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Abstract:  
Introduction Experiments in metabolomics rely on the identification and quantification of metabolites in complex 

biological mixtures. This remains one of the major challenges in NMR/mass spectrometry analysis of metabolic 

profiles. These features are mandatory to make metabolomics asserting a general approach to test a priori 

formulated hypotheses on the basis of exhaustive metabolome characterization rather than an exploratory tool 

dealing with unknown metabolic features. 

 

Objectives In this article we propose a method, named ASICS, based on a strong statistical theory that handles 

automatically the metabolites identification and quantification in proton NMR spectra.  

Methods A statistical linear model is built to explain a complex spectrum using a library containing pure metabolite 

spectra. This model can handle local or global chemical shift variations due to experimental conditions using a 

warping function. A statistical lasso-type estimator identifies and quantifies the metabolites in the complex 

spectrum. This estimator shows good statistical properties and handles peak overlapping issues. 

Results The performances of the method were investigated on known mixtures (such as synthetic urine) and on 

plasma datasets from duck and human. Results show noteworthy performances, outperforming current existing 

methods. 

Conclusion ASICS is a completely automated procedure to identify and quantify metabolites in 1H NMR spectra 

of biological mixtures. It will enable empowering NMR-based metabolomics by quickly and accurately helping 

experts to obtain metabolic profiles. 

Keywords: Metabolomics – Nuclear magnetic resonance – Identification of metabolites – Quantification of 

metabolites – NIST Plasma. 
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1 Introduction  
The development of new technologies has enabled the growth of the omics as a new science field. This refers to a 

field of biology focused basically on the study of the genome (genomics), the transcriptome (transcriptomics), the 

proteome (proteomics) or the metabolome (metabolomics) and their modulation by various stimuli. As a common 

trait, these different approaches produce very large datasets. Consequently, metabolomics experiments are 

conducted without any hypotheses on the discriminant metabolites to assess the differences between trial groups. 

Indeed, the whole characterization of the data would lead to intractable computational problems. Nevertheless, 

efficiency of metabolomics experiments relies on the identification and quantification of metabolites in complex 

biological mixtures (Blow 2008; Nicholson and Lindon 2008). One of the major challenges in NMR/mass 

spectrometry analysis of metabolic profiles remains the automatic metabolite identification from spectral data 

(Pontoizeau et al. 2010). Concerning proton NMR spectroscopy, each generated spectrum is usually first divided 
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into intervals called buckets (De Meyer et al. 2008; Alves et al. 2009). Then, the areas under the curve are computed 

for each bucket. These steps are repeated for each spectrum and multiple comparisons provide a list of buckets 

that are significantly different between the studied groups. Finally, NMR experts identify the metabolites involved 

in the significant buckets. By this approach, the identification of metabolites is restricted to significant ones. 

Another way to proceed would be to identify and quantify all the metabolites in each spectrum and to perform 

statistical analyses on these data. Today, this identification is mainly manually carried out by an expert, based on 

his knowledge and on direct comparisons with known metabolite spectra. This identification is tedious, time 

consuming and expert dependent (Tredwell et al. 2011). Furthermore, some problems, such as peak overlapping, 

warped spectra due to experimental variations or the high number of possible metabolites for a given chemical 

shift are very usual in complex mixtures and make identification very challenging. Recently, some automatic 

methods have been proposed for metabolite identification (see Ravanbakhsh et al. (2015) or Alonso et al. (2015) 

for a complete review) but none can be considered as an unanimous gold-standard. These methods could allow the 

use of metabolomics in a standard way using a priori formulated hypotheses on the metabolites by providing an 

automatic characterization of any complex 1D 1H NMR spectrum. 

This article proposes a new method called ASICS (Automatic Statistical Identification in Complex Spectra). 

ASICS works relying on a library of pure metabolites spectra. The identification of metabolites is performed by 

comparing the spectrum of the mixture with spectra of the library. These comparisons are carried out using a 

statistical theory with established statistical properties (Tardivel et al. 2017). ASICS handles experimental 

problems such as the baseline correction or the variation of chemical shifts. This method is very fast, very 

competitive with the methods cited above and could help NMR experts in the analysis of complex mixtures. The 

R code is available as online resource and could be used with any Bruker NMR file of a complex mixture. 

