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Abstract

This paper focuses on microfacet reflectance models, and more precisely on the definition
of a new and more general distribution function, which includes both Beckmann’s and GGX
distributions widely used in the computer graphics community. Therefore, our model makes use
of an additional parameter γ, which controls the distribution function slope and tail height. It
actually corresponds to a bivariate Student’s t-distribution in slopes space and it is presented
with the associated analytical formulation of the geometric attenuation factor derived from Smith
representation. We also provide the analytical derivations for importance sampling isotropic and
anisotropic materials. As shown in the results, this new representation offers a finer control of
a wide range of materials, while extending the capabilities of fitting parameters with captured
data.

This file contains the mathematical justifications concerning the Student’s t Normal Distribution
Function (STD). We provide all the mathematical details and links for all the expressions given in the
paper: in-depth presentation of the new distributions family; proof that STD actually corresponds
to Beckmann when γ→∞; analytical smith-Bourlier GAF derivation based on STD, and discussion
about correlated and uncorrelated GAFs; formulas for the specific cases of the discrete values of γ;
details about the analytical cumulative density function and its inversion for importance sampling.
We also provide the demonstration for using the visible normals distribution and the constraints
which should be handled in the practical case, as well as some implementation details.
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1 A new family of normal distribution functions

Several normal distributions proposed in the literature define (in addition to roughness often denoted
as σ) a second parameter for controlling the shape of the function [12, 2, 4, 10]. Unfortunately, to
the best of our knowledge, none of them provide an analytical derivation of the Smith’s GAF. We
address this issue and propose a new family of normal distributions. The latter is inspired by the
ABC model described by Church et al. [6], which was first introduced and adapted to the slopes
distribution of microfacets by Löw et al. [12].

Our goal is to generalize/include both Beckmann and GGX distributions, since they are very
popular in the computer graphics community, and they are also the only ones which offer an ana-
lytical Smith’s GAF formulation. Note that the model proposed by Burley et al. [4] corresponds to
a generalization of GGX only while the work proposed by Holzschuch et al. [10] corresponds to a
generalization of Beckmann’s distribution only.

The general expression of this new distribution family is given by:

DG(θm) =
A

π cos4 θm (1 +B tan2 θm)
C
. (1)

To ensure the normalization of the distribution, A is expressed using two intermediate values B
and C:

DG(θm) =
(C − 1)B

π cos4 θm (1 +B tan2 θm)
C
, (2)

with B 6= 0 and C 6= 1. GGX is obtained with B = 1
σ2 and C = 2. Finally, DG tends to Beckmann

when C →∞ and BC tends to 1
σ2 .

The slopes distribution of our general formulation is:

PG22(p, q) =
(C − 1)B

π (1 +B(p2 + q2))C
. (3)

This latter equation is actually a standard bivariate Student’s t-distribution. The one dimen-
sional distribution of slopes in the incidence plane is given by:

PG2 (q) =
Γ(C − 1

2)
√
B(C − 1)

Γ(C)
√
π(1 +Bq2)C−

1
2

. (4)

The latter equation is computed in the same manner as for the STD distribution and explained
in Section 3. Finally, the ΛG(θ) function which appears in the Smith’s GAF formulation is:

ΛG(θ) =
1

µ

∫ +∞

µ
(q − µ)PG2 (q) dq

=
Γ(C − 1

2)

Γ(C)
√
π

(
(C − 1)(1 +Bµ2)

3
2
−C

µ
√
B(2C − 3)

+ µ
√
B(C − 1) 2F1

(
1

2
, C − 1

2
;
3

2
;−Bµ2

))
− 1

2
, (5)

where µ = cot θ. The mathematical development is the same as for STD expressed in Section 3.
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It is possible to determine the nth moment of the one dimensional distribution of slopes PG2 (q)
with

νn =

∫ +∞

−∞
qnPG2 (q)dq. (6)

Note that the moment νn is defined only for C > 1 + n
2 . The odd order moments are zero, the

distribution is standardized (ν1 = 0 for C > 3
2) and symmetric (ν3 = 0 for C > 5

2). For n = 2k even
number, we have for C > 1 + k:

ν2k =
B−kΓ(k + 1

2)Γ(C − 1− k)
√
πΓ(C − 1)

. (7)

The variance, defined for C > 2, is ν2 = 1
2B(C−2) .

The excess kurtosis (which measures the heaviness of the distribution tail) is defined for C > 3.
It does not depend of B and is given by ν4

ν22
− 3 = 3

C−3 .

1.1 Interesting subsets of distributions

In the following, we denote γ = C. To be derived easily for anisotropy, a distribution must be
shape invariant. This characteristic is obtained if B = f

σ2
1. Subsequently, various sub-family of

distributions can be derived.

