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Abstract

We develop a version of small cancellation theory in the variety of Burnside groups.
More precisely, we show that there exists a critical exponent n0 such that for every odd
integer n > n0, the well-known classical C′(1/6)-small cancellation theory, as well as its
graphical generalization and its version for free products, produce examples of infinite n-
periodic groups. Our result gives a powerful tool for producing (uncountable collections of)
examples of n-periodic groups with prescribed properties. It can be applied without any
prior knowledge in the subject of n-periodic groups.

As applications, we show the undecidability of Markov properties in classes of n-periodic
groups, we produce n-periodic groups whose Cayley graph contains an embedded expander
graphs, and we give an n-periodic version of the Rips construction. We also obtain simpler
proofs of some known results like the existence of uncountably many finitely generated n-
periodic groups and the SQ-universality (in the class of n-periodic groups) of free Burnside
groups.

1 Introduction
Let n be an integer. A group G is periodic of exponent n (or simply n-periodic) if it satisfies the
law xn = 1, i.e. for every element g ∈ G, we have gn = 1. The Burnside variety of exponent
n, denoted by Bn, is the class of all n-periodic groups. The study of this variety was initiated
by W. Burnside in 1902 who asked whether a finitely generated group in Bn is necessarily finite
[12]. Burnside’s problem inspired a number of significant developments in combinatorial and
geometric group theory throughout the twentieth century and has been resolved negatively in
the case that n is large enough (see Novikov-Adian [35], Ol’shanskĭı [37], Lysenok [32], Ivanov
[28], Delzant-Gromov [17], and Coulon [14]). Despite much progress, many aspects of Burnside
varieties remain unexplored, in part owing to the fact that it is generally a non-trivial task to
even write down a single new example of an infinite n-periodic group. One purpose of our paper
is to remedy this difficulty.

This article provides a versatile and easy-to-apply tool for constructing examples of finitely
generated infinite n-periodic groups with prescribed properties. While examples of such groups
have already appeared in the literature, their constructions rely on heavy technical machinery
[3, 38] involved to solve the Burnside problem. By contrast, the tool we provide can be applied
without any prior knowledge on n-periodic groups.

We develop a small cancellation theory in Burnside varieties which is the exact analogue
of the usual C ′(1/6)–small cancellation theory, in its classical forms and its recent graphical
generalizations. Recall that small cancellation theory has, ever since the mid–twentieth century,
provided a seemingly unending source of – often very explicit – examples of infinite groups
with striking properties in a wide range of contexts. It has produced results on solvability and

1

© 2019 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S0001870819302713
Manuscript_7ba8e8500831de6fa15cfa953dd1d02d

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0001870819302713
https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0001870819302713
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S0001870819302713


2

unsolvability of algorithmic decision problems [18, 45], it has made major contributions to the
understanding of features of negative and non-positive curvature in groups [20, 42, 52, 26, 6],
it plays a major role in the understanding of random groups [21], and it has provided the only
source of groups containing expanders in their Cayley graphs and therefore satisfying exceptional
analytic properties [22, 7, 40]. Our result thus makes the method for constructing such groups
available in a Burnside variety. Before stating our main theorem precisely, we motivate our work
with a few applications.

Notations. In this article N (respectively N∗) stands for the set of non-negative (respectively
positive) integers.

Periodic monster groups. Small cancellation theory is a powerful tool for exhibiting groups
with exotic properties. Gromov’s monster groups are such examples. Using a graphical version of
small cancellation theory, Gromov built finitely generated groups that coarsely contain expander
graphs in their Cayley graphs [22], see also [7, 40]. As a consequence, they do not coarsely
embed into Hilbert spaces, and therefore they do not have Yu’s property A [53], and they are
counterexamples to the Baum-Connes conjecture with coefficients [27]. Gromov’s groups and
related constructions are currently the only source of examples of groups with any of these three
properties. While these constructions necessarily produce groups with infinite order elements,
we are able to show that such Gromov’s monsters also exist in Burnside varieties.

Theorem 1.1 (Gromov’s monster, see Theorem 2.13). There exists n0 ∈ N such that for every
odd exponent n > n0, there exists a group G ∈ Bn generated by a finite set S such that the
Cayley graph of G with respect to S contains an embedded (and, moreover, coarsely embedded)
expander graph. In particular, there exists a finitely generated n-periodic group that does not
have Yu’s property A, that does not coarsely embed in a Hilbert space and that does not satisfy
the Baum-Connes conjecture with coefficients.

Decision problems in Burnside varieties. One very important question in group theory
is to understand what properties of a group can be checked algorithmically. The word problem
is probably one of the most famous instances of this question. For a group G given by a finite
(or recursively enumerable) presentation 〈S | R 〉, it asks if there exists an algorithm which can
decide whether or not a word in the alphabet S ∪ S−1 represents the identity element. It was
proved by Novikov that there exists a group with unsolvable word problem [34]. Building on this
example, Adian and Rabin showed the following fact [1, 44]. Given a Markov property P, there
is no algorithm that takes a finite presentation and decides whether or not the corresponding
group has P. Roughly speaking, this means that most of the non-trivial decision problems one
can think of are unsolvable in the class of all finitely presented groups. However if one restricts
attention to a smaller class (e.g. abelian groups, nilpotent groups, hyperbolic groups, etc), then
many decision problems become solvable. It is therefore natural to ask what decision problems
can be solved in a Burnside variety Bn.

We show here the exact analogue of Adian-Rabin theorem in Bn. As it remains unknown
whether there exists an infinite finitely presented periodic group, in our approach of decision
problems we consider groups which are finitely presented relative to Bn. To that end we briefly
give terminology for our statement. Given a group G, we write Gn for the (normal) subgroup
of G generated by the n-th power of all its elements. Recall that the free Burnside group of
exponent n generated by a set S, is defined by

Bn(S) = F(S)/F(S)n = 〈S | xn = 1, ∀x 〉.
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It is the free element of Bn. This means that given a group G ∈ Bn, any map S → G uniquely
extends to a homomorphism Bn(S) → G. We say that a group G ∈ Bn is finitely presented
relative to Bn if G is isomorphic to the quotient of a finitely generated free Burnside group
Bn(S) by the normal closure of a finite subset of Bn(S). Equivalently, G is the quotient of a
finitely presented group G0 = 〈S | R 〉 by Gn0 . In this situation we will refer to 〈S | R 〉 as a
finite presentation relative to Bn.

Theorem 1.2 (see Theorem 2.9). There exists a critical exponent n0 ∈ N with the following
property. Let n > n0 be an odd integer that is not prime. Let P be a subclass of Bn for which
there exist G+, G− ∈ Bn which are finitely presented relative to Bn such that

(i) the group G+ belongs to P,

(ii) any n-periodic group containing G− as a subgroup does not belong to P.

Then there is no algorithm that takes as input a finite presentation relative to Bn and determines
whether the corresponding group G ∈ Bn belongs to P or not.

Our proof relies on a result of Kharlampovich, who showed that if n is a sufficiently large
exponent that is not prime, then there exists a group G ∈ Bn which is finitely presented relative
to Bn with unsolvable word problem [29]. The following is an immediate consequence of our
theorem.

Corollary 1.3 (see Corollary 2.10). There exists a critical exponent n0 ∈ N, such that for every
odd integer n > n0 which is not prime, the following properties are algorithmically undecidable
from finite presentations relative to Bn: begin trivial, finite, cyclic, abelian, nilpotent, solvable,
amenable.

Another famous application of small cancellation theory is the Rips’ construction [45]. It
shows that every finitely presented group Q is the quotient of a (hyperbolic) small cancellation
group G by a finitely generated normal subgroup N . In particular it allows to transfer various
pathological properties of Q to the subgroups of G (see for instance Baumslag-Miller-Short [9]).
Our approach to small cancellation theory over Burnside groups provides an analogue of Rips’
construction (see Theorem 2.11).

New proofs of known results. Our main result also enables us to give explicit constructions
that provide concise new proofs of the following known results.

Theorem 1.4 (Atabekyan [8], see Example 2.5). There exists n0 ∈ N, such that for every odd
integer n > n0, for every r > 2, there are uncountably many groups of rank r in Bn.

A group G is SQ-universal in Bn if for every countable group C ∈ Bn there exists a quotient
Q of G such that C embeds into Q.

Theorem 1.5 (Sonkin [48], see Theorem 2.14). There exists n0 ∈ N such that for every odd
exponent n > n0, for every set S containing at least two elements, the free Burnside group Bn(S)
is SQ-univeral in Bn.

The small cancellation theorem. Let us present now a simplified version of our main result.
We use the usual definition of the classical C ′(λ)-condition [31, Chapter V]; see also Definition 2.1.
Roughly speaking, this condition on a presentation requires that whenever two relators r 6= r′

have a common subword u, then |u| < λmin{|r|, |r′|}.
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Theorem 1.6. Let p ∈ N∗. There exists np ∈ N such that for every odd integer n > np the
following holds. Let G = 〈S | R 〉 be a non-cyclic group given by a classical C ′(1/6)-presentation.
Assume that no p-th power of a word is a subword of an element of R, and no r ∈ R is a proper
power. Then the quotient G/Gn is infinite.

Note that there is no restriction on the cardinalities of S or R or on the length of the relations
in R. The constant np only depends on p. In practice, p will never be larger than 10. Hence, np
can be thought of as a universal constant.

Our proof, in fact, yields the much more general Theorems 2.4 and 6.3, encompassing Gro-
mov’s graphical small cancellation theory, as well as classical and graphical small cancellation
theory over free products. The philosophy is always similar to the one of Theorem 1.6: if
the small cancellation presentation defines a non-elementary group, and if some restrictions on
proper powers are satisfied, then some of the standard conclusions of small cancellation theory
hold. For example, n-periodic graphical small cancellation produces infinite n-periodic groups
with prescribed subgraphs in their Cayley graphs, and n-periodic free product small cancellation
produces infinite n-periodic quotients of free products of n-periodic groups in which each of the
generating free factors survives as subgroup.

Remark 1.7. Even in the case that both S and R are finite, the statement of Theorem 1.6 is not
covered by prior results. It is known [39, 17] that, given a torsion-free Gromov hyperbolic group
G, there exists nG ∈ N such that for all odd integers n > nG, the quotient G/Gn is infinite.
Note here that nG depends on the specific group G and, in fact, given an exponent n ∈ N, the
proof only applies to finitely many hyperbolic groups G of a given rank. In our result, on the
other hand, the constant np is independent of the presentation 〈S | R 〉. We shall see in the
following how this easily enables us to construct, for any n > np odd, infinitely many (and, in
fact, uncountably many) examples of infinite n-periodic groups (say, of rank 2).

Strategy of proof. Our small cancellation assumption in Theorem 1.6 has two parts. The
first is the usual C ′(λ) small cancellation condition requiring that any two elements of R must
have small common subwords – this condition is a standard tool for producing infinite “negatively
curved” groups. Together with the assumption that no relation r ∈ R is a proper power, it also
ensures that G is torsion-free. This prevents G from having torsion that would be incompatible
with the n-torsion introduced later on.

The second part of our assumption requires a uniform bound on the powers appearing as
subwords of elements of R. This essentially tells us that the elements of R are “transverse to
the Burnside relations” of the form xn = 1. For some specific adhoc constructions, experts of
Burnside groups implicitly observed that adding appropriate aperiodic relations should not affect
significantly the proof of the infiniteness of Bn(S) [38]. However their method requires to re-run
the full proof of the Novikov-Adian theorem. Our approach of Theorem 1.6 has the following
advantage: we are able to treat completely separately the relations of G/Gn coming from R and
the Burnside relations. In particular, our approach provides a better geometric understanding
of the bounded torsion groups that arise as small cancellation quotients of free Burnside groups.
We now briefly describe the strategy of our proof.

The first step is to study the geometry of groups defined by C ′(1/6) small cancellation pre-
sentations. If G = 〈S | R 〉 is such a group, denote by W all elements of G represented by
subwords of elements of R. Consider the Cayley graph Ẋ of G with respect to the (possibly
infinite) generating set S ∪W . Thus, as graph, Ẋ is obtained from the usual Cayley graph by
attaching to each embedded cycle γ that corresponds to a relator in R a complete graph on the
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vertices of γ. Gruber and Sisto proved that Ẋ is Gromov hyperbolic, and the natural action of
G on Ẋ is non-elementary unless G is virtually cyclic [26]. In our work, we study the action of
G on Ẋ and prove that, in fact, our second assumption (the one regarding powers appearing as
subwords of relations) ensures that the action of G on Ẋ is acylindrical. We also determine the
non-trivial elliptic elements for the action of G on Ẋ. In the case of Theorem 1.6, we show that
there are none.

The second step of the proof is to “burnsidify” the group G by killing all possible n-th powers.
To this end we use a theorem of Coulon that can be roughly summarized as follows [15]. Assume
that G is a group without involution (i.e. element of order 2) acting acylindrically non-elementary
on a hyperbolic space Ẋ. Then there exists a critical exponent n0 ∈ N such that for every odd
integer n > n0, there exists an infinite quotient Gn of G with the following properties: every
elliptic subgroup of G embeds into Gn, and for every element g ∈ Gn that is not the image of
an elliptic element of G, we have gn = 1. In the settings of Theorem 1.6, G has no non-trivial
elliptic element, hence the quotient Gn obtained from Coulon’s result is exactly G/Gn. Coulon’s
theorem, moreover, proves that the map G → Gn preserve the small scale geometry induced
by the metric of Ẋ. This lets us prove that certain non-trivial elements of G survive in Gn.
In particular, it enables us to promote small cancellation constructions of groups with certain
prescribed subgraphs (e.g. expander graphs) to the setting of n-periodic groups.

We explain why the critical exponent np in Theorem 1.6 only depends on p. The hyperbolicity
constant of Gruber and Sisto’s space Ẋ is uniform, i.e. independent of the specific C ′(1/6)-
presentation 〈S | R 〉. Our proof shows that the acylindricity parameters for the action of G
on Ẋ only depend on the number p that provides the bound on powers appearing as subwords
of relators. Finally, the critical exponent given by Coulon’s theorem only depends on the those
parameters. In other words, the uniform control on powers appearing as subwords of elements
of R, i.e. the degree of transversality to the Burnside relators, has a very strong geometric
interpretation in term of the action of G on Ẋ, which gives us the desired control on np.

Outline of the article. In Section 2 we state the main results of the article and give a
proof of the applications presented in the introduction. Section 3 reviews some basic facts
about hyperbolic geometry and acylindrical actions on hyperbolic spaces. Section 4 is devoted
to the second step of the aforementioned strategy. We explain how given a group G acting
acylindrically on a hyperbolic space X, we can turn G into a periodic group with exponent
n. In particular we highlight the fact that the exponent n does not depend on the group G,
but only on the parameters of the acylindrical action. In Section 5 we show that a group G
statisfying a suitable small cancellation condition acts acylindrically on its hyperbolic coned-off
Cayley graph. Moreover we explain how the parameters of this action are related to those of our
small cancellation assumption. The final section provides the proofs of the main theorems stated
in Section 2 using the results of Section 4 and Section 5.
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2 Main results

In this section we state the main results of the article and explain how they can be applied to
cover all the examples presented in the introduction.

2.1 Small cancellation

Before stating its graphical generalization, we remind the reader of the classical C ′(λ)-condition
for reference. Our definition corresponds to the standard one given, for example, in the book of
Lyndon and Schupp [31, Chapter V].

Definition 2.1 (Classical small cancellation). Given a presentation 〈S | R 〉, a piece is a word u
that is a common prefix of two distinct cyclic conjugates of elements of R∪R−1. We say 〈S | R 〉
satisfies the classical C ′(λ)-condition if every element of R is cyclically reduced and if whenever
a classical piece u is a subword of a cyclic conjugate of some r ∈ R, then |u| < λ|r|.

Group defined by a labelled graph. A graph is a graph in the sense of Serre [47]. This
means a graph Γ is an ordered pair of sets (V,E) together with maps ι, τ : E → V (initial vertex
and terminal vertex) and a fixed-point free involution ·−1 : E → E (edge inversion) such that for
each e ∈ E we have τe = ι(e−1).

Let S be a set. A labelled graph is a graph Γ = (V,E) together with a map E → S t S−1

that is compatible with the inversion map. If we write Γ as disjoint union of its connected
components Γ = ti∈IΓi and, for each Γi choose a vertex vi, then the labelling induces a natural
map ∗i∈Iπ1(Γ,vi) → F(S). The group G(Γ) is defined as the quotient of F(S) by the normal
closure of the image of this map. Note that this normal closure, and hence G(Γ), does not depend
on the choice of the vertices vi.

The group G(Γ) can be also described by a specific presentation. Given a path γ in Γ, the
label of γ, denoted `(γ), is the product of the labels of its edges seen as an element of the free
monoid on S t S−1. A presentation of G(Γ) is

G(Γ) := 〈S | labels of simple closed paths in Γ〉

Let Cay(G(Γ), S) be the Cayley graph of G(Γ) with respect to S. If vi is a vertex in a con-
nected component Γi of Γ and g ∈ G(Γ), then there exists a unique label-preserving graph
homomorphism Γi → Cay(G(Γ), S) that maps vi to g.

Small cancellation condition. Let Γ be a graph labelled by a set S. A piece is a word w
over the alphabet S tS−1 labelling two paths γ1 and γ2 in Γ so that there is no label preserving
automorphism ϕ of Γ such that γ2 = ϕ ◦ γ1.

Definition 2.2 (Graphical small cancellation [23, Definition 1.3]). Let λ ∈ (0, 1). Let Γ be a
graph labelled by a set S. We say that Γ satisfies the C ′(λ) small cancellation condition if the
following holds.

(i) The graph Γ is reduced in the following sense: two edges with the same initial vertex cannot
have the same label.
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(ii) For every simple loop γ in Γ, the w is a piece labelling a subpath of γ, then |w| < λ|γ|
where | . | stands for the length of words/paths.

This settings extends the classical small cancellation. Indeed Definition 2.1 exactly corre-
sponds to the case where Γ is a disjoint union of circle graphs, each of them being labelled by a
distinct relation r ∈ R.

In order to state the next theorem we define a strengthening of the small cancellation condi-
tion. To perform small cancellation in the variety Bn we need indeed an assumption to ensure
that the relation we consider are “transverse to the Burnside relations”. The idea is to require
that the words labelling path in Γ are not large power, unless they already corresponds to an
n-th power labelling a closed path.

