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In an underdetermined linear system of equations, constrained l 1 minimization methods such as the basis pursuit or the lasso are often used to recover one of the sparsest representations or approximations of the system. The null space property is a sufficient and "almost" necessary condition to recover a sparsest representation with the basis pursuit. Unfortunately, this property cannot be easily checked. On the other hand, the mutual coherence is an easily checkable sufficient condition insuring the basis pursuit to recover one of the sparsest representations. Because the mutual coherence condition is too strong, it is hardly met in practice. Even if one of these conditions holds, to our knowledge, there is no theoretical result insuring that the lasso solution is one of the sparsest approximations. In this article, we study a novel constrained problem that gives, without any condition, one of the sparsest representations or approximations. To solve this problem, we provide a numerical method and we prove its convergence. Numerical experiments show that this approach gives better results than both the basis pursuit problem and the reweighted l 1 minimization problem.

Introduction

We consider a vector y ∈ R n and a family of vectors D = {d 1 , . . . , d p } spanning R n . An -approximation of y in D is a vector x = (x 1 , . . . , x p ) such that y -(x 1 d 1 + • • • + x p d p ) 2 ≤ . The aim of this article is to find at least one of the sparsest -approximations of y when p > n. These sparsest -approximations are defined as the solutions of A first simplified problem is to look for the sparsest representations of y in D corresponding to the solutions of P 0 0 namely S 0 := argmin x 0 subject to Dx = y. (P 0 )

Many applications concerning tomography [START_REF] Burger | Simultaneous reconstruction and segmentation for dynamic spect imaging[END_REF][START_REF] Liu | Material reconstruction for spectral computed tomography with detector response function[END_REF][START_REF] Prieto | Sparsity and level set regularization for diffuse optical tomography using a transport model in 2d[END_REF] or radar [START_REF] Baraniuk | Compressive radar imaging[END_REF][START_REF] Matthew | High-resolution radar via compressed sensing[END_REF][START_REF] Hg | On compressive sensing applied to radar[END_REF] are related to the resolution of the problems P 0 and P 0 . For example in radar application given by Baraniuk and Steeghs [START_REF] Baraniuk | Compressive radar imaging[END_REF], x is an unknown signal of interest represented as a vector of R p and D is a n × p measurement matrix with n < p. The observed vector y is given by y = Dx. Because n < p, recovering x from D and y is an ill posed problem. However, when

x has a sparse representation in a known basis {b 1 , . . . , b p } of R p , it is possible to recover x by determining its components θ = (θ 1 , . . . , θ p ) in this basis. These components are obtained by looking for the sparsest representation of y = DBθ, with B the matrix (b 1 | . . . |b p ). When y is corrupted by a noise, a way to recover x is to compute the sparsest -approximation of y in DB where the number is calibrated with respect to the noise magnitude [START_REF] Hg | On compressive sensing applied to radar[END_REF].

A simple way to solve P 0 is to compute x = D-1 y for all n × n invertible submatrices D of D and to select the x with the lowest l 0 "norm". The number of such n × n submatrices of D is p n . When p n this number is huge rending the previous approach intractable.

So, other approaches such as the basis pursuit problem, denoted P 1 , have been proposed [START_REF] David | Optimally sparse representation in general (nonorthogonal) dictionaries via l 1 minimization[END_REF][START_REF] David L Donoho | Stable recovery of sparse overcomplete representations in the presence of noise[END_REF][START_REF] Gribonval | Sparse representations in unions of bases[END_REF]. Under some conditions, given hereafter, the problem argmin x 1 subject to Dx = y (P 1 ) has a unique solution that is also a solution of P 0 . The standard approach to know if a solution of P 1 is also a solution of P 0 is to compute s the l 0 "norm" of a solution of P 1 and to check whether or not one of these conditions holds for s. When the solution of P 1 does not meet any of these conditions, we do not know if it belongs to S 0 .

The null space property [START_REF] Cohen | Compressed sensing and best k-term approximation[END_REF][START_REF] David | Optimally sparse representation in general (nonorthogonal) dictionaries via l 1 minimization[END_REF][START_REF] David L Donoho | Stable recovery of sparse overcomplete representations in the presence of noise[END_REF][START_REF] Gribonval | Sparse representations in unions of bases[END_REF] is probably the most known condition. However, as pointed out by Tillmann et al. [START_REF] Andreas | The computational complexity of the restricted isometry property, the nullspace property, and related concepts in compressed sensing[END_REF], this condition is uncheckable. Another condition is the restricted isometry property detailed in [START_REF] Cai | Sharp RIP bound for sparse signal and low-rank matrix recovery[END_REF][START_REF] Emmanuel | The restricted isometry property and its implications for compressed sensing[END_REF][START_REF] Emmanuel | Stable signal recovery from incomplete and inaccurate measurements[END_REF][START_REF] Emmanuel | Decoding by linear programming[END_REF][START_REF] Foucart | A mathematical introduction to compressive sensing[END_REF]. However, this condition is not easy to use because the computation of the restricted isometry constant is intractable [START_REF] Andreas | The computational complexity of the restricted isometry property, the nullspace property, and related concepts in compressed sensing[END_REF]. On the contrary, the mutual coherence condition [START_REF] David | Optimally sparse representation in general (nonorthogonal) dictionaries via l 1 minimization[END_REF][START_REF] Gribonval | Sparse representations in unions of bases[END_REF] is easily checkable.

Unfortunately, none of these three conditions (null space property, restricted isometry property and mutual coherence) hold for the basis pursuit solution as soon as its l 0 "norm" is greater or equal to (n + 1)/2. In this case, the solutions of P 1 does not give any information on those of P 0 . Moreover, even if the l 0 "norm" of the sparsest representation is strictly smaller than (n + 1)/2, the numerical comparisons of [START_REF] Emmanuel | Enhancing sparsity by reweighted l 1 minimization[END_REF] illustrate that the solution of the basis pursuit may not be a solution of P 0 .

An intuitive alternative approach consists in the approximation of the l 0 "norm" in P 0 by a surrogate function with nice properties. As an example, the function p i=1 ln(1 + |x i |/δ) has been studied as an approximation of the l 0 "norm" [START_REF] Emmanuel | Enhancing sparsity by reweighted l 1 minimization[END_REF][START_REF] Sousa Lobo | Portfolio optimization with linear and fixed transaction costs[END_REF], leading to the following problem argmin

1 i p ln(1 + |x i |/δ) subject to Dx = y. (1) 
An iterative method converging to a stationary point of the problem (1) is provided in [START_REF] Sousa Lobo | Portfolio optimization with linear and fixed transaction costs[END_REF]. With some well chosen δ, simulations show that this heuristic approach gives better results than the basis pursuit. However, nothing guarantees that the solutions of (1) are also solutions of P 0 and the choice of δ plays a major role on the performances of the method. A similar approach as the one of Candès et al [START_REF] Emmanuel | Enhancing sparsity by reweighted l 1 minimization[END_REF] in which the l 0 "norm" is approximated by a l α "norm" is given in [START_REF] Foucart | Sparsest solutions of underdetermined linear systems via l q -minimization for 0 < q ≤ 1[END_REF][START_REF] Lai | On sparse solutions of underdetermined linear systems[END_REF][START_REF] Sun | Recovery of sparsest signals via l q -minimization[END_REF]. Numerical experiments show that performances given by the method of Foucart and Lai [START_REF] Foucart | Sparsest solutions of underdetermined linear systems via l q -minimization for 0 < q ≤ 1[END_REF] are very close to the ones given by the method of Candès et al. [START_REF] Emmanuel | Enhancing sparsity by reweighted l 1 minimization[END_REF].

When > 0, the problem P 0 is even more complicated and still intractable. Similarly to the basis pursuit problem P 1 , one can substitute in P 0 the l 0 "norm" by a l 1 norm. This leads to the following problem argmin x 1 subject to y -Dx 2

.

(P 1 )

This problem P 1 can be rewritten as a lasso problem [START_REF] Tibshirani | Regression shrinkage and selection via the lasso[END_REF]:

argmin y -Dx 2 + λ x 1 .

(P(λ))

Actually, there exists a (not explicit) bijection between λ et guaranteeing that both problems have the same solution ; see [START_REF] Bertsekas | Nonlinear programming[END_REF] (chapter 5.3) for more details.

To our knowledge, there is no theoretical result insuring that x(λ), the unique solution of P(λ), is an element of S 0 . Instead, there exists a lot of conditions that state the convergence of x(λ) to a solution x * ∈ S 0 when λ converges to 0 [START_REF] Bunea | Sparsity oracle inequalities for the Lasso[END_REF][START_REF] David L Donoho | Stable recovery of sparse overcomplete representations in the presence of noise[END_REF][START_REF] Dossal | A necessary and sufficient condition for exact sparse recovery by l 1 minimization[END_REF][START_REF] Sara | High-dimensional generalized linear models and the lasso[END_REF][START_REF] Van | On the conditions used to prove oracle results for the lasso[END_REF]. Among these conditions (for an exhaustive list, see [START_REF] Bühlmann | Statistics for High-Dimensional Data: Methods, Theory and Applications[END_REF] page 177), the two most known are probably the irrepresentable condition [START_REF] Meinshausen | High-dimensional graphs and variable selection with the lasso[END_REF][START_REF] Zhao | On model selection consistency of lasso[END_REF][START_REF] Zou | The adaptive lasso and its oracle properties[END_REF] and the compatibility condition [START_REF] Sara | High-dimensional generalized linear models and the lasso[END_REF].