 

2 Materials and Methods 

2-1 Sample preparation and NMR spectroscopy 
A known mixture containing 5 metabolites in close concentrations and displaying close proton NMR signals was 

first prepared in replicate (n=5) to assess the performances of the method. Mean concentrations were 10.11 mM 

galactose, 4.86 mM GABA (-aminobutyric acid), 5.22 mM acetic acid, 20.10 mM L-lysine and 9.97 mM L-

tryptophane. The samples were prepared in deuterated water phosphate buffer (pH 7.0). 

Performances of ASICS were also assessed on the basis of a homemade synthetic urine sample (CDC 2010) 

prepared in ultrapure water (see Table S4 and Table S5 for details), duck plasma and a reference human plasma 

(NIST SRM1950). Details on the duck plasma analysis can be found in Theron et al. (2011) or in Bonnefont et al. 

(2014) and details on the plasma NIST SRM1950 are gathered as online resource 2. 

For NMR analysis, 500 µl of this synthetic urine sample was mixed with 200 µl of phosphate buffer (pH 7.0) 

prepared in deuterated water and containing 1 mM TSP. The mixture was vortexed, centrifuged at 5000g for 10 

min at 4°C and 600 µl of supernatant were transferred into a 5 mm NMR tube.  

The 1D 1H NMR spectra of 175 reference compounds were collected to build the spectral library (Table S2 in 

online resource 3). These compounds have been prepared at the concentration of 20 mM in phosphate buffer (0.2 

M; pH 7.0) prepared in D2O/H2O in a 70:30 ratio (v/v). 

All NMR spectra were recorded at 300 K using a Bruker Avance III HD spectrometer (1H frequency: 600.13 MHz, 

Bruker, Germany) with a 5 mm CQPCI cryoprobe.  

1H NMR spectra of synthetic urine sample and reference compounds were recorded using the Noesypr1d NMR 

sequence for the suppression of water resonance, with a mixing time of 100 ms. A total of 128 transients were 

collected into 32k data points using a spectral width of 20 ppm, a relaxation delay of 2 s and an acquisition time 

of 1.36 s. Prior to Fourier Transformation, an exponential line broadening function of 0.3 Hz was applied to the 

FID. 

All spectra were phase and baseline corrected using the Topspin v3.2 software (Bruker, Germany) and were 

calibrated to TSP signal ( 0 ppm). We apply BaselineCorrector (Wang et al. 2013) for automatically estimating 

the baselines of the different spectra. 
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2-2 Modelling the spectrum of the complex mixture 
A spectrum can be represented as a function over the range I of chemical shifts. All the spectra were normalized 

so that their area under the curve over I is 1. 

To model the spectrum of the complex mixture 𝑔, possible slight variations of chemical shifts with the 

experimental conditions have to be taken into account. The warping function 𝜙: 𝐼 → 𝐼 allows to model the variation 

of chemical shift, where 𝜙 is an increasing function and 𝐼 is an interval of the chemical shifts associated to a 

spectrum. If 𝑓 denotes the spectrum of a metabolite of the library, 𝑓 ∘ 𝜙 models the warped spectrum of the same 

metabolite observed in a different experimental condition.  

The spectrum of a complex mixture 𝑔 can be written as a combination of the warped spectra of the metabolites 

belonging to the library 

𝑔 = ∑  𝛼𝑖𝑓𝑖 ∘ 𝜙𝑖1≤𝑖≤𝑝 + 𝜀, 

 

where p is the number of metabolites of the library, 𝛼𝑖 is a non-negative number depending on the proportion of 

the ith metabolite in the complex mixture and on its number of hydrogen atoms,  𝑓𝑖 is the spectrum of the ith 

metabolite of the library and 𝜙𝑖 represents the corresponding warping function. Although the experimental 

conditions of the complex mixture spectrum 𝑔 are controlled, they are slightly different from those used to generate 