Definition 2.3 (Periodic small cancellation). Let n, p ∈ N and λ ∈ (0, 1). Let Γ be a graph
labelled by a set S. We say that Γ satisfies the C ′n(λ, p)-small cancellation assumption if the
following holds.

(i) The graph Γ is strongly reduced in the following sense: every edge has two distinct vertices;
there is no closed path with label st or st−1 for s, t ∈ S, s 6= t.

(ii) Γ satisfies the C ′(λ)-condition.

(iii) Whenever w is a cyclically reduced word such that wp labels a path in Γ, then wn labels
a closed path in Γ.

Let n ∈ N. Following the construction above, we define the analogue of G(Γ) in the Burnside
variety Bn. For each connected component Γi of Γ we choose a vertex vi ∈ Γi. The labelling
` of Γ induces a map ∗i∈Iπ1(Γ,vi) → Bn(S). The group Gn(Γ) is defined as the quotient of
Bn(S) by the normal closure of the image of this map. Again this construction does not depend
on the choice of the vertices vi. The group Gn(Γ) can also be described as the n-periodic
quotient of G(Γ). More precisely, Gn(Γ) is the quotient of G(Γ) by the (normal) subgroup
of G(Γ) generated by the n-th power of all its elements. As previously, if vi is a vertex in a
connected component Γi of Γ and g ∈ Gn(Γ), then there exists a unique label-preserving graph
homomorphism Γi → Cay(Gn(Γ), S) that maps vi to g.

Theorem 2.4. Let p ∈ N∗. There exists a critical exponent np ∈ N such that for every odd
integer n > np the following holds. Let S be a set containing at least two elements. Let Γ be a
graph labelled by S satisfying the C ′n(1/6, p) condition. We assume that there is no finite group
F generated by S whose Cayley graph Cay(F, S) embeds in Γ. Then the following holds.

(i) The group Gn(Γ) is infinite.

(ii) Every connected component of Γ embeds into Cay(Gn(Γ), S) via a label-preserving graph
homomorphism.

(iii) If S is finite, Γ is countable, and every connected component of Γ is finite, then Γ embeds
and coarsely embeds in Gn(Γ).

Recall that a map f : X1 → X2 between two metric spaces is a coarse embedding if for all
sequences of pairs of points xk, yk ⊂ X1×X1 we have |xk−yk|X1

→∞⇐⇒ |f(xk)−f(yk)|X2
→

∞. In our theorem, we will consider Γ as a metric space by writing it as disjoint union of its
countably many connected components Γ = ti∈NΓi, and endowing it with the shortest-path
metric on each component and declaring d(x, y) = diam(Γi) + diam(Γj) + i + j for x ∈ Γi and



8

y ∈ Γj . (This is usually called the box-space metric, and the constants diam(Γi)+diam(Γj)+i+j
we choose are irrelevant in the context of the notion of coarse equivalence.)

The proof of Theorem 2.4 is given in Section 6. We illustrate this statement with a short
proof that for an integer n odd and large enough, Bn is uncountable.

Example 2.5 (Thue-Morse sequence). Let S = {a, b, t}. Let u = u(a, b) be the infinite Thue-
Morse sequence over the alphabet {a, b}.

u(a, b) = abbabaabbaababbabaababbaabbabaabbaababbaabbabaababba . . .

It is the infinite word obtained from a by iterating the substitution a → ab and b → ba. It has
the property that it does not contain any subword of the form w3 [51]. For every k ∈ N, we
consider a subword uk = uk(a, b) of length k of u. For every i ∈ N, we now consider a collection
of words ri of the form

ri = tu100i+1tu100i+2t . . . tu100i+100.

Let np be the critical exponent given by Theorem 2.4 for p = 3. We fix an odd integer n > np.

Let I be a subset of N. We define a graph ΓI as the disjoint union of circle graphs indexed by
N. The i-th circle graph of ΓI is labelled by ri if i ∈ I and rni otherwise. Hence we have

G(ΓI) = 〈 a, b, t | ri, rnj , i ∈ I, j ∈ N \ I 〉.

Observe that, since |ui| 6= |uj | for i 6= j and since no ui contains any t’s, we have that no
cyclically reduced word of the form w3 can be read on ΓI , unless wn labels a closed path.
Furthermore, no piece contains two t’s, whence it is easy to check that ΓI satisfies the C ′(1/6)-
condition. Therefore, ΓI satisfies the C ′n(1/6, 3)-assumption. Applying Theorem 2.4 yields that
each Gn(ΓI) is infinite. Of course the relations of the form rnj for j ∈ N \ I are irrelevant for
the definition of Gn(ΓI). Nevertheless keeping track of them in ΓI will help us to distinguish
between all the Gn(ΓI).

We now prove that we obtain uncountably many isomorphism classes of n-periodic groups in
this way. For every I ⊂ N we denote by KI the kernel of the canonical projection F(a, b, t) �
Gn(ΓI). As n > 1, Theorem 2.4 (ii) applied to ΓI implies that whenever j /∈ I, then rj does
not represent the identity in Gn(ΓI). Consequently KI = KJ if and only if I = J . Now,
given one (isomorphism type of) countable group C, there are only countably many kernels
of homomorphisms F(a, b, t) → C. Hence, the collection {Gn(ΓI) : I ⊆ N} must contain
uncountably many isomorphism types of groups.

Example 6.5, which is detailed at the end ot the article, explains why the assumption regarding
powers in Definition 2.3 (iii) is necessary.

2.2 Small cancellation over free products
We now describe an analogue of Theorem 1.6 in the context of small cancellation over free
products. We refer the reader to Theorem 6.3 for the full (graphical) statement. We follow here
the general exposition given in Lyndon-Schupp [31]. Let

F = F1 ∗ F2 ∗ · · · ∗ Fm

be a free product. Recall that any non-trivial element g ∈ F can be decomposed in a unique way
as a product

g = g1g2 . . . g`
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where each gi is a non trivial element of some factor Fk, and no two consecutive gi and gi+1

belong to the same factor. Such a decomposition is called the normal form of g. The integer `
is the syllable length of g and we denote it by |g|∗. Let g = g1g2 . . . gr and h = h1h2 . . . hs be
two elements of F given by their normal forms. The product gh is called weakly reduced if grh1

is non trivial. Note that one allows gr and h1 to be in the same factor. An element g = g1 . . . g`
given by its normal form is cyclically reduced if ` = 1 or g1 and g` are not in the same factor. It
is weakly cyclically reduced if ` = 1 or g`g1 is non-trivial. A subset R of F is called symmetrized
if its elements are cyclically reduced and for every r ∈ R, all the weakly cyclic conjugates of r
and r−1 belong to R. In this context a piece is an element u ∈ F for which there exist r1 6= r2

in R which can be written in weakly reduced form as r1 = uv1 and r2 = uv2.

Definition 2.6. Let λ ∈ (0, 1). A symmetrized subset R of F satisfies the power-free C ′∗(λ)
small cancellation condition if

(i) For every r ∈ R, which can be written in a weakly reduced form as r = uv where u is
a piece, then |u|∗ < λ|r|∗. To avoid pathologies we also require that for every r ∈ R,
|r|∗ > 1/λ. (For instance, without this assumption a set of the form R = {f1, . . . , fm}
where fi belongs to the free factor Fi would satisfy the C ′∗(λ) condition. If each factor Fi
is cyclic, the quotient G = F/〈〈R〉〉 could be trivial. We do not want such a situation to
fall in the context of small cancellation theory.)

(ii) No element of R is a proper power.

By analogy with the graphical case we now define the assumption needed to perform small
cancellation over free products in a Burnside variety Bn. Our assumption here is somehow
stronger than its graphical analogue. Indeed we do not allow relations to be a proper power.
Hence the definition does not depend on the Burnside exponent n. We actually cover a more
general free product small cancellation condition that does allow relators that are proper powers
in Theorem 6.3 but choose to here cover the following version for simplicity.

Definition 2.7. Let p ∈ N. Let λ ∈ (0, 1). A symmetrized subset R of F satisfies the power-free
C ′∗(λ, p) small cancellation condition if the following holds.

(i) R satisfies the power-free C ′∗(λ)-assumption

(ii) For every r ∈ R, if there exists a cyclically reduced element w with |w|∗ > 1 such that r
can be written in a weakly reduced form as r = (wk)v, then k 6 p.

Theorem 2.8. Let p ∈ N∗. There exists np ∈ N such that for every odd exponent n > np the
following holds. Let F = F1 ∗ · · · ∗ Fm be a free product. Let R be a symmetrized subset of F
satisfying the power-free C ′∗(1/6, p) condition. We assume that no factor in F has even torsion.
Then there exists a quotient Qn of G = F/〈〈R〉〉 with the following properties.

(i) Every factor Fk embeds in Qn.

(ii) For every g ∈ Qn, if g is not conjugate to an element in a factor Fk, then gn = 1.

(iii) If every factor Fk belongs to Bn, then Qn = G/Gn. In particular Qn belongs to Bn.

The proof of Theorem 2.8 is given in Section 6.
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2.3 Decision problems and Rips’ construction

We now present a few applications of Theorems 2.4 and 2.8. We start with the following analogue
the Adian-Rabin theorem.

Theorem 2.9. There exists a critical exponent n0 with the following property. Let n > n0 be
an odd integer that is not prime. Let P be a subset of Bn for which there exist G+, G− ∈ Bn

which are finitely presented relative to Bn such that

(i) the group G+ belongs to P,

(ii) any n-periodic group containing G− as a subgroup does not belong to P.

Then there is no algorithm that takes as input a finite presentation relative to Bn and determines
whether the corresponding group G ∈ Bn belongs to P or not.

Proof. Recall that all the presentations we consider here are relative to Bn. Nevertheless, for
simplicity, we omit in this proof the mention “relative to Bn”. Let np ∈ N be the critical
exponent given by Theorem 2.8 with p = 10. Up to increasing the value of np, we can assume
that np > (665)2. Let n > np be an odd exponent that is not prime. In particular n decomposes
as n = pq where p > 3 is prime and q has an odd divisor larger that 665. According to [29] there
exists a finitely presented group H ∈ Bn whose word problem is unsolvable. We write S for the
corresponding generating set of H.

Let P be a class of groups satisfying the assumptions of the theorem. Let G+ be a finitely
presented group in P. Let G− be a finitely presented group such that any group in Bn containing
G− is not in P. We write S− and S+ for the generating sets of the presentation defining G− and
G+ respectively.

To each word w over the alphabet S ∪ S−1 we are going to produce a finitely presented test
group Ln(w) in Bn such that Ln(w) belongs to P if and only if w represents the trivial element.
The construction goes as follows. We consider C, C1 and C2, three distinct copies of Z/nZ. We
write t, x1 and x2 for a generator of C, C1 and C2 respectively. We consider the following free
product.

L0 = H ∗G+ ∗G− ∗ C ∗ C1 ∗ C2

Let w be a word over S ∪ S−1. We now construct a quotient L(w) of L0. Let h the element
of H represented by w. We write gi for the commutator gi = [h, xi]. Let u(a, b) be the infinite
Thue-Morse sequence over the alphabet {a, b} (see Example 2.5). For every k ∈ N, uk(a, b) is
a subword of length k of u(a, b). The group L(w) is the quotient of L0 characterized by the
following families of relations: for every s ∈ S ∪ S− ∪ {t, x1, x2},

s = uks,1(g1, g2)tuks,2(g1, g2)t−1uks,3(g1, g2)t · · ·uks,2ps (g1, g2)t−1. (1)

where the sequence (ks,j) will be made precise later. We now define Ln(w) as the n-periodic quo-
tient of L, i.e. Ln(w) = L(w)/L(w)n, where L(w)n is the (normal) subgroup of L(w) generated
by the n-th power of all its elements.

If w represents the trivial element in H, i.e. if h = 1, then g1 and g2 are trivial as well. Hence
the relations (1) force H, G−, C, C1 and C2 to have a trivial image in L(w). Consequently L(w)
is isomorphic to G+. As G+ is already n-periodic, Ln(w) is isomorphic to G+. In particular
Ln(w) belongs to P. Assume now that w does not represents the trivial element in H. In other
words, h 6= 1. Then g1 and g2 are two non-trivial elements of H ∗ C1 and H ∗ C2 respectively.
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One can choose the sequences (ks,j) in such a way that the relations (1) defining L(w) satisfy
the power-free small cancellation assumption C ′∗(1/6, 10). It follows from Theorem 2.8 that G−
embeds in Ln(w). According to our assumption on G−, the group Ln(w) cannot belong to P.
Hence the group Ln(w) has the announced property.

Note that the sequence (ks,j) can be chosen independently of w. Hence the presentation of
L(w) can be algorithmically computed from the respective presentations of G±, H, C, C1 and
C2. It follows from this discussion that deciding whether or not a finitely presented group of
Bn belongs to P is equivalent to solving the word problem in H. The latter problem being
unsolvable, so is the former one.

Recall that free Burnside groups of sufficiently large odd exponents are non-amenable [4].
Hence we get the following statement.

Corollary 2.10. There exists a critical exponent n0 with the following property. Let n > n0 be
an odd integer that is not prime. Let P be one of the following property: being trivial, finite,
cyclic, abelian, nilpotent, solvable, amenable. There is no algorithm to determine whether a group
G of Bn given by a finite presentation relative to Bn has P.

The following observation shows that the Rips construction [45], a method for exhibiting
pathologies among C ′(λ)-small cancellation groups (and thus, in particular, among hyperbolic
groups) can also be applied to our class of small cancellation groups in the Burnside variety.

Theorem 2.11 (Rips construction). Let n ∈ N and λ ∈ (0, 1]. Let Q be a finitely generated
group in Bn. There exists a graph Γ labelled by a finite set S satisfying the C ′n(λ, 3)-condition
with the following properties

(i) Gn(Γ) maps onto Q and the kernel of this projection is finitely generated.

(ii) If Q is finitely presented relative to Bn, then so is Gn(Γ).

Proof. Let 〈 a1, . . . , ar | R 〉 be a presentation relative toBn of Q. Up to conjugating the elements
of R we can assume that their length is a least 1010. As usual we write u = u(x, y) for the infinite
Thue-Morse word over the alphabet {x, y}. For every k ∈ N, uk = uk(x, y) is a subword of length
k of u (see Example 2.5). We now build a graph Γ labelled by S = {a1, . . . , ar, x, y, t} as follows.
For each i ∈ {1, . . . , r}, for each u ∈ {x, y, t} for each ε ∈ {±1} we associate a loop in Γ labelled
by

aεiua
−ε
i tuk1tuk2 . . . tuksi . (2)

Let r = r1 . . . rm be a relation of R written in the alphabet {a1, . . . , ar}. For every such relation
we add a new loop to Γ labelled by

r1uk1r2uk2 . . . rmukm . (3)

In this construction the sequences (kj) implicitly depends on the relation we are considering.
Recall that the Thue-Morse sequence does not contain any cube. Hence one can choose the
indices kj such that the graph Γ obtained in this way satisfies the C ′n(λ, 3)-assumption. According
to the relations (2) the subgroup K generated by x, y and t is normal in Gn(Γ). By the relations
(3) the quotient of Gn(Γ) by K is exactly Q. Note that, if R is finite, then Γ is a finite union of
disjoint loops. Hence Gn(Γ) is finitely presented relative to Bn.

Remark 2.12. In our proof the kernel K has rank at most 3. We made this choice to keep the
exposition easy. With some additional work one should be able to achieve rank 2.
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For the moment we have not found relevant applications of this construction that cannot be
recovered by using already existing technologies. Consider for instance the following construction.
Let n be an odd integer and Q ∈ Bn. Applying the standard Rips construction, one can find a
short exact sequence

1→ K → G→ Q→ 1

where G is a torsion-free hyperbolic group and K a finitely generated group. Then applying
Ol’shanskĭı [39] one can consider the quotient G/Gkn where k is a large odd integer and Gkn the
(normal) subgroup of G generated by the kn-th power of all its elements. This provides a short
exact sequence

1→ Kk → G/Gkn → Q→ 1

where G/Gkn is an infinite periodic group. In this way one can exhibit for instance a periodic
group with solvable word problem but unsolvable generalized word problem. Nevertheless the
construction given by Theorem 2.11 has the following virtue. Contrary to the aforementioned
strategy, the group Gn(Γ) that we produce has the same exponent as the group Q we started
with.

2.4 Gromov monsters

Our main theorem also enables the transposition of major recent results from analytic group
theory to the variety Bn.

Theorem 2.13 (Gromov monster). There exists n0 such that for every odd exponent n > n0,
there exists a group G ∈ Bn generated by a finite set S whose Cayley graph with respect to S
contains an embedded (and, moreover, coarsely embedded) expander graph. In particular, there
exists a finitely generated n-periodic group that does not have Yu’s property A, that does not
coarsely embed into a Hilbert space and that does not satisfy the Baum-Connes conjecture with
coefficients.

Proof. Let Γ = (V,E) be an expander graph without simple closed paths of length 1 or 2. In
particular Γ is the disjoint union of a collection of finite graphs (Γk) with uniformly bounded
valency. In addition we assume that

I the valence of any vertex is at least 3;

I the girth of Γk tends to infinity as k approaches infinity;

I the ratio diam(Γk)/ girth(Γk) is uniformly bounded from above.

Such a graph can be obtained as follows [30]: fix the matrices

M1 =

(
1 2
0 1

)
and M2 =

(
1 0
2 1

)
and consider the sequence of Cayley graphs of the groups SL2(Z/pZ), where p runs over all
primes, with respect to the images of M1 and M2. We explain how to endow Γ with a labelling
that satisfies, for every n ∈ N, the C ′n(1/6, 2) condition. Then it remains to apply Theorem 2.4.
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Labelling the graph. The ideas of this paragraph come from Arzhantseva, Cashen, Gruber,
and Hume [6, Theorem 6.8]. We recall them quickly for the convenience of the reader. Up to
replacing (Γk) by a subsequence, there exists finite set S1 and a labelling of `1 : E → S1 t S−1

1

satisfying the C ′(1/6) small cancellation condition, such that Γ has no non-trivial label-preserving
automorphism. This is proven by Osajda in [40, Theorem 2.7]. However some path may be
labelled by some very large powers. Since Γ has uniformly bounded degree, it follows from Alon,
Grytczuk, Hałuszczak and Riordan [5] that there exists a finite set S2 and another labelling of
`2 : E → S2 t S−1

2 such that no word labelling an embedded path of Γ contains a square. One
checks easily that for every n ∈ N, the product labelling ` : E → (S1tS−1

1 )× (S2tS−1
2 ) sending

an edge e to (`1(e), `2(e)) satisfies C ′n(1/6, 2) condition by observing that if (w1, w2) is a piece
for `, then w1 is a piece for `1, and if (w1, w2) is square, then w2 is a square.

