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Sparsest representations and approximations of a high-dimensional

linear system

Patrick J.C. Tardivel∗, Rémi Servien and Didier Concordet

Toxalim, Université de Toulouse, INRA, ENVT, Toulouse, France.

Abstract

In a high-dimensional linear system of equations, constrained l1 minimization methods such as the basis

pursuit or the lasso are often used to recover one of the sparsest representations or approximations of the

system. The null space property is a su�cient and "almost" necessary condition to recover a sparsest

representation with the basis pursuit. Unfortunately, this property cannot be easily checked. On the other

hand, the mutual coherence is an easily checkable su�cient condition insuring the basis pursuit to recover

one of the sparsest representations. Because the mutual coherence condition is too strong, it is hardly met

in practice. Even if one of these conditions holds, to our knowledge, there is no theoretical result insuring

that the lasso solution is one of the sparsest approximations. In this article, we study a novel constrained

problem that gives, without any condition, one of the sparsest representations or approximations. To solve

this problem, we provide a numerical method and we prove its convergence. Numerical experiments show that

this approach gives better results than both the basis pursuit problem and the reweighted l1 minimization

problem.

Keywords: Basis pursuit, Lasso, Sparsest representations, Sparsest approximations.

1 Introduction

We consider a vector y ∈ Rn and a family of vectors D = {d1, . . . , dp} spanning Rn. An ϵ−approximation of y

in D is a vector x = (x1, . . . , xp) such that ∥y − (x1d1 + · · ·+ xpdp)∥2 ≤ ϵ. The aim of this article is to �nd at

least one of the sparsest ϵ−approximations of y when p > n. These sparsest ϵ−approximations are de�ned as

the solutions of

Sϵ0 := argmin ∥x∥0 subject to ∥y −Dx∥2 ≤ ϵ (Pϵ0)

where ∥x∥0 := Card{i ∈ [[1, p]] | xi ̸= 0} =
∑p
i=1 1xi ̸=0 is the l0 "norm" of x and D := (d1| . . . |dp) is the n × p

matrix whose columns are the vectors (dj)1≤j≤p.

A �rst simpli�ed problem is to look for the sparsest representations of y in D corresponding to the solutions

of P0
0 namely

S0 := argmin ∥x∥0 subject to Dx = y. (P0)
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A simple way to solve P0 is to compute x̃ = D̃−1y for all n× n invertible submatrices D̃ of D and to select

the x̃ with the lowest l0 "norm". The number of such n× n submatrices of D is
(
p
n

)
. When p ≫ n this number

is huge rending the previous approach intractable. So, other approaches such as the basis pursuit problem,

denoted P1, have been proposed [13, 14, 18]. Under some conditions, given hereafter, the problem

argmin ∥x∥1 subject to Dx = y (P1)

has a unique solution that is also a solution of P0. The standard approach to know if a solution of P1 is also a

solution of P0 is to compute a solution for P1 and to check whether or not one of these conditions holds for it.

When the solution of P1 does not meet any of these conditions, we do not know if it belongs to S0.

The null space property [11, 13, 14, 18] is probably the most known condition. However, as pointed out

by Tillmann et al. [32], this condition is uncheckable. Another condition is the restricted isometry property

detailed in [5, 6, 7, 8, 17]. However, this condition is not easy to use because the computation of the restricted

isometry constant is intractable [32]. On the contrary, the mutual coherence and the spark conditions [13, 18]

are easily checkable. Unfortunately, none of these four conditions (null space property, restricted isometry

property, mutual coherence and spark conditions) hold for the basis pursuit solution as soon as its l0 "norm"

is greater or equal to (n+ 1)/2. In this case, the solutions of P1 does not give any information on those of P0.

Moreover, even if the l0 "norm" of the sparsest representation is strictly smaller than (n+ 1)/2, the numerical

comparisons of [9] illustrate that the solution of the basis pursuit may not be a solution of P0.

An intuitive alternative approach consists in the approximation of the l0 "norm" in P0 by a surrogate function

with nice properties. As an example, the function
∑p
i=1 ln(1 + |xi|/δ) has been studied as an approximation of

the l0 "norm" [9, 24], leading to the following problem

argmin
∑

16i6p
ln(1 + |xi|/δ) subject to Dx = y. (1)

An iterative method converging to a stationary point of the problem (1) is provided in [24]. With some well

chosen δ, simulations show that this heuristic approach gives better results than the basis pursuit. However,

nothing guarantees that the solutions of (1) are also solutions of P0 and the choice of δ plays a major role on

the performances of the method.

When ϵ > 0, the problem Pϵ0 is even more complicated and still intractable. Similarly to the basis pursuit

problem P1, one can substitute in Pϵ0 the l0 "norm" by a l1 norm. This leads to the following problem

argmin ∥x∥1 subject to ∥y −Dx∥22 6 ϵ. (Pϵ1)
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This problem Pϵ1 can be rewritten as a lasso problem [30]:

argmin ∥y −Dx∥2 + λ∥x∥1. (P(λ))

Actually, there exists a (not explicit) bijection between λ et ϵ guaranteeing that both problems have the same

solution ; see [1] (chapter 5.3) for more details.

To our knowledge, there is no theoretical result insuring that x(λ), the unique solution of P(λ), is an element

of Sϵ0. Instead, there exists a lot of conditions that state the convergence of x(λ) to a solution x∗ ∈ S0 when

λ converges to 0 [4, 14, 15, 33, 34]. Among these conditions (for an exhaustive list, see [3] page 177), the

two most known are probably the irrepresentable condition [26, 37, 38] and the compatibility condition [33].