In practice all these conditions are not easily checkable. Furthermore, when these conditions do not hold the solution obtained with the basis pursuit or with the lasso can be very far from the set S 0 we wish to recover.

The aim of this article is to propose a new tractable problem which allows to catch one of the sparsest representations (element of S 0 ) or one of the sparsest -approximations (element of S 0 ). To obtain such solutions, we define and solve the following problem

S fα := argmin p i=1 f α (|x i |) subject to y -Dx 2 ≤ .
We provide functions f α : R + → R, depending on a parameter α > 0, guaranteeing without any condition that

• when = 0, there exists α 0 such that whatever 0 < α ≤ α 0 , the previous problem is "almost equivalent" to P 0 since S 0 fα ⊂ S 0 ,

• when > 0, S fα becomes arbitrary close to S 0 when α converges to 0.

This article is organized as follows. In section 2, we study the case = 0. We prove that there exists α 0 such that, whatever α ≤ α 0 , each element of S 0 fα is a solution of P 0 and that a Maximisation Minimisation (MM) method provides an iterative sequence which converges to a local minimum of P 0 . Section 3 is dedicated to the case > 0. We prove that S fα becomes arbitrary close to the set S 0 when α converges to 0 and we give necessary conditions that must satisfy the limit points of the iterative sequence provided by the MM method.

We also exhibit a subset of S 0 that fulfilled these necessary conditions. The section 4 is devoted to simulations.

Numerical experiments show that this approach gives better results to recover one of the sparsest representations than both the basis pursuit problem P 1 and the reweighted l 1 minimization problem.

Sparsest representations

As already explained, solve P 0 is difficult. Replacing the l 0 "norm" by a l 1 norm leads to the problem P 1 which provides sparse solutions. However, the conditions guaranteeing that a solution of P 1 is also a solution of P 0 are unverifiable. The substitution in P 0 of the l 0 "norm" by a l α "norm" with α < 1 gives the following problem P α which also has sparse solutions S α := argmin x α subject to Dx = y, (P α )

where

x α = ( p i=1 |x i | α )
1/α is the l α "norm" of the vector x. The problem P α is better than the basis pursuit to recover a solution of P 0 . Indeed, when the problem P 1 provides a solution of P 0 , the problem P α still provides a solution of P 0 [START_REF] Gribonval | Highly sparse representations from dictionaries are unique and independent of the sparseness measure[END_REF]. The study of this problem has been the subject of an abundant literature [START_REF] Chartrand | Exact reconstruction of sparse signals via nonconvex minimization[END_REF][START_REF] Foucart | Sparsest solutions of underdetermined linear systems via l q -minimization for 0 < q ≤ 1[END_REF][START_REF] Gribonval | Sparse representations in unions of bases[END_REF][START_REF] Gribonval | Highly sparse representations from dictionaries are unique and independent of the sparseness measure[END_REF][START_REF] Lai | On sparse solutions of underdetermined linear systems[END_REF][START_REF] Sun | Recovery of sparsest signals via l q -minimization[END_REF][START_REF] Xu | l {1/2} regularization: A thresholding representation theory and a fast solver[END_REF][START_REF] Zhang | survey of sparse representation: algorithms and applications[END_REF]. The problem P α provides a sparsest representation as soon as the null space property condition [START_REF] Gribonval | Sparse representations in unions of bases[END_REF][START_REF] Gribonval | Highly sparse representations from dictionaries are unique and independent of the sparseness measure[END_REF] or the restricted isometry property [START_REF] Chartrand | Exact reconstruction of sparse signals via nonconvex minimization[END_REF][START_REF] Foucart | Sparsest solutions of underdetermined linear systems via l q -minimization for 0 < q ≤ 1[END_REF][START_REF] Lai | On sparse solutions of underdetermined linear systems[END_REF][START_REF] Sun | Recovery of sparsest signals via l q -minimization[END_REF] hold. As for the basis pursuit, these conditions are uncheckable.

In this section we show that there exists α 0 > 0 such that the solutions of P α are also solutions of P 0 as soon as α < α 0 . When α < 1, the function x = (x 1 , . . . , x p ) → x α is a concave function on each domain of the form ). Solving P α leads to minimize a locally concave function on a convex set. This is not a convex optimization problem. In this respect, we propose in this section a numerical method to solve it. We can generalize the problem P α by substituting the function |x i | α by a function f α (|x i |) . This modification leads to minimize an expression of the form

I 1 × • • • × I p , with I k = (-∞, 0] or I k = [0, +∞
p i=1 f α (|x i |).
Intuitively, by comparing p i=1 f α (|x i |) with the l α "norm", one sees that the function p i=1 f α (|x i |) should simply converge to . 0 and should have level sets that look like spheres for the l α "norm". A geometric interpretation linking the shape of the spheres of the l α "norm" to the sparseness of the solutions of P α is given in [START_REF] Hastie | The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Second Edition[END_REF]. In the theorem 1, we focus on the following problem S fα := argmin

1 i p f α (|x i |) subject to y = Dx. (P fα )
Without any condition, we prove that the solutions of P fα are also solutions of P 0 as soon as α is small enough.

Theorem 1 Let f α be a function defined on R + strictly increasing and strictly concave such that

∀x ∈ R + , lim α→0 f α (x) = 1 x =0 .
Then, there exists α 0 > 0 such that for all α ∈ (0, α 0 ), S fα ⊂ S 0 .

The α 0 threshold depends on D and y and its value is quite hard to infer except in few cases. For example, a lower bound of α 0 is given in [START_REF] Sun | Recovery of sparsest signals via l q -minimization[END_REF]. This minoration requires assumptions on the restricted isometry constant and on the sparsity of S 0 . Let us notice that the theorem 1 is obtained without assuming anything about the restricted isometry constant or about the sparsity of the sparsest representation. Nevertheless, since the P fα allows to capture a part of S 0 for all α < α 0 , one can choose a priori a very small α so that we can expect it is less than α 0 . A study of the problem P fα where the functions f α have different properties that those given in the theorem 1 is given in [START_REF] Woodworth | Compressed sensing recovery via nonconvex shrinkage penalties[END_REF]. The authors proved that the problem P fα catches an element of S 0 under the conditions that the l 0 "norm" of the sparsest representation is smaller than n/2 and that the matrix D satisfies the unique representation property. As illustrated by the following example, the theorem 1 does not hold once R n is substituted by an infinite dimensional space.

Example: For all i ∈ N * , e i and u i are sequences respectively defined by e i := (0, . . . , 0, 1

i th position
, 0, 0, . . . ) and

u i := 1, 1 - 1 i , - 1 i 2 , 0, 0, . . . .
Let D be the family D := {e i } i∈N * ∪ {u i } i∈N * and let y = e 1 + e 2 . The vector y has a unique sparsest representation whose l 0 "norm" and l α "norm" with α ∈ (0, 1] are respectively equal to 2 and 2 1/α . On the other hand, whatever i ∈ N * , one can write y as follows y = u i + 1/ie 2 + 1/i 2 e 3 . The representation of y

given by the previous decomposition has a l α "norm" equal to (1 + 1/i α + 1/i 2α ) 1/α . When i is large enough, (1 + 1/i α + 1/i 2α ) 1/α is strictly smaller than 2 1/α . Consequently, whatever α ∈ (0, 1], the l α minimization does not provide one of the sparsest representations.

In the theorem 1, we made relatively weak assumptions on the f α functions. Indeed, a function f α for which the properties of the theorem 1 hold can be not derivable on (0, +∞) or not continuous in 0. Because the numerical resolution of the problem P fα requires some regularity, we restrict ourselves to functions f α which are differentiable on (0, +∞). Numerically, we solve the problem P fα using a MM method [START_REF] David | A tutorial on MM algorithms[END_REF] popularized in statistics by the EM algorithm [START_REF] Arthur P Dempster | Maximum likelihood from incomplete data via the EM algorithm[END_REF]. This method iteratively alternates two steps. First a function that majorizes the function 1 i p f α (|x i |) is defined. Then this majorazing function is minimized.