the spectra of the library. Finally, the term 𝜀 is a random error term. The structure of the noise 𝜀 is very important 

in the identification and quantification of metabolites in the mixture. Several observations of a spectrum obtained 

from the same metabolite allowed modeling the noise as  

𝜀 = √ ∑  𝛼𝑖𝑓𝑖 ∘ 𝜙𝑖
1≤𝑖≤𝑝

𝜀1 + 𝜀2,  

where 𝜀1 and 𝜀2 are standard independent white noises with known standard deviations 𝜎1 and 𝜎2. This equation 

models the signal taking into account both an additive noise 𝜀2 and a multiplicative one 𝜀1. The multiplicative 

noise is proportional to the intensity of the signal. The additive noise is the same whatever the signal and is always 

present even when the signal is equal to zero. These two noise parameters influence differently the performances 

of our method. The additive noise has a strong impact on the identification of the metabolites whereas the 

multiplicative one has a major impact on their quantification. It is very difficult to be more quantitative on the 

standard deviation of the additive noise on the detection performances because it depends strongly on some 

experimental conditions (operator, pH, equipment, baseline quality correction …). The multiplicative noise is 

commonly used in quantification methods. Usually values between 0.1 and 0.2 (which is quite common in 

metrology) are considered as acceptable to quantify. An estimation was carried out from our duplicated 

experiments and led to a value of 0.17. 

In this model, 𝑔 is observed, the spectra 𝑓1, … , 𝑓𝑝 are known, the 𝛼𝑖 's are unknown parameters, the 𝜙𝑖 are unknown 

warping functions, and the noise 𝜀 is unobserved. 

2-3 Cleansing step 
The first step of the method is to identify the metabolites of the library that cannot belong to the complex spectra.  

The chemical shift between two spectra of the same metabolites obviously depends on the experimental conditions 

(pH …). For a given metabolite, we assume that the maximum variation of the chemical shift is smaller than an 

upper bound M, which was fixed at 0.02 ppm. It is assumed that a metabolite belonging to a complex mixture must 

display its related signals in the complex spectra. Thus, a metabolite cannot belong to the complex mixture if at 

least one peak of its spectrum does not appear in the complex spectra. Consequently, a metabolite displaying a 

peak at a chemical shift 𝑑 cannot belong to a complex spectrum which does not present any peak in the interval 

[𝑑 − 𝑀, 𝑑 + 𝑀]. ASICS quickly detects these metabolites and reduces the number of metabolites of the library 

that need to be taken into account in the identification and quantification steps. 
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2-4 Identification of metabolites in a complex mixture 

The 𝑖𝑡ℎ metabolite is considered as identified in the complex mixture when its coefficient 𝛼𝑖 is greater than zero. 

The identification of the metabolites belonging to a complex mixture relies on the estimation of the active set 𝐴 

defined as follows 

𝐴 = {𝑖 ∈ {1, … , 𝑝} such that 𝛼𝑖 ≠ 0}. 

If a sparse estimator (estimator whose some components are exactly zero) 𝛼̂ = (𝛼̂1, … , 𝛼̂𝑝) of (𝛼1, … , 𝛼𝑝)  was 

available, the active set could be estimated as  

𝐴(𝛼̂) = {𝑖 ∈ {1, … , 𝑝} such that 𝛼̂𝑖 ≠ 0}. 

However, the warping functions 𝜙1, … , 𝜙𝑝 need to be known to obtain a sparse estimator of 𝛼1, … , 𝛼𝑝. To solve 

this problem, ASICS proceeds in two stages. 

During the first stage, the warping functions are successively estimated using non sparse estimates of (𝛼1, … , 𝛼𝑝) . 

At the beginning of the kth step of this first stage, the estimates of the first k-1 warping functions 𝜙1
(1)

, … . , 𝜙𝑘−1
(𝑘−1)

 

and non-sparse estimates 𝛼1
(𝑘−1)

, … , 𝛼𝑝
(𝑘−1)

 of 𝛼1, … , 𝛼𝑝 are known. The superscript in 𝜙𝑖
(𝑖)

 and 𝛼𝑖
(𝑘−1)

 indicates 

the step at which the estimate was obtained. 