In practice all these conditions are not easily checkable. Furthermore, when these conditions do not hold the

solution obtained with the basis pursuit or with the lasso can be very far from the set Sϵ0 we wish to recover.

The aim of this article is to propose a new tractable problem which allows to catch one of the sparsest

representations (element of S0) or one of the sparsest ϵ−approximations (element of Sϵ0). To obtain such

solutions, we de�ne and solve the following problem

Sϵfα := argmin

p∑
i=1

fα(|xi|) subject to ∥y −Dx∥2 ≤ ϵ.

We provide functions fα : R+ → R, depending on a parameter α > 0, guaranteeing without any condition that

• when ϵ = 0, there exists α0 such that whatever 0 < α ≤ α0, the previous problem is "almost equivalent"

to P0 since S0
fα

⊂ S0,

• when ϵ > 0, Sϵfα becomes arbitrary close to Sϵ0 when α converges to 0.

This article is organized as follows. In section 2, we study the case ϵ = 0. We prove that there exists α0 such

that, whatever α ≤ α0, each element of S0
fα

is a solution of P0 and that a Maximisation Minimisation (MM)

method provides an iterative sequence which converges to a local minimum of P0. Section 3 is dedicated to

the case ϵ > 0. We prove that Sϵfα becomes arbitrary close to the set Sϵ0 when α converges to 0 and we give

necessary conditions that must satisfy the limit points of the iterative sequence provided by the MM method.

We also exhibit a subset of Sϵ0 that ful�lled these necessary conditions. The section 4 is devoted to simulations.

Numerical experiments show that this approach gives better results to recover one of the sparsest representations

than both the basis pursuit problem P1 and the reweighted l1 minimization problem.

2 A sparsest representation

As already explained, solve P0 is di�cult. Replacing the l0 "norm" by a l1 norm leads to the problem P1 which

provides sparse solutions. However, the conditions guaranteeing that a solution of P1 is also a solution of P0 are
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unveri�able. The substitution in P0 of the l0 "norm" by a lα "norm" with α < 1 gives the following problem

Pα which also has sparse solutions

Sα := argmin ∥x∥α subject to Dx = y, (Pα)

where ∥x∥α = (
∑p
i=1 |xi|α)

1/α
is the lα "norm" of the vector x. The study of this problem has been the subject

of an abundant literature [10, 16, 18, 19, 22, 28, 36]. The problem Pα provides a sparsest representation as soon

as the null space property condition [18] or the restricted isometry property [10, 16, 22, 28] hold. As for the

basis pursuit, these conditions are uncheckable.

In this section we show that there exists α0 > 0 such that the solutions of Pα are also solutions of P0 as

soon as α < α0. When α < 1, the function x = (x1, . . . , xp) 7→ ∥x∥α is a concave function on each domain

of the form I1 × · · · × Ip, with Ik =] −∞, 0] or Ik = [0,+∞[. Solving Pα leads to minimize a locally concave

function on a convex set. This is not a convex optimization problem. In this respect, we propose in this section

a numerical method to solve it. We can generalize the problem Pα by substituting the function |xi|α by a

function fα(|xi|) . This modi�cation leads to minimize an expression of the form
∑p
i=1 fα(|xi|). Intuitively, by

comparing
∑p
i=1 fα(|xi|) with the lα "norm", one sees that the function

∑p
i=1 fα(|xi|) should simply converge

to ∥.∥0 and should have level sets that look like spheres for the lα "norm". A geometric interpretation linking

the shape of the spheres of the lα "norm" to the sparseness of the solutions of Pα is given in [20]. In the theorem

1, we focus on the following problem

Sfα := argmin
∑

16i6p
fα(|xi|) subject to y = Dx. (Pfα)

Without any condition, we prove that the solutions of Pfα are also solutions of P0 as soon as α is small enough.

Theorem 1 Let fα be a function de�ned on R+ strictly increasing and strictly concave such that

∀x ∈ R+, lim
α→0

fα(x) = 1x ̸=0.

Then, there exists α0 > 0 such that for all α ∈ (0, α0), Sfα ⊂ S0.

The α0 threshold depends on D and y and its value is quite hard to infer except in few cases (see [29]). However,

since the Pfα allows to capture a part of S0 for all α < α0, one can choose a priori a very small α so that we

can expect it is less than α0. A study of the problem Pfα where the functions fα have di�erent properties that

those given in the theorem 1 is given in [35]. The authors proved that the problem Pfα catches an element of S0

under the conditions that the l0 "norm" of the sparsest representation is smaller than n/2 and that the matrix

D satis�es the unique representation property.

In the theorem 1, we made relatively weak assumptions on the fα functions. Indeed, a function fα for which
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the properties of the theorem 1 hold can be not derivable on (0,+∞) or not continuous in 0. Because the

numerical resolution of the problem Pfα requires some regularity, we restrict ourselves to functions fα which

are di�erentiable on (0,+∞). Numerically, we solve the problem Pfα using a MM method [21] popularized

in statistics by the EM algorithm [12]. This method iteratively alternates two steps. First a function that

majorizes the function
∑

16i6p fα(|xi|) is de�ned. Then this majorazing function is minimized.

In a similar way as in [9, 24], we de�ne a sequence (x(k))k∈N by "linearising" the function
∑

16i6p fα(|xi|)

at the point x(k) ∈ Rp. This "linearisation" (we use quotation because this function is not a�ne) gives the

function x ∈ Rp 7→
∑

1≤i≤p fα(|x
(k)
i |) + f ′

α(|x
(k)
i |)(|xi| − |x(k)

i |). Because f is concave on R+, we have

∀x ∈ Rp,
∑

16i6p
fα(|xi|) ≤

∑
1≤i≤p

fα(|x(k)
i |) + f ′

α(|x
(k)
i |)(|xi| − |x(k)

i |).