With f = 1
The distribution is

DHC(θm) =
(γ − 1)σ2γ−2

π cos4 θm(σ2 + tan2 θm)γ
. (8)

and

ΛG(θ) =
Γ(γ − 1

2)

Γ(γ)
√
π

(
σ

µ

γ − 1

2γ − 3
(1 +

µ2

σ2
)
3
2
−γ +

µ

σ
(γ − 1) 2F1

(
1

2
, γ − 1

2
;
3

2
;−µ

2

σ2

))
− 1

2
,

which corresponds to the Hyper-Cauchy distribution first introduced by Wellems et al. [14] and used
to fit measured BRDF by Butler and Marciniak [5] without Smith’s GAF evaluation. The GGX
distribution is included by Hyper-Cauchy (when γ = 2). However, when γ → ∞, the distribution
becomes a Dirac distribution and does not encompass the Beckmann distribution. Intuitively, when γ
increases, the surface is smoother. This behavior is already controlled by the roughness σ parameter,
reducing the interest of having a new parameter to control the distribution shape. In addition, the
variance associated with Hyper-Cauchy strongly decreases when γ increases, which is an significant
weakness for rendering purposes.

With f = 1
(γ−2)

The distribution is:

D(θm) =
(γ − 1)(γ − 2)γ−1σ2γ−2

π cos4 θm((γ − 2)σ2 + tan2 θm)γ
. (9)

The variance of this distribution is σ2

2 for γ > 2, which does not depend on γ. This family of
distributions encompasses Beckmann when γ → ∞, but it is not defined when γ = 2 and does not
include GGX.

1Heitz shows that a distribution is shape invariant if it has the form f( tan θ
σ

)

σ2 cos4 θ
[8].
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With f = 1
(γ−1)

The distribution corresponds to Student’s t Normal Distribution Function (STD). Our paper and
the following sections of this document detail all the expressions of the distribution, its associated
Smith’s GAF and importance sampling analytical representations. This solution appears as a good
compromise. It includes GGX and Beckmann; its variance moderately changes with γ. A comparison
is shown in Figure 1 between this STD normal distribution and the Hyper-Cauchy one.

Finally, note that B = 1
σ2(γ−x)

with x a real number offers more flexibility to define new distri-
bution subsets. We think that our general expression of distributions opens future insights in this
research field.

1.2 Anisotropy and Importance Sampling

As mentioned previously, the distribution is shape invariant if the expression of B has the form f
σ2 .

Starting with this assumption of shape invariance B = f
σ2 , it is possible to define the anisotropic

version for the general distribution:

DG(m) =
(C − 1)f

πσxσy cos4 θm (1 + f A(ϕm) tan2 θm)
C

(10)

with A(ϕm) =
(

cos2(ϕm)
σ2
x

+ sin2(ϕm)
σ2
y

)
. Importance sampling can also be performed with this general

expression. Following the same mathematical reasoning as in Section 6, with (ξ1, ξ2) two uniform
random numbers in [0, 1)2, θm and ϕm can be importance sampled with:

ϕm = arctan

(
σy
σx

tan(2πξ1)

)
(11)

and

θm = arctan

√
(1− ξ2)

1
1−C − 1

f A(ϕm)
. (12)
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Figure 1: Comparison between STD and Hyper-Cauchy. Note that the Hyper-Cauchy tends to a
dirac when the γ parameter increases, the surface becomes smoother; this behavior already corre-
sponds to the influence of the roughness parameter σ.

6



2 STD = Beckmann when γ →∞
STD is equivalent to the Beckmann distribution when γ → ∞. The Beckmann distribution DBeck

can be written as a power series:

DBeck(θm) =
exp(− tan2 θm/σ

2)

πσ2 cos4 θm
=

1

πσ2 cos4 θm

+∞∑
k=0

1

k!

(
− tan2 θm

σ2

)k
.

Similarly, the STD distribution can be expanded with a Taylor series:

DSTD(θm) =
(γ − 1)γσ2γ−2

π cos4 θm ((γ − 1)σ2 + tan2 θm)
γ =

1

π cos4 θmσ2
(

1 + tan2 θm
(γ−1)σ2

)γ
=

1

πσ2 cos4 θm

(
+∞∑
k=0

(
−γ
k

)(
tan2 θm

(γ − 1)σ2

)k)

=
1

πσ2 cos4 θm

(
+∞∑
k=0

γ(γ + 1) · · · (γ + k − 1)

(γ − 1)kk!

(
− tan2 θm

σ2

)k)
,

with lim
γ→+∞

γ(γ+1)···(γ+k−1)
(γ−1)k

= 1, and therefore:

lim
γ→+∞

DSTD(θm) =
1

πσ2 cos4 θm

+∞∑
k=0

1

k!

(
− tan2 θm

σ2

)k
= DBeck(θm).
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3 GAF computation for STD

3.1 Uncorrelated GAF

The GAF is computed using the same process as previously proposed in [3, 8, 13]. The normal
distribution is first expressed in the slopes space:

PSTD22 (p, q) = DSTD(θm) ∗ cos4 θm =
(γ − 1)γσ2γ−2

π((γ − 1)σ2 + p2 + q2)γ
, (13)

with p2 + q2 = tan2 θm. The one dimensional distribution of slopes in the incidence plane is given
by:

PSTD2 (q) =

∫ ∞
−∞

PSTD22 (p, q) dp

=
(γ − 1)γσ2γ−2

π ((γ − 1)σ2 + q2)γ

∫ ∞
−∞

dp(
p2

(γ−1)σ2+q2
+ 1
)γ . (14)

Using the substitution t = p√
(γ−1)σ2+q2

, the previous integral becomes:

PSTD2 (q) =
(γ − 1)γσ2γ−2

π ((γ − 1)σ2 + q2)γ−
1
2

∫ ∞
−∞

dt

(t2 + 1)γ

=
(γ − 1)γσ2γ−2Γ(γ − 1

2)
√
π((γ − 1)σ2 + q2)γ−

1
2 Γ(γ)