2.5 A new proof of SQ-universality
Theorem 2.14 (SQ-universality). There exists n0 ∈ N such that for every odd exponent n > n0,
for every set S containing at least two elements, the free Burnside group Bn(S) is SQ-univeral
in Bn.

The following proof builds on a construction used by Gruber in [25, Example 1.13] to show
that any countable group embeds in a group of rank 2 defined by a C ′(1/6)-labelled graph.

Proof. Let np be the critical exponent given by Theorem 2.4 for p = 6. Let n > np be an odd
integer. Let A be a countable group in Bn. We fix an epimorphism F(U) � A where U is an
infinite countable set. We will define below a graph Γ0 labelled by two letters with the following
properties. (Of course it is sufficient to consider the case |S| = 2, as any free Burnside group of
rank greater than two surjects onto one of rank two.)

(i) The fundamental group of Γ0 is isomorphic to the free group on U (i.e. has countably
infinite rank).

(ii) The labelling satisfies the C ′1(1/6, 6)-assumption.

(iii) The label-preserving automorphism group of Γ0 is trivial.

Let K be the kernel of the epimorphism F(U) � A. Let Γ be the cover of Γ0 corresponding to
K, i.e. the quotient of the universal cover of Γ0 by K. The labelling on Γ0 induces a labelling
on Γ. The labelling of Γ satisfies the C ′n(1/6, 6)-assumption: the C ′(1/6)-condition is argued in
[25, Remark 1.12]. The labels of paths in Γ are exactly the labels of paths in Γ0. Hence, if for
a cyclically reduced word w we have w6 as label of a path in Γ, then w labels a closed path in
Γ0. Since A is n-periodic, we deduce that wn labels a closed path in Γ. Hence, we may apply
Theorem 2.4.

Observe that A embeds in G(Γ) as subgroup preserving and acting freely on an embedded
copy Γ in Cay(G(Γ), S) of the labelled graph Γ [25, Example 1.13]. By Theorem 2.4, the canonical
projection f : Cay(G(Γ), S)→ Cay(Gn(Γ), S) restricted to Γ is an isomorphism. If π denotes the
epimorphism G(Γ)→ Gn(Γ), then, for any g ∈ G(Γ) and any vertex v of Cay(G(Γ), S), we have
f(gv) = π(g)f(v). Thus, if g ∈ A satisfies π(g) = 1, then, for every v ∈ Γ: f(gv) = π(g)f(v) =
f(v), whence gv = v and g = 1. Thus A is a subgroup of Gn(Γ).

Construction of Γ0. We now define a graph Γ0 labelled by {a, b} satisfying the C ′1(1/6, 6)-small
cancellation condition, with infinite rank fundamental group and no non-trivial automorphism.
In fact, no simple path in Γ0 will be labelled by a 6-th power, and any non-simple path labelled
by a proper power will be closed.
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We first define a sequence uk of subwords of the Thue-Morse sequence with 3(k− 1) < |uk| 6
3k, and uk starts and ends with the letter b. Take any subword ûk of length 3(k − 1) + 1 of
the Thue-Morse sequence that starts with b. Now, since a3 is not a subword of the Thue-Morse
sequence, extending ûk by at most two letters yields a word uk as desired.

Fix N > 1010. For every i ∈ N, i > 1, we let

ri = a3uiN+1a
3uiN+2 . . . a

3uiN+N .

These are cyclically reduced words by construction. Consider the collection R = {ri | i > 0},
and consider Γ̂0 the disjoint union of cycle graphs Λi labelled by ri. Note that subwords of cyclic
conjugates of elements of R of the form a3 occur exactly in the places written in the definition
of the ri (i.e. they do not occur in any uk and contain no letters of any uk). Since the uk
have pairwise distinct lengths, this implies that any reduced piece contains at most one subpath
labelled by a3. Let w be a piece such that w is a subword of a cyclic conjugate of ri. Then, by our
observation, we have that w is subword of a word of the form a2uka

3u`a
2 for suitable k, ` and, in

particular |w| 6 8 + 6(iN +N) = 6(i+ 1)N + 8. On the other hand, we have |ri| > 3iN2 + 3N .
We deduce |w| < |rk|/6− 2 because N > 1010.

On Λi, we can read the word ri starting from some base vertex. Let vi be the vertex separating
a and a2 in the first occurrence of a3 in ri and wi be the vertex separating a and a2 in the fourth
occurrence of a3. We now build a connected graph Γ0 with a reduced labelling by connecting vi
to wi+1 by a line graph of length 3 labelled by the word ba−1b, for each i > 1. We call Γ0 the
resulting graph.

A word is positive if any letter occuring in it occurs with positive exponent. Observe that,
when checking pieces in Γ0, we only need to check paths labelled by positive words, because any
simple closed path is (up to inversion) labelled by a positive word. Now the positive words on
Γ0 are exactly the word a, the positive words read on Λi for i ∈ N, and the words obtained
from positive words of Λi by possibly appending a b at the beginning or at the end. Hence,
the (relevant) pieces have increased in length by at most 2, and the C ′(1/6)-condition is still
satisfied.

Now, by construction, no word read on a simple path in any of the Λi for i > 1 is a 4-th power.
We first argue that Γ0 does not contain any simple path π labelled by a 6-th power: a positive
word on Γ0 corresponds to a positive word on some Λi for i > 1 with possibly a b appended
in the beginning or at the end. Hence a positive word cannot contain a 6-th power. Let π be
labelled by a word that is not positive and whose inverse is not positive and that is a proper
power. Then the label of π contains, up to inversion, a subword of the form a−1wa−1, where w
is a positive word. The two occurrences of a−1 correspond to the two line graphs attached to the
same Λi for i > 2. Thus, w is of the form bvb, where v is one of the two labels of simple paths
from vi to wi in Λi. We already observed that such a path labelled by v is not a piece, i.e. there
is a unique path in Γ labelled by v. Hence, the label of π can contain at most one occurrence of
v, contradicting that it is a proper power.

If a non-simple path is labelled by a proper power of a cyclically reduced word w, then we
argue that w labels a closed path. Suppose that π is a non-simple path whose label is wp for
p > 1 and w cyclically reduced. As w is cyclically reduced, π is reduced, i.e. has no back-tracking.
Thus, π contains a subpath γ that is a simple closed path. Now, because p > 1, there exists a
subword u of wp−1 labelling a subpath of γ such that |u| > |γ|/2. (After all, the label of γ is a
subword of wp.) But this and the small cancellation condition imply that u cannot be a piece.
Since the property of being a piece goes to subwords, we deduce that wp−1 is not a piece. Hence,
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as Γ0 does not admit any non-trivial label-preserving automorphisms by construction, any two
paths labelled by wp−1 must start from the same vertex. As Γ0 contains a path labelled by wp,
we conclude that w labels a closed path.

3 Hyperbolic geometry

Let X be a geodesic metric space. Given two points x, x′ ∈ X we write |x − x′|X , or simply
|x−x′|, for the distance between them. The Gromov product of three points x, y, z ∈ X is defined
by

〈x, y〉z =
1

2
{|x− z|+ |y − z| − |x− y|} .

For the remainder of this section, we assume that the space X is δ-hyperbolic, i.e. for every
x, y, z, t ∈ X,

〈x, z〉t > min {〈x, y〉t , 〈y, z〉t} − δ. (4)

In this article we always assume the hyperbolicity constant δ is positive. We write ∂X for the
Gromov boundary of X. Note that we did not assume the space X to be proper, thus we use the
boundary defined with sequences converging at infinity [13, Chapitre 2, Définition 1.1]. A major
fact of hyperbolic geometry is the stability of quasi-geodesics that we will use in the following
form.

Proposition 3.1. [14, Corollaries 2.6 and 2.7] Let l0 > 0. There exists L = L(l0, δ) which
only depends on δ and l0 with the following properties. Let l ∈ [0 , l0]. Let γ : I → X be an L-local
(1, l)-quasi-geodesic.

(i) The path γ is a (global) (2, l)-quasi-geodesic.

(ii) For every t, t′, s ∈ I with t 6 s 6 t′, we have 〈γ(t), γ(t′)〉γ(s) 6 l/2 + 5δ.

(iii) For every x ∈ X, for every y, y′ lying on γ, we have d(x, γ) 6 〈y, y′〉x + l + 8δ.

(iv) The Hausdorff distance between γ and any other L-local (1, l)-quasi-geodesic joining the
same endpoints (possibly in ∂X) is at most 2l + 5δ.

Remark. Using a rescaling argument, one can see that the best value for the parameter L =
L(l, δ) satisfies the following property: for all l, δ > 0 and λ > 0, L(λl, λδ) = λL(l, δ). This
allows us to define a parameter LS that will be use all the way through.

Definition 3.2. Let L(l, δ) be the best value for the parameter L = L(l, δ) given in Proposi-
tion 3.1. We denote by LS a number larger than 500 such that L(105δ, δ) 6 LSδ.

3.1 Group action on a hyperbolic space.

Let x be a point of X. Recall that an isometry g of X is either elliptic, i.e. the orbit 〈g〉 · x is
bounded, loxodromic, i.e. the map from Z to X sending m to gmx is a quasi-isometric embedding
or parabolic, i.e. it is neither loxodromic or elliptic [13, Chapitre 9, Théorème 2.1]. Note that
these definitions do not depend on the point x.
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WPD and acylindrical action. Let G be a group acting by isometries on X. For our
purpose we need to require some properness for this action. We will use two notions: weak
proper discontinuity and acylindricity.

Definition 3.3 (WPD action [10]). The action of G on X is weakly properly discontinuous if
for every loxodromic element g ∈ G, the following holds: for every x ∈ X, for every d > 0, there
exists m ∈ N such that the set of elements u ∈ G satisfying |ux − x| 6 d and |ugmx − gmx| is
finite.

We now recall the definition of an acylindrical action on a metric space. For our purpose we
need to keep in mind the parameters that appear in the definition.

Definition 3.4 (Acylindrical action). LetN,L, d ∈ R∗+. The groupG acts (d, L,N)-acylindrically
on X if the following holds: for every x, y ∈ X with |x− y| > L, the number of elements u ∈ G
satisfying |ux−x| 6 d and |uy− y| 6 d is bounded above by N . The group G acts acylindrically
on X if for every d > 0 there exist N,L > 0 such that G acts (d, L,N)-acylindrically on X.

If the action of G on X is acylindrical, then it is also WPD. Since X is a hyperbolic space,
one can decide whether an action is acylindrical by looking at a single value of d.

Proposition 3.5 (Dahmani-Guirardel-Osin [16, Proposition 5.31]). The action of G on X is
acylindrical if and only if there exist N,L > 0 such that the action is (100δ, L,N)-acylindrical.

Remark. F. Dahmani, V. Guirardel and D. Osin work in a class of geodesic spaces. Neverthe-
less, following the proof of [16, Proposition 5.31] one observes that the statement also holds for
length spaces. Moreover one gets the following quantitative statement. Assume that the action of
G on X is (100δ, L,N)-acylindrical, then for every d > 0 the action is (d, L(d), N(d))-acylindrical
where

L(d) = L+ 4d+ 100δ,

N(d) =

(
d

5δ
+ 3

)
N.

Classification of group actions. We assume here that the action of G on X is WPD. We
denote by ∂G the set of all accumulation points of an orbit G · x in the boundary ∂X. This set
does not depend on the point x. One says that the action of G on X is

I elliptic, if ∂G is empty, or equivalently if one (hence any) orbit of G is bounded;

I parabolic, if ∂G contains exactly one point;

I lineal, if ∂G contains exactly two points;

If the action of G is elliptic, parabolic or lineal, we will say that this action is elementary. In
this context, being elliptic (respectively parabolic, lineal, etc) refers to the action of G on X.
However, if there is no ambiguity we will simply say that G is elliptic (respectively parabolic,
lineal, etc). If g is a loxodromic element of G, we write g− and g+ for the repulsive and attractive
points of g in ∂X. The subgroup E+(g) of G fixing point-wise {g−, g+} is a lineal subgroup. The
set F of all elliptic elements of E+(g) forms a normal subgroup of E+(g) such that E+(g)/F is
isomorphic to Z. We say that g is primitive if its image in E+(g)/F is ±1.
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3.2 Invariants of a group action.
In this section we recall several numerical invariants associated to a WPD action. They will be
useful to control the value of the critical exponent np in Theorems 2.4 and 2.8.

Exponent of the holomorph. Let F be a finite group. Its holomorph, denoted by Hol(F ),
is the semi-direct product F o Aut(F ), where Aut(F ) stands for the automorphism group of F .
The exponent of Hol(F ) is the smallest integer n such that Hol(F ) belongs to Bn. Assume now
that the action of G on X is WPD. It is known that every lineal subgroup E of G is virtually
cyclic. In particular, it admits a maximal finite normal subgroup F and E/F is isomorphic either
to Z of the infinite dihedral group D∞; see for instance [15, Corollary 3.30].

Definition 3.6. The number e(G,X) ∈ N∪{∞} is the least common multiple of the exponents
of Hol(F ), where F runs over the maximal finite normal subgroups of all maximal lineal subgroups
of G.

Remark 3.7. If the lineal subgroups of G are all cyclic, then e(G,X) = 1. In general this
quantity can be infinite. However is the action of G on X is acylindrical, there exists N ∈ N
the maximal finite normal subgroup of every lineal subgroup has cardinality at most N , see for
instance [41, Lemma 6.8]. Therefore e(G,X) is finite.

Injectivity radius. To measure the action of an element g ∈ G on X we define the translation
length and the asymptotic translation length as

[g]X = inf
x∈X
|gx− x| , and [g]

∞
X = lim

n→+∞

1

n
|gnx− x| .

These two lengths are related as follows [13, Chapitre 10, Proposition 6.4].

[g]
∞ 6 [g] 6 [g]

∞
+ 16δ. (5)

Definition 3.8 (Injectivity radius). The injectivity radius of G on X denoted by inj (G,X) is
the infimum of [g]

∞
X over all loxodromic elements g ∈ G.

Lemma 3.9 (Bowditch [11, Lemma 2.2]). Let L,N > 0. Assume that the action of G on X is
(100δ, L,N)-acylindrical. Then the injectivity radius of G on X is bounded below by

inj (G,X) > δ/N

Remark. Although he does not provide a precise estimate, B. Bowditch already stresses in his
proof that the lower bound only depends on δ, N and L. For the agreement of the reader we
compute this lower bound.

Proof. According to Proposition 3.5, the action of G on X is (200δ, L′, N ′)-acylindrical where
L′ = L + 900δ and N ′ = 50N . Let g be a loxodromic element of G. According to (5), it is
sufficient to prove that [gN

′
] > 66δ. Assume on the contrary that it is false. There exists an

LSδ-local (1, δ)-quasi-geodesic γ : R→ X joining g− to g+ [15, Lemma 3.2]. Let x and y be two
points on γ such that |x − y| > L′. Let j ∈ {0, . . . , N ′}. We know that γ is contained in the
52δ-neighbourhood of the axis of gj [14, Lemma 2.32] hence |gjx − x| 6

[
gj
]

+ 112δ. It follows
from (5) that∣∣gjx− x∣∣ 6 [gj]+ 112δ 6 j[g]

∞
+ 128δ 6 N ′[g]

∞
+ 128δ 6

[
gN

′
]

+ 128δ 6 200δ.

The same observation holds with y. It follows from the acylindricity that the set {1, g, g2, . . . , gN
′}

contains at most N ′ elements. Hence g has finite order, which contradicts our assumption.
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The invariants ν and A. The critical exponent np that appears in Theorems 2.4 and 2.8 will
depend on two more numerical invariants that are defined as follows.

Definition 3.10. The invariant ν(G,X) (or simply ν) is the smallest positive integerm satisfying
the following property. Let g and h be two isometries of G with h loxodromic. If g, h−1gh,...,
h−mghm generate an elementary subgroup which is not loxodromic, then g and h generate an
elementary subgroup of G.

To any element g ∈ G, we associate to g an axis Ag defined as the set of points x ∈ X such
that |gx− x| < [g] + 8δ. Given α ∈ R+, we write A+α

g for its α-neighborhood. If g0, . . . , gm are
m elements of G we denote by A(g0, . . . , gm) the quantity

A(g0, . . . , gm) = diam
(
A+13δ
g0 ∩ . . . ∩A+13δ

gm

)
.

Recall that the parameter LS is the constant given by the stability of quasi-geodesics (Defini-
tion 3.2).

Definition 3.11. Assume that ν = ν(G,X) is finite. We denote by A the set of (ν + 1)-
uples (g0, . . . , gν) such that g0, . . . , gν generate a non-elementary subgroup of G and for all
j ∈ {0, . . . , ν}, [gj ] 6 LSδ. The parameter A(G,X) is given by

A(G,X) = sup
(g0,...,gν)∈A

A (g0, . . . , gν) .

Lemma 3.12 (Coulon [15, Lemmas 6.12 – 6.14]). Let L,N > 0. Assume that the action of G
on X is (100δ, L,N)-acylindrical. Then the invariants ν(G,X) and A(G,X) are bounded above
as follows

ν(G,X) 6 N

(
2 +

L

δ

)
and A(G,X) 6 10L2

SN
3(L+ 5δ).

Remark. The statements in [15] do not mention an explicit upper bound for ν(G,X) and
A(G,X). However the above inequalities directly follow from the proofs given therein. Our
estimates are very generous. The important point to notice is that they only depend on δ, L and
N .

The purpose of these two invariants can be illustrated as follows. The Margulis Lemma
tells us that if G is a discrete group of isometries of a simply-connected manifold with pinched
negative curvature X, then there exists ε > 0, so that for every x ∈ X, the subset U(x) = {g ∈
G | |gx − x| 6 ε} generates a virtually nilpotent subgroup of G. Such a statement does not
hold any more if the curvature of X is not bounded from below. For instance it fails is X is a
tree or more generally a Gromov hyperbolic space. Controlling ν and A allows us to recover the
following analogue of Margulis Lemma.

Proposition 3.13 (Coulon [15, Corollary 4.45]). Let m be an integer such that m 6 ν(G,X).
Let g0, . . . , gm be m+ 1 elements of G. If they do not generate an elementary subgroup, then

A (g0, . . . , gm) 6 (ν + 2) sup
06i6m

[gi] +A(G,X) + 680δ.