The kth warping function is estimated by solving the following optimization problem 

arg min
𝜙𝑘,𝛼𝑘

‖𝑔 − 𝛼𝑘𝑓𝑘 ∘ 𝜙𝑘 − ∑ 𝛼𝑖
(𝑘−1)

𝑓𝑖 ∘ 𝜙𝑖
(𝑖)

1≤𝑖≤𝑘−1

− ∑ 𝛼𝑖
(𝑘−1)

𝑓𝑖

𝑘+1≤𝑖≤𝑝

‖

2

. 

The warping function 𝜙𝑘 is estimated so that the maximum variation of the chemical shift is smaller than M. 

This estimate is then used to update the non-sparse estimates of 𝛼1, … , 𝛼𝑝 as shown hereafter 

(𝛼1
(𝑘)

, … , 𝛼𝑝
(𝑘)

) = arg min
𝛼1,…,𝛼𝑝

‖𝑔 − ∑ 𝛼𝑖𝑓𝑖 ∘ 𝜙𝑖
(𝑖)

1≤𝑖≤𝑘 − ∑ 𝛼𝑖𝑓𝑖𝑘+1≤𝑖≤𝑝 ‖
2
. 

Figure 1 provides an illustration of this warping stage.  

         
Figure 1. On the left in solid line, the main peak of the creatinine in the spectrum of the synthetic urine. In dotted line, the same 

peak observed on the spectrum of the creatinine before the warping stage. On the right in dotted line, the main peak of the 

creatine spectrum observed after the warping stage. 

Note that, using this warping strategy, ASICS is able to take into account a chemical shift variation that is not only 

a unique translation on the whole spectrum. Local translations, dilations or tightenings would also been adjusted. 

However, this procedure is not able to create a new peak or to delete an existing one. 

These estimated warping functions are used at the second stage to derive lasso-type sparse estimates of (𝛼1, … , 𝛼𝑝) 

(Tibshirani 1996, Bühlmann et al. 2011) by minimizing in 𝛼1, … , 𝛼𝑝 the following expression 
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‖𝑈 (𝑔 − ∑ 𝛼𝑖

1≤𝑖≤𝑝

𝑓𝑖 ∘ 𝜙𝑖
(𝑖)

)‖

2

+ 𝜆 ∑ |𝛼𝑖|

1≤𝑖≤𝑝

, 

where 𝑈 is a linear transformation. This estimation gives a sparse estimation of the proportions 𝛼̂ and thus an 

estimation of the active set 𝐴(𝛼̂). When 𝜆 = 0, the so-called least squares estimator that is not sparse is obtained. 

Conversely, when the parameter 𝜆 is too large, all coefficients 𝛼1, … , 𝛼𝑝 become equal to zero. As a consequence 

the choice of 𝜆 plays an important role on the properties of the estimator 𝐴(𝛼̂). This choice, as well as that of the 

linear transformation 𝑈, is documented in Tardivel et al. (2017) to obtain an estimator of the active set showing 

good statistical properties. These properties guarantee a reliable identification of metabolites by controlling the 

two possible sources of errors: identify a metabolite that is not present in the complex mixture (false positive) or 

not identify a metabolite that is present (false negative). All these properties are based on an identifiability 

assumption: we assume that the library is identifiable up to a warping function i.e., in the library, there is no 

weighted sum of two (or more) spectra of pure metabolites (up to a warping function) that could result in a spectrum 

which could correspond to another metabolite. Assuming this assumption is met, all the properties of our lasso-

type estimator applied and the signal overlap of the different metabolites can be handled by ASICS.   