, (15)

which is valid for γ > 1/2 and with Γ(γ) =
∫ +∞

0 xγ−1e−x dx the Gamma function. Finally, the
GAF G1(θ) is defined as:

GSTD1 (θ) =
1

1 + ΛSTD(µ)
, (16)

where µ = cot θ and

ΛSTD(θ) =
1

µ

∫ +∞

µ
(q − µ)PSTD2 (q) dq

=
(γ − 1)γσ2γ−2

√
πµ

Γ(γ − 1
2)

Γ(γ)

∫ +∞

µ
(q − µ)

dq

((γ − 1)σ2 + q2)γ−
1
2

=
(γ − 1)γσ2γ−2

√
πµ

Γ(γ − 1
2)

Γ(γ)
(I1(θ)− I2(θ)) , (17)

where

I1(θ) =

∫ +∞

µ

q

((γ − 1)σ2 + q2)γ−1/2
dq

= −
(
(γ − 1)σ2 + µ2

)3/2−γ
3− 2γ

, (18)

and

I2(θ) = µ

∫ +∞

µ

dq

((γ − 1)σ2 + q2)γ−
1
2

=
µ

(γ − 1)γ−
1
2σ2γ−1

∫ +∞

µ

dq(
1 + q2

(γ−1)σ2

)γ− 1
2

. (19)
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With the substitution t = q√
(γ−1)σ2

, the integral I2 becomes:

I2(θ) =
µ
√

(γ − 1)σ2

(γ − 1)γ−
1
2σ2γ−1

∫ +∞

µ√
(γ−1)σ2

dt

(1 + t2)γ−
1
2

=
µ

((γ − 1)σ2)γ−1

√π Γ(γ − 1)

2 Γ(γ − 1
2)
−
µ 2F1

(
1
2 , γ −

1
2 ; 3

2 ;− µ2

(γ−1)σ2

)
√

(γ − 1)σ2

 , (20)

where 2F1 (a, b; c; z) = Γ(c)
Γ(a)Γ(b)

∑+∞
n=0

Γ(a+n)Γ(b+n)
Γ(c+n)

zn

n! is the Gauss hypergeometric function. Using
Equations 19 and 20 in Equation 17, ΛSTD can be written as follows:

ΛSTD(θ) =
Γ(γ − 1

2)

Γ(γ)
√
π

(
(γ − 1)γ

2γ − 3

σ((γ − 1) + µ2

σ2 )
3
2
−γ

µ
+
√
γ − 1

µ

σ
× 2F1

(
1

2
, γ − 1

2
;
3

2
;
−µ2

(γ − 1)σ2

))
− 1

2
. (21)

3.2 Correlated GAF

For comparison purposes with GGX and Beckmann distributions already implemented in Mitsuba
[11], all the renderings in the paper are performed with the uncorrelated Smith’s GAF:

G(i, o,m) = G1(i,m)×G1(o,m) =
1

1 + Λ(i)
× 1

1 + Λ(o)
. (22)

The STD distribution can also obviously be used with the correlated GAF:

G(i, o,m) =
1

1 + Λ(i) + Λ(o)
, (23)

without any change in all the mathematical developments and quality results. Note that G = 0 if
i ·m < 0 or o ·m < 0. The correlated GAF is considered as physically more plausible [8] and limits
surface darkening (without removing it) for high roughness values as shown in Figure 2. Although
the correlated GAF is known to be preferable for lowering masking-shadowing effects, darkening still
remains important because light interreflections between microfacets are not handled.

As the uncorrelated GAF impacts the surface brightness, the stability of the STD distribution
could be questionned for low value of γ (because visible normals importance sampling is not used).
We have made several tests with the correlated GAF, and when γ < 1.8 without using visible
normals (i.e. the worst case) the noise is actually slightly more visible (Figure 3). Note that in both
cases, some spikes remain visible and importance sampling using the distribution of visible normals
should remove (or at least reduce) this effect. This point is discussed in Section 7.

9



Figure 2: The correlated GAF is physically more plausible and limits the darkening issue due to the
energy loss. This problem still remains important when the roughness σ is large and the γ parameter
is less than 2. All the renderings are made with the STD normals distribution.

Figure 3: Comparison of importance sampling strategies (64 samples per pixel) on rough dielectric
surface with a correlated and uncorrelated GAF. Some spikes are visible in both cases but when
γ < 1.8, this phenomenon is slightly more visible with the correlated GAF.
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4 Discrete formulas for the STD GAF

Special functions appearing in the GAF and more particularly the Gauss hypergeometric function
2F1 can impact negatively the computation time. It is possible to derive analytic equations for
particular values of γ. The mathematical process remains the same as for the general cases (see
Section 3), but the derivations of the one dimensional distribution of slopes PSTD2 and the ΛSTD

function differ slightly:

PSTD2 (q) =
(γ − 1)γσ2γ−2

π ((γ − 1)σ2 + q2)γ−
1
2

∫ ∞
−∞

dt

(t2 + 1)γ
,

and using t = tan x:

PSTD2 (q) =
(γ − 1)γσ2γ−2

π ((γ − 1)σ2 + q2)γ−
1
2

∫ π
2

−π
2

dx

(tan2 x+ 1)γ−1

= F

∫ π
2

−π
2

(cos2 x)γ−1 dx, (24)

with F = (γ−1)γσ2γ−2

π((γ−1)σ2+q2)γ−
1
2
. The integral can be solved with the integer and half-integer values for γ.