Then, this majorizing function is minimized with respect to x leading to x(k+1). More precisely, we choose

x(0) ∈ Rp and we set x(k+1) as the solution of the following weighted basis pursuit problem

x(k+1) := argmin
∑

1≤i≤p

fα(|x(k)
i |) + f ′

α(|x
(k)
i |)(|xi| − |x(k)

i |) subject to Dx = y,

= argmin

p∑
i=1

f ′
α(|x

(k)
i |)|xi| subject to Dx = y.

Note that without any other consideration, nothing guarantees that x(k+1) is unique. The general position

condition for D (as de�ned in [31]) is a su�cient condition for the uniqueness of x(k+1) [27]. The general

position condition is very weak. Indeed, when D is a random matrix with a continuous distribution on the

set of the n × p matrix, the general position condition holds almost surely [31]. Consequently, in practice, the

uniqueness of the basis pursuit solution always holds.

The �rst iteration of the previous MM method gives a vector x(1) solution of the weighted basis pursuit

problem. This vector has a large number of null components. When f is right di�erentiable at 0, as for

small α the quantity f ′
α(0) is very large (because limα→0 f

′
α(0) = +∞), the null components of x(1) will be

strongly weighted implying that the algorithm will get stuck at this point. To avoid this problem, we propose

to iteratively solve the following approximate problem that gives less weight on null components

x(k+1) := argmin
∑

16i6p
f ′
α(|x

(k)
i |+∆)|xi| subject to Dx = y. (2)

The theoretical results justifying the introduction of ∆ are provided in the theorem 2 and proposition 1.

Theorem 2 For every x(0) ∈ Rp, for every ∆ > 0, there exists an integer k0 such that ∀k > k0, the sequence

x(k) de�ned in (2) is so that x(k) = x(k0).

A similar theorem that deals only with the convergence of the iterative method in the special case where
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fα(x) = log(1 + x/α) already denoted as (1) is given in [24]. This theorem shows that the iterative sequence

converges onto a stationary point of the problem min
∑

16i6p log(1 + |xi|/α) subject to Dx = y which is not a

priori a local minimum of P0. Moreover, the proposed proof in [24] seems incorrect because even for a bounded

sequence, the fact that limk→+∞ x
(k+1)
i −x

(k)
i = 0 does not imply the convergence of (x

(k)
i )k∈N. The proposition

1 states the limit of the sequence (x(k))k∈N de�ned in (2) is a local minimum of the problem P0.

Proposition 1 Let (x(k))k∈N be the sequence de�ned in (2) and l its limit then, there exists a radius r > 0

such that ∀x ∈ B∞(l, r) with Dx = y and x ̸= l, we have ∥x∥0 > ∥l∥0.

The limit l given in the previous proposition depends on x(0) ∈ Rp and ∆ > 0. In Section 4 we discuss the

choice of the initial point x(0) and we propose to test di�erent values for ∆ in order to keep the local minimum

having the lowest l0 "norm".

3 Sparsest ϵ−approximations

In the previous section, we obtained one of the sparsest representations of y by solving the problem Pfα instead

of P0 with α small enough. Similarly, to solve the intractable problem Pϵ0, one substitutes the constraint Dx = y

that appears in the problem Pfα by the constraint ∥y −Dx∥22 ≤ ϵ. This modi�cation leads to consider

Sϵfα := argmin
∑

16i6p
fα(|xi|) subject to ∥y −Dx∥2 ≤ ϵ. (Pϵfα)

The following theorem 3 shows that, when α is small enough, the set Sϵfα is arbitrary close to the set Sϵ0 of

solutions of Pϵ0. This justi�es to solve Pϵfα instead of Pϵ0. There are situations in which solving Pϵfα , with a

small enough α, gives one of the sparsest approximations. However, there are situations in which it is not the

case. Unfortunately, we do not have any general criterion separating these two cases. This is the reason why,

we propose the following theorem that states that the solutions of Pϵfα are arbitrarily close to Sϵ0. For this

theorem, we introduce the η−magni�cation of the set Sϵ0. It is de�ned as the open set Gη :=
∪
x∈Sϵ

0
B(x, η),

where B(x, η) is an l2 open ball of radius η > 0 centered in x.

Theorem 3 Let (fα)α>0 be a family of strictly increasing, strictly concave and continuous functions de�ned on

R+ such that

0 < α ≤ α′ ⇒ fα ≥ fα′ and ∀x ∈ R+ lim
α→0

fα(x) = 1x ̸=0.

Then, for all η > 0, there exists α0 > 0 such that the following inclusion holds

∀α ≤ α0, S
ϵ
fα ⊂ Gη.
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Such families of functions may appear di�cult to build, but this is not the case. As an example, the assumptions

of theorem 3 hold for the families of functions fα : x ∈ R+ 7→ x/(α + x) and fα : x ∈ R+ 7→ arctan(x/α). The

�gure 1 illustrates this result in two di�erent cases. In the �rst case, with a small enough α, the problem Pϵfα
captures one of the sparsest approximations. In the second case, whatever α > 0, the solution of the problem

Pϵfα is not one of the sparsest approximations but stays close to Sϵ0.