Observe that the quantity A(g, h) is measures the overlap between the respective axes of g
and h, and thus can be thought of as a geometric measure of the length of the maximal piece
between g and h. Controlling such quantities play a key role to produce infinite torsion groups
by iterated small cancelation theory, see [14, 15]
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4 From acylindrical action to periodic quotient

In this section we prove the following fact. If a group G admits a non-elementary acylindrical
action on a hyperbolic space X, then one can exploit the negative curvature of X to produce a
(partially) periodic quotient of G. A precise statement is given in Proposition 4.1 below. We
want to stress the fact that the critical exponent np appearing in Proposition 4.1 only depends
on the parameters of the action and not on the group G or the space X.

Proposition 4.1 (compare with Coulon [15, Theorem 6.15]). Let N,L, δ, r > 0. There exists
N1 ∈ N such that the following holds. Let G be a group acting (100δ, L,N)-acylindrically on
a δ-hyperbolic length space X. We assume that G is non-elementary, has no even torsion and
e(G,X) is odd. For every odd integer n > N1 that is a multiple of e(G,X), there exists a quotient
Bn of G with the following properties.

(i) Every elliptic subgroup of G embeds in Bn.

(ii) For every b ∈ Bn that is not the image of an elliptic element we have bn = 1.

(iii) If every elliptic subgroup of G belongs Bn then Bn is isomorphic to G/Gn. In particular
Bn lies in Bn.

(iv) There exist infinitely many elements in Bn which are not the image of an elliptic element
of G.

(v) For every g ∈ G \ {1}, for every x ∈ X, if |gx − x| 6 r, then the image of g in Bn is not
trivial.

Remark 4.2. In [2], S.I. Adian introduced a notion of free product in the class Bn. Our result
can be used to recover most of its properties. Let n be an odd integer. Consider A and B
two groups of exponent n. It follows from Bass-Serre theory that the (regular) free product
G = A ∗ B acts (0, 1, 0)-acylindrically on the corresponding Bass-Serre tree X, which is a 0-
hyperbolic space. Provided n is large enough (this value does not depend on A or B) one can
apply Proposition 4.1 to G and X. We get as output a group of exponent n, denoted by A ∗nB,
in which A and B embed. Moreover if H is a group of Bn containing A and B and generated
by these two subgroups, then H is a quotient of A ∗nB. In this article we always assumed that
the hyperbolicity constant δ is positive. Nevertheless this is not an issue as we may look at the
Bass-Serre tree as a δ-hyperbolic space for arbitrarily small positive δ.

The proof of Proposition 4.1 is essentially done by the first author in [15, Theorem 6.15].
However the statement there does not make the dependency between N1 and all the other
parameters explicit. For the agreement of the reader we recall the main steps of the proof,
focusing on the ones which are crucial for the control of N1. The main ideas are the following.
One defines by induction a sequence of quotients

G = G0 → G1 → · · · → Gk → Gk+1 → . . .

where Gk+1 is obtained from Gk by adding new relations of the form hn with h running over all
small loxodromic elements of Gk. The quotient Bn is then the direct limit of these groups. The
difficulty is to control the geometry of Gk at each step to make sure the that the sequence of
groups does not ultimately collapse. This is the role of the next statement that will be used as
the induction step in our process.
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Proposition 4.3 (Coulon [15, Proposition 6.1]). There exist positive constants δ1, A0, r0, α
such that for every positive integer ν0 there is an integer N0 with the following properties. Let
G be a group without involution (i.e. element of order 2) acting by isometries on a δ1-hyperbolic
length space X. We assume that this action is WPD, non-elementary and without parabolic. Let
N1 > N0 and n > N1 be an odd integer. We denote by P the set of primitive loxodromic elements
h ∈ G such that [h] 6 LSδ1. Let K be the (normal) subgroup of G generated by {hn, h ∈ P} and
Ḡ the quotient of G by K. We make the following assumptions.

(i) e(G,X) divides n.

(ii) ν(G,X) 6 ν0.

(iii) A(G,X) 6 ν0A0.

(iv) rinj (G,X) > r0/
√
N1.

Then there exists a δ1-hyperbolic length space X̄ on which Ḡ acts by isometries. This action
is WPD, non-elementary and without parabolic. The group Ḡ has no involution. Moreover it
satisfies Assumptions (i)-(iv). In addition, the map G→ Ḡ has the following properties.

(P1) For every g ∈ G, if ḡ stands for its image in Ḡ, we have

[ḡ]
∞
X̄ 6

α√
N1

[g]
∞
X .

(P2) For every elliptic or parabolic subgroup E of G, the map G → Ḡ induces an isomorphism
from E onto its image Ē which is elementary and non-loxodromic.

(P3) Let ḡ be an elliptic element of Ḡ. Then ḡn = 1 or ḡ is the image of an elliptic element of
G.

(P4) Let u, u′ ∈ G such that [u] < LSδ1 and u′ is elliptic. If the respective images of u and u′
are conjugated in Ḡ, then so are u and u′ in G.

Vocabulary. Let n > N1 be two integers as in the proposition above. Let G be a group acting
by isometries on a metric space X. We say that (G,X) satisfies the induction hypotheses for
exponent n if it satisfies the assumptions of Proposition 4.3, including Points (i)-(iv).

Proof of Proposition 4.1. The parameters δ1, A0, r0 and α are the universal constants given by
Proposition 4.3. Recall that the action of G onX is non-elementary and (100δ, L,N)-acylindrical.
We fix ν0 = N(2 + L/δ). The critical exponent N0 ∈ N is the one provided by Proposition 4.3.
We define a rescaling parameter a > 0 as follows

a = min

{
δ1
δ
,

ν0A0

10L2
SN

3(L+ 5δ)
,
LSδ1
r

}
(6)

We now choose N1 > N0 such that

aδ

N
>

r0√
N1

and
α√
N1

< 1. (7)

Observe that a and thus N1 only depend on δ, L, N and r. From now on, we fix an odd integer
n > N1 which is a multiple of e(G,X).
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The base of induction. We denote by X0 = aX the space X rescaled by a, i.e. for every
x, x′ ∈ X0, we have |x − x′|X0

= a|x − x′|X . In addition we let G0 = G. One checks that the
action of G0 on X0 is (100aδ, aL,N)-acylindrical. According to Lemma 3.9 and Lemma 3.12 we
have

inj (G0, X0) >
aδ

N
, ν(G0, X0) 6 N

(
2 +

L

δ

)
and A(G0, X0) 6 10L2

SN
3a(L+ 5δ)

It follows from our choice of a andN1 thatX0 is δ1-hyperbolic, ν(G0, X0) 6 ν0, A(G0, X0) 6 ν0A0

[14, Lemma 2.45] and inj (G0, X0) > r0/
√
N1. In other words, (G0, X0) satisfies the induction

hypotheses for exponent n.

The inductive step. Let k ∈ N. We assume that we already constructed the group Gk and
the space Xk such that (Gk, Xk) satisfies the induction hypotheses for exponent n. We denote
by Pk the set of primitive loxodromic elements h ∈ Gk such that [h]Xk 6 LSδ1. Let Kk be the
(normal) subgroup of Gk generated by {hn, h ∈ Pk}. We write Gk+1 for the quotient of Gk by
Kk By Proposition 4.3, there exists a metric space Xk+1 such that (Gk+1, Xk+1) satisfies the
induction hypotheses for exponent n. Moreover the projection Gk � Gk+1 fulfills the properties
(P1)-(P4) of Proposition 4.3.

Direct limit. The direct limit of the sequence (Gk) is a quotient Bn of G. We claim that this
group satisfies the announced properties. Following the same strategy as in [15, Theorem 6.9]
we prove the following statements: every elliptic subgroup of G embeds into Bn; every element
b ∈ Bn which is not the image of an elliptic element of G satisfies bn = 1; there are infinitely
many elements in Bn which are not the image of an elliptic element of G. So we are left to prove
Points (iii) and (v).

We start with Point (iii). Assume that every elliptic subgroup of G has exponent n. It follows
from the previous discussion that for every b ∈ Bn, bn = 1. Hence the projection G� Bn induces
an epimorphism G/Gn � Bn. On the other hand, all the relations added to define Bn are n-th
power. In other words the kernel K of the projection G� Bn is contained in Gn. Hence G/Gn
and Bn are isomorphic.

We finish with Point (v). Let g ∈ G \ {1} and x ∈ X such that |gx − x|X 6 r. It follows
from our choice of a that |gx − x|X0 6 LSδ1. In particular [g]X0

6 LSδ. If g is elliptic in G,
then (P4) tells us that the image of g in G1 is a non-trivial elliptic element. If g is loxodromic in
G, then by construction the image of g in G1 is elliptic. Moreover this image is non-trivial [15,
Theorem 5.2(4)]. A proof by induction using (P1) and (P4) now shows that for every k ∈ N, the
image of g in Gk is non trivial. Hence neither is its image in Bn.

5 From small cancellation to acylindrical action

In this section we study the action of a graphical small cancellation group on its hyperbolic
cone-off space, see Definition 5.8. We first provide definitions and notations and then show that,
in the cases we consider, the action is acylindrical with universal constants. We then proceed to
determine the elliptic elements and the maximal elementary subgroups for this action. Finally,
we prove a result that will justify our concise statement of Theorem 2.4.
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5.1 Definitions and notation

Recall the definitions of small cancellation conditions given in Section 2.1. We shall often use
the word piece to mean either a word as defined in Section 2.1, or as a path (in a labelled graph)
whose label is a piece in that sense.

We first discuss graphical small cancellation over the free group. We give a slight general-
ization of the definition for graphical small cancellation over free groups Definition 2.3 that will
turn out to be suitable for proving acylindricity of the action on the hyperbolic cone-off space.

Definition 5.1. Let p ∈ N and λ ∈ (0, 1). Let Γ be a graph labelled by a set S. We say that Γ
satisfies the C ′(λ, p)-small cancellation assumption if the following holds.

(i) Γ satisfies the C ′(λ)-condition.

(ii) Whenever w is a cyclically reduced word such that wp labels a path in Γ, then for every
n ∈ N, the word wn labels a path in Γ.

The following definitions will enable us to do small cancellation theory that produces quotients
of a given free product of groups ∗i∈IGi. We recall the definition of graphical small cancellation
over free products of Gruber [24]. Given a graph Γ labelled by a set S, the reduction of Γ is
the quotient of Γ by the following equivalence relation on the edges of Γ: e ∼ e′ if and only if
`(e) = `(e′), and there exists a path from ιe to ιe′ whose label is trivial in F(S). Here, and
henceforth, `(e) denotes the label in S t S−1 of an edge e.

Definition 5.2 (Completion). Let Γ be a graph labelled by a set S := ti∈ISi, where each Si is
a generating set of a group Gi. The completion Γ of Γ is defined as the reduction of the graph
obtained from Γ by performing the following operations.

I onto each edge labelled by s ∈ Si for some i, attach a copy of Cay(Gi, Si) along an edge
labelled by s;

I if, for some i, no element of Si occurs as a label of Γ, then add a copy of Cay(Gi, Si) (as
its own connected component).

A word in the free monoid on S tS−1 is locally geodesic if it labels a geodesic in Cay(∗i∈IGi, S),
and a path in Γ (or another S-labelled graph) is locally geodesic if its label is locally geodesic.

If {Cj}j∈J is a collection of copies of Cay(Gi, Si) for some fixed i such that ∪j∈JCj is con-
nected, then the reduction step identifies all the Cj to a single copy of Cay(Gi, Si). We deduce
Γ = Γ.

Definition 5.3 (Small cancellation condition). Let λ ∈ (0, 1). Let Γ be a graph labelled by
a set S := ti∈ISi, where each Si is a generating set of a group Gi. We say Γ satisfies the
C ′∗(λ)-condition if

I Γ = Γ;

I every Cay(Gi, Si) is an embedded subgraph of Γ;

I for every locally geodesic piece w that is a subword of the label of a simple closed path γ
in Γ such that the label of γ is non-trivial in ∗i∈IGi, we have |w| < λ|γ|.
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Here, as usual, | · | denotes the (edge-)length of a path, respectively the length of a word (i.e.
its number of letters). We call the embedded copies of Cay(Gi, Si) attached Cayley graphs.
When we say an S-labelled graph satisfies the C ′∗(λ)-condition, we shall assume that we have
S = ti∈ISi for given generating sets Si of given groups Gi. If Γ = Γ, the group G(Γ), using our
previous definition in Section 2.2, coincides with the quotient of ∗i∈IGi by all the words read on
closed paths in Γ.

The assumption Γ = Γ is a mere technicality to allow for efficient notation. We recall from
[24] that if Γ satisfies the C ′∗(1/6)-condition, then each generating factor Gi is a subgroup of
G(Γ), and each component of Γ injects into Cay(G(Γ), S).

The case that Γ can be realized as the completion of a disjoint union of cycle graphs and
that Si = Gi recovers the classical C ′∗(λ)-condition, whose power-free simplification is given in
Definition 2.6, see Remark 5.5.

In order to prove our acylindricity statement also in the free product case, we require the
following property for Γ. It will be used in Lemma 5.30.

Definition 5.4 (Cylinder-free). Let Γ satisfy the C ′∗(λ)-condition for some λ. We say Γ is
cylinder-free if for every connected component Γ0 and every two disjoint attached Cayley graphs
C1 and C2 of Γ0, any label-preserving automorphism ϕ of Γ0 with ϕ(C1) = C1 and ϕ(C2) = C2

is the identity.

Remark 5.5. Let Θ be a cycle graph labelled by a set S := ti∈ISi, where each Si is a generating
set of a group Gi. Suppose there is a simple closed path γ in Θ with label w = w1w2 . . . wk for
k > 1, where each wj is in the free monoid on Sij tS−1

ij
for some ij ∈ I, such that each wj is non

trivial in Gij , and ij 6= ij+1 for each j, and ik 6= i1. In other words, if gj is the element of Gij
represented by wj , then g1g2 . . . gk ∈ ∗i∈IGi is in normal form and cyclically reduced in the sense
of Section 2.2. We can realize Θ as follows: onto each subpath γj of γ with label wj , attach a
copy Cj of Cay(Gij , Sij ) along a path in Cay(Gij , Sij ) with label wj . Since γj is a simple path,
Cj is an embedded copy of Cay(Gij , Sij ). Since wj is non trivial in Gij , the image γj of γj in Cj
has distinct endpoints. Therefore, for no j two attached copies of Cay(Gij , Sij ) intersect, whence
the graph we obtain is reduced. Thus, up to possibly adding as separate connected components
copies of Cay(Gi, Si) for those Si which do not appear in w, we have obtained Θ. Observe that
any attached Cayley graph Cj shares exactly two vertices with other attached Cayley graphs by
construction.

More generally, suppose Γ is the completion of a disjoint union of cycle graphs with cyclically
reduced labels, as discussed above, and let C be an attached Cayley graph in a component Γ0

of Γ. Then there are at most two vertices v1 and v2 that C shares with other attached Cayley
graphs. A label-preserving automorphism ϕ of Γ0 that preserves C also preserves the set {v1, v2}.
As ϕ is uniquely determined by the image of any one vertex, this means that there are at most
two options for ϕ: being the identity, and permuting v1 and v2. In particular, the order of ϕ
divides 2.

We also observe: if an automorphism ϕ of Γ0 preserves an attached C = Cay(Gi, Si), then
the action of ϕ on C corresponds to left-multiplication by the element of Gi represented by the
label of any path in C from v to ϕ(v) for any vertex v in C. Thus, the order of ϕ equals the order
of an element of Gi. In particular, if Γ is the completion of a disjoint union of cycle graphs with
cyclically reduced labels, as discussed above, and no generating factor has even torsion, then Γ
is cylinder-free.

Example 5.6. A classical C ′∗(1/6)-presentation that is not cylinder-free is given, for example,
by the quotient of Z ∗ Z ∗ Z ∗ Z/2Z, where each copy Gi of Z is generated by ti, i = 1, 2, 3, and
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Z/2Z is generated by s, by the relation t1t2t3st−1
3 t−1

2 t−1
1 s. The corresponding graph Γ has one

non-trivial automorphism ϕ that leaves invariant the two attached Cayley graphs corresponding
Z/2Z and, for each i = 1, 2, 3, exchanges the two attached Cayley graphs corresponding to Gi.

Up to taking inverses and cyclic conjugates, all locally geodesic simple closed paths are labelled
by t1t2t3sε1t−1

3 t−1
2 t−1

1 sε2 , where ε1, ε2 ∈ {1,−1}, and hence have length 8. All pieces have length
at most 1 (observe, e.g. that by the above considerations, the paths labelled by t1t2t3 are not
pieces). Thus, the C ′∗(1/8 + ε)-condition is satisfied for any ε > 0.

Definition 5.7. Let λ ∈ (0, 1), let p ∈ N. Let Γ be a graph labelled by a set S := ti∈ISi, where
each Si is a generating set of a group Gi. We say Γ satisfies the C ′∗(λ, p)-condition if

(i) it satisfies the C ′∗(λ)-condition;

(ii) for every cyclically reduced word w over the alphabet S, if wp is the label of a path in Γ,
the for every n ∈ N, there is a path in Γ labelled by wn;

(iii) it is cylinder-free.

We have argued in Remark 5.5 that a presentation satisfying the power-free C∗(λ, p)-condition
of Definition 2.6 and for which no generating factor contains elements of order two can be regarded
as satisfying the (graphical) C∗(λ, p)-condition we just defined.

The hyperbolic cone-off space Ẋ. Let Γ be a graph labelled be a set S. We associate to Γ
its cone-off space defined by Gruber and Sisto [26].

Definition 5.8 (The cone-off space). Let Γ be a graph labelled by S. The cone-off space,
denoted by Ẋ(Γ) (or simply Ẋ) is the Cayley graph of G(Γ) with respect to S ∪W , where W
stands for the set of all elements of G(Γ) represented by the label of a path in Γ.

Observe that in the free product case, if Γ is its own completion (as is the case for a C ′∗(λ)-
graph), then the image in G(Γ) of each one of the generating factors is contained in W . We
record an immediate consequence of [26, Remark 4.11]:

Theorem 5.9 (Uniform hyperbolicity of Ẋ). Let Γ be a C ′(1/6)-labelled graph or a C ′∗(1/6)-
labelled graph. Then the vertex set of any geodesic triangle in Ẋ is 5-slim.

In particular, the vertex set of Ẋ is 40-hyperbolic in the sense of Section 3 by [13, Chapitre
1, Proposition 3.6].