In these cases, the infinite sum inside the 2F1 function is replaced by a finite one, as shown below.

4.1 Integer discrete case

Let N+1 = {N | γ > 1} denoting the positive integer set. Using the Euler’s formula cosx = eix+e−ix

2
and the Newton generalized binomial theorem, Equation 24 becomes:

PSTD2 (q) =
F

22γ−2

∫ π
2

−π
2

(eix + e−ix)2γ−2 dx =
F

22γ−2

∫ π
2

−π
2

2γ−2∑
k=0

(
2γ − 2

k

)
ei(2γ−2−2k)x dx

=
F

22γ−2

2γ−2∑
k=0

(
2γ − 2

k

)∫ π
2

−π
2

ei(2γ−2−2k)x dx

=
F

22γ−2

2γ−2∑
k=0

(
2γ−2
k

)
i(2γ − 2− 2k)

(
ei(2γ−2−2k)π

2 − e−i(2γ−2−2k)π
2

)

=
F

22γ−2

2γ−2∑
k=0

(
2γ−2
k

)
(γ − 1− k)

sin ((γ − 1− k)π) . (25)

In Equation 25, the all terms of the sum are equal to zero except when k = γ− 1 for which we have:

PSTD2 (q) =
F

22γ−2

(
2γ − 2

γ − 1

)∫ π
2

−π
2

e0 dx =
F

22γ−2

(
2γ − 2

γ − 1

)
π

=
πF

22γ−2

(2γ − 2)!

(γ − 1)!2
,

and finally with some mathematical simplifications:

PSTD2 (q) =
(γ − 1)γσ2γ−2

22γ−2 ((γ − 1)σ2 + q2)γ−
1
2

× (2γ − 2)!

(γ − 1)!2
. (26)
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Equation 26 is used to evaluate the ΛSTD function:

ΛSTD(θ) =
1

µ

∫ +∞

µ
(q − µ)PSTD2 (q) dq

=
(γ − 1)γσ2γ−2(2γ − 2)!

22γ−2(γ − 1)!2µ

(∫ +∞

µ

q dq

((γ − 1)σ2 + q2)γ−
1
2

− µ
∫ +∞

µ

dq

((γ − 1)σ2 + q2)γ−
1
2

)

=
(γ − 1)γσ2γ−2(2γ − 2)!

22γ−2(γ − 1)!2µ

((γ − 1)σ2 + µ2
) 3

2
−γ

2γ − 3
−

µ

(γ − 1)γ−
1
2σ2γ−1

∫ +∞

µ

dq((
q√

γ−1σ2

)
+ 1
)γ− 1

2

 ,

using t = µ
σ
√
γ−1

in the integral provides:

ΛSTD(θ) =
(γ − 1)γσ2γ−2(2γ − 2)!

22γ−2(γ − 1)!2µ

((γ − 1)σ2 + µ2
) 3

2
−γ

2γ − 3
− µ

((γ − 1)σ2)γ−1)

∫ +∞

µ√
γ−1σ

dt

(t2 + 1)γ−
1
2

 .

(27)

With a second substitution t = tanx, the latter becomes:∫ +∞

µ√
γ−1σ

dt

(t2 + 1)γ−
1
2

=

∫ π
2

arctan
(

µ√
γ−1σ

)(cosx)2γ−3 dx

=

∫ π
2

arctan
(

µ√
γ−1σ

) cosx (1− sin2 x)γ−2 dx

=

∫ π
2

arctan
(

µ√
γ−1σ

) cosx

γ−2∑
k=0

(
γ − 2

k

)
(− sin2 x)k dx

=

γ−2∑
k=0

(
γ − 2

k

)
(−1)k

2k + 1

(
1− sin2k+1

(
arctan

µ√
γ − 1σ

))

=

γ−2∑
k=0

(
γ − 2

k

)
(−1)k

2k + 1

1−

(
µ

σ
√

(γ − 1) + µ2

σ2

)2k+1
 . (28)

Using Equation 28 in 27 and re-ordering terms:

ΛSTD(θ) = (γ − 1)A1 (29)σ
µ

√
γ − 1

(1 + µ2

(γ−1)σ2 )3/2−γ

2γ − 3
−A2

 ,

where
(30)
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A1 =
(2γ − 2)!

22γ−2(γ − 1)!2
,

A2 =

γ−2∑
k=0

(
γ − 2

k

)
(−1)k

2k + 1
A3(k),

A3(k) = 1−

 µ

σ
√

(γ − 1) + µ2

σ2

2k+1

.