In a similar way as in [START_REF] Emmanuel | Enhancing sparsity by reweighted l 1 minimization[END_REF][START_REF] Sousa Lobo | Portfolio optimization with linear and fixed transaction costs[END_REF], we define a sequence (x (k) ) k∈N by "linearising" the function

1 i p f α (|x i |)
at the point x (k) ∈ R p . This "linearisation" (we use quotation because this function is not affine) gives the

function x ∈ R p → 1≤i≤p f α (|x (k) i |) + f α (|x (k) i |)(|x i | -|x (k) i |). Because f is concave on R + , we have ∀x ∈ R p , 1 i p f α (|x i |) ≤ 1≤i≤p f α (|x (k) i |) + f α (|x (k) i |)(|x i | -|x (k) i |).
Then, this majorizing function is minimized with respect to x leading to x (k+1) . More precisely, we choose

x (0) ∈ R p and we set x (k+1) as the solution of the following weighted basis pursuit problem

x (k+1) := argmin 1≤i≤p f α (|x (k) i |) + f α (|x (k) i |)(|x i | -|x (k) i |) subject to Dx = y, = argmin p i=1 f α (|x (k) i |)|x i | subject to Dx = y.
If at iteration k, there are several minimizers, it suffices to choose among them, one minimizer for which the family (d i ) i∈supp(x (k) ) is linearly independent. The lemma 3 shows that such a minimizer always exists. The first iteration of the previous MM method gives a vector x (1) solution of the weighted basis pursuit problem. This vector has a large number of null components. When f is right differentiable at 0, as for small α the quantity f α (0) is very large (because lim α→0 f α (0) = +∞), the null components of x (1) will be strongly weighted implying that the algorithm will get stuck at this point. To avoid this problem, we propose to iteratively solve the following approximate problem that gives less weight on null components

x (k+1) := argmin

1 i p f α (|x (k) i | + ∆)|x i | subject to Dx = y. (2) 
The theoretical results justifying the introduction of ∆ are provided in the theorem 2 and theorem 3.

Theorem 2 For every x (0) ∈ R p , for every ∆ > 0, there exists an integer k 0 such that ∀k k 0 , the sequence

x (k) defined in (2) is so that x (k) = x (k0) .
A similar theorem that deals only with the convergence of the iterative method in the special case where f α (x) = log(1 + x/α) already denoted as (1) is given in [START_REF] Sousa Lobo | Portfolio optimization with linear and fixed transaction costs[END_REF]. This theorem shows that the iterative sequence converges onto a stationary point of the problem min 1 i p log(1 + |x i |/α) subject to Dx = y which is not a priori a local minimum of P 0 . Moreover, the proposed proof in [START_REF] Sousa Lobo | Portfolio optimization with linear and fixed transaction costs[END_REF] seems incorrect because even for a bounded sequence, the fact that lim k→+∞ x (k+1) i -x

(k) i = 0 does not imply the convergence of (x (k) i ) k∈N . The theorem 3 states the limit of the sequence (x (k) ) k∈N defined in ( 2) is a local minimum of the problem P 0 .

Theorem 3 Let (x (k) ) k∈N be the sequence defined in (2) and l its limit then, there exists a radius r > 0 such that ∀x ∈ B ∞ (l, r) with Dx = y and x = l, we have x 0 > l 0 .

The theorem 1 holds for the function f α (x) = log(1 + |x|/α)/ log(1 + 1/α) associated to the l 1 reweighted method; thus once α is small enough we have S fα ⊂ S 0 . Moreover, the theorem 2 and the theorem 3 show that the iterative sequence (1) provided by the l 1 reweighted method is stationary (thus converging) and its limit is local minimum of P 0 .

The limit l given in the previous theorem depends on x (0) ∈ R p and ∆ > 0. In Section 4 we discuss the choice of the initial point x (0) and we propose to test different values for ∆ in order to keep the local minimum having the lowest l 0 "norm".

3 Sparsest -approximations

In the previous section, we obtained one of the sparsest representations of y by solving the problem P fα instead of P 0 with α small enough. Similarly, to solve the intractable problem P 0 , one substitutes the constraint Dx = y that appears in the problem P fα by the constraint y -Dx 2 2 ≤ . This modification leads to consider

S fα := argmin 1 i p f α (|x i |) subject to y -Dx 2 ≤ . (P fα )
The following theorem 4 shows that, when α is small enough, the set S fα is arbitrary close to the set S 0 of solutions of P 0 . This justifies to solve P fα instead of P 0 . There are situations in which solving P fα , with a small enough α, gives one of the sparsest approximations. However, there are situations in which it is not the case. Unfortunately, we do not have any general criterion separating these two cases. This is the reason why, we propose the following theorem that states that the solutions of P fα are arbitrarily close to S 0 . For this theorem, we introduce the η-magnification of the set S 0 . It is defined as the open set

G η := x∈S 0 B(x, η), where B(x, η) is an l 2 open ball of radius η > 0 centered in x.
Theorem 4 Let (f α ) α>0 be a family of strictly increasing, strictly concave and continuous functions defined on R + such that

0 < α ≤ α ⇒ f α ≥ f α and ∀x ∈ R + lim α→0 f α (x) = 1 x =0 .
Then, for all η > 0, there exists α 0 > 0 such that the following inclusion holds

∀α ≤ α 0 , S fα ⊂ G η .
Such families of functions may appear difficult to build, but this is not the case. As an example, the assumptions of theorem 4 hold for the families of functions

f α : x ∈ R + → x/(α + x) and f α : x ∈ R + → arctan(x/α).
The figure 1 illustrates this result in two different cases. In the first case, with a small enough α, the problem P fα captures one of the sparsest approximations. In the second case, whatever α > 0, the solution of the problem P fα is not one of the sparsest approximations but stays close to S 0 .

Figure 1: Let f α be the function

f α : x ∈ R + → x/(x + α) with α > 0.
On the left, we represent the solution of the problem argmin

2 i=1 f α (|x i |) subject to (x 1 -3) 2 + (x 2 -1.9) 2 ≤ 4
for several values of α and the solution of the lasso problem argmin

2 i=1 |x i | subject to (x 1 -3) 2 + (x 2 -1.9) 2 ≤ 4 denoted
x lasso . The points x 10 , x 5 and x α are the solutions of the first problem when α = 10, α = 5 and α ≤ α 0 with α 0 ≈ 4.5. Geometrically, x α and x lasso are respectively the unique solution of the first problem with α = 1 and of the lasso problem because the "open balls"

{ 2 i=1 f 1 (|x i |) < 2 i=1 f 1 (|x α i |)} (in green) and { x 1 <
x lasso 1 } (in grey) do not share any point with the constraint set (x 1 -3) 2 + (x 2 -1.9) 2 ≤ 4 (in blue). Note that when α ≤ α 0 , the first problem catches an element x α of S 0 (in red). On the right, we represent the solution of the lasso problem and the solutions x 10 , x 5 , x 1 of the problem argmin i |)} (in green) and { x 1 < x lasso 1 } (in grey). When α is small the solution is close to S 0 . However, one can prove that whatever α > 0, this second problem never catches exactly an element of S 0 .

2 i=1 f α (|x i |) subject to (x 1 -3) 2 + (x 2 -2) 2 ≤
In the previous section, we have seen that a MM method provides a sequence (2) which is stationary from a certain rank onto a local minimum of the problem P 0 . To solve the problem P fα , one uses the same MM method as in (2) leading to the iterative sequence given hereafter. Let x (0) ∈ R p and define the sequence (x (k) ) k∈N as follows x (k+1) := argmin

1 i p f α (|x (k) i | + ∆)|x i | subject to y -Dx 2 ≤ . (3) 
If at iteration k, there are several minimizers, it suffices to choose among them, one minimizer for which the

family (d i ) i∈supp(x (k)
) is linearly independent. The lemma 3 shows that such a minimizer always exists. In the theorem 5, we prove that the sequence (x (k) ) k∈N , as defined in (3), is bounded that is, when k is large enough,

x (k) is close to a limit point. The theorem 5 shows that the optimality conditions hold for the limit points of the sequence (x (k) ) k∈N .

Theorem 5 Let y ∈ R p such that y 2 > . Let (f α ) α>0 be a family of increasing, concave and two times differentiable functions defined on (0, +∞) such that ∀α > 0, f α is convex and

∀x ∈ R + lim α→0 f α (x) = 1 x =0 .
Then :

1. The sequence (x (k) ) k∈N described in (3) is bounded.

2. For any limit point x of the sequence (x (k) ) k∈N , we have i) The vector x is on the boundary of the constraints' set thus, y -Dx 2 = .

ii) The family of D matrix columns

(d i ) i∈supp(x) is linearly independent.
iii) The vectors

(d T i (y -Dx)) i∈supp(x) and (f α (|x i | + ∆)) i∈supp(x) are collinear.
When y 2 ≤ then 0 is the unique solution of the problem P fα and for any k ≥ 0 we have x (k) = 0. In particular when y 2 < , the condition i) is not met. As for the theorem 4, the assumptions on f α given in theorem 5 hold for the function

f α : x ∈ R + → x/(α + x).
The points for which the properties i), ii) and iii) hold are kind of "critical points" of the problem P fα . The properties i), ii), iii) described in the previous theorem are verified at all points x α of S fα .

Actually, a proof similar to the proof of the lemma 9 shows that x α is on the boundary of the constraint y -Dx 2 ≤ . Consequently, the property i) holds for x α .

By the lemma 1, the family (d i ) i∈supp(x α ) is linearly independent thus property ii) holds.

Finally, because x α is a solution of the problem P fα , (x α ) i∈supp(x α ) is also a solution of the problem Because for each element x α in S fα , the property iii) holds with ∆ = 0, this value of ∆ could appear as the ideal value. It is not the case. Indeed, if we define the set L α by

argmin i∈supp(x α ) f α (|x i |) subject to y -Dx 2 ≤
L α := argmin x∈S 0 p i=1 f α (|x i | + ∆), (5) 
for an arbitrary ∆ > 0, the theorem 6 shows that L α is a set of "critical points" such that L α ⊂ S 0 . Consequently, whatever ∆, when x (0) is well chosen, one can expect that for k large enough, x (k) is close to the set L α .

