1/q). There exists a real number δ such that γ 1-γ < δ < 1 -log 2 log q . We set

ω γ (n) = (1 + n) s , n ≥ 0 and ω γ (-n) = e n γ , n > 0.
Since δ < 1 -log 2 log q , it follows from (1) and [8, Lemma 7.2] that there exists a nonzero outer function f ∈ A ∞ (D) which vanishes exactly on E 1/q and which satisfies

|f (z)| ≤ e -d(z,E 1/q ) -δ , z ∈ T \ E 1/q .
We may assume that f (0

) = 1. Now since γ 1-γ < δ, by [8, Lemma 7.1], we have f ∈ J ωγ (E 1/q ).
Let m be a nonnegative integer. Notice that for every z ∈ E 1/q , z q m ∈ E 1/q . Take a sequence (f n ) n ⊂ A ωγ (T), of functions vanishing on a neighborhood of E 1/q and such that f nf ωγ → 0, n → ∞. For every n, f n (z q m ) vanishes on a neighborhood of E 1/q and we have

f n (z q m ) -f (z q m ) ω = k∈Z | fn (k) -f (k)|ω(q m k) ≤ sup k∈Z ω(q m k) ω γ (k) f n -f ωγ ≤ C f n -f ωγ ,
where

C = sup k∈Z ω(k)/ω β (k) max q ms , sup k≥0 e q βm k β -k γ < +∞, where ω β is defined similarly to ω γ . Thus f n (z q m ) -f (z q m ) ω → 0, as n → ∞.
The following theorem is the main result of this section.

Theorem 2.2. Let s be a nonnegative real number, q ≥ 3 an integer and T an invertible operator on a Banach space with spectrum contained in E 1/q . If

T n = O n s , n → +∞, and 
T -n = O e n β , n → +∞ for some β < b(1/q), Then T satisfies the stronger property T -n = O n s , n → +∞.
Proof. We take the weight ω

(n) = (1 + n) s if n ≥ 0 and ω(n) = e |n| β if n < 0. For f ∈ A ω (T), we set f (T ) = +∞ n=-∞ f (n)T n .
Let I be the set of functions f ∈ A ω (T) such that f (T ) = 0. Then I is a closed ideal of A ω (T) and h(I) = Sp(T ) (see [START_REF] Zarrabi | Contractions à spectre dénombrable et propriétés d'unicité des fermés dénombrables du cercle[END_REF]Théorème 2.4]). Therefore J ω (E 1/q ) ⊂ I. Now, let f the outer function given by Lemma 2.1. Then, for every nonnegative integer m, f (T q m ) = 0.

Let n be an integer greater or equal to 1 and let m be the unique integer such that q m ≤ n < q m+1 . It follows from the last equalities that

T -n = - +∞ k=1 f (k)T kq m+1 -n , and 
T -n ≤ +∞ k=1 | f (k)| T kq m+1 -n ≤ +∞ k=1 | f (k)|(1 + kq m+1 -n) s ≤ q s n s +∞ k=1 | f (k)|(1 + k) s .
The remainder of this section is devoted to discussing the sharpness of the hypothesis in Theorem 2.2. In the following proposition we show that the constant b(ξ) is the best possible. Proposition 2.3. For every ξ ∈ (0, 1/2) there exists a contraction T on a Hilbert space with spectrum contained in E ξ , sucth that [START_REF] Esterle | On contractions with spectrum contained in the Cantor set[END_REF]). We set 