4.2 Half-integer discrete case

Let N1/2 = {n+1/2 | n ∈ N & n ≥ 2} denoting the positive half-integer set, Equation 24 becomes:

PSTD2 (q) = F

∫ π
2

−π
2

(cos2 x)A−
1
2 dx,

with γ = A+ 1
2 . Thus:

PSTD2 (q) = F

∫ π
2

−π
2

(cosx)2A−1 dx, where A− 1 is a natural number,

= F

∫ π
2

−π
2

cosx(1− sin2 x)A−1 dx,

= F

∫ π
2

−π
2

cosx
A−1∑
k=0

(
A− 1

k

)
(− sin2 x)k dx

= F

γ− 3
2∑

k=0

(
γ − 3

2

k

)
(−1)k

∫ π
2

−π
2

cosx(sinx)2k dx

= F

γ− 3
2∑

k=0

(
γ − 3

2

k

)
(−1)k2

2k + 1

= F

γ− 3
2∑

k=0

(
γ − 3

2

k

)
(−1)k2

2k + 1

=
2(γ − 1)γσ2γ−2

π ((γ − 1)σ2 + q2)γ−
1
2

γ− 3
2∑

k=0

(
γ − 3

2

k

)
(−1)k

2k + 1
. (31)
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Equation 31 is used to evaluate the ΛSTD function:

ΛSTD(θ) =
2(γ − 1)γσ2γ−2

π ((γ − 1)σ2 + q2)γ−
1
2

γ− 3
2∑

k=0

(
γ − 3

2

k

)
(−1)k

(∫ +∞

µ

q dq

((γ − 1)σ2 + q2)γ−
1
2

−

µ

∫ +∞

µ

dq

((γ − 1)σ2 + q2)γ−
1
2

)
, (32)

and using the same process as for Equation 27:

ΛSTD(θ) =
2(γ − 1)γσ2γ−2

π ((γ − 1)σ2 + q2)γ−
1
2

γ− 3
2∑

k=0

(
γ − 3

2

k

)
(−1)k

((γ − 1)σ2 + µ2
) 3

2
−γ

2γ − 3
−

µ

((γ − 1)σ2)γ−1)

∫ +∞

µ√
γ−1σ

dt

(t2 + 1)γ−
1
2

)
. (33)

With a second substitution t = tanx, the latter integral becomes:∫ +∞

µ√
γ−1σ

dt

(t2 + 1)γ−
1
2

=

∫ π
2

arctan
(

µ√
γ−1σ

)(cosx)2γ−3 dx

=

∫ π
2

arctan
(

µ√
γ−1σ

)
(
eix + e−ix

2

)2γ−3

dx

=
1

22γ−3

∫ π
2

arctan
(

µ√
γ−1σ

) (eix + e−ix
)2γ−3

dx

=
1

22γ−3

∫ π
2

arctan
(

µ√
γ−1σ

)
2γ−3∑
k=0

(
2γ − 3

k

)
ei(2γ−3−k)xe−ikx dx

=
1

22γ−3

∫ π
2

arctan
(

µ√
γ−1σ

)
2γ−3∑
k=0

(
2γ − 3

k

)
ei(2γ−3−2k)x dx. (34)

The series over the exponential can be re-organized. Indeed, the first term plus the last one corre-
sponds to the Euler formula of the cosine, the second one plus the second last one also and so on.
As the series is over an odd number of term, the remaining is equal to e0 = 1. Finally:

∫ +∞

µ√
γ−1σ

dt

(t2 + 1)γ−
1
2

=
1

22γ−4

γ− 5
2∑

k=0

(
2γ − 3

k

)∫ π
2

arctan
(

µ√
γ−1σ

) cos ((2γ − 3− 2k)x) dx+

1

22γ−3

(
2γ − 3

k

)(
π

2
− arctan

(
µ√

γ − 1σ

))

=
1

22γ−4

γ− 5
2∑

k=0

(
2γ − 3

k

)(− sin

(
(2γ − 3− 2k) arctan

(
µ√

(γ−1)σ

)))
2γ − 3− 2k

+

1

22γ−3

(
2γ − 3

γ − 3/2

)(
π

2
− arctan

(
µ√

(γ − 1)σ

))
(35)

14



The complete ΛSTD for the half-integer values of γ can be summarized using Equation 29 with:

A1 =
2

π

γ−3/2∑
k=0

(
γ − 3/2

k

)
(−1)k

2k + 1
, (36)

and
A2 =

1

22γ−4
A21 +

1

22γ−3
A22, (37)

and finally:

A21 =

γ−5/2∑
k=0

(
2γ − 3

k

)
1

2γ − 3− 2k
×(

− sin

(
(2γ − 3− 2k) arctan

(
µ√

(γ − 1)σ

)))

A22 =

(
2γ − 3

γ − 3/2

)(
π

2
− arctan

(
µ√

(γ − 1)σ

))
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5 STD expressions for particular γ values

Table 1 presents some expressions for particular values of γ. This can be useful if just one of
these formulation is needed. The Λ functions for anisotropic materials can be obtained using σ

µ =

tan θ
√
σ2
x cos2 ϕ+ σ2

y sin2 ϕ and the GAF is G1(θ) = 1
1+Λ(θ) .
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Table 1: STD expressions for particular γ values.