The theorem 6 shows that every element of L α satisfies the property i), ii) and iii). 

3 i=1 f α (|x i |) ≤ R with the plane x 1 0x 2 . The vectors u = -d T i (y -Dx α ) 1≤i≤2 = ∂ y-Dx 2 ∂xi (x α ) 1≤i≤2 and v = (sign(x i )f α (|x α i |)) 1≤i≤2 = ∂ 3 i=1 fα(|xi|) ∂xi (x α ) 1≤i≤2
represent respectively the normalized normal vectors to the ellipsoid and the "ball". Note that the solution x α of the problem ( 4) is i) on the boundary of the cylinder ii) completely included in the plane (x 1 0x 2 ), and iii) that at this point, the normal vectors u and v are collinear.

Theorem 6 Let y ∈ R p such that y 2 > . Let x α be an arbitrary element of L α . Then, the three following properties hold for x α .

i) The vector x α is on the boundary of the constraint thus, y -Dx α 2 = .

ii) The family (d i ) i∈supp(x α ) is linearly independent.

iii) The vectors

(d T i (y -Dx α )) i∈supp(x α ) and (f α (|x α i | + ∆)) i∈supp(x α ) are collinear.

Numerical experiments

In the previous section, we developed a new method able to recover at least one solution of P 0 or P 0 . Currently, the basis pursuit P 1 is the reference method to recover a solution of P 0 . An alternative to the basis pursuit is the reweighted l 1 minimization [START_REF] Emmanuel | Enhancing sparsity by reweighted l 1 minimization[END_REF]. In this section, we compare our method with both the basis pursuit and the reweighted l 1 minimization. For this numerical study, we use the same simulation framework as [START_REF] Emmanuel | Enhancing sparsity by reweighted l 1 minimization[END_REF]. The family D = {d 1 , . . . , d p } owns p = 256 vectors of R n with n = 100. Whatever i ∈ [ [START_REF] Baraniuk | Compressive radar imaging[END_REF]256]], the vector d i is random vector d i := X i / X i with X i i.i.d N (0, Id 100 ). Consequently, the vectors d 1 , . . . , d p are independent and uniformly distributed on the R n sphere. Such a random matrices with i.i.d N (0, 1) entries are often met in radar application [START_REF] Baraniuk | Compressive radar imaging[END_REF][START_REF] Ali C Gurbuz | Compressive sensing for subsurface imaging using ground penetrating radar[END_REF]. The vector y ∈ R 100 that appears in the constraint y = Dx is such that y = Dx. In this section, we propose to slightly modify as follows the MM method given in [START_REF] Bertsekas | Nonlinear programming[END_REF].

Let a := argmin

1 i p f α (|x (k) i | + ∆)|x i | subject to Dx = y and set        x (k+1) = a if a 0 ≤ x (k) 0 x (k+1) = x (k) otherwise . (6) 
The general position condition as defined in Tibshirani [START_REF] Ryan | The lasso problem and uniqueness[END_REF] holds almost surely for D. This condition insure the uniqueness of the weighted basis pursuit solution [START_REF] Rosset | Boosting as a regularized path to a maximum margin classifier[END_REF] thus at the iteration k the solution x (k) is unique. The computation of the sequence (x (k) ) k≥0 has been performed with the R package lpSolve. As for the sequence given in (2), when k is large enough, the sequence ( 6) is stationary onto a point l. As defined in (6) the sequence

( x k 0 ) k∈N is decreasing, consequently, l 0 ≤ x (0) 0 .
In particular when the initial point is the solution of P 1 , denoted hereafter x bp , the modified MM method allows to catch a representation l better than x bp in the sense that l 0 ≤ x bp 0 . Whereas by taking x (0) = x bp the performances of the modified MM method to solve P 0 are better than the performances of the basis pursuit, x bp is not the better initial point. The following section provides a smart initial point x (0) .

Choice of the initial point x (0)

Because the MM algorithm converges to a local minimum of P 0 , the choice of its initial point is critical. Candès et al [START_REF] Emmanuel | Enhancing sparsity by reweighted l 1 minimization[END_REF] took the solution of problem P 1 as the initial point for the iterative sequence [START_REF] Bertsekas | Nonlinear programming[END_REF]. Another way to choose this initial point is based on the following two remarks.

1) Intuitively, the largest components of x are more easily recovered than the smallest one. This intuition is confirmed by the right panel of the figure 3 which illustrates that x bp catch easily the largest components of x.

2) When A is a known set that owns the largest components of x, the expression i / ∈A |x i | becomes small. As a consequence, substituting in P 1 the function For each i ∈ [ [START_REF] Baraniuk | Compressive radar imaging[END_REF]100]] in the x-axis, the y-axis represents the proportion of times for which r(i) ∈ supp(x). Note that largest components of x bp are elements of supp(x).

The figure 4 gives an algorithm which describes how to choose x (0) . The input of the algorithm is x bp . Ideally, when A 1 ⊂ A 2 ⊂ • • • ⊂ supp(x), the solutions x init, (1) , x init, (2) . . . of the problems P A1 , P A2 , . . . should be increasingly close to x. As already mentioned, the sparsest representation of y in D has a l 0 "norm" smaller than n. Consequently, the previous inclusion can not hold after the n th iteration. So we stop the algorithm no later than the n th iteration. When at the j th iteration Card(supp(x init,(j) ) \ A j ) = 0, it is not possible to find an element i j to construct the set A j+1 and the algorithm stops.

Comparisons

The simulations were performed for each s ∈ {24, 26, . . . , 72} using 500 random vectors x such that supp(x) = [[1, s]], and 500 families D = {d 1 , . . . , d 256 }. These random vectors were ordered so that

|x 1 | ≥ • • • ≥ |x s |.
For each family and each x, we compute the basis pursuit solution (x bp ) of P 1 , the reweighted l 1 minimization solution [START_REF] Emmanuel | Enhancing sparsity by reweighted l 1 minimization[END_REF] and the solution given by our method as defined by [START_REF] Burger | Simultaneous reconstruction and segmentation for dynamic spect imaging[END_REF]. The reweighted l 1 solution is the limit of As in [START_REF] Emmanuel | Enhancing sparsity by reweighted l 1 minimization[END_REF] we set δ = 0.1. The number of iterations was set to k 0 = 8 for both the reweighted l 1 minimization method and our method. We choose f α (x) = x α with α = 0.01 and the initial point of (6) was computed using the algorithm described previously. After 8 iterations, we keep the sparsest solution among the one obtained with ∆ ∈ {0.01, 0.1, 0.5, 1, 2, 4}.

The figure 5 shows the performances of the basis pursuit, the reweighted l 1 minimization and our method.

Numerical experiments given in the figure 5 show that when x 0 ≤ 22, x is always recovered by all these three methods. No method recovered x when x 0 ≥ 68. When 22 ≤ x 0 ≤ 68, the proportion of times for which our method recovers x is greater than the proportion given by the two other methods. These numerical experiments illustrate that the performances of our method are better than those of the basis pursuit and the reweighted l 1 minimization. The performances of the three competing methods are represented by the proportions of realisations of the events x bp = x, x l1,(8) = x and x (8) = x as a function of the number of non null components of x denoted s. One notices that the graph of the reweighted l1 minimization method is almost the same as those given in [START_REF] Emmanuel | Enhancing sparsity by reweighted l 1 minimization[END_REF].

5 Appendix 1: Proofs

Proof of the theorem 1

By construction, the function to be minimized in the problem P fα converges pointwise to the l 0 "norm" when α goes to 0. As the l 0 norm is not continuous, this convergence can not be uniform onto R p . However, a straightforward consequence of the lemma 1 is that the number of possible solutions of the problem P fα is finite and the convergence of p i=1 f α (|x i |) to x 0 is therefore uniform onto this finite set. The proof of theorem 1 is based on this uniform convergence.

Lemma 1 Let f α be a function defined on R + strictly increasing and strictly concave such that

∀x ∈ R + , lim α→0 f α (x) = 1 x =0 .
Denote x α a solution of the problem P fα (resp. P fα ) then the family (d i ) i∈supp(x α ) is linearly independent.

Proof : Let us assume that the family (d i ) i∈supp(x α ) is not linearly independent. There exist coefficients

(γ i ) i∈supp(x α ) not simultaneously null such that i∈supp(x α ) γ i d i = 0.
To provide a contradiction, we are going to show that p i=1 f α (|x α i |) is no longer minimal. That is, there exists an admissible point z so that

p i=1 f α (|z i |) < p i=1 f α (|x α i |). Let us define {i 1 , . . . , i s } := {i ∈ supp(x α ) | γ i = 0},
the set of non-null components of γ. We are looking for z among the admissible points x(t) defined by 

∀t ∈ R, x i (t) = x α i + tγ i if i ∈
f α (|x i (0)|) = p i=1 f α (|x α i |) > min p i=1 f α (|x(t i1 )|), p i=1 f α (|x(t is )|) ,
which provides a contradiction for the minimality of 

p i=1 f α (|x α i |). Assume that 0 ∈ [t i1 ,
f α (|x i (0)|) = p i=1 f α (|x α i |) > min p i=1 f α (|x i (t i k )|), p i=1 f α (|x i (t i k+1 )|) ,
which provides a contradiction for the minimality of

p i=1 f α (|x α i |).
We now consider the set E of subsets I ⊂ [ [1, p]] such that

• The family (d i ) i∈I is linearly independent. • y ∈ V ect(d i ) i∈I .
Given a subset I ∈ E, let x I be the unique vector such that supp(x I ) = I and Dx I = y. Let us introduce S := {x I , I ∈ E}. As E is finite, this set of vectors is finite.