T -n = O n b(ξ) , n → +∞,
V (z) = exp 1 2π 2π 0 z + e it z -
T -n = O n b(ξ) , n → +∞ and lim sup n→∞ T -n = ∞. Assume that for somme β < b(ξ), sup n≥0 T -n /e n β < +∞. We set ω β (n) = 1, n ≥ 0 and ω β (-n) = e n β , n > 0.
As in the proof of Lemma 9, Using (1), [8, Lemma 7.2 and Lemma 7.1] we show that there exists a nonzero outer fonction f ∈ A ∞ (D) such that f ∈ J ω β (E 1/q ). By the same argument as in the proof of Theorem 2.2, we get that f (T ) = 0. On the other hand the operator f (T ) is defined by g → P H (f g). Finaly, for g = V -V (0) z ∈ H, the equality f (T )g = 0 implies that f ∈ V H 2 . Now we will prove that Theorem 2.2 cannot be extended to all the sets E ξ . More precisely we show that it is false for all E ξ such that 1/ξ is not a Pisot number. For this we introduce the definition below. We assume that s is a nonnegative integer. We set A + s (T) = {f ∈ A s (T) : f (n) = 0, n < 0}. A closed subset E of T is said to be an interpolating set of order s for A s (T), if for every function f ∈ A s (T), there exists

g ∈ A + s (T) such that f (k) (z) = g (k) (z), z ∈ E, 0 ≤ k ≤ s.
It is shown in [START_REF] Zarrabi | Interpolating sets for spaces of functions with derivatives in the Wiener algebra[END_REF], that E ξ is an interpolating set of order s for A s (T) if and only if 1/ξ is a Pisot number.

Proposition 2.4. Assume that s is a nonnegative integer and that 1/ξ is not a Pisot number. Then there exists a bounded operator T on a Banach space such that Proof. We denote by π the canonical surjection from A + p (T) onto A + p (T)/I + s (E ξ ), where

T n = O n s , n → +∞, ∀ r > s + 3 2 log 2 log 1/ξ , T -n = O n r , n → +∞,
I + s (E ξ ) = {f ∈ A s (T), f = 0 on E ξ }. Note that since E ξ is a perfect set I + s (E ξ )
is also the set of all functions f in A + p (T) such that for all 0 ≤ k ≤ s, f (k) = 0 on E ξ . Let α be the identity function z → z. It is easily seen that E ξ is an interpolating set of order s for A + s (T) if and only if we have π(α) -n p = O(n s ), n → +∞. Let T be the operator defined on A + p (T)/I + s (E ξ ) by π(f ) → π(αf ). We have Sp(T ) = E ξ and

T n = π(α) n = O n s , n → +∞.
It is shown in [START_REF] Zarrabi | Interpolating sets for spaces of functions with derivatives in the Wiener algebra[END_REF]Theorem 6] that E ξ is not an interpolating set of order s for

A + s (T). Thus lim sup n→+∞ T -n /n s = lim sup n→+∞ π(α) -n /n s = +∞.
Since E ξ satisfies condition (1) it follows from the proof of [START_REF] Zarrabi | Interpolating sets for spaces of functions with derivatives in the Wiener algebra[END_REF]Theorem 8] that for every δ < 1 -log 2 log 1/ξ and every r > s

+ 3 2 (1 -δ), π(α) -n = O n r , n → +∞.
Thus for every r > s

+ 3 2 log 2 log 1/ξ , T -n = O n r , n → +∞.
3. Spectral synthesis for Cantor sets in weighted Beurling algebras.

Let s be a nonnegative real number. We denote by [s] the integral part of s, that is the nonnegative integer such that [s] ≤ s < [s] + 1. For f in A s (T), we denote by f (j) , 0 ≤ j ≤ [s], the j th -derivative of f with respect to the variable t, that is f (j) e it = ∂ j ∂t j f e it . To prove the main theorem of this section (Theorem 3.6), we show first that E 1/q satisfies spectral synthesis in A s (T). To do this, we approximate any function f in A s (T) such that f (j) (1) = 0 (0 ≤ j ≤ [s]), by a sequence of functions (f N,[s] ) N ≥1 in A s (T) which are piecewise polynomial and such that each function f

([s]) N,[s] interpolates f ([s]
) at the points e 2ikπ N , for all k ∈ {0, . . . , N -1} (for s = 0, see the Herz criterion in [START_REF] Herz | Spectral synthesis for the Cantor set[END_REF] and [11, p. 58-59]). The functions f N,[s] are defined by

f N,[s] (e it ) = N -1 k=0 ∆ [s], 2π N t - 2kπ N f ([s]) e 2ikπ N , (2) 
where ∆ [s],ε (for 0 < ε ≤ π) is the 2π-periodical function given on [-π, π] by the formula