Figure 1: Let fα be the function fα : x ∈ R+ 7→ x/(x+α) with α > 0. On the left, we represent the solution of

the problem argmin
∑2
i=1 fα(|xi|) subject to (x1−3)2+(x2−1.9)2 ≤ 4 for several values of α and the solution

of the lasso problem argmin
∑2
i=1 |xi| subject to (x1 − 3)2 + (x2 − 1.9)2 ≤ 4 denoted xlasso. The points x10, x5

and xα are the solutions of the �rst problem when α = 10, α = 5 and α ≤ α0 with α0 ≈ 4.5. Geometrically,
xα and xlasso are respectively the unique solution of the �rst problem with α = 1 and of the lasso problem
because the "open balls" {

∑2
i=1 f1(|xi|) <

∑2
i=1 f1(|xαi |)} (in green) and {∥x∥1 < ∥xlasso∥1} (in grey) do not

share any point with the constraint set (x1 − 3)2 + (x2 − 1.9)2 ≤ 4 (in blue). Note that when α ≤ α0, the �rst
problem catches an element xα of Sϵ0 (in red). On the right, we represent the solution of the lasso problem

and the solutions x10, x5, x1 of the problem argmin
∑2
i=1 fα(|xi|) subject to (x1 − 3)2 + (x2 − 2)2 ≤ 4 when

α = 10, α = 5 and α = 1. In addition we draw the "open balls" {
∑2
i=1 f5(|xi|) <

∑2
i=1 f5(|x5

i |)} (in green) and
{∥x∥1 < ∥xlasso∥1} (in grey). When α is small the solution is close to Sϵ0. However, one can prove that whatever
α > 0, this second problem never catches exactly an element of Sϵ0.

In the previous section, we have seen that a MM method provides a sequence (2) which is stationary from a

certain rank onto a local minimum of the problem P0. To solve the problem Pϵfα , one uses the same MM method

as in (2) leading to the iterative sequence given hereafter. Let x(0) ∈ Rp and de�ne the sequence (x(k))k∈N as

follows

x(k+1) := argmin
∑

16i6p
f ′
α(|x

(k)
i |+∆)|xi| subject to ∥y −Dx∥2 ≤ ϵ. (3)

Similarly to the basis pursuit problem, the lasso problem (3) does not always have an unique solution. However,

the general position condition for D is su�cient to insure the uniqueness of the lasso solution [27, 31]. As

already explained, the general position condition is very weak [31] and, in practice, the uniqueness of the lasso

solution always occurs.
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In the theorem 4, we prove that the sequence (x(k))k∈N, as de�ned in (3), is bounded that is, when k is large

enough, x(k) is close to a limit point. The theorem 4 shows that the optimality conditions hold for the limit

points of the sequence (x(k))k∈N.

Theorem 4 Let (fα)α>0 be a family of increasing, concave and two times di�erentiable functions de�ned on

(0,+∞) such that ∀α > 0, f ′
α is convex and

∀x ∈ R+ lim
α→0

fα(x) = 1x ̸=0.

Then :

1. The sequence (x(k))k∈N described in (3) is bounded.

2. For any limit point x̃ of the sequence (x(k))k∈N, we have

i) The vector x̃ is on the boundary of the constraints' set thus, ∥y −Dx̃∥2 = ϵ.

ii) The family of D matrix columns (di)i∈supp(x̃) is linearly independent.

iii) The vectors (dTi (y −Dx̃))i∈supp(x̃) and (f ′
α(|x̃i|+∆))i∈supp(x̃) are collinear.

As for the theorem 3, the assumptions on fα given in theorem 4 hold for the functions fα : x ∈ R+ 7→ x/(α+x)

and fα : x ∈ R+ 7→ arctan(x/α). The points for which the properties i), ii) and iii) hold are kind of "critical

points" of the problem Pϵfα . The properties i), ii), iii) described in the previous theorem are veri�ed at all points

xα of Sϵfα .

Actually, a proof similar to the proof of the lemma 9 shows that xα is on the boundary of the constraint

∥y −Dx∥2 ≤ ϵ. Consequently, the property i) holds for xα.

By the lemma 1, the family (di)i∈supp(xα) is linearly independent thus property ii) holds.

Finally, because xα is a solution of the problem Pϵfα , (x
α)i∈supp(xα) is also a solution of the problem

argmin
∑

i∈supp(xα)

fα(|xi|) subject to ∥y − D̃x∥2 ≤ ϵ where D̃ is the matrix with columns (di)i∈supp(xα). (4)

Consequently (xα)supp(xα) is a stationary point of a Lagrangian function ([23] page 71, [2] page 243) implying

thus the property iii) to hold with ∆ = 0. The previous remark and the theorem 3 have a nice geometric

interpretation illustrated on �gure 2 for p = 3 and n = 2.

Because for each element xα in Sϵfα , the property iii) holds with ∆ = 0, this value of ∆ could appear as the

ideal value. It is not the case. Indeed, if we de�ne the set Lα by

Lα := argmin
x∈Sϵ

0

p∑
i=1

fα(|xi|+∆), (5)
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Figure 2: In the left panel the set of constraints ∥y −Dx∥2 ≤ ϵ (in orange) and the "ball"
∑3
i=1 fα(|xi|) ≤ R

(in green) are represented. The radius R is the smallest positive number for which the cylinder ∥y −Dx∥2 ≤ ϵ

and the "ball"
∑3
i=1 fα(|xi|) ≤ R share at least one common point. The set Sϵ0 is a union of three ellipsoids

which are the intersection of the cylinder ∥y −Dx∥2 ≤ ϵ with the planes x10x2, x10x3 and x20x3. To keep this
illustration understandable, we only plot the intersection of the cylinder ∥y −Dx∥2 ≤ ϵ and the plane x10x2.
The set Sϵfα = {xα}, represented as a blue point in the left �gure, is a singleton of Sϵ0. This illustrates theorem
3 showing that whatever η > 0 Sϵfα ⊂ Gη. In the right panel, we focus on the intersection of the cylinder