Whatever the function f α satisfying the properties of the lemma 1, the lemma 1 shows that the family

(d i ) i∈supp(x α ) is linearly independent. As x α is admissible, y ∈ V ect(d i ) i∈supp(x α )
. It follows that for all

x α ∈ S fα , x α ∈ S; that is S fα ⊂ S. The next lemma shows that the solutions of the problem P 0 are also included in S.

Lemma 2

The set S 0 of solutions of P 0 satisfies S 0 ⊂ S.

Proof : Let x * be a solution of P 0 , we have Dx * = y. To show that x * ∈ S, it remains to prove that the family (d i ) i∈supp(x * ) is linearly independent. Suppose that this family is not linearly independent then there exist coefficients (γ i ) i∈supp(x * ) not simultaneously null such that

i∈supp(x * ) γ i d i = 0.
To provide a contradiction for the minimality of x * 0 , we are going to prove that there exists an admissible point z such that z 0 < x * 0 . We are looking for z among admissible points x(t) defined by

∀t ∈ R, x i (t) = x * i + tγ i if i ∈ supp(x * ) and x i (t) = x * i = 0 otherwise.
By construction, we have ∀t ∈ R, supp(x(t)) ⊂ supp(x * ). To conclude this proof, we have to find t 0 ∈ R for which the inclusion is strict. Let i 0 ∈ supp(x * ) such that γ i0 = 0 and define t 0 = -x * i0 /γ i0 . The i th 0 component of x(t 0 ) is null. Consequently, x(t 0 ) 0 < x * 0 which provides a contradiction to the fact that x * is a solution of P 0 .

Proof of theorem 1: By the lemma 1 and 2, we have S fα ⊂ S and S 0 ⊂ S. If the elements of S \ S 0 are not solution of P fα , one deduces that S fα ⊂ S 0 . Let x and x * be respectively an arbitrary element of S \ S 0 and of S 0 . A straightforward consequence of the inequality

p i=1 f α (|x i |) > p i=1 f α (|x * i |) is that x is
not a solution of P fα . We are going prove that this inequality holds when α is small enough. We have that

∀x ∈ S \ S 0 , p i=1 f α (|x i |) - p i=1 f α (|x * i |) = p i=1 f α (|x i |) -x 0 + x 0 -x * 0 + x * 0 - p i=1 f α (|x * i |).
Because x is not a solution of P 0 contrarily to x * , one has x 0 -x * 0 1. Furthermore, the uniform convergence of

p i=1 f α (|x i |) to x 0 onto the set S gives α 0 > 0 such that ∀α ∈ (0, α 0 ), ∀x ∈ S, p i=1 f α (|x i |) -x 0 < 1/2.
Consequently, one obtains

∀α ∈ (0, α 0 ), ∀x ∈ S \ S 0 , p i=1 f α (|x i |) > p i=1 f α (|x * i |).
Thus, as soon as α < α 0 , the solution of P fα satisfies S fα ⊂ S 0

Proof of the theorems 2 and 3

The main consequence of lemma 3, is that the iterative sequence (x (k) ) k≥1 provided by the MM method ( 2)

satisfies ∀k ≥ 1, x (k) ∈ S.
Because S is a finite set, this result is useful for the proof of the theorem 2.

Lemma 3 Let us denote

S ω := argmin p i=1 w i |x i | subject to y = Dx, with ∀i ∈ [[1, p]], ω i > 0 (7)
and

S ω := argmin p i=1 w i |x i | subject to y -Dx 2 2 , with ∀i ∈ [[1, p]], ω i > 0. ( 8 
)
Then, there exists an element x ω ∈ S ω (resp. x ω ∈ S ω ) such that the family (d i ) i∈supp(x ω ) is linearly independent.

Proof : When the set S ω (resp. S ω ) is not a singleton, we set x ω an element of S ω (resp. S ω ) with a minimal l 0 norm. Assume that (d i ) i∈supp(x ω ) is not linearly independent. There exist coefficients (γ i ) i∈supp(x)

not simultaneously null such that i∈supp(x ω ) γ i d i = 0. Let us set A := {i ∈ supp(x ω ) such that γ i = 0}. One defines the admissible x(t) of the problem (7) (resp. ( 8)) as follows

x i (t) :=        x ω i + tγ i if i ∈ A ,
x ω i otherwise.

By definition, the point x(t) satisfies supp(x(t)) ⊂ supp(x ω ). To provide a contradiction for the minimality of the l 0 "norm" of the solution x ω , we could build an element x(t 0 ) ∈ S ω (resp. S ω ) with a strictly lower l 0 "norm".

Let f be the function ∀t ∈ R, f (t) :=

p i=1 w i |x i (t)|. This function is equal to f (t) = i∈A ω i |x i + tγ i | + i / ∈A ω i |x i |.
The minimum of f is reached on the set {-x i /γ i } i∈A . If t 0 := -x i0 /γ i0 , with i 0 ∈ A , is a value for which the minimum of f is reached, one sees that x i0 (t 0 ) = 0. This shows x(t 0 ) 0 < x ω 0 and x(t 0 ) is an admissible point for which

p i=1 ω i |x i (t 0 )| ≤ p i=1 ω i |x i (0)| = p i=1 ω i |x ω i |. Consequently, x(t 0 ) is point of S ω
(resp. S ω ) with a strictly smaller l 0 "norm" than the one of x ω which contradicts the minimality of x ω 0 .

Remind that for each k ≥ 1, x (k) defined in ( 2) is the solution of a weighted basis pursuit problem. We have already noted that in practice weighted basis pursuit problem admits a unique solution. Consequently, by the lemma 3 the family (d i ) i∈supp(x (k) ) is linearly independent and, on the other hand, y = Dx (k) which implies that x (k) ∈ S.

Proof of theorem 2 :

The MM method for the function x ∈ R p → 1 i p f α (|x i | + ∆) provides the sequence (x (k) ) k≥0 defined in (2). In the following, we prove that the sequence (u k ) k∈N with u k :=

1 i p f α (|x (k) i | + ∆) is stationary.
For k ≥ 1, the vector x (k) is a solution of a weighted basis pursuit problem. Consequently, the lemma 3 insures that x (k) ∈ S. Since S is a finite set, the sequence (u k ) k≤1 can only take a finite number of values

∀k ∈ N * , u k ∈    1 i p f α (|x I i | + ∆), I ∈ E    .
If we show that the sequence (u k ) k∈N is decreasing that implies its stationary for a large enough k. We follow the proof given in [START_REF] David | A tutorial on MM algorithms[END_REF][START_REF] Lange | Elementary optimization[END_REF]. Remind that x (k+1) is defined as follow

x (k+1) := argmin

1 i p f α (|x (k) i | + ∆) + f α (|x (k) i | + ∆)(|x i | -|x (k) i |). Let us set L x (k) (x) := 1 i p f α (|x (k) i | + ∆) + f α (|x (k) i | + ∆)(|x i | -|x (k) i |).
The concavity of the function

x ∈ R → f α (x + ∆) on R + implies that ∀x ∈ R p , 1 i p f α (|x i | + ∆) L x (k) (x).
Because, the minimum of L x (k) (x) is reached at x (k+1) , one obtains the following property

u k+1 = 1 i p f α (|x (k+1) i | + ∆) L x (k) (x (k+1) ) L x (k) (x (k) ) = 1 i p f α (|x (k) i | + ∆) = u k .
Since the sequence (u k ) k∈N is decreasing, there exists k 0 ≥ 0 such that (u k ) k∈N is stationary for k ≥ k 0 .

The strict concavity of the function

x ∈ R + → f (x + ∆) implies that f α (|x (k0+1) i | + ∆) ≤ f α (|x (k0) i | + ∆) + f α (|x (k0) i | + ∆)(|x (k0+1) i | -|x (k0) i |),
with a strict inequality when |x

(k0+1) i | = |x (k0) i |. Thus, if there exists i 0 ∈ [[1, p]] such that |x (k0+1) i0 | = |x (k0) i0 |, u k0+1 < L x (k 0 ) (x (k0+1)
) ≤ u k0 which provides a contradiction for the stationary of the sequence (u k ) k∈N .