∆ [s],ε (t) =    (-1) [s] (ε -t) [s]+1 ([s] + 1)! ε for t ∈ [0, ε] 0 for t ∈ [ε, π] , and ∆ [s],ε (t) = (-1) [s] ∆ [s],ε (-t) for t ∈ [-π, 0]. Lemma 3.1. Assume that 0 ≤ s < 1.
There exists a positive constant K such that for every function f ∈ A s (T) and every integer N ≥ 1,

f N,0 s ≤ K f s , f ∈ A s (T) .
Proof. First, we will show this inequality for f (e it ) = e int (n ∈ Z). We have [s] = 0 and

∆ 0,ε (t) = (ε -|t|) ε for t ∈ [-ε, ε] 0 for t ∈ [ε, π]
The Fourier coefficients of ∆ 0,ε are :

∆ 0,ε (m) = ε 2π sin 2 (mε/2) (mε/2) 2 if m = 0, and ∆ 0,ε (0) = ε 2π .
Let f (e it ) = e int . For N ≥ 1, we set

D N = N -1 k=0 f e 2ikπ N δ 2kπ N = N -1 k=0 e 2iknπ N δ 2kπ N ,
where δ a denotes the Dirac measure at a. We have

D N (m) = N 2π if m = n + kN (k ∈ Z) 0 otherwise Therefore f N,0 (m) = 2π D N (m) ∆ 0, 2π N (m) =        sin 2 (mπ/N ) (mπ/N ) 2 if m = n + kN = 0 for some k ∈ Z 1 if m = n + kN = 0 for some k ∈ Z 0 otherwise (3) 
We will consider two cases : Case 1: N ≥ 2|n|.

Let m = n + kN for some k ∈ Z. Note that since N ≥ 2|n|, m = 0. Thus we have

| f N,0 (m)|(1 + |m|) s = sin 2 (n/N + k)π) (n/N + k) 2 π 2 (1 + |n + kN |) s = sin 2 (n/N )π) (n/N + k) 2 π 2 (1 + |n + kN |) s ≤ (n/N ) 2-s (|k| -1/2) 2 (|n|/N + n 2 /N + |kn|) s ≤ 1 2 2-s 1 (|k| -1/2) 2 (1/2 + |n|/2 + |kn|) s ≤ 1 2 2-s (|k| + 1/2) s (|k| -1/2) 2 (1 + |n|) s . ( 4 
)
Therefore

f N,0 s = +∞ k=-∞ f N,0 (n + kN ) (1 + |n + kN |) s ≤ 1 2 2-s +∞ k=-∞ (|k| + 1/2) s (|k| -1/2) 2 (1 + |n|) s = 1 2 2-s +∞ k=-∞ (|k| + 1/2) s (|k| -1/2) 2 f s . (5) 
Case 2: N ≤ 2|n|.

For |m| < N , f N,0 (m) (1 + |m|) s ≤ (1 + N ) s ≤ 2 s (1 + |n|) s .
We remark that there are at most two integers m of the form m = n + kN with |m| < N . Thus

|m|<N f N,0 (m) (1 + |m|) s ≤ 2 1+s (1 + |n|) s . ( 6 
)
Assume now that |m| ≥ N with m = n + kN and k ∈ Z. We note that in this case

n N + k = |m| N ≥ 1. We have f N,0 (m) (1 + |m|) s = sin 2 (nπ/N ) (n/N + k) 2 π 2 (1 + |n + kN |) s ≤ 1 (n/N + k) 2 π 2 N s (1/N + |n/N + k|) s ≤ 2 2s π 2 |n/N + k| 2-s |n| s . Then we get |m|≥N f N,0 (m) (1 + |m|) s ≤ k∈Z: |n+kN |≥N f N,0 (n + kN ) (1 + |n + kN |) s ≤ k∈Z: |n/N +k|≥1 2 2s π 2 |n/N + k| 2-s |n| s ≤ 2 2s+1 π 2 k≥1 1 k 2-s |n| s . (7) 
Combining ( 6) and ( 7) we obtain