γ
=

2
DGGX(θ) isotropic ⇒ 1

πσ2 cos4 θ(1+ tan2 θ
σ2

)2

DGGX(θ) anisotropic ⇒ 1

πσxσy cos4 θ

(
1+tan2 θ( cos2 ϕ

σ2x
+ sin2 ϕ

σ2y
)

)2

Λ(θ) isotropic ⇒ 1
2

(√
µ2+σ2

µ − 1

)

γ
=

5/
2

DSTD(θ) isotropic ⇒ 1

πσ2 cos4 θ(1+ 2 tan2 θ
3σ2

)5/2

DSTD(θ) anisotropic ⇒ 1

πσxσy cos4 θ

(
1+ 2

3
tan2 θ( cos2 ϕ

σ2x
+ sin2 ϕ

σ2y
)

)5/2

Λ(θ) isotropic ⇒ 1
π arctan

(√
2
3
µ
σ

)
− 1

2 +
√

3
2
σ
πµ

γ
=

3

DSTD(θ) isotropic ⇒ 8

πσ2 cos4 θ(2+ tan2 θ
σ2

)3

DSTD(θ) anisotropic ⇒ 8

πσxσy cos4 θ

(
2+tan2 θ( cos2 ϕ

σ2x
+ sin2 ϕ

σ2y
)

)3

Λ(θ) isotropic ⇒ 1
2

(
µ4+3µ2σ2+2σ4

µ(µ2+2σ2)3/2
− 1
)

γ
=

7/
2

DSTD(θ) isotropic ⇒ 1

πσ2 cos4 θ(1+ 2 tan2 θ
5σ2

)7/2

DSTD(θ) anisotropic ⇒ 1

πσxσy cos4 θ

(
1+ 2

5
tan2 θ( cos2 ϕ

σ2x
+ sin2 ϕ

σ2y
)

)7/2

Λ(θ) isotropic ⇒ 1
3π arctan

(√
2
5
µ
σ

)
− 1 + 5

√
5
2
−6µ4+17µ2σ2+8σ4

6πµσ(2µ2+5σ2)

γ
=

4

DSTD(θ) isotropic ⇒ 81

πσ2 cos4 θ(3+ tan2 θ
σ2

)4

DSTD(θ) anisotropic ⇒ 81

πσxσy cos4 θ

(
3+tan2 θ( cos2 ϕ

σ2x
+ sin2 ϕ

σ2y
)

)4

Λ(θ) isotropic ⇒ 1
2

(
8µ6+60µ4σ2+135µ2σ4+81σ6

8µ(µ2+3σ2)5/2
− 1
)

γ
−→
∞

DBeckmann(θ) isotropic ⇒ e− tan2 θ/σ2

πσ2 cos4 θ

DBeckmann(θ) anisotropic ⇒ e
− tan2

(
cos2 ϕ

σ2x
+

sin2 ϕ

σ2y

)
πσxσy cos4 θ

Λ(θ) isotropic ⇒ 1
2

(
σe−µ

2/σ2

µ
√
π

+ erf(µ/σ)− 1
)
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6 Importance Sampling

The micro-facet normal m is sampled according to the probability density function pdfSTD(m) =
DSTD(m)|m · n| and its associated cumulative distribution function:

cdfSTD(m) =

∫ ϕm

ϕ=0

∫ θm

θ=0
DSTD(m) cos(θ) sin(θ) dθ dϕ

=

∫ ϕm

ϕ=0

∫ θm

θ=0

tan(θ)

πσxσy cos2(θ) (1 +A(ϕ) tan2(θ))
γ dθ dϕ, (38)

where A(ϕ) =
(

cos2(ϕ)
σ2
x

+ sin2(ϕ)
σ2
y

)
/(γ − 1). Note that we use here the mathematical expression

corresponding to the anisotropic version of STD. We first sample the micro-facet azimuthal angle
ϕm; the elevation angle θm is sampled secondly. The choice of ϕm is independent of θm. Thus, the
cdf becomes:

cdfSTD(ϕm) =

∫ ϕm

ϕ=0

1

2πσxσyA(ϕ)

∫ θm

θ=0

2A(ϕ) tan(θ)

cos2(θ)

(
1 +A(ϕ) tan2(θ)

)−γ
dθ dϕ

=

∫ ϕm

ϕ=0

1

2πσxσyA(ϕ)

1

γ − 1
dϕ

=

∫ ϕm

ϕ=0

1

2πσxσy

(
cos2(ϕ)
σ2
x

+ sin2(ϕ)
σ2
y

)dϕ
=

arctan
(
σx
σy

tan(ϕm)
)

2π
. (39)

The latter can be inverted (ξ1 is a uniform random number in [0, 1)):

ξ1 =
arctan

(
σx
σy

tan(ϕm)
)

2π

⇒ arctan

(
σx
σy

tan(ϕm)

)
= 2πξ1

⇒ ϕm = arctan

(
σy
σx

tan(2πξ1)

)
. (40)

We obtain here the same result as for GGX and Beckmann distributions.