2-5 Quantification of the metabolites 
Lasso-type estimators of the parameters 𝛼1, … , 𝛼𝑝 are known to be biased (Hastie et al. 2009). For this reason, the 

quantification of metabolites is performed with a least squares method limited to the metabolites identified (i.e 

with 𝛼̂𝑖 greater than zero) at the previous step . The quantification of the metabolites is obtained through the relative 

concentrations that could be easily computed form the coefficients 𝛼1, … , 𝛼𝑝 and the numbers of hydrogen atoms 

of the metabolites. The concentrations obtained are given relatively to the largest one. There is no maximum bound 

to the measured concentration and, according to the different experimentations, ASICS will be able to detect a 

relative concentration of approximately 1%. Regarding absolute concentrations, and taking into account our 

equipment and our experimental conditions for data acquisition, metabolites at concentrations lower than 1 µM 

will be not detected (signal/noise ratio too low) whereas metabolites at concentrations higher than 1 M will result 

in a broadening of NMR signals, increasing signal overlapping. Any additional reference compound with known 

concentration is sufficient to obtain the absolute quantities. 

 

This whole procedure has been implemented on a R freeware code and all further results have been obtained using 

a classical personal computer and the R 3.2.2 version. All presented results could be computed using the code 

reported as online resource 1. The input parameters are the following: the complex mixture, the exclusion areas 

(by default [5.1;4.5] ppm to delete the water peak) and the maximum variation M allowed (by default 0.02 ppm). 

The output delivers the identified metabolites together with their estimated relative concentrations as well as both 

the estimated and real mixture spectra. The spectrum of the synthetic urine is gathered with an explanation on how 

to use the code. The interested user could also easily modify or replace our library by a personal / customized one. 

For a more user-friendly interface, ASICS is also implemented in Galaxy, a dedicated interface for metabolomic 

data treatment workflows (Guitton et al. 2017). 

 
The accuracy measure reported on the following results has been defined in Ravanbaksh et al. (2015) by ratio of 

correct labels (true positives plus true negatives) to the library size. 

 

3 Results and Discussion 

3-1 Assessment on known mixtures 

ASICS was firstly assessed on known mixtures. From the 5 metabolites mixture reported in table 1, ASICS always 

identified the 5 metabolites that are actually present. However, it provided some false positives (between 8 and 11 

depending on the considered replicate) yielding an accuracy measure ranging from 96.6% to 98.2%. The 

quantification results of ASICS on the known mixtures are reported in Table 1.  

 Mean of the 5 

estimated 

proportions 

Maximum of the 5 

estimated 

proportions 

Minimum of the 5 

estimated 

proportions 

Real proportion 

Lysine 1 1 1 1 

Galactose 0.409 0.434 0.392 0.503 
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Tryptophane 0.446 0.462 0.430 0.496 

Acetic Acid 0.156 0.125 0.180 0.259 

GABA 
 

0.248 0.278 0.237 0.242 
Table 1. Results of ASICS on the known mixtures. 

Due to the quantification of some non-present compounds, the mean estimated proportions were slightly below 

the real one. Indeed, the false positive compounds were all quantified below 3.3% with respect to the Lysine 

concentration. ASICS thus proved to be robust for the whole spectrum preparation and processing as the final 

results are not very sensitive to these bias. 

3-2 Validation using comparisons with dosages 

To validate ASICS quantifications, data available from previous works (Theron et al., 2011; Bonnefont et al., 

2014) carried out on duck plasma were used. For two plasmatic metabolites, namely Glucose and Lactate, 

concentration ratios provided by ASICS were compared to those obtained by Theron et al. (2011) using a validated 

enzymatic method. Results presented in Figure 2 show that the two determination methods are well correlated with 

a correlation of 0.81. 

Indeed, a linear regression applied on this dataset leads to the equation y=-0.15+0.98x. The intercept and the slope 

are not statistically different from their expected value (resp. 0 and 1). This good correlation validates the order of 

magnitude of the quantitative information obtained using ASICS. 

 

 

Figure 2. Glucose and Lactate concentration ratios obtained by dosage (x-axis) and by using ASICS in the NMR spectrum (y-

axis) on 24 ducks. The linear regression is plotted in straight line.   

3-3 Comparison with other methods 

ASICS was compared to other current methods available for the analysis of complex mixtures NMR spectra (i.e. 