f N,0 s ≤ max   2 1+s , 2 2s+1 π 2 k≥1 1 k 2-s   (1 + |n|) s = max   2 1+s , 2 2s+1 π 2 k≥1 1 k 2-s   f s (8)
Finally, we deduce from ( 5) and ( 8) that there exists a positive constant K such that for all integers N ≥ 1 and n ∈ Z, f N,0 s ≤ K f s , where f (e it ) = e int . We deduce easily that this inequality is still true for all trigonometric polynomials, then, by density, for all functions f in A s (T). Lemma 3.2. Assume that 0 ≤ s < 1. Then for every function f ∈ A s (T), we have lim

N →+∞ f N,0 -f s = 0.
Proof. First, we prove the proposition for f (e it ) = e int (n ∈ Z). If n = 0, we deduce from (3) that for all N ≥ 1, f N,0 (0) = 1 and f N,0 (m) = 1 for m = 0, so that f N,0 = f . Now, we suppose that n = 0. Let N ≥ 2|n| be fixed and

m = n + kN (k ∈ Z). If k = 0, then |m| ≥ |k| - 1 2 N . We have | f N,0 (m)|(1 + |m|) s = sin 2 (m/N )π) (m/N ) 2 π 2 (1 + |m|) s = sin 2 (n/N )π) (m/N ) 2 π 2 (1 + |m|) s ≤ 2 s n 2 m 2-s ≤ 2 s n 2 (|k| -1/2) 2-s N 2-s . (9) 
On the othar hand, if k = 0, we have m = n and

| f N,0 (n) -1| = sin 2 (n/N )π) (n/N ) 2 π 2 -1 ≤ π 2 3 (n/N ) 2 . Thus | f N,0 (n) -1|(1 + |n|) s ≤ π 2 3 (n/N ) 2 (1 + |n|) s ≤ π 2 3 n 2 N 2-s . (10) 
It follows from ( 9) and (10) that

f N,0 -f s ≤   π 2 n 2 3 + k∈Z\{0} 2 s n 2 (|k| -1/2) 2-s   1 N 2-s , which implies lim N →+∞ f N,0 -f s = 0.
Now we consider the general case: let f be in A s (T) and ε > 0. There exists

M 0 > 0 such that f -g s ≤ ε, where g = M 0 m=-M 0 f (m)e imt .
Using the above, we can find N 0 > 0 such that for all N ≥ N 0 , gg N,0 s ≤ ε. For N ≥ N 0 , we deduce from lemma 3.1 that

f -f N,0 s ≤ f -g s + g -g N,0 s + g N,0 -f N,0 s ≤ (1 + K) f -g s + g -g N,0 s ≤ (2 + K)ε, which proves that lim N →+∞ f -f N,0 s = 0. Lemma 3.3.
Let s be a nonnegative real number and p = [s]. If p ≥ 1, then for every function f ∈ A s (T), we have

f (p) s-p ≤ f s ≤ 2 p + (2π) p (p + 1)! f (p) s-p + p-1 j=0 (2π) j (j + 1)! |f (j) (1)|.
Proof. For f ∈ A s (T), we have

f (p) (e it ) = k∈Z (ik) p f (k)e ikt , and 
f (p) s-p = k∈Z |k| p (1 + |k|) s-p | f (k)|.
Thus

f (p) s-p ≤ f s ≤ | f (0)| + 2 p f (p) s-p . (11) 
Integration by parts gives

f (0) = p-1 j=0 (-2π) j (j + 1)! f (j) (1) + (-1) p 2πp! 2π 0 t p f (p) (e it ) dt.
and

| f (0)| ≤ p-1 j=0 (2π) j (j + 1)! |f (j) (1)| + (2π) p (p + 1)! f (p) s-p . (12) 
Now the lemma follows from [START_REF] Kahane | Séries de Fourier absolument convergentes[END_REF] and [START_REF] Kahane | Ensembles parfaits et séries trigonométriques[END_REF].