In the following, we will show results concerning quotients of free groups and quotients of
free products, which are, in principle, separate cases, whence we have to carry out two proofs.
However, we shall see that the geometric arguments involved in both proofs are very similar and,
in many cases, exactly the same. We now introduce standing assumptions and notation that will
let us efficiently handle the two cases in parallel.

Notation. We denote by Γ a labelled graph and by S the set of labels. Recall our convention
that if we say Γ satisfies the C ′∗(λ)-condition, then we assume S = ti∈ISi, where the Si are
generating sets of groups Gi. We denote X := Cay(G(Γ), S) and Ẋ the cone-off space from
Definition 5.8. We will consider X as a subgraph of Ẋ.

We from now on assume that, in the free case, the C ′(1/6)-condition is satisfied and, in the
free product case, the C ′∗(1/6)-condition is satisfied. Moreover, for simplicity, we assume that no
component of Γ is a single vertex, and that every generator occurs on some edge of Γ. (The latter
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is no restriction: in the free product case, it follows from the definition of Γ. In the free case we
may just add, for any generator that does not occur already, a new component to Γ that is merely
an edge labelled by the generator. This does not change the metric on the vertex set of Ẋ.) A
relator is the image of a component of Γ in X under a label-preserving graph homomorphism.
Note that such a relator is in fact an (isometrically) embedded image of a component [36, 23, 26].

We denote by F the free group on S in the free case, respectively the free product of the
generating factors Gi in the free product case.

F -reduced paths. In the free product case, we define the following terminology, which should
be thought of as a way of dealing with homotopy classes of paths not necessarily in a tree (which
corresponds to the free group case) but in a tree of Cayley complexes (which corresponds to the
free product case).

We say a path in X is F -reduced if its label has the form w1w2 . . . wk, where each wi is
a word contained in a single generating factor that does not represent the identity, and any
two consecutive wi come from distinct generating factors. (In other words, if wi represents an
element gi of a generating factor, then g1g2 . . . gk is in normal form in the sense of Section 2.2.) A
closed path is cyclically F -reduced if every one of its cyclic shifts is F -reduced. (In other words,
g1g2 . . . gk is weakly cyclically reduced.) We say two paths are F -equivalent if they have the same
starting vertex and have the same label as elements of F . A path is F -homotopically trivial if
its label is trivial in F . An F -tree is a subgraph of X where every two vertices are connected by
a unique F -equivalence class of F -reduced paths or, equivalently, a connected subgraph where
any closed path is F -homotopically trivial. Given an F -reduced path p, an F -subpath q is an
F -reduced path F -equivalent to a subpath of p such that the label `(q) of q is a subword of `(p)
in the free product sense. This means: if the element of F represented by `(p) is written as
g1g2 . . . gk in normal form, then there exist 1 6 i 6 j 6 k such that p may be written as p1p2p3

with `(p1) representing g1g2 . . . gi−1, `(p2) representing gigi+1 . . . gj , and q being F -equivalent to
p2.

We have already explained the notion of locally geodesic paths in the free product setting. In
the free group case, we shall take locally geodesic to mean reduced (i.e. without back-tracking).

In the free group case, all terms defined above are defined in the free group case by simply
omitting the prefix “F−” (i.e. an F -reduced path is simply a reduced path, a an F -tree is simply
a tree, . . . ). Using the same words for both cases will allow us to streamline statements.

5.2 Acylindricity of the action on Ẋ

We set out to prove the following result. Notice that the constants we produce are universal, i.e.
independent of the specific graph Γ under consideration.

Theorem 5.10 (Acylindricity theorem). For all p ∈ N and ε > 0 there exist L > 0 and
N ∈ N with the following property. Let Γ be a labelled graph satisfying the graphical C ′(1/6, p)-
condition or the graphical C ′∗(1/6, p) condition. Then the action of G(Γ) on the cone-off space
Ẋ is

(
ε, L,N

)
-acylindrical.

The actual constants we obtain are L = 18ε + 25 and N = (9ε + 4)3(8p + 100), i.e. L does
not depend on p, while N does.

Remark 5.11. When considering the action of G(Γ) on Ẋ, one may instead consider the action
of G(Γ) on the graph R with vertex set {relators in X} and where any two vertices are connected
by an edge if their corresponding relators in X intersect. The graph R comes with the G(Γ)-
action induced by the action of G(Γ) on X, and R is G(Γ)-equivariantly (1, 1)-quasi-isometric to
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Ẋ. (Recall here that we assume that every generator occurs on Γ.) The two main propositions
in our proof of Theorem 5.10, namely Propositions 5.19 and 5.28, are phrased purely in terms of
R, as are many of our intermediate results. Nonetheless, we will often need the underlying space
X in our arguments.

5.2.1 Convexity of geodesics in Ẋ

In this subsection, we link the metric properties of geodesics in Ẋ to metric properties of X,
strengthening [26, Proposition 3.6]. We remark here that Lemmas 5.13 and 5.17 are our only
applications of van Kampen diagrams in the proof of Theorem 5.10. While more extensive
usage of diagrams (following techniques of [26, 6]) would allow us to provide better acylindricity
constants, limiting their usage enables us to more clearly present our proof, in particular in view
of the dual approach to both free group and free product cases.

We recall a tool from graphical small cancellation theory and basic facts about it, see [23, 24]
for details.

Γ-reduced diagrams. A diagram over a presentation 〈S | R〉 is a finite connected S-labelled
graph D with a fixed embedding in R2, such that each bounded region (face) has a boundary
word in R. Given a closed path γ in Cay(G,S), where G is the group defined by 〈S | R〉,
a diagram for γ is a diagram that admits a label-preserving map ∂D → γ, where ∂D is the
boundary of the unbounded component defined by D inside R2. It is a classical fact that for
every closed path in Cay(G,S) there exists a diagram. To simplify notation, we will often not
distinguish in notation between subpaths of γ and their preimages in ∂D where this does not
cause ambiguity. A disk diagram is a diagram without cut-vertices.

Suppose we have an S-labelled graph Γ and the presentation 〈S | labels of simple closed paths
in Γ〉. A diagram D over Γ is a diagram over this presentation. If Π is a face of D, then ∂Π
admits a map ∂Π → Γ (possibly more than one), which we call lift. We say D is Γ-reduced if
for any two faces Π and Π′ and any path a in Π∩Π′, no two lifts ∂Π→ Γ and ∂Π′ → Γ restrict
to the same map on a and any path a in Π ∩ Π′ is locally geodesic. In the free product case,
we also require that any face whose boundary word is trivial in F actually has a boundary word
that is contained in a single generating factor.

If Γ satisfies the C ′(1/6)-condition or the C ′∗(1/6)-condition, then any closed path γ in
Cay(G(Γ), S) admits a Γ-reduced diagram D over Γ, see [23, Lemma 2.13] or [25, Theorem 1.23]
for the free group case and [24, Lemma 3.8] or [25, Theorem 1.35] for the free product case.

In a Γ-reduced diagram, any face is simply connected, and for any two faces Π and Π′ and
any path α in Π ∩ Π′ we have |α| < min{|∂Π|, |∂Π′|}/6, because α is a locally geodesic piece.
Finally, we have that every face that intersects at least one other face in at least one edge has a
label that is non-trivial in F .

An arc in a diagram is an embedded line graph whose endpoints have degrees different from
2 and all whose other vertices have degree 2. Given a face Π, d(Π) is the number of arcs in ∂D,
i(Π) is the number of arcs in ∂Π that Π shares with other faces (interior arcs), e(Π) is the number
of arcs it shares with ∂D (exterior arcs). A (3, 7)-diagram is a diagram where e(Π) = 0 implies
i(Π) > 7. Note that a Γ-reduced diagram over a C ′(1/6)-labelled graph or a C ′∗(1/6)-labelled
graph Γ is a (3, 7)-diagram.

The following is a classical fact from small cancellation theory, see e.g. [31, Chapter V].

Lemma 5.12 (Greendlinger’s lemma). Let D be a (3, 7)-disk diagram that is not a single face.
Then D contains two faces Π1 and Π2 with e(Π1) = 1 = e(Π2) and i(Π1) 6 3 and i(Π2) 6 3.
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Figure 1: A diagram D of shape I1. All faces except the two distinguished ones are optional, i.e.
D may have as few as 2 faces.

Lemma 5.13. Let Γ1,Γ2, . . . ,Γk be relators such that Γi ∩ Γi+1 6= ∅ (indices mod k). If k = 3,
then Γ1 ∩ Γ2 ∩ Γ3 6= ∅. If k = 4, then Γ1 ∩ Γ3 6= ∅ or Γ2 ∩ Γ4 6= ∅.

Proof. Assume the claim is false for 3 6 k 6 4 and corresponding Γi. Let γ = γ1γ2 . . . γk be a
closed path, where each γi is in Γi. Let D be a Γ-reduced diagram for γ. Choose γ such that,
among all possible choices, the number of edges of D is minimal. Then D is a disk diagram, and
the label of ∂D is non-trivial in F .

Consider a path π in the intersection of a face Π with some γi. Then there are lifts π → ∂Π→
Γ and π → γi → Γi. By our assumption on edge-minimality, these two lifts may never coincide:
otherwise, we could replace the copy of π that is a subpath of γi by a copy of the complement of
π in Π. Thus γi is a piece (with respect to Γ) and, by minimality, it is locally geodesic. Hence,
by the small cancellation condition, D is not a single face.

Let Π be a face with i(Π) 6 3 and e(Π) = 1. Then the exterior arc of Π is not a concatenation
of at most 3 pieces, since the label of ∂Π is non-trivial in F . Hence, if k = 3, we have a
contradiction. If k = 4, this arc intersects all the γi in edges. This can be true for at most one
face Π, which contradicts Greendlinger’s lemma.

Definition 5.14 ([26, Definition 2.11]). A (3, 7)-bigon is a (3, 7)-diagram with a decomposition
of ∂D into two reduced subpaths ∂D = γ1γ2 with the following property: Every face Π of D
with e(Π) = 1 for which the exterior arc in ∂Π is contained in one of the γi satisfies i(Π) > 4.
A face Π for which there exists an exterior arc in ∂Π that is not contained in any γi is called
distinguished.

Lemma 5.15 (Strebel’s bigons [50, Theorem 35]). Let D be a (3, 7)-bigon. Then any one of
its disk components is either a single face, or it has the shape I1 depicted in Figure 5.2.1. This
means D has exactly two distinguished faces that have interior degree 1 and exterior degree 1.
Moreover, any non-distinguished face has interior degree 2 and exterior degree 2 and intersects
both sides of D.

Definition 5.16. We say a sequence of relators Γ1,Γ2, . . . ,Γn is geodesic if Γi ∩ Γi+1 6= ∅, and
if there exists no sequence of relators Γ1 = Θ1,Θ2, . . . ,Θk = Γn with Θi ∩Θi+1 6= ∅ and k < n.

Note that since we assume that every generator occurs on Γ, we have that for any two
relators, there exists a geodesic sequence containing them. Moreover, given vertices x, y ∈ X
with dẊ(x, y) = n, there exists a geodesic sequence of relators Γ1,Γ2, . . . ,Γn with x ∈ Γ1 and
y ∈ Γn by the very definition of Ẋ.

Lemma 5.17. If Γ1,Γ2, . . . ,Γn is a geodesic sequence, then Γ1 ∪ Γ2 ∪ · · · ∪ Γn is convex in X.

Proof. Let x be a vertex in Γi and y a vertex in Γj . If i = j, then any geodesic from x to y
stays in Γi, because Γi is convex by [26, Lemma 2.15]. Thus we may assume i < j and, if (given
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x and y) the choices of i and j are not unique, choose them such that |i − j| is minimal. Then
there exist non-trivial paths σt in Γt for i 6 t 6 j such that σ := σiσi+1 . . . σj is a path from x
to y. Let γ be a geodesic in X from x to y. Let D be a Γ-reduced diagram for γσ−1 and, given
x and y, among the possible choices for the σt, choose them such that the number of edges of D
is minimal. Observe that this implies that σ is reduced.

Consider a non-trivial path π in the intersection of a face Π with some σt. Then, as in the
proof of Lemma 5.13, π is a locally geodesic piece and the label of Π is non-trivial in F . Since
Γ1,Γ2, . . . ,Γn is a geodesic sequence, Π can intersect at most 3 consecutive σt. (Recall that the
1-skeleton of any face maps to a subgraph of a relator in X.) Therefore, if Π has e(Π) = 1 and
its exterterior arc contained in σ, then i(Π) > 4. The same conclusion holds if Π has e(Π) = 1
and its exterior arc contained in γ, because γ is a geodesic in X. Therefore, D is a (3, 7)-bigon.

Let ∆ be a disk-component of D. If it were a single face Π, then, as observed above, Π
would intersect σ in at most 3 locally geodesic pieces and the geodesic γ in a path of length
at most |∂Π|/2. This contradicts the fact that any locally geodesic piece has length less than
|∂Π|/6. Therefore, by Lemma 5.15, it has shape I1 as shown in Figure 5.2.1. Thus any face Π
has interior degree at most 2, whence its intersection with σ has length greater than |∂Π|/6 –
therefore, this intersection is not a piece and not contained in a single σt. This shows that in ∆
there may be at most one face intersecting 3 consecutive σt in edges – otherwise we would have
a path σtσt+1 . . . σt+k contained in k faces, where i < t and t+ k < j. This would contradict the
fact that Γ1,Γ2, . . . ,Γn is a geodesic sequence. However, ∆ has two faces with interior degree 1,
neither of which can intersect σ in at most 2 locally geodesic pieces. This is a contradiction to
the existence of a disk component, whence γ = σ.

5.2.2 Parallels in Ẋ

We show that geodesic quadrangles in Ẋ are uniformly slim in the following sense:

Definition 5.18. We say two geodesic sequences of relators Γ1,Γ2, . . . ,Γn and Θ1,Θ2, . . . ,Θn′

are parallel if n = n′, and Γi ∩Θi 6= ∅ for all i. We say they are properly parallel if Γi 6= Θi for
all i.

Proposition 5.19. Let ε > 0, and let Γ1,Γ2, . . . ,Γn and Θ1,Θ2, . . . ,Θn′ be geodesic sequences
such that dẊ(Γ1,Θ1) 6 ε and dẊ(Γn,Θn′) 6 ε. Then there exist k, k′, l, l′ with max{k, k′, l, l′} 6
9ε+3 and k+ l = k′+ l′ such that Γk,Γk+1, . . . ,Γn−l+1 and Θk′ ,Θk′+1, . . . ,Θn′−l′+1 are parallel.

Lemma 5.20. Let Γ1, . . . ,Γn and Θ1, . . . ,Θn′ be geodesic sequences such that Γi 6= Θj for every
i, j. Then T := (Γ1 ∪ Γ2 ∪ · · · ∪ Γn) ∩ (Θ1 ∪Θ2 ∪ · · · ∪Θn′) is an F -tree.

Proof. Since T the intersection of two convex subgraphs (see Lemma 5.17), it is connected. We
proceed by contradiction: assume there is a closed path in T that is not F -trivial. Given a path
γ in T , we define its weight to be ω(γ) := (k, e), where k is minimal such that γ is contained in
Γ1 ∪ Γ2 ∪ · · · ∪ Γk and e is the number of edges of γ that are in Γk but not in Γk−1. Consider
N×N with the lexicographic order. Let γ be a closed path in T , not F -trivial, such that ω(γ)
is minimal among all such paths. We choose γ to be cyclically F -reduced.

We claim: γ is contained in a single Γi0 . Suppose it is not. Let ω(γ) = (k, e). Then (some
cyclic shift of) γ contains a subpath π with: ιπ and τπ are contained in Γk−1 ∩Γk, all edges of π
are in Γk but not in Γk−1, π has at least one edge, and γ does not contain an edge of Γk+1. We
have that T is convex, and so are Γk−1 and Γk. Therefore, T ∩ Γk−1 ∩ Γk is convex and hence
connected, and there exists an F -reduced path π′ in T ∩ Γk−1 ∩ Γk with the same endpoints as
π. Now we may replace the subpath π of (the cyclic shift of) γ by π′ to obtain a closed path
γ′ with either ω(γ′) = (k − 1, e′) for some e′ or ω(γ′) = (k, e′) for some e′ < e. In any case,
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ω(γ′) < ω(γ) whence, by our minimality assumption, γ′ is F -trivial. We may write a cyclic shift
of γ′ as π′η, where both π′ and η are F -reduced. This implies that π′−1 and η are in the same
F -equivalence class of F -reduced paths. Since π′ is contained in Γk−1 ∩ Γk, so is η. We deduce
that the original path γ was contained in Γk, contradicting our assumption.

Let Ti0 := Γi0 ∩ T . Analogously to above, we define a weight function ω′ with respect to the
geodesic sequence Θ1, . . . ,Θn′ and show that a closed path θ in Ti0 that is not F -trivial and that
minimizes ω′ is contained in a single Θj0 . Thus, such a θ is contained in Γi0 ∩Θj0 . But any path
in this intersection is a piece, whence θ cannot exist, and T is an F -tree.

Lemma 5.21. Let n > 3, and let Γ1, . . . ,Γn and Γ1,Θ2,Θ3, . . . ,Θn−1,Γn be geodesic sequences
such that Γi 6= Θj for every 2 6 i, j 6 n− 1. Then there is an up to F -equivalence unique
F -reduced path in (Γ2 ∪ Γ3 ∪ · · · ∪ Γn−1) ∩ (Θ2 ∪ Θ3 ∪ · · · ∪ Θn−1) that connects a vertex in Γ1

to a vertex in Γn and that does not contain any edge in Γ1 or in Γn.

Proof. As both Γ1∪Γ2∪· · ·∪Γn−1∪Γn and Γ1∪Θ2∪· · ·∪Θn−1∪Γn are convex by Lemma 5.17,
their intersection is convex and, in particular, connected. Hence, the intersection contains a path
α connecting a vertex of Γ1 to a vertex of Γn. Observe that the first edge of α outside Γ1 must be
contained in Γ2 ∩Θ2 and, likewise, the last edge outside Γn must be contained in Γn−1 ∩Θn−1.
Denote T := (Γ2 ∪ Γ3 ∪ · · · ∪ Γn−1) ∩ (Θ2 ∪ Θ3 ∪ · · · ∪ Θn−1). By Lemmas 5.17 and 5.20, T is
a convex F -tree, and it intersects both convex graphs Γ1 and Γn. Since T ∩ Γ1 and T ∩ Γ2 are
sub-F -trees of T , there is an up to F -equivalence unique F -reduced path in T connecting them
as in the claim.