MetaboHunter, Batman, Bayesil and Chenomx). Metabohunter (Tulpan et al. 2011) computes a score for each 

metabolite individually. This score gives the probability of presence of each metabolite in the mixture and is related 

to the number of signals found in the mixture spectrum for a given metabolite. This simple method is very quick 

but does not provide quantification. BATMAN (Astle et al. 2012; Hao et al. 2012, 2014) is based on a Bayesian 

model selection and combines the representation of peaks by Lorentzian curves with a MCMC algorithm. The 

estimation of proportions of each metabolite using this method provides good results. However, it is time-

consuming and requires a careful description of each peak of a metabolite. This step can be very tedious especially 

with metabolites displaying a large number of peaks. To date, BAYESIL features (Ravanbakhsh et al. 2015) seem 

to outperform BATMAN ones. BAYESIL handles spectral matching as an inference problem within a probabilistic 

graphical model that rapidly approximates the most likely metabolic profile. Actually, the most used tool appears 

to be the Chenomx software (Weljie et al. 2006). Computations performed by this software are rather fast but it is 
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known to yield many false positive metabolites. Finally, it is a commercial tool that could be quite expensive.  The 

comparisons were carried out using 2 different biofluids: 

a) Synthetic urine containing salts to simulate a typical urine sample with known concentrations of 

metabolites; 

b) Biological human plasma sample (NIST SRM1950 plasma): a reference plasma sample already annotated 

by NMR experts (Simón-Manso et al. 2014). 

 

a) Synthetic Urine 

For the synthetic urine sample, the 10 - 0.5 ppm spectral range was used, excluding the region between 6.5 and 

4.5 ppm which include the very intense water and urea signals.  

In order to accelerate spectra processing with BATMAN, its library was reduced to only 147 metabolites that were 

also present in our library (Table S3). The library of Bayesil does not contain Trimethylamine-N-Oxide and 

Trigonelline. All the methods have been ran using the default parameter settings as a new user would proceed. The 

results of identifications are presented in Table 2. 

 True 

Positive 

False 

Positive 

False 

Negative 

True 

Negative 

Accuracy 

(%) 

Compounds 

in library 

Computing 

Time 

ASICS 17 10 4 145 92 176 2 mn 38s  

MetaboHunter 4 51 17 795 92 867 < 1 mn 

Batman 21 125 0 1 18 147 74 hours 

Bayesil 12 17 7 53 73 89 10 mn 48s 

Chenomx 15 48 6 269 54 338 < 1 mn 

Table 2. Comparison of the identification of the 5 methods on the synthetic urine. 

ASICS was able to identify 17 metabolites out of the 21 actually present, with only 10 false detections, thus giving 

an accuracy of 92%. MetaboHunter analysis led to the same accuracy but with very different results: a very poor 

detection of true positive but a very high exclusion of true negative related to its very large library. BATMAN 

identified nearly all the metabolites in the mixture as already described by Ravanbakhsh et al. (2015) but yielded 

a very high number of false positives. Bayesil and Chenomx tools share a good accuracy but also a high number 

of false positives. As indicated in Table 2, in terms of computational time, ASICS lasts 4 times less than Bayesil 

for a twice as large library. Spectral processing with BATMAN was very long whereas Chenomx and 

MetaboHunter were the quickest. 

Four metabolites (namely ascorbic acid, L-glutamine, malonic acid and formic acid) were not identified by ASICS. 

This can be due to different reasons. The missing of ascorbic acid is probably due to an experimental problem: its 

corresponding peaks are not present in the spectrum and this metabolite was identified neither by Bayesil nor by 

Chenomx. One can assume that the ascorbic acid has been degraded as it is known to be an easily oxidisable 

metabolite.  The L-Glutamine was only identified by Bayesil with an unrealistic quantification. ASICS is missing 

this compound likely because its related signals are located in a range of the spectrum displaying many signals and 

thus, they may have been falsely attributed to other metabolites. For malonic acid, this can be attributed to acidic 

hydrogen-deuterium exchange occurring in deuterated water (D2O). Indeed, 1H NMR spectra of malonic acid and 

urine sample have been obtained with different proportions of D2O, namely 70% for the pure compound, and 30% 

for the urine sample. In the spectrum of malonic acid acquired in 70% D2O, a triplet is observed at 3.11 ppm 

corresponding to the CHD signal, together with a singlet at 3.13 ppm corresponding to the CH2 signal (proportion 