Lemma 3.4. Let s be a nonnegative real number and f a function in A s (T) such that f

(j) (1) = 0 for 0 ≤ j ≤ [s]. Then lim N →+∞ f -f N,s s = 0.
Proof. We set p = [s]. The case p = 0 is exactly Lemma 3.2. So assume that p ≥ 1. Let f ∈ A s (T) such that f (j) (1) = 0 for 0 ≤ j ≤ p. We note that for every N ≥ 1, (f N,s ) (p) = (f (p) ) N,0 and (f N,s ) (j) (1) = 0 for 0 ≤ j ≤ p. By Lemma 3.3,

f -f N,s s ≤ 2 p + (2π) p (p + 1)! f (p) -(f N,s ) (p) s-p = 2 p + (2π) p (p + 1)! f (p) -(f (p) ) N,0 s-p .
It follows from Lemma 3.2 that lim N →+∞ f (p) -(f (p) ) N,0 s-p = 0, which finishes the proof.

Let s be a nonnegative real number, E be a closed set of T whose boundary (bdry(E)), is finite or countable and f be a function in A s (T) such that f = f ′ = . . . = f (p) = 0 on E, where p = [s]. We set I = {g ∈ A s (T); gf ∈ J s (E)}; I is a closed ideal of A s (T), J s (E) ⊂ I and h(I) ⊂ h(J s (E)) = E. Let ζ ∈ • E, where • E is the interior of E. Since A s (T) is a regular algebra there exists a function g ∈ A s (T) whose support is contained in • E and such that f (ζ) = 1. We have f g = 0 which implies that g ∈ I and then ζ / ∈ h(I). It follows that h(I) ⊂ bdry(E). Assume that h(I) is nonempty and take ζ an isolated point in h(I). There exists a function h ∈ A s (T) such that h(ζ) = 1 and h = 0 on a neighborhood of h(I) \ {ζ}.

For n ≥ 1, we set [START_REF] Atzmon | Operators which are annihilated by analytic functions and invariant subspaces[END_REF]Proposition 6] or [1, Théoème 3.2]). So there exists a function v n ∈ A s (T), vanishing in a neighborhood of ζ and such that u nv n s ≤ 1/n. Now v n h vanishes on a neighborhood of h(I) and then v n h ∈ I. Therefore v n hf ∈ J s (E) and since lim n→+∞ v n hfhf s = 0, we have hf ∈ J s (E) and then h ∈ I. This contradicts that h(ζ) = 0, which implies that h(I) = ∅ and I = A s (T). We deduce that f ∈ J s (E). Notice that for s = 0, it is well known that in the Wiener algebra A(T), every closed subset of T whose boundary is a finite or countable set, satisfies the spectral synthesis (see [START_REF] Katznelson | An introduction to harmonic analysis[END_REF]Theorem,p. 245]).

u n = α -ζ α -ζ 1 + 1 n [s]+1 (n ≥ 1), According to [1, Proposition 2.4], we have lim n→+∞ u n hf -hf s = 0, since (hf ) (j) (ζ) = 0 for 0 ≤ j ≤ [s]. Moreover, for each n ≥ 1, u n ∈ J s ({ζ} (see
Suppose now that E is a finite union of closed arcs (not reduced to a single point). Then bdry(E) is a finite set and if f is a function in A s (T) which vanishes on E, then all its derivatives of order less or equal to [s], also vanish on E. We deduce that E satisfies spectral synthesis in A s (T). This allows us to prove the following lemma, which was obtained in [START_REF] Agrafeuil | Idéaux férmés de certaines algèbres de Beurling et application aux opérateurs[END_REF] by intricate computations. Lemma 3.5. Let s be a nonnegative real number and q ≥ 3 an integer. Then E 1/q satisfies the spectral synthesis in A s (T).