Consequently, we have

∀i ∈ [[1, p]], |x (k0+1) 
i | = |x (k0) i |.
This equality gives that supp(x (k0) ) = supp(x (k0+1) ). Because x (k0) and x (k0+1) are admissible points,

i∈supp(x (k 0 ) ) x (k0) i d i = i∈supp(x (k 0 ) ) x (k0+1) i d i .
Finally, the lemma 3 implies that the family (d i ) i∈supp(x (k 0 ) ) is linearly independent. One deduces that k0+1) . A straightforward consequence is that the sequence (x (k) ) k∈N is stationary when k ≥ k 0 .

x (k0) = x (
Proof of theorem 3 : Remind that l is the limit of the sequence x (k) given in [START_REF] Bertsekas | Nonlinear programming[END_REF]. Let us defined r := min{|l i |, i ∈ supp(l)}. One can check that ∀x ∈ B ∞ (l, r) we have x i = 0 once l i = 0. Consequently, supp(l) ⊂ supp(x). Assume supp(x) = supp(l). Since Dx = Dl, one deduces that i∈supp(l)

x i d i = i∈supp(l) l i d i .
Since the family (d i ) i∈supp(l) is linearly independent, one deduces that x = l. Consequently, ∀x ∈ B ∞ (l, r) such that x = l, we have supp(l) supp(x) thus, l 0 < x 0 .

Proof of the theorem 4

By the lemma 1, for any x * in S fα , the family (d i ) i∈x * is linearly independent. Moreover, x * is an admissible point, thus y -Dx * 2 ≤ . Consequently, x * ∈ I∈I E I , where

I := {I ⊂ [[1, p]] | (d i ) i∈I is linearly independent } and E I := {x ∈ R p | supp(x) ⊂ I and y -Dx 2 ≤ }.
Let us denotes E := I∈I E I .

Lemma 4

The set E is compact.

Proof : Let us denote x ∈ R p with supp(x) ⊂ I such that Dx is the orthogonal projection of y onto the space Vect(d i ) i∈I . If y -Dx 2 > then the set E I is empty. Otherwise,

E I = {x ∈ R p | supp(x) ⊂ I and D(x -x) 2 ≤ }, with = -y -Dx 2 .
Since supp(x) ⊂ I and supp(x) ⊂ I, one shows that

D(x -x) 2 = D S (x I -xI ) 2 , with x I := (x i ) i∈I , xI := (x i ) i∈I and D I is matrix whose columns are (d i ) i∈S . Because the family (d i ) i∈I is linearly independent, the Gram matrix D T I D I is invertible thus, D I (x I -xI ) 2 ≤ is an ellipsoid of R Card(I) .
Therefore, E I is a compact. Consequently, the finite union of compact set I∈I E I is a compact set.

In the lemma 5 and the theorem 4, we denote s 0 := min x subject to y -Dx 2 ≤ .

Lemma 5 For η > 0, let us denote G η the open set G η = x∈S 0 B(x, η). The function

F α : x ∈ E \ G η → min s 0 + 1, p i=1 f α (|x i |)
converges uniformly to the function F : x ∈ E \ G η → s 0 + 1 when α converges to 0.

Proof : Let (α n ) n∈N be a decreasing sequence converging toward 0. Because f α ≥ f α once α ≤ α , (F αn ) n∈N is a monotonic sequence of continuous functions. Furthermore, on the compact set E \ G η , this sequence converges pointwise toward the continuous function F : x ∈ E \ G η → s 0 + 1. Consequently, the Dini's theorem gives the uniform convergence of (F αn ) n∈N . Therefore, for all δ > 0, there exists n 0 such that

∀n ≥ n 0 , sup x∈E\Gη {|F αn (x) -s 0 -1|} ≤ δ.
Finally, if α ≤ α n0 , for all x ∈ E \ G η we have the following inequalities

-δ ≤ F αn 0 (x) -s 0 -1 ≤ F α (x) -s 0 -1 ≤ 0.
Consequently, one obtains

sup x∈E\Gη {|F α (x) -s 0 -1|} ≤ sup x∈E\Gη |F αn 0 (x) -s 0 -1| ≤ δ,
which shows the uniform convergence.

Proof of theorem 4 : Let x * be an arbitrary element of S 0 , we are going to prove that for α > 0 small enough,

∀x ∈ E \ G η , p i=1 f α (|x i |) > p i=1 f α (|x * i |). (9) 
If the inequality (9) holds then S fα ⊂ G η . Actually, by definition, S fα ⊂ E and by the inequality (9), the elements of E \ G η are not solution of P fα . The convergence of p i=1 f α (|x * i |) toward s 0 once α converges to 0 implies that

∃α 1 > 0 such that ∀α ≤ α 1 , p i=1 f α (|x * i |) < s 0 + 1/2.
The uniform convergence given in the previous lemma 5 implies that

∃α 2 , ∀α ≤ α 2 , ∀x ∈ E \ G η min s 0 + 1, p i=1 f α (|x i |) > s 0 + 1/2.
Finally, if we set α 0 = min{α 1 , α 2 }, we have

∀α ≤ α 0 , ∀x ∈ E \ G η , min s 0 + 1, p i=1 f α (|x i |) - p i=1 f α (|x * i |) > 0, which implies ∀α ≤ α 0 , ∀x ∈ E \ G η , p i=1 f α (|x i |) > p i=1 f α (|x * i |).
5.4 Proof of the theorems 5 and 6

Let (x (φ(k)) ) k≥0 be a subsequence of x (k) (defined in 3) that converges to x. The lemmas 6, 7 and 8 are used to prove that the sequence (x (φ(k)+1) ) k≥0 has the same limit as (x (φ(k)) ) k≥0 .

Lemma 6 Let f : R + → R be an striclty increasing, strictly concave and two times differentiable function such that f is convex then,

∀η > 0, ∃ > 0 such that ∀a ∈ [0, a 0 ], ∀b ∈ R + , |a -b| > η ⇒ f (a) + f (a)(b -a) -f (b) > . ( 10 
)
Proof : Let us defined the function g a0 (h) as follows

∀h ≥ 0, g a0 (h) := f (a 0 ) + f (a 0 )h -f (a 0 + h).
We are going to prove that (10) holds when = g a0 (η). In a first step, let us prove that f The concavity of f gives

f (a) + f (a)t -f (a + t) ≥ f (a) + f (a)|t| -f (a + |t|).
Indeed, when t ≥ 0, the result is obvious otherwise, when t < 0, we have t = -|t|, the previous inequality is a consequence of the next one

f (a) -f (a -|t|) |t| ≥ f (a) ≥ f (a + |t|) -f (a) |t|
From these inequalities, one deduces that

f (a) + f (a)t -f (a + t) ≥ f (a) + f (a)|t| -f (a + |t|) ≥ f (a 0 ) + f (a 0 )|t| -f (a 0 + |t|) = g a0 (|b -a|).
The function f is strictly decreasing (because f is strictly concave) consequently ∀h > 0, g a0 (h) = f (a 0 )f (a 0 + h) > 0 thus, g is strictly increasing. Since g a0 (0) = 0, we have := g a0 (η) > 0. Finally, if |b -a| > η we have

f (a) + f (a)(b -a) -f (b) ≥ g a0 (|b -a|) > g a0 (η) = .
In the following, we denote |x| := (|x i |) 1≤i≤p with x ∈ R p .

Lemma 7

The sequence (x (k) ) k∈N described in (3) satisfies Assume that d ∞ (|x (k+1) |, |x (k) |) does not converge to 0, we have

∃η > 0, ∀K ≥ 0, ∃k 0 ≥ K such that d ∞ (|x (k0+1) |, |x (k0) |) ≥ η. If d ∞ (|x (k0+1) |, |x (k0) |) ≥ η then, there exists i 0 ∈ [[1, p]] such that |x (k0+1) i0 | -|x (k0) i0 | ≥ η. Because the sequence (x (k)
) k∈N is bounded (proof 1 of the theorem 5), there exists a 0 ≥ 0 such that ∀k ∈ N, x (k) ∞ ≤ a 0 . By the lemma 6 we have

∃ > 0 such that f α (|x (k0) i0 | + ∆) + f α (|x (k0) i0 | + ∆)(|x (k0+1) i0 | -|x (k0) i0 |) -f α (|x (k0+1) i0 | + ∆) ≥ .
Furthermore the concavity of f α implies that

∀i = i 0 , f α (|x (k0) i | + ∆) + f α (|x (k0) i | + ∆)(|x (k0+1) i | -|x (k0) i |) -f α (|x (k0+1) i | + ∆) ≥ 0.
These two inequalities imply that

u k0+1 + = p i=1 f α (|x (k0+1) i | + ∆) + ≤ p i=1 f α (|x (k0) i | + ∆) + f α (|x (k0) i | + ∆)(|x (k0+1) i | -|x (k0) i |)
Furthermore, by definition of x (k0+1) , we have

p i=1 f α (|x (k0) i | + ∆) + f α (|x (k0) i | + ∆)(|x (k0+1) i | -|x (k0) i |) ≤ p i=1 f α (|x (k0) i | + ∆) = u k0 .
The previous inequality implies that ∀K, ∃k 0 ≥ K such that |u k0+1 -u k0 | ≥ .

The last inequality provides a contradiction for the convergence of the sequence (u k ) k∈N .

Lemma 8 Let x (φ(k)) be a subsequence of (x (k) ) k∈N that converges toward x then, the sequence (x (φ(k)+1) ) k∈N converges toward x.