Knowing the azimuthal angle ϕm, the cdf to sample θm is:

cdfSTD(θm) = 2π

∫ θm

θ=0

tan(θ)

πσxσy cos2(θ) (1 +A(ϕm) tan2(θ))
γ dθ

=
1

σxσyA(ϕm)

∫ θm

θ=0

2A(ϕm) tan(θ)

cos2(θ)

(
1 +A(ϕm) tan2(θ)

)−γ
dθ

=
1

σxσyA(ϕm)(1− γ)

(
(1 +A(ϕm) tan2 θ)1−γ − 1

)
=

1

σxσy

(
cos2(ϕm)

σ2
x

+ sin2(ϕm)
σ2
y

) (1− (1 +A(ϕm) tan2 θ)1−γ) . (41)
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This cdf can be inverted with ξ2 an other uniform random number in [0, 1):

ξ2

σxσy

(
cos2(ϕm)

σ2
x

+ sin2(ϕm)
σ2
y

) = cdfSTD(θm)

⇒ ξ2 =
(
1− (1 +A(ϕm) tan2 θ)1−γ)

⇒ tan2 θm =
(1− ξ2)

1
1−γ − 1

A(ϕm)

⇒ θm = arctan

√
(1− ξ2)

1
1−γ − 1

A(ϕm)
. (42)

19



7 Importance Sampling using the distribution of visible normals

E. Heitz and E. D’Eon propose to improve the importance sampling of micro-facets based BSDF [9].
Instead of using the normal distribution directly (as presented in Section 6), they suggest to perform
a sampling based on a pdf built from the distribution of visible normals. Unfortunately, STD cannot
be used directly for with this approach. The process requires further investigation to propose an
elegant solution, which we leave for future work. We have chosen to describe in this section the
locks appearing when trying to blend importance sampling with the distribution of visible normals
proposed in [9] and our STD.

7.1 Mathematical background

We use the same notations as in [9] and its associated supplemental material file. The reader may
refer to these latter documents for more details.

First, the STD distribution of slopes is defined with σ = 1 as:

P 22(p, q) =
1

π

1

(1 + p2

γ−1 + q2

γ−1)γ

with p and q the slopes of the corresponding micro-facet normal. p is first sampled following the
one-dimensional distribution of visible slopes P 2

ωi(p). The one-dimensional distribution of slopes
P 2(p) is given by:

P 2(p) =

∫ ∞
−∞

P 22(p, q) dq

=
1

π

∫ ∞
−∞

1

(1 + p2

γ−1 + q2

γ−1)γ
dq

=
1√
π

(γ − 1)γΓ(γ − 1
2)

Γ(γ)(γ − 1 + p2)γ−1/2
,

and P 2
ωi(p) is

P 2
ωi(p) =

(−p sin θi + cos θi)χ
+(−p sin θi + cos θi)P

2−(p)∫∞
−∞(−p′ sin θi + cos θi)χ+(−p′ sin θi + cos θi)P 2−(p′) dp′

=
G1(ωi)

cos θi
(−p sin θi + cos θi)χ

+(−p sin θi + cos θi)
(γ − 1)γΓ(γ − 1

2)
√
πΓ(γ)(γ − 1 + p2)γ−1/2

,

with θi the elevation angle corresponding to the incident direction ωi. The associated cdf is:

C2
ωi(p) =

∫ p

−∞
P 2−
ωi (p′) dp′

=
G1(ωi)(γ − 1)γΓ(γ − 1

2)
√
πΓ(γ)

(
(γ − 1)γ−1/2 p 2F1

(
1

2
, γ − 1

2
,
3

2
,
−p2

γ − 1

)
+

√
πΓ(γ)

2(γ − 1)γΓ(γ − 1/2)
+

tan θi

(2γ − 3)(p2 + γ − 1)γ−3/2

)
.

Unfortunately, this cdf is non invertible in the general case due to the special function 2F1. A first
idea should be to precompute and tabulate its values for integer and half-integer values of γ but the
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GAF G1 remains challenging to handle.

The second part of the sampling process proposed in [9] is to sample the q slope knowing p by
using the conditional pdf P 2|2(q|p)

P 2|2(q|p) =
P 22(p, q)∫∞

−∞ P
22(p, q′) dq′

=

1

(1+ p2

γ−1
+ q2

γ−1
)γ∫∞

−∞
1

(1+ p2

γ−1
+ q′2
γ−1

)γ
dq′

.

The associated conditional cdf is:

C2|2(q|p) =

∫ q
−∞

1

(1+ p2

γ−1
+ q′2
γ−1

)γ
dq′∫∞

−∞
1

(1+ p2

γ−1
+ q′2
γ−1

)γ
dq′

=

∫ q
−∞

1
( 1
γ−1

+p2+q′2)γ
dq′∫∞

−∞
1

( 1
γ−1

+p2+q′2)γ
dq′

.

Based on the change of variable a = 1
γ−1 + p2, the formulation becomes independent of p:

C2|2(q|p) =

∫ q
−∞

1

(1+ q′2
a

)γ
dq′∫∞

−∞
1

(1+ q′2
a

)γ
dq′

.

Let be z = q√
a
and z′ = q′√

a
, we obtain:

C2|2(q|p) = Cz(z, γ) =

∫ z
−∞

1
(1+z′2)γ

dq′∫∞
−∞

1
(1+z′2)γ

dq′
.

=
1

2
+
zΓ(γ) 2F1

(
1
2 , γ,

3
2 ,−z

2
)

√
πΓ(γ − 1

2)
.

Here again, the cdf is not directly invertible, which is also the case with GGX. Heitz and D’Eon [9]
propose a rational polynomial to fit C−1

z which is conceivable for integer and half-integer values of
γ ∈ [2, 50]. Note that to do this, the first blocking point about the p sampling, previously presented,
must be solved.