Proof. For all n ≥ 1, we set

F n = (ǫ 1 ,...,ǫn)∈{0,1} n L ǫ 1 ,...,ǫn ,
where L ǫ 1 ,...,ǫn is the closed arc e it : t ∈ 2π(q -1)

n k=1 ǫ k q -k , 2π(q -1) n k=1 ǫ k q -k + q -n .
We have

E 1/q = n≥1 F n (see [12, Chapter I]).
Let f ∈ I s (E 1/q ), we have to show that f ∈ J s (E 1/q ). Notice that since E 1/q is a perfect set, f vanishes, as well as all its derivatives of order less or equal to [s], on E 1/q . We observe that for each n ≥ 1 and each (ǫ 1 , . . . , ǫ n ) ∈ {0, 1} n , the end points of the arc L ǫ 1 ,...,ǫn are of the form 2πk q n and 2π(k+1)

q n
for some integer k ∈ {0, 1, . . . , q n -1}, and since (f q n ,ǫ ) ([s]) = f ([s]) = 0 at these end points, f q n ,ǫ vanishes on L ǫ 1 ,...,ǫn . Thus f q n ,ǫ vanishes on F n . Since F n is a finite union of arcs, it satisfies spectral synthesis in A s (T). Therefore, each function f q n is in J s (E 1/q ). As J s (E 1/q ) is closed in A s (T), we deduce from Lemma 3.4 that f ∈ J s (E 1/q ). Now we are able to prove the main result of this section. Theorem 3.6. Let s be a nonnegative real number, q ≥ 3 an integer and ω a weight such that ω(n) = (1 + n) s , n ≥ 0, ω(-n) ≥ c (1 + n) s n ≥ 0, for some constant c > 0, and ω(-n) = O e n β , n → +∞, for some constant β < b 1/q .

Then E 1/q satisfies spectral synthesis in A ω (T).

Proof. We denote by π ω the canonical surjection from A ω (T) to A ω (T)/J ω (E 1/q ), and by T the operator of multiplication by π ω (α) on A ω (T)/J ω (E 1/q ). It is easy to see that T satisfies the hypothesis of Theorem 2.2. It follows that π ω (α) -n = T -n = O n s , n → +∞.

Thus we can define a continuous morphism Θ from A s (T) into A ω (T)/J ω (E 1/q ) by

Θ(f ) = +∞ n=-∞ f (n)π ω (α) n , f ∈ A s (T).
We note that Ker Θ is a closed ideal of A s (T) and that J ω (E 1/q ) = Ker Θ ∩ A ω (T), since for f ∈ A ω (T), Θ(f ) = π ω (f ). It follows that h(Ker Θ) ⊂ E 1/q ) and that J s (E 1/q ) ⊂ Ker Θ. By Lemma 3.5, E 1/q satisfies spectral synthesis in A s (T), that is I s (E 1 q ) = J s (E 1/q ). Therefore I ω (E 1/q ) = I s (E 1/q )∩A ω (T) = J s (E 1/q )∩A ω (T) ⊂ ker Θ∩A ω (T) = J ω (E 1/q ), which completes the proof.

n≥0T

  -n < +∞ or lim sup n→+∞ log T -n

T

  -n /e n β = +∞, for every β < b(ξ). Proof. Let L be the classical Lebesgue function associated to E ξ and let dL be the unique positive measure on [0, 2π] such that b a dL = L(b)-L(a) for 0 ≤ a ≤ b ≤ 2π (see [12, Chapter 1] and

T

  -n /n s = +∞.

  the sum n≥0 |L n | γ is finite if and only if γ > log 2 log 1/ξ . On the other hand, by a simple computation, we can see that for a real number δ, the integral it , E ξ ) δ dt converges if and only if the series n≥0 |L n | 1-δ converges. Therefore

		2π	1
	0	0 d(e 2π 1 d(e it , E ξ ) δ dt < +∞ if and only if δ < 1 -log 2 log 1/ξ	.