Lemma 5.22. Let Γ1,Γ2,Γ3 be a geodesic sequence of relators. Up to F -equivalence, there exists
at most one F -reduced path that is a concatenation of at most two pieces in Γ2 that intersects Γ1

exactly in a vertex and Γ3 exactly in a vertex.

Proof. Suppose there are F -reduced paths π and π̂ as in the statement. Since Γi ∩ Γi+1 is
connected, there exists an F -reduced path ρ in Γ1 ∩ Γ2 from ιπ to ιπ̂; similarly, there exists an
F -reduced path ρ̂ in Γ2∩Γ3 from τ π̂ to τπ. By construction, the concatenation ρπ̂ρ̂ is F -reduced.
The path ρπ̂ρ̂π−1 is closed, and it is a concatenation of at most 6 pieces. Therefore, it is F -
homotopically trivial. Hence the two F -reduced paths ρπ̂ρ̂ and π are F -equivalent. Observe that
the property of intersecting Γ1, respectively Γ3, in exactly a vertex is preserved by F -equivalence.
Thus, ρ and ρ̂ must be trivial (i.e. length 0), and π and π̂ are F -equivalent.

Lemma 5.23. Let Γ1,Γ2, . . . ,Γn be a geodesic sequence of relators with n > 5. Then there
exists a geodesic path π in X contained in Γ3 ∪ Γ4 ∪ · · · ∪ Γn−2 intersecting both Γ2 and Γn−1

in exactly a vertex each such that: if Θ1,Θ2, . . . ,Θn is a properly parallel geodesic sequence for
Γ1,Γ2, . . . ,Γn, then Θ1 ∪Θ2 ∪ · · · ∪Θn contains π.

Proof. If there is an F -reduced path from Γ1 to Γ3 in Γ2 intersecting Γ1 and Γ3 only in a vertex,
respectively, that is made up of at most 2 pieces, let x0 be the first vertex in it (i.e. the one still
in Γ1); otherwise let x0 be any vertex in Γ1 ∩Γ2. If there is an F -reduced path from Γn−2 to Γn
in Γn−1 made up of 2 pieces, let y0 be the last vertex in it (i.e. the one already in Γn); otherwise
let y0 be any vertex in Γn−1 ∩ Γn. Let π0 be a geodesic in X from x0 to y0. By convexity,
Γ2 ∪ Γ3 ∪ · · · ∪ Γn−1 contains π0. Let π be the maximal subpath that intersects Γ2 only in a
vertex and Γn−1 only in a vertex. Let x be its initial vertex and y its terminal vertex.

Case 1. Suppose Γ2 does not intersect both Θ1 and Θ3, and Γn−1 does not intersect both Θn−2

and Θn. First, assume Γ2 does not intersect Θ1 but does intersect Θ3. Then Θ2 intersects Γ1 by
Lemma 5.13. Using again Lemma 5.13, we deduce that there exist vertices v1 in Γ1 ∩Γ2 ∩Θ2, v2

in Γ2 ∩Θ2 ∩Θ3, and v3 in Γ2 ∩Γ3 ∩Θ3. Hence, there is an F -reduced path in Γ2 ∩Θ2 from v1 to



30

v2 and an F -reduced path in Γ2∩Θ3 from v2 to a vertex v3, and we may assume that both paths
do not contain edges of Γ1 ∪ Γ3. Note that each of the two paths is a piece. The concatenation
of the two paths (after possibly performing a reduction) is an F -reduced path as in Lemma 5.22,
whence it must contain x0, because F -equivalence preserves endpoints. Therefore, Θ1 ∪Θ2 ∪Θ3

contains x0.
The case that Γ2 does not intersect Θ3 but does intersect Θ1 is symmetric. The case that Γ2

intersects neither Θ1 nor Θ3 produces a path from Γ1 to Γ3 that lies in Γ2 ∩ Θ2, i.e. that is a
single piece, and we again deduce that Θ1 ∪Θ2 ∪Θ3 contains x0.

Symmetrically, we also deduce that Θn−2 ∪ Θn−1 ∪ Θn contains y0 and conclude that Θ1 ∪
Θ2 ∪ · · · ∪Θn contains π0 by convexity and thus also the subpath π.

Case 2. Suppose Γ2 intersects both Θ1 and Θ3 or Γn−1 intersects both Θn−2 and Θn. First,
assume Γ2 intersects both Θ1 and Θ3. The possibilities are as follows:

I Γn−1 intersects Θn−2. Then Γ2,Θ3,Θ4, . . . ,Θn−2,Γn−1 is a geodesic sequence and, hence,
contains π0 by convexity and thus the subpath π. Since π has no edges in Γ2 ∪ Γn−1, we
deduce that Θ3 ∪Θ4 ∪ · · · ∪Θn−2 contains π.

I Γn−1 does not intersect Θn−2. Then Θn−2 ∪ Θn−1 ∪ Θn contains y0 as discussed in case
1. The sequence Γ2,Θ3,Θ4, . . . ,Θn is geodesic, because it is a connected subsequence of
Θ1,Γ2,Θ3,Θ4, . . . ,Θn, and it contains the endpoints of π0. Hence, by convexity, it contains
π0 and its subpath π. Since π has no edges in Γ2, we have that that Θ3 ∪ Θ4 ∪ · · · ∪ Θn

contains π.

The case that Γn−1 intersects both Θn−2 and Θn is symmetric.

Corollary 5.24. Let Γ1,Γ2, . . . ,Γ5 and Θ1,Θ2, . . . ,Θ5 be geodesic sequences that are both par-
allel to a geodesic sequence Ξ1,Ξ2, . . . ,Ξ5. Then (Γ1 ∪ Γ2 ∪ · · · ∪ Γ5)∩ (Θ1 ∪Θ2 ∪ · · · ∪Θ5) 6= ∅.

Proof. If both are properly parallel to Ξ1,Ξ2, . . . ,Ξ5, then Lemma 5.23 implies the claim. If
Γi = Ξi or Θi = Ξi for some i, the claim is obvious.

Lemma 5.25. If Γ1,Γ2, . . . ,Γn+k and Θ1,Θ2, . . . ,Θn are geodesic sequences with Γ1 ∩ Θ1 6= ∅
and Γn+k ∩Θn 6= ∅ for k > 0, then k ∈ {0, 1, 2}. Moreover:

0. If k = 0, then Γ1, . . . ,Γn and Θ1, . . . ,Θn are parallel, or Γ2, . . . ,Γn and Θ1, . . . ,Θn−1 are
parallel, or Γ1, . . . ,Γn−1 and Θ2, . . . ,Θn are parallel. If k = 0, and Θ1 = Γ1 or Θn = Γn,
then Γ1, . . . ,Γn and Θ1, . . . ,Θn are parallel.

1. If k = 1, then Γ1, . . . ,Γn and Θ1, . . . ,Θn are parallel, or Γ2, . . . ,Γn+1 and Θ1, . . . ,Θn are
parallel.

2. If k = 2, then Γ2, . . . ,Γn+1 and Θ1, . . . ,Θn are parallel.

Proof. The claim that k ∈ {0, 1, 2} follows immediately from geodesicity. We observe:

A. Let 1 6 i < n + k and 1 6 j < n, and let x be a vertex in Γi ∩ Θj and y a vertex in
Γn+k ∩ Θn. Let α be a geodesic from x to y in X. If α is contained in Γi ∩ Θj , then
Γi∩Θj ∩Γn+k∩Θn 6= ∅, and we have i+1 = n+k and j+1 = n. Otherwise, by convexity,
the first edge of γ outside Γi ∩Θj must lie in Γi+1 ∪Θj+1. Hence, in both cases we have:
Γi intersects Θj+1, or Θj intersects Γi+1.

B. If Γi intersects Θi+2 for some i, then for every j /∈ {i, i + 1}, Θj cannot intersect Γj+1,
because the sequence is geodesic. The symmetric observation holds when exchanging the
variables Γ and Θ.
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C. Γi cannot intersect Θi±k for k > 3.

Case 0. We prove claim 0, i.e. the case k = 0. We break this up into three subcases.

Case 0.1. Suppose Γi intersects Θi+2 for some 1 6 i 6 n− 2. We claim: Γj intersects Θj+1 for
every i 6 j 6 n − 1. Note that if i = n − 2, then Lemma 5.13 yields the claim. Otherwise, we
may apply observation A to Γi and Θi+2 to deduce: Γi intersects Θi+3, or Γi+1 intersects Θi+2.
Now C forbids the former, whence we have that Γi+1 intersects Θi+2.

Now assume we have proven our claim for j with i + 1 6 j 6 n − 2, and consider Γj and
Θj+1. Observation A shows that Γj intersects Θj+2, or Γj+1 intersects Θj+1. In the first case,
we are at the beginning of case 0.1 with the index i replaced by j and, hence, are able to show
that Γj+1 intersects Θj+2. In the second case, we deduce from A that Γj+2 intersects Θj+1, or
that Γj+1 intersects Θj+2. Now, as the former is ruled out by B, the latter holds. Thus, we
may use induction to conlude our claim. Observe that proving that Γj intersects Θj+1 for every
1 6 j 6 i is symmetric. Thus, we conclude that Γj intersects Θj+1 for every 1 6 j 6 n− 1.

Case 0.2. Suppose Θi intersects Γi+2 for some i. This is symmetric to case 0.1, and Θj intersects
Γj+1 for every 1 6 j 6 n− 1.

Case 0.3. Suppose for no i we have Γi intersects Θi±2. Then, by iteratively applying A, we
deduce that Γi intersects Θi for every 1 6 i 6 n. Observe that if Γ1 = Θ1 or if Γn = Θn, then
we must be in this case by geodesicity.

Case 1. Let k = 1. Suppose Γ1 intersects Θ2 or Θn−1 intersects Γn+1. In the first case,
Γ1,Θ2,Θ3, . . . ,Θn,Γn+1 is a geodesic sequence, and claim 0 shows that for each 2 6 i 6 n,
Γi and Θi intersect. In the second case, Γ1,Θ1,Θ2, . . . ,Θn−1,Γn+1 is a geodesic sequence and,
again, claim 0 shows that for each 2 6 i 6 n, Γi and Θi−1 intersect.

Now assume that neither Γ1 intersects Θ2, nor does Γn+1 intersect Θn−1. Then observation
A implies that Γ2 intersects Θ1 and Γn intersects Θn. If Γi intersects Θi for all 2 6 i 6 n − 1,
then we are done. If Γi does not intersect Θi for some 2 6 i 6 n− 1, then, since Γn+1 does not
intersect Θn−1, claim 0 shows that Γ2,Γ3, . . . ,Γn+1 and Θ1,Θ2, . . . ,Θn are parallel.

Case 2. Let k = 2. Then Γ1,Θ1,Θ2, . . . ,Θn,Γn+2 is a geodesic sequence. We apply claim 0.

Corollary 5.26. Let Γ1,Γ2, . . . ,Γn and Θ1,Θ2, . . . ,Θn′ be geodesic sequences such that Γ1 ∩
Θ1 6= ∅ and Γn ∩ Θn′ 6= ∅. Then Γ2,Γ3, . . . ,Γn−1 is parallel to a connected subsequence of
Θ1,Θ2, . . . ,Θn′ , and this subsequence contains Θ3, . . . ,Θn′−2.

Lemma 5.27. Let Γ1,Γ2, . . . ,Γn and Θ1,Θ2, . . . ,Θn′ be geodesic sequences and Ξ and Ξ̂ be rela-
tors such that both Γ1 and Θ1 intersect Ξ and both Γn and Θn′ intersect Ξ̂. Then Γ9,Γ10, . . . ,Γn−8

is parallel to a connected subsequence of Θ7,Θ8, . . . ,Θn′−6.

Proof. Choose a geodesic sequence Ξ = Ξ1,Ξ2, . . . ,Ξn′′ = Ξ̂. Corollary 5.26 implies that both
Γ2,Γ3, . . . ,Γn−1 and Θ2,Θ3, . . . ,Θn′−1 are parallel to connected subsequences of Ξ1,Ξ2, . . . ,Ξn′′

that both contain Ξ3,Ξ4, . . . ,Ξn′′−2. Hence both Γ2,Γ3, . . . ,Γ8 and Θ2,Θ3, . . . ,Θ8 contain par-
allel sequences for Ξ3,Ξ4,Ξ5,Ξ6,Ξ7. Thus we may invoke Corollary 5.24 to deduce that there
exist 1 6 i, j 6 8 such that Γi and Θj intersect. Similarly, we obtain 0 6 i′, j′ 6 7 such that
Γn−i′ and Θn′−j′ intersect. Now Corollary 5.26 implies that Γ9,Γ10, . . . ,Γn−8 is parallel to a
connected subsequence of Θ1,Θ2, . . . ,Θn′ .

Since Γ9 cannot intersect Θk for k 6 6 and Γn−8 cannot intersect Θn′−k for k 6 5, our claim
follows.
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Proof of Proposition 5.19. By assumption, there exist k, k′ 6 ε and geodesic sequences Ξ1,Ξ2, . . . ,Ξk
and Ξ̂1, Ξ̂2, . . . Ξ̂k′ such that Ξ1 intersects Γ1, Ξk intersects Θ1, Ξ̂1 intersects Γn and Ξ̂k′ inter-
sects Θn′ . Let K := max{k, k′}. Now for each 1 6 i 6 K, choose a geodesic sequence Ξi from
Ξmin{i,k} to Ξ̂min{i,k′}. Denote by ΞK+1 the sequence Θ1,Θ2, . . . ,Θn′ .

We claim: for each 2 6 i 6 K + 1, Γ1+8(i−1), . . . ,Γn−8(i−1) is parallel to a connected sub-
sequence of ξi of Ξi that does not contain the endpoints of Ξi. We argue by induction. For
i = 2, the claim follows from Lemma 5.27. Now suppose we have shown our claim for some
2 6 k 6 K + 1. Then ξk is a parallel to a connected subsequence of Ξk+1 by Lemma 5.25.
Therefore, Lemma 5.27 implies that Γ1+8k, . . . ,Γn−8k is parallel to a connected subsequence of
Ξk+1, and the claim is proved.

Thus Γ1+8bεc, . . . ,Γn−8bεc is parallel to a connected subsequence of Θ1, . . . ,Θn′ . Now since
dẊ(Γ1,Θ1) 6 ε, we have that Γ1+8bεc cannot intersect Θj with j > 9ε + 3, and a similar
obervation holds of Γn−8bεc and j < n′ − 9ε− 2, whence our result follows.

5.2.3 The action on parallels in Ẋ

We show that, given two geodesic sequences γ and θ of relators, there are only boundedly many
elements in g ∈ G(Γ) such that γ and gθ are parallel.

Proposition 5.28. Let Γ be a C ′(1/6, p)-labelled graph, or a C ′∗(1/6, p)-labelled graph. Let
Γ1,Γ2, . . . ,Γn and Θ1,Θ2, . . . ,Θn be parallel geodesic sequences with n > 21. Then there exist
at most 8p+ 100 elements g ∈ G(Γ) such that Γ1,Γ2, . . . ,Γn and gΘ1, gΘ2, . . . , gΘn are parallel.

We first explain how this yields Theorem 5.10.

Proof of Theorem 5.10 using Proposition 5.28. Let ε > 0, and let x ∈ G with dẊ(1, x) = n >
18ε + 25. Let g ∈ G(Γ) with d(1, g) 6 ε and d(x, gx) 6 ε. Let Γ1, . . . ,Γn be a geodesic
sequence of relators from 1 to x. Then dẊ(Γ1, gΓ1) 6 ε and dẊ(Γn, gΓn) 6 ε. Hence, there
exist 0 6 k, k′, l, l′ 6 9ε + 3 for which the statement of Proposition 5.19 holds. Observe that
since k + l = k′ + l′, the choice of k, l, k′ determines l′. We obtain parallel sequences of length
at least n − k − l + 2 > n − 2(9ε + 3) + 2 > 21. Thus, we are in the case of Proposition 5.28
and, given l, l′, k, k′, there are at most 8p+ 100 possibilities for g. Therefore, there are at most
(9ε+ 4)3(8p+ 100) possibilities for g in total.

We will now prove Proposition 5.28. In the following, we still assume that Γ satisfies the
C ′(1/6)-condition or the C ′∗(1/6)-condition.

Lemma 5.29. Let Γ1, ...,Γn be a geodesic sequence, and let g with gΓ1 = Γ1 and gΓn = Γn.
Then we have gΓi = Γi for all 1 6 i 6 n.

Proof. We proceed by contradiction and, hence, may assume n > 3 and gΓi 6= Γi for all 2 6
i 6 n − 1. Note that being geodesic implies gΓj 6= Γi for every i 6= j. Let α be a geodesic in
X, starting in Γ1 and ending in Γn. Since α starts in Γ1 = gΓ1 and ends in Γn = gΓn, both
Γ1 ∪ Γ2 ∪ · · · ∪ Γn and gΓ1 ∪ gΓ2 ∪ · · · ∪ gΓn contain α by convexity. Let α′ be the subpath of α
from the last vertex in Γ1 to the first vertex in Γn. Then α′ is a path from Γ1 ∩ gΓ1 to Γn ∩ gΓn
in (Γ1 ∪ · · · ∪ Γn) ∩ (gΓ1 ∪ ... ∪ gΓn) as in the statement of Lemma 5.21.

Consider the path gα′. The same arguments as above, together with the facts Γ1 = gΓ1 and
Γn = gΓn, show that gα′ is a path from Γ1∩gΓ1 to Γn∩gΓn in (Γ1∪· · ·∪Γn)∩ (gΓ1∪· · ·∪gΓn)
as in the statement of Lemma 5.21. Hence, by the uniqueness statement of Lemma 5.21, we have
gα′ = α′ by Lemma 5.21. Therefore, g = 1. This is a contradiction to gΓ2 6= Γ2.

The following lemma is a variation on [26, Lemma 4.11].
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Lemma 5.30. Let Γ be a C ′(1/6)-labelled graph or a cylinder-free C ′∗(1/6)-labelled graph. Let
Γ0,Γ1,Γ2 be a geodesic sequence of relators. If g ∈ G(Γ) satisfies gΓi = Γi for all i, then g = 1.