Proof : The proof 1) in the theorem 5 shows that the sequence (x (k) ) k∈N is bounded. Consequently, (x (φ(k)+1) ) k∈N is bounded too. To prove that the bounded sequence (x (φ(k)+1) ) k∈N converges to x, it is sufficient to show that x is the only limit point of this sequence. Let (x (φ(ψ(k))+1) ) k∈N be a converging subsequence such that lim k→+∞

x (φ(ψ(k))+1) = x1 , with x1 = x.
By the lemma 7, we have lim

k→+∞ d ∞ (|x (φ(ψ(k))+1) |, |x (φ(ψ(k))) |) = 0. Since lim k→+∞ x (φ(ψ(k))) = x, one deduces that |x| = |x 1 |. Let us define x2 as x2 := (x 1 + x)/2. Because x (φ(ψ(k))+1) := argmin 1 i p f α (|x (φ(ψ(k))) i | + ∆)|x i | subject to y -Dx 2 ≤ , we have p i=1 f α (|x (φ(ψ(k))) i | + ∆)|x (φ(ψ(k))+1) i | ≤ p i=1 f α (|x (φ(ψ(k))) i | + ∆)(|x 2 i |).
Taking the limit in the previous expression, one obtains

1≤i≤p f α (|x i | + ∆)|x 1 i | ≤ 1≤i≤p f α (|x i | + ∆)|x 2 i |. (11) 
On the other hand, supp(x 2 ) = {i ∈ supp(x 

f α (|x i | + ∆)|x 1 i | > i∈supp(x 2 ) f α (|x i | + ∆)|x 1 i | = i∈supp(x 2 ) f α (|x i | + ∆)|x 2 i | = 1≤i≤p f α (|x i | + ∆)|x 2 i |. (12) 
The inequality (12) provides a contradiction with the inequality [START_REF] Emmanuel | Enhancing sparsity by reweighted l 1 minimization[END_REF]. Therefore, the only limit point of the bounded sequence (x (φ(k)+1) ) k∈N is x.

Lemma 9 Let x ω be a solution of the weighted lasso problem

argmin p i=1 w i |x i | subject to y -Dx 2 , with ∀i ∈ [[1, p]], ω i > 0. ( 13 
)
Furthermore, let us assume that y 2 > then, y -Dx ω 2 = .

Proof : Let us assume that y -Dx ω 2 < . Consider the points x(t) defined by

∀i ∈ [[1, p]], x i (t) = sign(x ω i )(|x ω i | -t) + , where (a) + = max{a, 0}. One can check that x(t) -x ω ∞ ≤ t. Because the set x ∈ R p | y -Dx 2 <
is an open set, there exists t 0 > 0 small enough such that y -Dx(t 0 ) 2 < . Finally, we have

∀i / ∈ supp(x ω ), |x i (t 0 )| = |x ω i | = 0 and ∀i ∈ supp(x ω ), |x i (t 0 )| < |x ω i |.
Because 0 is not an admissible point, one has x ω = 0. Consequently, we have the following inequality.

p i=1 w i |x i (t 0 )| < p i=1 w i |x ω i |.
Such a result provides a contradiction for the minimality of

p i=1 ω i |x ω i |.
Proof of theorem 5 :

1) For any k ≥ 1, x (k) is the solution of a weighted lasso. By lemma 3, the family

(d i ) i∈supp(x (k) ) is linearly independent. Consequently, ∀k ≥ 1, x (k) ∈ E
, where E is the set given in the lemma 4. Because E is a compact set of R p , one deduces that (x (k) ) k∈N is bounded.

2-i)

Because lim k→+∞ x (φ(k)) = x, there exists k 0 such that ∀k ≥ k 0 , supp(x) ⊂ supp(x (φ(k)) ).

Since by lemma 3 (d i ) i∈supp(x (k 0 ) ) is linearly independent, one deduces that (d i ) i∈supp(x) is linearly independent.

2-ii)

For any k ≥ 1, x (k) is the solution of a weighted lasso with positive weights and y 2 > . Consequently from the lemma 9, for all k ≥ 1, y -Dx (k) 2 = . Because the set x ∈ R p | y -Dx 2 = is a closed set, one deduces that the limit point x satisfies y -Dx 2 = .

2-iii) By definition of x (k) we have

x (φ(k)+1) := argmin p i=1 f α (|x (φ(k)) i | + ∆)|x i | subject to y -Dx 2 2 .
According to [START_REF] Bertsekas | Nonlinear programming[END_REF] (chapter 5.3), there exists λ ≥ 0 such that

x (φ(k)+1) := argmin f α (|x (φ(k)) i | + ∆)|x i | + λ y -Dx 2 2 . 0 ∈ ∂pen(x (φ(k)+1) ) -λD T (y -Dx (φ(k)+1) ), (14) 
with ∂pen(

x (φ(k)+1) ) = C 1 × • • • × C p , where 
C i :=        -f α (|x (φ(k)) i | + ∆), f α (|x (φ(k)) i | + ∆) if x (φ(k)+1) i = 0 sign(x φ(k)+1 i )f α (|x (φ(k)) i |) otherwise .
Since lim n→+∞ x (φ(k)) = lim k→+∞ x (φ(k)+1) = x, the vectors (x (φ(k)+1) ) i∈supp(x) and (x) i∈supp(x) have the same sign for k large enough. Moreover, since f α is continuous, by taking the limit in ( 14), we see that the vectors (d T i (y -Dx)) i∈supp(x) and (sign(x i )f α (x i )) i∈supp(x) are collinear.

Proof of theorem 6:

i) The proof of this part is exactly the same as the one provided in lemma 9.

ii) The proof of this part is exactly the same as the one provided in lemma 2.

iii) The vector

x α supp(x α ) := (x α i ) i∈supp(x α ) is a solution of the problem argmin i∈supp(x α ) f α (|x i | + ∆) subject to y -Dx 2 2
, with D the matrix with columns

(d i ) i∈supp(x α ) . (15) 
Indeed, assume that x α supp(x α ) is not a solution of the previous problem, then there exists x ∈ R Card(supp(x α )) such that

y -Dx 2 2 and i∈supp(x α ) f α (|x i | + ∆) < i∈supp(x α ) f α (|x α i | + ∆).
Let us set x ∈ R p such that x i := xi if i ∈ supp(x α ) and x i := 0 otherwise. By definition of x we have 

f α (∆) + i∈supp(x α ) f α (|x i | + ∆), < i / ∈supp(x α ) f α (∆) + i∈supp(x α ) f α (|x α i | + ∆) = p i=1 f α (|x α i | + ∆).
The previous inequality contradicts that x α ∈ L α . According to [START_REF] Bertsekas | Nonlinear programming[END_REF] (chapter 5.3), there exists λ ≥ 0 such that x α supp(x α ) , the solution of [START_REF] David | Optimally sparse representation in general (nonorthogonal) dictionaries via l 1 minimization[END_REF], is also the solution of the problem argmin 6 Appendix 2: Simulations with partial random circulant matrices

We use the same setting of simulation than the one given in the section 4 except that here D is a partial random circulant matrix as defined in [START_REF] Rauhut | Compressive sensing and structured random matrices[END_REF] page 27. These random matrices are used for applications in radar and wireless communication [START_REF] Haupt | Toeplitz compressed sensing matrices with applications to sparse channel estimation[END_REF][START_REF] Romberg | Compressive sensing by random convolution[END_REF]. 

Comparisons

For each observation of D and x, we compute the basis pursuit solution (denoted x bp ) of P 1 , the reweighted l 1 minimization solution and the solution given by our method as defined in [START_REF] Burger | Simultaneous reconstruction and segmentation for dynamic spect imaging[END_REF]. The reweighted l 1 solution is the limit of the sequence (x l1,(k) ) k∈N defined by x l1,(0) = x bp and x l1,(k+1) := argmin As in [START_REF] Emmanuel | Enhancing sparsity by reweighted l 1 minimization[END_REF], we set δ = 0.1. The number of iterations was set to k 0 = 8 for both the reweighted l 1 minimization method and our method. We choose f α (x) = log(1 + |x|/α)/ log(1 + 1/α) with α = 0.01. After 8 iterations, we kept the sparsest solution among the one obtained with ∆ ∈ {0.01, 0.1, 0.5, 1, 2, 4}.

The figure 6 shows the performances of the basis pursuit, the reweighted l 1 minimization and our method.

In these simulations, our method is initialized with: 1) the point x (0) provided by the algorithm described in figure 4 and 2) the basis pursuit solution x bp . The performances of the basis pursuit, l 1 reweighted and our method are represented by the proportions of realisations of the events x bp = x, x l1,(8) = x and x (8) = x as a function of the number of non null components of x denoted s. In these simulations, our method is initialized with two different point: x (0) given by the algorithm described in figure 4 and x bp the basis pursuit solution.

The performances of these three methods namely the basis pursuit, the l 1 reweighted and our method (initialized with x (0) ) are similar to the performances given in the figure 5. One observes that the initialization of our method with the point x (0) given by the algorithm described in figure 4 plays an important role on the performance of our method.