56/44 respectively). In the urine sample, the triplet signal is very weak compared to the singlet (proportion 14/86), 

due to the lower exchange rate, explaining why ASICS was unable to identify this metabolite.  This underlines the 

fact that, for this kind of compound, a great attention has to be paid to this phenomenon and, that ideally, the library 

may include a spectrum for each potential matrix. Finally, ASICS did not identify formic acid whereas the other 

methods did. This highlights one of the limitations of our method: since it relies on a lasso-type estimator (and, by 

consequence, mean square thresholded estimator), it uses the area under the curve assigned to each metabolite, 

which is proportional to the concentration of the metabolite and to its number of hydrogen atoms. Therefore, a 

metabolite bearing a single non-exchangeable hydrogen atom, such as formic acid, displays a smaller area under 

the curve than another metabolite at the same concentration but with a higher number of hydrogen atoms. This 

may explain why formic acid was not identified by ASICS whereas other metabolites (e.g. L-Tyrosine with 7 

hydrogen atoms) were identified due to their greater area under the curve. 
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Performances of the various tested software were also compared in term of quantification. Results are summarized 

in Table 3.  

Compound Real proportion ASICS’s 

proportion 

Bayesil’s 

proportion 

Chenomx’s 

proportion 

(automatic fit) 

BATMAN’s 

proportion 

Creatinine 1 1 1 1 1 

Citric acid 0.434 0.693 12.38 Not identified 0.089 

Hippuric acid 0.338 0.344 Not identified 0.312 0.072 

Trimethylamine-N-

Oxide 

0.286 0.439 Not in library 0.311 1.311 

Ascorbic acid 0.156 Not identified Not identified Not identified 0.568 

Malonic acid 0.073 Not identified  Not identified 0.015 0.058 

Ethanolamine 0.062 0.044 Not identified Not identified 0.259 

L-Lysine 0.044 0.076 0.512 Not identified 0.214 

Dimethylamine 0.047 0.054 0.079 Not identified 0.025 

Betaine 0.042 0.053 0.246 0.055 0.754 

L-Alanine 0.042 0.056 0.219 0.045 0.230 

D-Glucose 0.041 0.059 0.705 0.046 0.023 

Guanidinoacetic acid 0.033 0.052 Not identified 0.022 0.226 

L-Carnitine 0.033 0.045 0.159 0.023 0.029 

L-Glutamine 0.032 Not identified 4.100 Not identified 0.342 

Acetic acid 0.032 0.031 Not identified 0.035 0.129 

Glycine 0.031 0.036 0.089 0.032 0.304 

Lactic acid 0.028 0.027 0.307 0.018 0.025 

Trigonelline 0.026 0.011 Not in library 0.018 0.044 

Formic acid 0.017 Not identified 0.006 0.029 0.007 

L-Tyrosine 0.012 0.024 Not identified 0.014 0.571 

Table 3. Comparison of the relative quantification of the 4 methods on the synthetic urine. 

The quantifications provided by ASICS or by Chenomx both fit quite well the order of magnitude of the real 

proportion of the different metabolites. Conversely, some quantification results are very far from the real 

proportion for Bayesil (citric acid, L-glutamine …) and for BATMAN (citric acid, Trimethylamine-N-Oxide …). 

The same results were obtained using the synthetic urine without salts, highlighting the robustness of ASICS (data 

not shown). The Bruker file of the synthetic urine spectrum is included in online resource 1 and, thus, all the 

presented results can be easily recovered. 

The above results suggest that ASICS represents the best trade-off between method accuracy (for both 

identification and quantification) and computational time. However, these results have to be analyzed with caution. 

First, depending on the experimental conditions, it is likely that a given method cannot be always better than others. 