∥y − Dx∥2 ≤ ϵ and the intersection of the "ball"
∑3
i=1 fα(|xi|) ≤ R with the plane x10x2. The vectors u⃗ =(

−dTi (y −Dxα)
)
1≤i≤2

=
(
∂∥y−Dx∥2

∂xi
(xα)

)
1≤i≤2

and v⃗ = (sign(xi)f
′
α(|xαi |))1≤i≤2 =

(
∂
∑3

i=1 fα(|xi|)
∂xi

(xα)
)
1≤i≤2

represent respectively the normalized normal vectors to the ellipsoid and the "ball". Note that the solution xα

of the problem (4) is i) on the boundary of the cylinder ii) completely included in the plane (x10x2), and iii)
that at this point, the normal vectors u⃗ and v⃗ are collinear.

for an arbitrary ∆ > 0, the proposition 2 shows that Lα is a set of "critical points" such that Lα ⊂ Sϵ0.

Consequently, whatever ∆, when x(0) is well chosen, one can expect that for k large enough, x(k) is close to the

set Lα.

The proposition 2 shows that every element of Lα satis�es the property i), ii) and iii).

Proposition 2 Let xα be an arbitrary element of Lα. Then, the three following properties hold for xα.

i) The vector xα is on the boundary of the constraint thus, ∥y −Dxα∥2 = ϵ.

ii) The family (di)i∈supp(xα) is linearly independent.

iii) The vectors (dTi (y −Dxα))i∈supp(xα) and (f ′
α(|xαi |+∆))i∈supp(xα) are collinear.

4 Numerical experiments

In the previous section, we developed a new method able to recover at least one solution of P0 or Pϵ0. Currently,

the basis pursuit P1 is the reference method to recover a solution of P0. An alternative to the basis pursuit is

the reweighted l1 minimization [9]. In this section, we compare our method with both the basis pursuit and

the reweighted l1 minimization. For this numerical study, we use the same simulation framework as [9]. The
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family D = {d1, . . . , dp} owns p = 256 vectors of Rn with n = 100. Whatever i ∈ [[1, 256]], the vector di is

random vector di := Xi/∥Xi∥ with Xi i.i.d N (0, Id100). Consequently, the vectors d1, . . . , dp are independent

and uniformly distributed on the Rn sphere. The vector y ∈ R100 that appears in the constraint y = Dx is

such that y = Dx̃. For a given s ∈ [[1, n − 1]], we choose x̃ as a random vector constructed as follows. Let

Z1, . . . , Zs be i.i.d random variables N (0, 1) distributed, we set ∀i /∈ [[1, s]], x̃i = 0 and ∀i ∈ [[1, s]], x̃i := Z(i),

where Z(1), . . . , Z(s) are ordered variables such that |Z(1)| ≥ · · · ≥ |Z(s)|. Because, by construction, almost

surely the unique representation property holds for D (i.e. with a probability 1, spark(D) = n + 1), when

s < (n+ 1)/2 x̃ is almost surely the unique sparsest representation of y in D [35]. When s ∈ [[(n+ 1)/2, n− 1]],

one can show that x̃ is still the unique sparsest representation of y in D. The proposed MM method aims to

�nd the sparsest representation of y in D which correspond to x̃.

In this section, we propose to slightly modify as follows the MM method given in (2).

Let a := argmin
∑

16i6p
f ′
α(|x

(k)
i |+∆)|xi| subject to Dx = y and set


x(k+1) = a if ∥a∥0 ≤ ∥x(k)∥0

x(k+1) = x(k) otherwise

. (6)

As for the sequence given in (2), when k is large enough, the sequence (6) is stationary onto a point l. As de�ned

in (6) the sequence (∥xk∥0)k∈N is decreasing, consequently, ∥l∥0 ≤ ∥x(0)∥0. In particular when the initial point

is the solution of P1, denoted hereafter xbp, the modi�ed MM method allows to catch a representation l better

than xbp in the sense that ∥l∥0 ≤ ∥xbp∥0. Whereas by taking x(0) = xbp the performances of the modi�ed MM

method to solve P0 are better than the performances of the basis pursuit, xbp is not the better initial point.

The following section provides a smart initial point x(0).

4.1 Choice of the initial point x(0)

Because the MM algorithm converges to a local minimum of P0, the choice of its initial point is critical. Candès

et al [9] took the solution of problem P1 as the initial point for the iterative sequence (2). Another way to

choose this initial point is based on the following two remarks.

1) Intuitively, the largest components of x̃ are more easily recovered than the smallest one. This intuition is

con�rmed by the right panel of the �gure 3 which illustrates that xbp catch easily the largest components

of x̃.

2) When A is a known set that owns the largest components of x̃, the expression
∑
i/∈A |x̃i| becomes small.