Proof. Let γ1 be a path in Γ1 intersecting both Γ0 and Γ2 such that |γ1| = dX(Γ0,Γ2). Let
g ∈ G(Γ) with gΓi = Γi for all i ∈ {0, 1, 2}. Then left-multiplication by g gives rise to label-
preserving automorphisms ϕi of the Γi with ϕ0(ιγ1) = ϕ1(ιγ1) and ϕ2(τγ1) = ϕ1(τγ1). We show
that ϕ1 is the identity, such that g must be the identity as well.

Suppose ϕ1 is not the identity. Then there exist locally geodesic paths π from ιγ1 to ϕ1(ιγ1)
in Γ0 ∩ Γ1 and ρ from τγ1 to ϕ1(τγ1) in Γ1 ∩ Γ2. Note that both π and ρ are pieces and, more
strongly, for any k, the paths πk := πϕ1(π)ϕ2

1(π) . . . ϕk1(π) and ρk := ρϕ1(ρ)ϕ2
1(ρ) . . . ϕk1(ρ) are

pieces. Moreover, so are locally geodesic paths with the same endpoints and labelled by the same
elements of F as πk, respectively ρk; we denote these by π̂k and ρ̂k.

We first consider the free case: if ϕ1 is not the identity, then `(ρk) = `(ρ)k in F , whence `(π)k

is freely non-trivial. Also observe that no subpath of π̂k or of ρ̂k can be closed, as otherwise
we would have a simple closed path that is a piece. In particular, ϕ1 must have infinite order.
By construction, for any k, the path θk := γ1ρ̂kϕ

k
1(γ−1

1 )π̂−1
k is a simple closed path. Since

|π̂k| → ∞ and |ρ̂k| → ∞ as k → ∞ and π̂k and ρ̂k are pieces, this path eventually violates the
C ′(1/6)-condition.

In the free product case, if π or ρ are not contained in a single attached Cayley graph, then,
again |π̂k| → ∞ or |ρ̂k| → ∞ as k →∞, and, again, the C ′∗(1/6)-condition is violated eventually.
Hence, we may assume that π is contained in an attached component C1 and ρ is contained in
an attached component C2. Observe that, since ϕ(ιπ) = τπ, we have ϕ(C1) ∩C1 6= ∅, whence ϕ
leaves C1 invariant. The same observation holds for C2. Since Γ0 and Γ2 are disjoint, so are C1

and C2. Thus, cylinder-freeness implies the claim.

Lemma 5.31. Assume that Γ satisfies the C ′(1/6, p)-condition or the C ′∗(1/6, p) condition, and
let ε > 0. Let γ and θ be geodesics in X, with dẊ(ιγ, τγ) > 1 and dẊ(ιθ, τθ) > 1. Then there
exist at most dεpe elements g ∈ G(Γ) such that gθ is an F -subpath of γ with dẊ(ιγ, gιθ) 6 ε.

Proof in the free group case. Let r be a shortest word in the generators such that there exist
w a proper initial subword of r and N a positive integer with: rNw is a reduced word and
rNw = `(θ). Being shortest, r is not a proper power of a word. We thus have: if x is a word
such that xr is an initial subword of rNw, then there exists some k with x = rk.

For simplicity of notation, assume that θ is a subpath of γ as required in the assumption,
i.e. g = 1 satisfies the claim, and, moreover, dX(ιγ, ιθ) is minimal among all possible G(Γ)-
translates of θ which are subpaths of γ. (This is no restriction, up to replacing θ by a translate.)
Let g ∈ G(Γ) be non-trivial satisfying the assumptions, and let x be the label of the subpath of
γ from ιθ to gιθ. Then xr is an initial subword of rNw. Thus x = rk for some k by the above
observation. It remains to restrict k.

By [26, Proposition 3.6], a path in X labelled by geodesic word y can be covered by at most
|y|Ẋ relators. Since dẊ(1, rNw) > 1, we have that not all powers of r appear on Γ. Hence, by the
p-condition, at most the p− 1-st power occurs, and the same holds true for any cyclic conjugate
of r. Hence, ε > |rk|Ẋ > k/p, whence 1 6 k < εp. Thus, including the case g = 1, we get at
most dεpe elements.

We now give (local) terminology for the free product case: if w is a word in the generators, then
a subword u is a syllable if it is a maximal subword whose letters come from a single generating
factor. A word w is reduced if all its syllables represent non-trivial elements of their respective
generating factors. A concatenation of non-empty reduced words w1w2 . . . wk is strongly reduced
if the terminal syllable of wi is in a different generating factor than the initial syllable of wi+1.
An initial F -subword u of w is defined as follows: if u is a word with k syllables, then the first
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k−1 coincide with the first k−1 syllables of w, and the k-th syllable lives in the same generating
factor as the k-th syllable of w; u is a proper initial F -subword if it has fewer syllables than w.

Proof in the free product case. Let r be a shortest word in the generators such that there exist
w a proper initial F -subword of r and N a positive integer with: rNw is strongly reduced and
rNw = `(θ) in F . Observe that, since dẊ(ιθ, τθ) > 1, `(θ) is not contained in a single generating
factor and, therefore, neither is r. Hence, being shortest, r does not represent a proper power of
an element of F . We thus have: if x is a word such that xr is strongly reduced and equal in F
to an initial subword of rNw, then there exists some k with x = rk in F .

We repeat the proof as before: for simplicity of notation, assume that θ is an F -subpath of γ
as required in the assumption, i.e. g = 1 satisfies the claim, and, moreover, dX(ιγ, ιθ) is minimal
among all possible G(Γ)-translates of θ which are F -subpaths of γ. (This is no restriction, up
to replacing θ by a translate.) Let g ∈ G(Γ) be non-trivial satisfying the assumptions, and let x
be the label of the subpath of γ from ιθ to gιθ. Then xr is strongly reduced by definition of an
F -subpath, and it is equal in F to an initial subword of rNw. Thus x = rk in F for some k by
the above observation. It remains to restrict k.

By [26, Proposition 3.6], a path in X labelled by geodesic word y can be covered by at
most |y|Ẋ relators. Also observe: given two F -equivalent paths, both are covered by the same
collection of relators. We conclude as in the free group case.

Proof of Proposition 5.28. Let N = 10. First, let g ∈ G(Γ) such that Γ1,Γ2, . . . ,ΓN and
gΘ1, gΘ2, . . . , gΘN are properly parallel. Let γ be the geodesic path in Γ3 ∪ Γ4 ∪ · · · ∪ ΓN−2

from Γ2 to ΓN−1 that is contained in every properly parallel sequence for Γ2,Γ3, . . . ,ΓN−1 ob-
tained in Lemma 5.23. In particular, γ contains no edges of Γ2 or ΓN−1. Let θ be a geodesic
path in Θ5 ∪ Θ6 ∪ · · · ∪ ΘN−4 from Θ4 to ΘN−3 that is contained in every sequence properly
parallel to Θ4, . . . ,ΘN−3 from Lemma 5.23. Note that γ and θ are defined independently of g.

Let T := (Γ1 ∪Γ2 ∪ · · · ∪ΓN )∩ (gΘ1 ∪ gΘ2 ∪ · · · ∪ gΘ3), which, by Lemma 5.20, is an F -tree.
Let π0 be the up to F -equivalence unique path in T from Γ1 ∩ gΘ1 to ΓN ∩ gΘN that does
not contain edges of Γ1 ∩ Θ1 or of ΓN ∩ ΘN . Such a path exists by construction and is unique
(up to F -equivalence) because we are considering connected subsets of an F -tree. Let π be the
F -subpath of π0 that intersects Γ2 and ΓN−1 in exactly a vertex each. Since γ is contained in T
and it is an F -reduced path that intersects Γ2 and ΓN−1 in exactly a vertex each, we conclude
that, up to F -equivalence, π and γ coinicide.

Observe that Γ2∩gΘ5 = ∅ and gΘN−4∩ΓN−1 = ∅, as we are considering geodesic sequences.
Therefore, the initial vertex of γ is contained in gΘ1∪gΘ2∪gΘ3∪gΘ4 and, likewise, its terminal
vertex is contained in gΘN−3 ∪ gΘN−2 ∪ gΘN−1 ∪ gΘN . Therefore, γ contains an F -subpath in
gΘ5 ∪ gΘ6 ∪ · · · ∪ gΘN−4 intersecting both gΘ4 and gΘN−3 in exactly a vertex. As above, we
conclude that, up to F -equivalence, this F -subpath coincides with gθ. In other words: gθ is an
F -subpath of γ. We have dẊ(ιγ, τγ) > (N −1)−2−1 > 1 and dẊ(ιθ, τθ) > (N −3)−4−1 > 1.
Moreover, dẊ(ιγ, gιθ) 6 4. Thus, we may apply Lemma 5.31 with ε = 4 to conclude: there exist
at most 4p elements g ∈ G(Γ) such that the initial subsegmens of length N of Γ1,Γ2, . . . ,Γn and
gΘ1, gΘ2, . . . , gΘn are properly parallel.

For the case that the terminal subsegments of length N are properly parallel, the same
observation holds, bringing our count of elements g to at most 8p.

Finally, consider the case that both the initial subsegment and the terminal subsegment of
length N are not properly parallel. This means there exist 1 6 i 6 N and n−N+1 6 j 6 n with
Γi = gΘi and Θj = gΓj . If we have another g′ with Γi = g′Θi and Θj = g′Γj , then Lemma 5.29
shows that g′Θt = gΘt for every i 6 t 6 j. In particular, this holds for N 6 t 6 N + 2, because
N + 2 6 n−N + 1. Therefore, given i and j, there exists at most 1 such g by Lemma 5.30. This
gives a grand total of at most 8p+N2 elements.
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5.3 Characterization of elliptic elements
In this section, we give a complete characterization of the elliptic elements for the action of G(Γ)
on Ẋ. In particular, we show that every element is either elliptic or hyperbolic. As a corollary,
we obtain a generalization of the Torsion Theorem for small cancellation groups to graphical
small cancellation theory, even over free products, thus generalizing the corresponding classical
results [19, 33], see also [22, 36, 23, 49] for results on the torsion-freeness of certain graphical
small cancellation groups.

Proposition 5.32. Let Γ be a C ′(1/6)-labelled graph or a C ′∗(1/6)-labelled graph, and let g ∈
G(Γ). Then the following are equivalent:

I g is elliptic for the action on Ẋ,

I g is not hyperbolic for the action on Ẋ,

I g is conjugate to an element of G(Γ) represented by a word all whose powers occur on Γ.

Proof. Let g ∈ G(Γ), and let w be a word in S minimizing the lengths of words representing
elements of the set {h ∈ G(Γ) : ∃n ∈ N : hn ∼ g} ⊆ G(Γ), where ∼ denotes conjugacy in G(Γ).
We consider the following two cases studied by Gruber in [24, Section 4]:

(1) every power of w occurs on Γ, or

(2) there exists some C0 > 0 such that the longest subword of a power of w occurring on Γ has
length at most C0.

In case (1), the element h represented by w is elliptic, whence so is g. It remains to show
that in case (2), h is hyperbolic, which will imply hyperbolicity of g.

It is shown in [24, Section 4] that, for every n, there exist a geodesic word gn representing
wn and a Γ-reduced diagram Bn with boundary word wng−1

n such that

I every disk component of Bn is a single face or has shape I1 as in Figure 5.2.1, its two sides
being subpaths of the sides of Bn corresponding to wn (denoted ωn) and corresponding to
g−1
n (denoted γn),

I every face Π of Bn has |∂Π| < 6C0,

I the intersection of every face Π with ωn has length less than (2/3)|∂Π|.

I if Π and Π′ are consecutive faces in a disk component, then |Π∩γn| > |∂Π|/6 or |Π′∩γn| >
|∂Π′|/6. (Here, consecutive means: sharing interior edges.)

The first 3 bullets are stated explicitly in [24], and the last bullet is deduced as follows: if
both Π and Π′ do not satisfy the claim, then |Π ∩ ωn| > |Π|/2 and |Π′ ∩ ωn| > |∂Π′|/2 by the
small cancellation hypothesis. Therefore, both |∂Π| > 2|w| and |∂Π′| > 2|w| by the minimality
hypothesis on w. Hence, [24, Lemma 4.10] shows that both Π and Π′ are special in the sense
of [24, Lemma 4.11], whence we may apply [24, Lemma 4.11] as follows: if a is the arc in the
intersection of Π and Π′, then |Π ∩ ωn| + |a| < |w| + |∂Π|/6 6 2|∂Π|/3. Apart from a, Π has
at most one additional interior arc, and this arc must have length less than |∂Π|/6. Therefore,
|Π ∩ γn| > |∂Π|/6, a contradiction.

Let σ be a covering segment, i.e. a copy of a path in Γ that is a subpath of γn. If σ completely
contains ∂Π∩ γn for a face Π with |∂Π∩ γn| > |∂Π|/6, then σ ∪Π(1) lifts to Γ, because σ ∩Π is
not a piece. We show that σ cannot contain (Π1∪Π2)∩γn for 2 consecutive faces Π1 and Π2 in a
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disk component: for a contradiction, assume σ does contain it. Suppose that |Π1∩σ| > |∂Π1|/6.
(Here we use the fourth bullet; the case where this holds for Π2 follows by symmetry.) Then
σ∪Π

(1)
1 lifts to Γ, because σ∩Π1 is not a piece. Since Bn is Γ-reduced, two consecutive faces in a

disk component cannot lift together to Γ. Hence, (Π1∩Π2)∪ (Π2∩σ) is a piece (considering this
embedded line graph as path). Thus, ∂Π2 is a concatenation of at most 2 pieces and Π2 ∩ ωn.
But this implies |Π2 ∩ ωn| > (2/3)|∂Π2|, a contradiction to the third bullet. Hence, σ cannot
contain the intersection of γn with a disk component of Bn of shape I1, and, moreover, the parts
of σ contained in disk components of shape I1 have total length less than 4(6C0)/2 = 12C0 (using
the second bullet).

If σ contains Π ∩ γn, where Π is its own disk component, then, σ ∪ Π(1) lifts to Γ, and we
can replace σ by a path σ̃ containing Π ∩ ωn instead of Π ∩ γn, and σ̃ is also a copy of a path
in Γ. Since gn is a geodesic word, we have |σ̃| > |σ|. We conclude that the parts of σ contained
in disk components consisting of single faces together with the parts of σ not contained in any
faces at all have total length at most C0.

We conclude |σ| < 13C0. Since every disk component of Bn has shape I1, we have |gn| >
n|w|/C0. Hence, by [26, Proposition 3.6], we obtain dẊ(1, hn) > n(|w|/C0)/(13C0), whence h
and, therefore, g is hyperbolic.

Corollary 5.33 (Torsion theorem). Let Γ be a C ′(1/6)-labelled graph or C ′∗(1/6)-labelled graph,
and let g ∈ G(Γ) be of order n ∈ N \ {1}. Then there exist a connected component Γ0 of Γ and
a label-preserving automorphism ϕ of Γ0 of order n such that g is conjugate to the element of
G(Γ) represented by the label of a path v → ϕ(v) for a vertex v in Γ0, or (only in the free product
case) g is conjugate to an order n element of a generating factor.

Proof. Since g has finite order, it must act elliptically on Ẋ. Therefore, by Proposition 5.32, a
conjugate of g is represented by a word w such that every power of w occurs on Γ. Now since
every component of Γ embeds into Cay(G(Γ), S), non-triviality and finite order of g imply that
some proper power of w must occur on a closed path γ in a component Γ0 of Γ, say starting
from some vertex v, labelled by wk for some k > 1. We choose k minimal with this property.
Then g has order k.

If (in the free product case) w is contained in a single generating factor, then the second claim
holds, because each generating factor embeds in G(Γ). Otherwise, γ is not F -homotopically
trivial, and the small cancellation condition implies that γ cannot be a piece. Thus, there exists
an automorphism ϕ of Γ0 such that ϕ(v) lies on γ and the initial subpath π of γ from v to ϕ(v) is
labelled by w. Since the path πϕ(π)ϕ2(π) . . . ϕk−1(π) is labelled by wk and, therefore, is closed,
we obtain that ϕ has order k. This argument also applies in the free group case.

5.4 Description of maximal elementary subgroups
We show that the elementary closure of every hyperbolic element is infinite cyclic or infinite
dihedral. In particular, if there is no even torsion, it must be infinite cyclic.

Proposition 5.34. Let Γ be a C ′(1/6)-labelled graph or a cylinder-free C ′∗(1/6)-labelled graph.
Let g be a hyperbolic element for the action of G(Γ) on Ẋ, and let h be an elliptic element such
that g and h commute. Then h = 1.

Proof. Proposition 5.32 tells us that there exists t ∈ G(Γ) such that the conjugate tht−1 of h is
represented by a (possibly empty) cyclically reduced word all whose powers appear on Γ. We
have that tht−1 and tgt−1 commute if and only if g and h do, h is elliptic if and only if tht−1

is, and g is hyperbolic if and only if tgt−1 is. Hence, without loss of generality, we assume that
h itself is represented by a cyclically reduced word w such that all powers of w appear on Γ. In
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the free product case, we can additionally assume that w = w1w2 . . . wk, where each wj contains
letters from a single generating factor and does not represent the identity in that factor, any two
consecutive wj correspond to different generating factors, and, if k > 1, then w1 and wk do not
correspond to the same generating factor.

First, assume there exists a path π in a component Γ0 of Γ such that π is labelled by w, and
such that there exists an automorphism of Γ0 that takes ιπ to τπ. This implies: if Γ1 is the
relator in X that is the image of Γ0 under the map induced by ιπ 7→ 1 ∈ G(Γ), then hΓ1 = Γ1.
Now choose k such that dẊ(1, gk) > 3. In particular, this ensures Γ1∩gΓ1 = ∅. Choose a geodesic
sequence Γ1,Γ2, . . . ,Γl = gΓ1. Then hΓ1 = Γ1 and hΓl = hgΓ1 = ghΓ1 = gΓ1 = Γl. Therefore,
Lemmas 5.29 and 5.30 prove the claim.

Now assume that there does not exist such an automorphism as above. This implies: any
path labelled by a power of w is a piece in Γ. In the free group case, denote by Θ a bi-infinite
line graph labelled by the powers of w. In the free product case, denote by Θ the completion
(see Definition 5.3) of a bi-infinite line-graph labelled by the powers of w. Consider the graph
Γ̂ := Γ tΘ. We claim that Γ̂ satisfies the same small cancellation condition as Γ: all powers of
w label pieces in Γ. Hence, in the free group case, adding Θ does not introduce new pieces. In
the free product case, observe that whenever a path p in Γ is a piece, then so is every path in
the completion of the support of p. Therefore, again, adding Θ does not introduce new pieces.
Constructing the completion of Θ as described in Remark 5.5 readily shows that all closed paths
in Θ are F -trivial. Thus, there are also no new simple closed paths to consider when checking
the small cancellation condition.