Second, each method runs with its own specific library, which produces a bias in the comparison. Then, each 

method has been computed with default parameters and it is likely that, spending time to set these parameters, the 

performances of the different methods may be improved. 

b) NIST Plasma  

The NIST plasma sample is of particular interest since it represents a real biological sample and it has been 

extensively studied and characterized by several teams, making available several results on metabolites 

identification. 

As the composition of the NIST plasma is still an open-question, it cannot be used to assess the superiority of any 

method. Nevertheless, it could be interesting to compare the different results to highlight the potential benefits of 

these automatic approaches. From the NIST plasma sample, 27 compounds were identified by an NMR expert at 

level 1 using the 1D 1H and 2D NMR spectra of plasma NIST sample and reference compounds. All the main 

compounds identified by the experts were also identified by ASICS whereas it is not the case for the other methods. 

The quantification of these compounds by ASICS provides an accurate order of magnitude. BAYESIL identified 

44 compounds (20 in common with the expert at level 1), Chenomx identified 78 compounds (17 in common with 

the expert at level 1) whereas Simón-Manso et al. (2013) identified 39 compounds in filtered plasma (21 in 

common with the expert at level 1). In addition to the 21 compounds common with Simón-Manso et al. (2013), 

ASICS allowed identifying L-Serine and GPC that were further confirmed by the NMR experts at level 1 using 
1H and 13C chemical shifts compared with reference compounds. Furthermore, ASICS also pointed out 21 other 
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compounds that were not identified at level 1 by the NMR expert. These compounds could be false positives (i.e. 

not present in the NIST plasma) or new detections. Some of these compounds (TMAO, L-Ornithine and 

Pantothenic acid) have been detected by ASICS and Chenomx but not by the expert at level 1, and so further work 

is required to assess the potential presence of these compounds. All these results show that these automatic 

approaches constitute a helpful tool for NMR experts, but have to be used with a careful control. 

4 Conclusion 

In this article we propose a method able to identify and quantify metabolites in a complex mixture of NMR 1D 1H 

spectra. The warping strategy implemented in ASICS could deal with local modifications (including translations 

or more complex geometrical transformations) of the complex mixture spectra. ASICS proved to be helpful to 

save time for NMR experts, providing a useful method for the use of metabolomics in a standard way using a 

priori hypotheses on metabolites. However, ASICS also obviously still has limitations. For example, the method 

for correcting the baseline is likely to provide poor results in spectrum areas displaying a high number of peaks. 

Theoretically, identification and quantification methods require the library to contain all spectra of metabolites 

contained in the mixture. In practice, it is not possible to make such an assumption and a library containing the 

main metabolites spectra in terms of concentration yields satisfactory results for our method. Then, the estimation 

of warping functions could depend on the order in which they are estimated. In theory, it would be better to estimate 

all of them simultaneously, but this computation cannot be carried out within a reasonable time. The quantification 

step seems to be sensitive to the variability of the NMR spectrum and only provides an order of magnitude for the 

metabolites concentrations. Additionally, like all other automatic methods, metabolites with overlapping single 

resonances (for example formic acid, acetic acid and succinate) would potentially be difficult to identify and to 

quantify. The complex mixture spectrum also needs to be recorded at the same pH as the library spectra to reduce 

the potential variations of chemical shift. As pointed out using the synthetic urine sample, NMR spectra of 

metabolites that are very sensitive to proton exchanges with deuterated water (e.g. malonic acid), also need careful 

attention. Recording the spectra in the same conditions for both standard compounds and complex mixture would 

help overcoming potential differences between the two spectra. 

Nevertheless, the study of examples of known compositions and comparisons with other methods show that this 

method provides better results than other existing methods. ASICS was also tested on two real matrices, providing 

good results on duck plasma and on the NIST plasma sample. Furthermore, ASICS is completely automated, freely 

available and the library of metabolites may easily be upgraded or replaced by an interested researcher. Finally, 

we hope that ASICS will enable the wealth of new applications of NMR by quickly and accurately help NMR 

experts for the study of metabolic profiles. 
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