As a consequence, substituting in P1 the function
∑p
i=1 |xi| by

∑
i/∈A |x̃i| should provide a solution closer

to x̃ than xbp. So, to insure the uniqueness of the solution, instead of
∑
i/∈A |xi| we could minimize the

10



expression ω
∑
i∈A |xi|+

∑
i/∈A |xi|, with ω very small. This leads to the problem

argmin ω
∑
i∈A

|xi|+
∑
i/∈A

|xi| subject to Dx = y. (PA)

provides a closer solution of x̃ than the problem P1.
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Figure 3: In this �gure, x̃ is a random vector such that supp(x̃) = [[1, s]], with s ∈ {20, 22, . . . , 50} and
|x̃1| ≥ · · · ≥ |x̃s|. For every s ∈ {20, 22, . . . , 50}, a sample of 500 families D = {d1, . . . , d256} and 500 observations
of the random vectors x̃ have been simulated. For each family and observation of x̃, we compute the solution
xbp of the basis pursuit problem P1. On the left panel, we have the representation of the proportion of times
when xbp = x̃ as a function of s. One notices that when s ≥ 45, the event xbp = x̃ is never observed. In the
right panel, we set s = 50 and r is a permutation of [[1, 100]] such that |xbp

r(1)| ≥ · · · ≥ |xbp
r(100)| (by lemma 3,

Card(supp(xbp)) ≤ 100). For each i ∈ [[1, 100]] in the x-axis, the y-axis represents the proportion of times for
which r(i) ∈ supp(x̃). Note that largest components of xbp are elements of supp(x̃).

The �gure 4 gives an algorithm which describes how to choose x(0). The input of the algorithm is xbp.

Ideally, when A1 ⊂ A2 ⊂ · · · ⊂ supp(x̃), the solutions xinit,(1), xinit,(2) . . . of the problems PA1 ,PA2 , . . . should

be increasingly closed to x̃. As already mentioned, the sparsest representation of y in D has a l0 "norm" smaller

than n. Consequently, the previous inclusion can not hold after the nth iteration. So we stop the algorithm no

later than the nth iteration. When at the jth iteration Card(supp(xinit,(j)) \ Aj) = 0, it is not possible to �nd

an element ij to construct the set Aj+1 and the algorithm stops.

4.2 Comparisons

The simulations were performed for each s ∈ {24, 26, . . . , 72} using 500 random vectors x̃ such that supp(x̃) =

[[1, s]], and 500 families D = {d1, . . . , d256}. These random vectors were ordered so that |x̃1| ≥ · · · ≥ |x̃s|. For

each family and each x̃, we compute the basis pursuit solution (xbp) of P1, the reweighted l1 minimization

solution [9] and the solution given by our method as de�ned by (6). The reweighted l1 solution is the limit of

11



Figure 4: In this �gure, we give the di�erent steps of the algorithm to obtain the initial point x(0).

the sequence (xl1,(k))k∈N de�ned by xl1,(0) = xbp and

xl1,(k+1) := argmin

p∑
i=1

1

|xl1,(k)
i |+ δ

|xi| subject to Dx = y, with y = Dx̃.

As in [9] we set δ = 0.1. The number of iterations was set to k0 = 8 for both the reweighted l1 minimization

method and our method. We choose fα(x) = xα with α = 0.01 and the initial point of (6) was computed using

the algorithm described previously. After 8 iterations, we keep the sparsest solution among the one obtained

with ∆ ∈ {0.01, 0.1, 0.5, 1, 2, 4}.

The �gure 5 shows the performances of the basis pursuit, the reweighted l1 minimization and our method.

Numerical experiments given in the �gure 5 show that when ∥x̃∥0 ≤ 22, x̃ is always recovered by all these

three methods. No method recovered x̃ when ∥x̃∥0 ≥ 68. When 22 ≤ ∥x̃∥0 ≤ 68, the proportion of times for

which our method recovers x̃ is greater than the proportion given by the two other methods. These numerical

experiments illustrate that the performances of our method are better than those of the basis pursuit and the

reweighted l1 minimization.

12
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Figure 5: The performances of the three competing methods are represented by the proportions of realisations
of the events xbp = x̃, xl1,(8) = x̃ and x(8) = x̃ as a function of the number of non null components of x̃ denoted
s. One notices that the graph of the reweighted l1 minimization method is almost the same as those given in
[9].

5 Conclusion

In this article, we studied the problems Pfα and Pϵfα which recover respectively one of the sparsest representations

or one of the sparsest approximations of a high-dimensional linear system. Theoretical results are proved and

a MM method is then used to solve these problems. Numerical experiments highligh the performances of our

method compared to the basis pursuit and the reweighted l1 minimization ones. In this study, the vector y is

not corrupted by any noise. When y is a random vector, [25] provides an estimation of the representation of

its expectation which has the smallest l1 norm. In a future work, this work could be extended to estimate the

sparsest representation of the expectation of y.

6 Appendix

6.1 Proof of the theorem 1

By construction, the function to be minimized in the problem Pfα converges pointwise to the l0 "norm" when

α goes to 0. As the l0 norm is not continuous, this convergence can not be uniform onto Rp. However, a

straightforward consequence of the lemma 1 is that the number of possible solutions of the problem Pfα is �nite

and the convergence of
∑p
i=1 fα(|xi|) to ∥x∥0 is therefore uniform onto this �nite set. The proof of theorem 1

is based on this uniform convergence.
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Lemma 1 Let fα be a function de�ned on R+ strictly increasing and strictly concave such that

∀x ∈ R+, lim
α→0

fα(x) = 1x ̸=0.

Denote xα a solution of the problem Pfα (resp. Pϵfα) then the family (di)i∈supp(xα) is linearly independent.

Proof : Let us assume that the family (di)i∈supp(xα) is not linearly independent. There exist coe�cients

(γi)i∈supp(xα) not simultaneously null such that

∑
i∈supp(xα)

γidi = 0⃗.