We have observed that Γ̂ defines the same group as Γ and thus the same Cayley graph X.
Furthermore, the assumption that all powers of w appear on Γ implies that Γ̂ also yields the
same coned-off space Ẋ. Now the connected component Θ of Γ̂ admits a path π labelled by w
and an autmorphism taking ιπ to τπ. Hence, we may apply our above argument for Γ̂ instead
of Γ.

Corollary 5.35. Let H be a virtually cyclic subgroup of G(Γ) that contains a hyperbolic element.
Then H is either infinite cyclic or infinite dihedral. In particular, if G(Γ) has no even torsion,
then H is infinite cyclic.

Proof. As H is virtually infinite cyclic, we may write H = K n C, where C is either infinite
cyclic or infinite dihedral and contains a hyperbolic element g. Both C1 := 〈g〉 and the kernel
C2 of the action by conjugation of C on K have finite index in C. Thus, C1 ∩ C2 is non-trivial
and contains a hyperbolic element commuting with every element of K, whence K is trivial.

5.5 The case that G(Γ) acts elementarily

The following proposition will handle the degenerate case of Theorem 2.4.

Proposition 5.36. Let p ∈ N, n odd, and Γ be a C ′n(1/6, p)-labelled graph whose set of labels
S has at least two elements. Then either G(Γ) acts non-elementarily on Ẋ, or G(Γ) ∈ Bn. If
G(Γ) is finite, then Γ contains Cay(G(Γ), S).

Notice that p does not appear in the proof. The actual (weaker) version of (iii) of Definition 2.3
we require is: whenever, for a cyclically reduced word w, all powers of w label paths in Γ, then
wn labels a closed path in Γ.

Proof. We shall assume that any two connected components of Γ are non-isomorphic. Suppose
G := G(Γ) contains a hyperbolic element. Then, since the action is acylindrical by Theorem 5.10,
G is either virtually cyclic or acts non-elementarily on Ẋ.
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Observe that Γ contains neither loops nor bigons (i.e. simple closed paths of length 1 or 2):
in view of the strong reducedness assumption that is part of the C ′n(1/6, p)-condition, it only
remains to rule out the existence of a simple closed path γ with label s2 for some s ∈ S. If
such a γ exists, then all powers of s label paths in Γ, whence there exists a closed path γ′ with
label sn by the C ′n(1/6, p)-condition. Since the labelling of Γ is reduced, a path in Γ is uniquely
determined by its starting vertex and its label. Therefore, since n is odd, γ and γ′ cannot start
from the same vertex, and the same is true for γ and any translate of γ′ by a label-preserving
automorphism of Γ. Thus γ is a piece, contradicting the C ′(1/6)-condition, whence γ cannot
exist.

If G is virtually cyclic, then Corollary 5.35 implies that G is infinite cyclic and, in particular,
abelian. Consider two different elements s1 and s2 of S and a Γ-reduced diagram D for the word
s1s2s

−1
1 s−1

2 .
Since Γ contains neither loops nor bigons,D has no cut-points. IfD has at least two faces, then

we may apply Greendlinger’s lemma to deduce that D has at least two faces Π1 and Π2 of interior
degree at most 3 each. In particular, we have for each i = 1, 2 that |∂Πi ∩ ∂D| > |∂Πi \ ∂D| > 3,
whence |∂D| > 8, a contradiction.

Thus, D consists of a single face with boundary length 4. This implies that neither s1 nor s2

can label pieces. Hence, there exist automorphisms ϕ1 and ϕ2 of Γ and edges ei with `(ei) = si
and ϕ(ιei) = τei. Hence the C ′n(1/6, p)-condition implies that the elements of G(Γ) represented
by si have orders dividing n. Since s1 and s2 were arbitrary, G(Γ) is a quotient of

⊕
s∈S Z/nZ,

which contradicts the existence of an infinite order element.

Thus we may assume that G(Γ) contains no hyperbolic element. Note that since S is non-
empty, this implies that Γ is non-empty.

Assume Γ has no component with non-trivial fundamental group. Then G(Γ) is a non-trivial
free group. As every element is elliptic, Proposition 5.32 implies that there exist arbitrarily
high powers of freely non-trivial words read on paths in Γ and, as every component has trivial
fundamental group, these paths must be simple and, in particular, not closed. This contradicts
the C ′n(1/6, p)-condition. On the other hand, assume Γ has more than one component with
non-trivial fundamental group. Then it follows from [26] that G(Γ) does contain a hyperbolic
element for the action on Ẋ, contradicting our assumption. Therefore, from now on we assume
that Γ has exactly one component Γ0 with non-trivial fundamental group.

Let g ∈ G(Γ) be a non-trivial element. Since g is not hyperbolic, Proposition 5.32 implies
that g is elliptic and conjugate to an element of G(Γ) that is represented by a word w read on
Γ such that every power of w can be read on Γ. By assumption, we have that wn is read on a
closed path in Γ0, and say this loop is based at a vertex v. The C ′(1/6)-condition implies that a
path labelled by wn cannot be a piece, whence there exists an automorphism ϕ of Γ0 such that
w is the label of a path from v to ϕ(v). Note that this implies that ϕ has order dividing n.

The label-preserving map Γ0 → X that takes v to 1 induces a homomorphism Aut(Γ0) →
G(Γ), sending ψ to the element represented by a path from v to ψ(v). Denote by H the image
of this homomorphism. Then our above considerations show: G(Γ) = ∪g∈G(Γ)gHg

−1. Moreover,
every element of H, and therefore every element of G(Γ), has order dividing n, whence we have
G(Γ) ∈ Bn.

Suppose G(Γ) is finite. It is an easy exercise in group theory to show that whenever a group
G1 is the union the of conjugates of a finite index subgroup G2, then G1 = G2. Hence, if G(Γ)
is finite, then G(Γ) = H, which implies that Γ is actually the (finite) Cayley graph of G(Γ) with
respect to S.
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6 Proofs of the main results
We now give a proof of Theorems 2.4 and 2.8. These statements actually follow from a more
general result. Indeed as explained at the beginning of Section 5 we are working with a graph Γ
satisfying a weaker hypotheses – namely the C ′(λ, p) and C ′∗(λ, p) conditions – which allows the
group G(Γ) to have infinite order elliptic elements for its action on the corresponding coned-off
Cayley graph. As usual our result has two variants, one for the usual graphical small cancellation
and one for graphical small cancellation over free products. While their proofs are exactly the
same, we found it clearer to state them separately.

Theorem 6.1. Let p ∈ N∗ and r ∈ R+. There exists np,r ∈ N such that for every odd exponent
n > np,r the following holds. Let Γ be a graph labelled by a set S satisfying the C ′(1/6, p)-
condition. Assume that G = G(Γ) has no even torsion. We focus on the action of G of the
cone-off space Ẋ = Ẋ(Γ). There exists a quotient Q of G with the following properties.

(i) Every elliptic subgroup of G embeds in Q.

(ii) For every g ∈ Q that is not the image of an elliptic element we have gn = 1.

(iii) If every elliptic subgroup of G belongs Bn, then Q is isomorphic to G/Gn. In particular Q
is isomorphic to Gn(Γ) and belongs to Bn.

(iv) If the action of G on Ẋ is non elementary, then Q is infinite. Moreover the projection
G� Q is one-to-one on small balls in the following sense. For every g ∈ G\{1}, for every
x ∈ Ẋ, if |gx − x|Ẋ 6 r, then the image of g in Q is not trivial. In particular, if r > 1,
then every connected component of Γ embeds in the Cayley graph of Q with respect to S.

Theorem 6.2. Let p ∈ N∗ and r ∈ R+. There exists np,r ∈ N such that for every odd exponent
n > np,r the following holds. Let (Fi)i∈I be a collection of groups. For each i ∈ I we fix
a generating set Si of Fi and let S = ti∈ISi. Let Γ be a graph labelled by S satisfying the
C ′∗(1/6, p)-condition. Assume that G = G(Γ) has no even torsion. We focus on the action of G
of the cone-off space Ẋ = Ẋ(Γ). There exists a quotient Q of G with the following properties.

(i) Every elliptic subgroup of G embeds in Q. In particular, every Fi embeds in Q.

(ii) For every g ∈ Q that is not the image of an elliptic element we have gn = 1.

(iii) If every elliptic subgroup of G belongs Bn, then Q is isomorphic to G/Gn. In particular Q
is isomorphic to Gn(Γ) and belongs to Bn.

(iv) If the action of G on Ẋ is non elementary, then Q is infinite. Moreover the projection
G� Q is one-to-one on small balls in the following sense. For every g ∈ G\{1}, for every
x ∈ Ẋ, if |gx − x|Ẋ 6 r, then the image of g in Q is not trivial. In particular, if r > 1,
then every connected component of Γ embeds in the Cayley graph of Q with respect to S.

Proof of Theorems 6.1 and 6.2. Let p ∈ N∗ and r ∈ R+. We define a hyperbolicity constant
δ = 80. Let Γ be a labelled graph satisfying the conditions of Theorem 6.1 or Theorem 6.2.
We write G = G(Γ) for the corresponding group and Ẋ = Ẋ(Γ) for its coned-off Cayley graph.
According to Theorem 5.9 the cone-off space Ẋ is δ-hyperbolic. Moreover by Theorem 5.10, there
exist constants L and N , only depending on p, such that the action of G on Ẋ is (100δ, L,N)-
hyperbolic. We assumed that G has no even torsion. Hence if the action of G is elementary,
then G is either elliptic or isomorphic to Z (Corollary 5.35). In such a situation the first three
conclusions of both theorems are obvious. Hence from now on we assume that the action of G
on Ẋ is non-elementary.
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Since G has no even torsion, every lineal subgroup of G is torsion free (Corollary 5.35). It
follows that the e(G, Ẋ) = 1 (see Definition 3.6 for the definition of this parameter). Consequently
we can apply Proposition 4.1. We denote by np,r the critical exponentN1 given by Proposition 4.1
applied with the parameters N , L, δ and r. Observe that np,r only depends on the chosen p and r,
not on the specific Γ. Fix an odd exponent n > np,r. The first three conclusions of Theorems 6.1
and 6.2 follow from Proposition 4.1. Recall indeed that in the context of small cancellation over
free products, the graph Γ is its own completion (see Definition 5.2), whence every factor Fi
we started with acts elliptically on Ẋ. The first half of Point (iv) in both theorems is also a
consequence of Proposition 4.1. The second half follows from this observation: the vertex set of
each embedded component of Γ in Cay(G,S) has diameter at most 1 in the metric of Ẋ.

We are ready to prove our main result.

Proof of Theorem 2.4. Let p ∈ N∗. Let np the critical exponent of Theorem 6.1 for p and r = 2,
i.e. np := np,2. Let Γ be a graph labelled by a set S containing at least two elements and
satisfying the C ′n(1/6, p) condition. We assume that there is no finite groups F generated by S
such that Γ contained the Cayley graph of F with respect to S. It follows from Proposition 5.36
that either G(Γ) is already an infinite group in Bn or the action of G(Γ) on the cone-off Cayley
graph Ẋ(Γ) is non-elementary. In the first caseGn(Γ) = G(Γ) and the conclusion follows from the
usual graphical small cancellation theory [36, Theorem 1] or [23, Lemma 4.1 and Theorem 4.3].

Let us focus on the second case, that is when the action of G(Γ) on Ẋ(Γ) is non elementary.
We denote by Q the quotient given by Theorem 6.1. Proposition 5.32 tells us that every elliptic
element for the action of G(Γ) on Ẋ has order dividing n. Thus the group Gn(Γ) coincides with
Q, which is infinite. Moreover, every component of Γ embeds in Cay(Gn(Γ), S).

It remains to prove Point (iii). In this claim, S is finite, every component of Γ is finite, and
Γ is countable. Since Gn(Γ) is infinite and every component of Γ embeds in Cay(Gn(Γ), S),
we observe that Γ embeds in Cay(Gn(Γ), S). It remains to prove the coarse embedding result.
We follow the strategy of Gruber [23, Theorem 4.3] to obtain our result. For simplicity we let
Gn = Gn(Γ), X = Cay(G,S), and Xn = Cay(Gn, S).

If Γ is finite, any map Γ → Xn satisfies the axioms of a coarse embedding, hence there is
nothing to prove. Therefore we can assume that Γ is infinite. By lining up the (finite) components
of Γ on a 1-infinite geodesic ray in Xn, we can choose a label-preserving graph homomorphism
f : Γ → Xn such that d(Γi,Γj) > diam(Γi) + diam(Γj) + i + j. We show that f is a coarse
embedding.

Consider (by abuse of notation) Γi and Γj two images in Xn of connected components of Γ
under any label-preserving graph homomorphism. We claim that Γi ∩Γj is empty or connected.
Let x and y be vertices in Γi ∩Γj . Let x̃ be a preimage of x via the map X → Xn. According to
[23, Lemma 4.1] Γi also embeds in X. Let us denote by Γ̃i a copy of Γi in X. Recall that every
map we are considering is label-preserving. Hence up to replacing Γ̃i by a translate of Γ̃i we may
always assume that x̃ belongs to Γ̃i and that the map X → Xn maps Γ̃i onto Γi. We build in
the same way a lift Γ̃j of Γj containing x̃. Let ỹi be the resulting preimage of y in Γ̃i and ỹj the
one in Γ̃j , and observe |ỹi − ỹj |Ẋ 6 2. Denote by g the element of G(Γ) with gỹi = ỹj . Since
both ỹi and ỹj map to y, the image of g in Gn is trivial. Hence, by Theorem 6.1 (iv), g is trivial
in G(Γ), and ỹi = ỹj . Now by [26, Lemma 2.17], Γ̃i ∩ Γ̃j is connected. Hence, there is a path γ
in this intersection connecting x̃ to ỹi. The image of γ in Xn lies in Γi ∩Γj and connects x to y,
whence Γi ∩ Γj is connected.
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We now prove coarse embedding by contradiction: let (xk, yk) ⊂ Γ×Γ be a sequence of pairs
of vertices such that |xk − yk|Γ →∞ and |f(xk)− f(yk)|Xn is bounded. Since d(f(Γi), f(Γj)) >
diam(Γi) + diam(Γj) + i + j we may, by possibly going to a subsequence, assume that for each
k there exists jk such that xk, yk ∈ Γjk . Again going to a subsequence and using local finiteness
of Xn, we may assume that there exists a fixed g ∈ Gn such that f(xk)−1f(yk) = g for every k.
Now f(x1)−1Γj1 ∩ f(xk)−1Γjk contains g and, as shown above, is connected for each k. Thus,
f(x1)−1Γj1∩f(xk)−1Γjk contains a simple path from 1 to g, and the length of such a simple path
is bounded by |V Γj1 |−1. Hence |V Γj1 |−1 > |xk−yk|Γjk , which contradicts |xk−yk|Γjk →∞.

We are also ready to prove our main theorem in the (classical) free product case. Recall
from Section 5.1 that a presentation satisfying the (classical) power-free C ′∗(1/6, p)-condition for
which the generating factors do not have even torsion can be regarded as satisfying the (graphical)
C ′∗(1/6, p)-condition. The graphical version of our result will be stated immediately after.

Proof of Theorem 2.8. Let G be a small cancellation quotient of a free product F = F1 ∗ · · · ∗Fm
and Ẋ be the corresponding cone-off space. Note that every factor Fk acts elliptically on Ẋ
(recall that when constructing Ẋ, we consider the graph Γ that is the completion of graph that
is a disjoint union of cycle graphs labelled by the relators). Moreover the power-free C ′∗(λ, p)-
condition together with Proposition 5.32 implies that an element g ∈ G is elliptic if and only
if it is conjugate to an element of one of the Fk. The result is now a direct application of
Theorem 6.2.

Theorem 6.3. Let p ∈ N∗. There exists a critical exponent np ∈ N such that for every odd
integer n > np the following holds. Let (Fi)i∈I be a collection of groups. For each i ∈ I we
fix a generating set Si of Fi and let S = ti∈ISi. Let Γ be a graph labelled by S satisfying the
C ′∗(1/6, p)-condition such that the action of G(Γ) on its cone-off space Ẋ is non-elementary.
Additionally assume that whenever w is a cyclically reduced word all whose powers label paths in
Γ, then wn labels a closed path in Γ. Denote Gn(Γ) := G(Γ)/G(Γ)n. Then the following holds.

(i) The group Gn(Γ) is infinite.

(ii) Every connected component of Γ embeds into Cay(Gn(Γ), S) via a label-preserving graph
homomorphism.

(iii) Each one of the generating factors Fi embeds as a subgroup in Gn(Γ).

Remark 6.4. Observe that our assumptions imply that every Fi is n-periodic.

Proof. Proposition 5.32 and the assumptions imply that every elliptic element for the action
of G(Γ) on Ẋ has order dividing n. The proof now goes as the first part of the one in the
non-elementary case of Theorem 2.4 using Theorem 6.2 instead of Theorem 6.1.

We conclude by providing an example that shows that our restriction on proper powers
appearing as subwords of relators is indeed necessary in order to obtain infinite n-periodic groups.

Example 6.5 (Pride group [43]). Let S = {a, b}. We consider relations of the form

rn = a−1bp1nap2nbp3n . . . bpinn

sn = b−1aq1nbq2naq3n . . . aqjnn

and take the group G = 〈a, b | rn, sn, n ∈ N〉. Under a suitable choice of (pi) and (qj) this
presentation satisfies the C ′(1/6, 3) assumption. Observe though that G/Gn is trivial for every
n. On the other hand, a acts elliptically on the cone-off space Ẋ(Γ), whence particular the
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infinite cyclic group 〈a〉 embeds in Q, and Q is not a torsion group. This does not contradict
Theorem 2.4, because our presentation does not satisfy C ′n(1/6, 3)-condition for any n.

Clearly, if one prescribes n, already the group given by the 2-generator and 2-relator pre-
sentation 〈a, b | rn, sn〉 does not admit any non-trivial n-periodic quotient. Notice that we may
achieve any small cancellation parameter we desire, i.e. make the presentation of Pride’s group
satisfy any given C ′(λ)-condition. Consequently, we can achieve any positive upper bound for the
relative lengths of subwords that are proper powers. This shows that an absolute upper bound
on the powers occurring as subwords of relators is indeed required for making any statement in
the nature of our main results.
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