7.2 Pseudo importance sampling using the visible normals distribution

Importance sampling using the visible normals distribution (called VNIS in this section) drastically
improves rendering and must be implemented to make fully practicable the proposed distribution.
As mentioned previously, find a closed form for VNIS with STD remains challenging. We performed
some experiments about the VNIS efficiency with GGX and Beckmann (Figure 4) and made the
following observations. Firstly, the variance reduction is improved when the roughness σ increases.
When σ ≤ 0.01, the variance reduction is low and normal importance sampling compared to VNIS
offers quasi-identical quality results. Secondly, GGX and Beckmann are special cases of STD with
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γ = 2 and γ > 40 respectively and VNIS from these distributions could be used for larger set of
values of γ. Using Beckmann VNIS offers pleasant results for γ > 10 independently of the values
used for σ (σ > 0.01) used (even if the quality increases according to roughness). GGX VNIS could
be used for 1.5 < γ ≤ 5 with σ > 0.3. Two gaps appear: one for 0.01 < σ ≤ 0.3 and another for
5 < γ ≤ 10. In that cases, VNIS strategy must be carefully chosen otherwise the quality results is
worse than with normal importance sampling. During our experiments, we observed that Beckmann
VNIS can be used from γ ≥ 5 with σ = 0.3 without lowering the quality compared to normal
importance sampling. This lower bound of the Beckmann VNIS can be controlled by a simple linear
interpolation. Concerning GGX VNIS, good sampling is obtained for γ = 5 and σ = 0.3. We adopt
the same strategy as for Beckmann VNIS to control the upper bound of the use of GGX VNIS.
Starting from these observations, we propose the simple pseudo-VNIS algorithm 1 which makes the
STD distribution practical. When good sampling is not guaranteed by GGX or Beckmann VNIS,
a simple importance sampling is performed as described in Section 6. Moreover, the weight with
uncorrelated GAF cannot be simplified as for GGX and Beckman and it stays:

weight(v) =
G

G1(v)
(43)

Some results obtained with this simple method are shown in Figure 5. Note that this experiment
must be deepened but we think it opens new insights for future work on STD VNIS.

Algorithm 1 Pseudo-VNIS algorithm
1: if σ ≤ 0.01 then
2: Perform normal sampling as explained in Section 6
3: else if γ > 10 then
4: Perform VNIS with Beckmann distribution
5: else
6: GGX upper bound ← min

(
5, 2 + σ

0.1

)
7: Beckmann lower bound ← max

(
5, 10− 5× max(0, σ−0.2)

0.1

)
8: if γ < GGX upper bound then
9: Perform VNIS with GGX distribution

10: else if γ > Beckmann lower bound then
11: Perform VNIS with Beckmann distribution
12: else
13: Perform normal sampling as explained in Section 6
14: end if
15: end if
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Figure 4: VNIS (64 samples per pixel) for rough dielectric material with the Beckmann and GGX
distributions (please refer to the digital version for accurate visualization and zoom on picture to
distinguish the MC noise).
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Figure 5: Pseudo-VNIS (64 samples per pixel) with algorithm 1 with rough dielectric material for
different values of γ (please refer to the digital version for accurate visualization and zoom on picture
to distinguish the MC noise).
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8 Implementation details for the 2F1 function

The special function 2F1

(
1
2 , γ −

1
2 ,

3
2 , z
)
appearing in the Equation 21 are handled by the GNU

Scientific Library [7] (GSL), and the Gauss hypergeometric function is defined for z ∈] − 1, 1] in
GSL. Unfortunately, in our case, z = − cot2 θ

(γ−1)σ2 and takes its value on ]−∞, 0]. In such a case, linear
transformations can be derived to rescale the fourth parameter of the function 2F1 in ]− 1, 1] [1].

Using some of these transformations, we propose an algorithm to compute the 2F1 function. The
thresholds used in the if-statements in lines 6 and 10 prevent from the non convergence of computing
due to the maximum iteration number fixed in GSL.

Algorithm 2 Calculate the Gauss hypergeometric function 2F1

(
1
2 , γ −

1
2 ,

3
2 , z
)
with GSL.

Require: z ∈]−∞, 0]
1: if z == 0 then
2: return ∞
3: end if
4: if z ≤ −1 then
5: normalZ ← z/(z − 1) // Normalize the z parameter
6: if γ ≥ 12 || normalZ ≥ 0.99 then // use formula 15.3.7 in [1]

7: x← Γ( 3
2

)Γ(γ)

Γ(γ− 1
2

)
(−z)−a gsl_sf_hyperg_2F1(1

2 , γ −
1
2 , 2− γ,

1
z )

8: y ← Γ( 3
2

)Γ(1−γ)

Γ( 1
2

)Γ(2−γ)
(−z)−bgsl_sf_hyperg_2F1(γ − 1

2 , γ − 1, γ, 1
z )

9: return x+ y
10: else if γ = 2 || γ ≥ 12 then // use formula 15.3.5 in [1]
11: return (1− z)−b gsl_sf_hyperg_2F1(γ − 1

2 , 1,
3
2 , normalZ)

12: else // use formula 15.3.4 in [1]
13: return (1− z)−a gsl_sf_hyperg_2F1(γ − 1

2 , 2− γ,
3
2 , normalZ)

14: end if
15: else // Use directly the function provided in GSL
16: return gsl_sf_hyperg_2F1(1

2 , γ −
1
2 ,

3
2 , z)

17: end if
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