To provide a contradiction, we are going to show that
∑p
i=1 fα(|xαi |) is no longer minimal. That is, there exists an

admissible point z so that
∑p
i=1 fα(|zi|) <

∑p
i=1 fα(|xαi |). Let us de�ne {i1, . . . , is} := {i ∈ supp(xα) | γi ̸= 0},

the set of non-null components of γ. We are looking for z among the admissible points x(t) de�ned by

∀t ∈ R, xi(t) = xαi + tγi if i ∈ {i1, . . . , is} and xi(t) = xαi otherwise.

For all i ∈ {i1, . . . , is}, let us denote ti = −xαi /γi. Without loss of generality, we assume that ti1 6 . . . 6 tis .

The function t ∈ R 7→ fα(|xi(t)|) is strictly decreasing and strictly concave on (−∞, ti] and strictly increasing

and strictly concave on [ti,+∞) when i ∈ {i1, . . . , is}.

Assume that 0 /∈ [ti1 , tis ]; because each function t ∈ R 7→ fα(|xi(t)|) with i ∈ {i1, . . . , is} is strictly

decreasing on (−∞, ti] (resp. strictly increasing on [ti,+∞)), one deduces that t ∈ R 7→
∑p
i=1 fα(|xi(t)|) is

strictly decreasing on (−∞, ti1 ] (resp. strictly increasing on [tis ,+∞)). These monotony results imply that

p∑
i=1

fα(|xi(0)|) =
p∑
i=1

fα(|xαi |) > min

{
p∑
i=1

fα(|x(ti1)|),
p∑
i=1

fα(|x(tis)|)

}
,

which provides a contradiction for the minimality of
∑p
i=1 fα(|xαi |).

Assume that 0 ∈ [ti1 , tis ] then, there exists ik such that 0 ∈ (tik , tik+1
) (note that tik and tik+1

are not

null). Because each function t ∈ R 7→ fα(|xi(t)|) with i ∈ {i1, . . . , is} is strictly concave on [tik , tik+1
], one

deduces that t ∈ R 7→
∑p
i=1 fα(|x(t)|) is also strictly concave on [tik , tik+1

]. Consequently, the restriction of the

function t ∈ R 7→
∑p
i=1 fα(|x(t)|) to the set [tik , tik+1

] reaches its minimum at tik or tik+1
and nowhere else.

This concavity result implies that

p∑
i=1

fα(|xi(0)|) =
p∑
i=1

fα(|xαi |) > min

{
p∑
i=1

fα(|xi(tik)|),
p∑
i=1

fα(|xi(tik+1
)|)

}
,
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which provides a contradiction for the minimality of
∑p
i=1 fα(|xαi |). �

We now consider the set E of subsets I ⊂ [[1, p]] such that

• The family (di)i∈I is linearly independent.

• y ∈ V ect(di)i∈I .

Given a subset I ∈ E , let xI be the unique vector such that supp(xI) = I and DxI = y. Let us introduce

S := {xI , I ∈ E}. As E is �nite, this set of vectors is �nite.

Whatever the function fα satisfying the properties of the lemma 1, the lemma 1 shows that the family

(di)i∈supp(xα) is linearly independent. As xα is admissible, y ∈ V ect(di)i∈supp(xα). It follows that for all

xα ∈ Sfα , x
α ∈ S; that is Sfα ⊂ S. The next lemma shows that the solutions of the problem P0 are also

included in S.

Lemma 2 The set S0 of solutions of P0 satis�es S0 ⊂ S.

Proof : Let x∗ be a solution of P0, we have Dx∗ = y. To show that x∗ ∈ S, it remains to prove that the

family (di)i∈supp(x∗) is linearly independent. Suppose that this family is not linearly independent then there

exist coe�cients (γi)i∈supp(x∗) not simultaneously null such that

∑
i∈supp(x∗)

γidi = 0⃗.

To provide a contradiction for the minimality of ∥x∗∥0, we are going to prove that there exists an admissible

point z such that ∥z∥0 < ∥x∗∥0. We are looking for z among admissible points x(t) de�ned by

∀t ∈ R, xi(t) = x∗
i + tγi if i ∈ supp(x∗) and xi(t) = x∗

i = 0 otherwise.

By construction, we have ∀t ∈ R, supp(x(t)) ⊂ supp(x∗). To conclude this proof, we have to �nd t0 ∈ R for

which the inclusion is strict. Let i0 ∈ supp(x∗) such that γi0 ̸= 0 and de�ne t0 = −x∗
i0
/γi0 . The ith0 component

of x(t0) is null. Consequently, ∥x(t0)∥0 < ∥x∗∥0 which provides a contradiction to the fact that x∗ is a solution

of P0. �

Proof of theorem 1: By the lemma 1 and 2, we have Sfα ⊂ S and S0 ⊂ S. If the elements of S \ S0

are not solution of Pfα , one deduces that Sfα ⊂ S0. Let x and x∗ be respectively an arbitrary element of

S \ S0 and of S0. A straightforward consequence of the inequality
∑p
i=1 fα(|xi|) >

∑p
i=1 fα(|x∗

i |) is that x is

not a solution of Pfα . We are going prove that this inequality holds when α is small enough. We have that
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∀x ∈ S \ S0,

p∑
i=1

fα(|xi|)−
p∑
i=1

fα(|x∗
i |) =

p∑
i=1

fα(|xi|)− ∥x∥0 + ∥x∥0 − ∥x∗∥0 + ∥x∗∥0 −
p∑
i=1

fα(|x∗
i |).