Conclusion

In this article, we studied the problems P fα and P fα which recover respectively one of the sparsest representations or one of the sparsest approximations of a high-dimensional linear system. Theoretical results are proved and a MM method is then used to solve these problems. Numerical experiments highligh the performances of our method compared to the basis pursuit and the reweighted l 1 minimization ones. In this study, the vector y is not corrupted by any noise. When y is a random vector, [START_REF] Meinshausen | Group bound: confidence intervals for groups of variables in sparse high dimensional regression without assumptions on the design[END_REF] provides an estimation of the representation of its expectation which has the smallest l 1 norm. In a future work, this work could be extended to estimate the sparsest representation of the expectation of y.

S 0 :

 0 = argmin x 0 subject to y -Dx 2 ≤ (P 0 ) where x 0 := Card{i ∈ [[1, p]] | x i = 0} = p i=1 1 xi =0 is the l 0 "norm" ofx and D := (d 1 | . . . |d p ) is the n × p matrix whose columns are the vectors (d j ) 1≤j≤p .
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  where D is the matrix with columns (d i ) i∈supp(x α ) . (4)Consequently (x α ) supp(x α ) is a stationary point of a Lagrangian function ([START_REF] Lange | Elementary optimization[END_REF] page 71,[START_REF] Boyd | Convex optimization[END_REF] page 243) implying thus the property iii) to hold with ∆ = 0. The previous remark and the theorem 4 have a nice geometric interpretation illustrated on figure2for p = 3 and n = 2.

Figure 2 :

 2 Figure 2: In the left panel the set of constraints y -Dx 2 ≤ (in orange) and the "ball" 3 i=1 f α (|x i |) ≤ R (in green) are represented. The radius R is the smallest positive number for which the cylinder y -Dx 2 ≤ and the "ball" 3 i=1 f α (|x i |) ≤ R share at least one common point. The set S 0 is a union of three ellipsoids which are the intersection of the cylinder y -Dx 2 ≤ with the planes x 1 0x 2 , x 1 0x 3 and x 2 0x 3 . To keep this illustration understandable, we only plot the intersection of the cylinder y -Dx 2 ≤ and the plane x 1 0x 2 . The set S fα = {x α }, represented as a blue point in the left figure, is a singleton of S 0 . This illustrates theorem 4 showing that whatever η > 0 S fα ⊂ G η . In the right panel, we focus on the intersection of the cylinder y -Dx 2 ≤ and the intersection of the "ball"

For a given s ∈ [[ 1 ,

 1 n -1]], we choose x as a random vector constructed as follows. Let Z 1 , . . . , Z s be i.i.d random variables N (0, 1) distributed, we set ∀i / ∈ [[1, s]], xi = 0 and ∀i ∈ [[1, s]], xi := Z (i) , where Z (1) , . . . , Z (s) are ordered variables such that |Z (1) | ≥ • • • ≥ |Z (s) |. Because, by construction, almost surely the unique representation property holds for D (i.e. with a probability 1, spark(D) = n + 1), when s < (n + 1)/2 x is almost surely the unique sparsest representation of y in D [44]. When s ∈ [[(n + 1)/2, n -1]], one can show that x is still the unique sparsest representation of y in D. The proposed MM method aims to find the sparsest representation of y in D which correspond to x.

Figure 3 :

 3 Figure 3: In this figure, x is a random vector such that supp(x) = [[1, s]], with s ∈ {20, 22, . . . , 50} and |x1 | ≥ • • • ≥ |x s |.For every s ∈ {20, 22, . . . , 50}, a sample of 500 families D = {d 1 , . . . , d 256 } and 500 observations of the random vectors x have been simulated. For each family and observation of x, we compute the solution x bp of the basis pursuit problem P 1 . On the left panel, we have the representation of the proportion of times when x bp = x as a function of s. One notices that when s ≥ 45, the event x bp = x is never observed. In the right panel, we set s = 50 and r is a permutation of [[START_REF] Baraniuk | Compressive radar imaging[END_REF] 100]] such that |x bp r(1) | ≥ • • • ≥ |x bp r(100) | (by lemma 3, Card(supp(x bp )) ≤ 100). For each i ∈ [[START_REF] Baraniuk | Compressive radar imaging[END_REF] 100]] in the x-axis, the y-axis represents the proportion of times for which r(i) ∈ supp(x). Note that largest components of x bp are elements of supp(x).

Figure 4 : 1 |x

 41 Figure 4: In this figure, we give the different steps of the algorithm to obtain the initial point x (0) .

Figure 5 :

 5 Figure5: The performances of the three competing methods are represented by the proportions of realisations of the events x bp = x, x l1,(8) = x and x(8) = x as a function of the number of non null components of x denoted s. One notices that the graph of the reweighted l1 minimization method is almost the same as those given in[START_REF] Emmanuel | Enhancing sparsity by reweighted l 1 minimization[END_REF].

  (a)+f (a)(b-a)-f (b) ≥ g a0 (|b -a|). We set t = b -a, the convexity of f gives ∂ ∂a (f (a) + f (a)|t| -f (a + |t|)) = f (a) + f (a)|t| -f (a + |t|) ≤ 0.

  lim k→+∞ d ∞ (|x (k+1) |, |x (k) |) = 0 Proof : Let us define the sequence (u k ) k∈N with u k := 1≤i≤p f α (|x (k) i | + ∆).The convergence of this sequence is given in the proof of the theorem 2.

x 0 ≤ x α 0 .

 0 On the other hand, since Dx = Dx we have y -Dx 2 ≤ therefore x ∈ S 0 . Let us show that p i=1 f α (|x i | + ∆) < p i=1 f α (|x α i | + ∆) p i=1 f α (|x i | + ∆) = i / ∈supp(x α )

  i∈supp(x α ) f α (|x i | + ∆) + λ y -Dx 2 , where λ ≥ 0. Because the partial derivatives of i∈supp(x α ) f α (|x i | + ∆) + λ y -Dx 2 at x α supp(x α ) are null we have ∀i ∈ supp(x α ), sign(x α i )f α (|x α i | + ∆) -λd T i (y -Dx α supp(x α ) ) = 0.Since Dx α supp(x α ) = Dx α , one obtains that the vectors (sign(x α i )f α (|x α i | + ∆)) i∈supp(x α ) and d T i (y -Dx α ) i∈supp(x α ) are collinear.

.

  First, before to introduce D, let us define a random circulant matrix Φ with Rademacher (i.e. uniform on {-1, 1}) entries. Let b 0 , . . . , b p-1 be i.i.d Rademacher random variables and define the circulant random matrix Φ as follows Let I be a random set independent from b 0 . . . , b p-1 having a uniform distribution on combinations of n elements among p (thus card(I) = n). Let us define the n × p partial random circulant matrix D as followsD = (d 1 | . . . |d p ) = (Φ i,j / √ n) i∈I,j∈[[1,p]] .The columns of D are normalized so that d 1 2 = • • • = d p 2 = 1. We choose x with supp(x) = [[1, s]] as in section 4 and we let y = Dx.

p i=1 1 |x

 1 l1,(k) i | + δ |x i | subject to Dx = y, with y = Dx.

Figure 6 :

 6 Figure6: The performances of the basis pursuit, l 1 reweighted and our method are represented by the proportions of realisations of the events x bp = x, x l1,(8) = x and x(8) = x as a function of the number of non null components of x denoted s. In these simulations, our method is initialized with two different point: x (0) given by the algorithm described in figure4 andx bp the basis pursuit solution.

  p i=1 |x i | by i / ∈A |x i | should provide a solution closer to x than x bp . So, to insure the uniqueness of the solution, instead of i / ∈A |x i | we could minimize the expression ω i∈A |x i | + i / ∈A |x i |, with ω very small. This leads to the problem argmin ω

i∈A |x i | + i / ∈A |x i | subject to Dx = y. (P A )

provides a closer solution of x than the problem P 1 .

  {i 1 , . . . , i s } and x i (t) = x α i otherwise. For all i ∈ {i 1 , . . . , i s }, let us denote t i = -x α i /γ i . Without loss of generality, we assume that t i1 . . . t is . The function t ∈ R → f α (|x i (t)|) is strictly decreasing and strictly concave on (-∞, t i ] and strictly increasing and strictly concave on [t i , +∞) when i ∈ {i 1 , . . . , i s }. i1 , t is ]; because each function t ∈ R → f α (|x i (t)|) with i ∈ {i 1 , . . . , i s } is strictly decreasing on (-∞, t i ] (resp. strictly increasing on [t i , +∞)), one deduces that t ∈ R → p i=1 f α (|x i (t)|) is strictly decreasing on (-∞, t i1 ] (resp. strictly increasing on [t is , +∞)). These monotony results imply that

	Assume that 0 / ∈ [t p
	i=1

  (|x(t)|) to the set [t i k , t i k+1 ] reaches its minimum at t i k or t i k+1 and nowhere else. This concavity result implies that

	p
	i=1

t is ] then, there exists i k such that 0

∈ (t i k , t i k+1 ) (note that t i k and t i k+1 are not null). Because each function t ∈ R → f α (|x i (t)|) with i ∈ {i 1 , . . . , i s } is strictly concave on [t i k , t i k+1 ], one deduces that t ∈ R → p i=1 f α (|x(t)|) is also strictly concave on [t i k , t i k+1 ]. Consequently, the restriction of the function t ∈ R → p i=1 f α
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