Because x is not a solution of P0 contrarily to x∗, one has ∥x∥0 − ∥x∗∥0 > 1. Furthermore, the uniform

convergence of
∑p
i=1 fα(|xi|) to ∥x∥0 onto the set S gives α0 > 0 such that

∀α ∈ (0, α0), ∀x ∈ S,

∣∣∣∣∣
p∑
i=1

fα(|xi|)− ∥x∥0

∣∣∣∣∣ < 1/2.

Consequently, one obtains

∀α ∈ (0, α0),∀x ∈ S \ S0,

p∑
i=1

fα(|xi|) >
p∑
i=1

fα(|x∗
i |).

Thus, as soon as α < α0, the solution of Pfα satis�es Sfα ⊂ S0 �

6.2 Proof of the theorem 2 and of the proposition 1

The main consequence of lemma 3, is that the iterative sequence (x(k))k≥1 provided by the MM method (2)

satis�es ∀k ≥ 1, x(k) ∈ S. Because S is a �nite set, this result is useful for the proof of the theorem 2.

Lemma 3 Let us denote

Sω := argmin

p∑
i=1

wi|xi| subject to y = Dx,with ∀i ∈ [[1, p]], ωi > 0 (7)

and

Sϵω := argmin

p∑
i=1

wi|xi| subject to ∥y −Dx∥22 6 ϵ,with ∀i ∈ [[1, p]], ωi > 0. (8)

Then, there exists an element xω ∈ Sω (resp. xω ∈ Sϵω) such that the family (di)i∈supp(xω) is linearly

independent.

Proof : When the set Sω (resp. Sϵω) is not a singleton, we set xω an element of Sω (resp. Sϵω) with a

minimal l0 norm. Assume that (di)i∈supp(xω) is not linearly independent. There exist coe�cients (γi)i∈supp(x)

not simultaneously null such that
∑
i∈supp(xω) γidi = 0⃗. Let us set A′ := {i ∈ supp(xω) such that γi ̸= 0}. One

de�nes the admissible x(t) of the problem (7) (resp. (8)) as follows

xi(t) :=


xωi + tγi if i ∈ A′,

xωi otherwise.
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By de�nition, the point x(t) satis�es supp(x(t)) ⊂ supp(xω). To provide a contradiction for the minimality

of the l0 "norm" of the solution xω, we could build an element x(t0) ∈ Sω (resp. Sϵω) with a strictly lower l0

"norm".

Let f be the function ∀t ∈ R, f(t) :=
∑p
i=1 wi|xi(t)|. This function is equal to f(t) =

∑
i∈A′ ωi|xi + tγi| +∑

i/∈A′ ωi|xi|. The minimum of f is reached on the set {−xi/γi}i∈A′ . If t0 := −xi0/γi0 , with i0 ∈ A′, is a value

for which the minimum of f is reached, one sees that xi0(t0) = 0. This shows ∥x(t0)∥0 < ∥xω∥0 and x(t0) is an

admissible point for which
∑p
i=1 ωi|xi(t0)| ≤

∑p
i=1 ωi|xi(0)| =

∑p
i=1 ωi|xωi |. Consequently, x(t0) is point of Sω

(resp. Sϵω) with a strictly smaller l0 "norm" than the one of xω which contradicts the minimality of ∥xω∥0. �

Remind that for each k ≥ 1, x(k) de�ned in (2) is the solution of a weighted basis pursuit problem. We

have already noted that in practice weighted basis pursuit problem admits a unique solution. Consequently, by

the lemma 3 the family (di)i∈supp(x(k)) is linearly independent and, on the other hand, y = Dx(k) which implies

that x(k) ∈ S.

Proof of theorem 2 : The MM method for the function x ∈ Rp 7→
∑

16i6p fα(|xi| + ∆) provides

the sequence (x(k))k≥0 de�ned in (2). In the following, we prove that the sequence (uk)k∈N with uk :=∑
16i6p fα(|x

(k)
i |+∆) is stationary.

For k ≥ 1, the vector x(k) is a solution of a weighted basis pursuit problem. Consequently, the lemma 3

insures that x(k) ∈ S. Since S is a �nite set, the sequence (uk)k≤1 can only take a �nite number of values

∀k ∈ N∗, uk ∈

 ∑
16i6p

fα(|xIi |+∆), I ∈ E

 .

If we show that the sequence (uk)k∈N is decreasing that implies its stationary for a large enough k. We follow

the proof given in [21, 23]. Remind that x(k+1) is de�ned as follow

x(k+1) := argmin
∑

16i6p
fα(|x(k)

i |+∆) + f ′
α(|x

(k)
i |+∆)(|xi| − |x(k)

i |).

Let us set Lx(k)(x) :=
∑

16i6p fα(|x
(k)
i | + ∆) + f ′

α(|x
(k)
i | + ∆)(|xi| − |x(k)

i |). The concavity of the function

x ∈ R 7→ fα(x+∆) on R+ implies that

∀x ∈ Rp,
∑

16i6p
fα(|xi|+∆) 6 Lx(k)(x).

Because, the minimum of Lx(k)(x) is reached at x(k+1), one obtains the following property

uk+1 =
∑

16i6p
fα(|x(k+1)

i |+∆) 6 Lx(k)(x(k+1)) 6 Lx(k)(x(k)) =
∑

16i6p
fα(|x(k)

i |+∆) = uk.

Since the sequence (uk)k∈N is decreasing, there exists k0 ≥ 0 such that (uk)k∈N is stationary for k ≥ k0.
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The strict concavity of the function x ∈ R+ 7→ f(x+∆) implies that

fα(|x(k0+1)
i |+∆) ≤ fα(|x(k0)

i |+∆) + f ′
α(|x

(k0)
i |+∆)(|x(k0+1)

i | − |x(k0)
i |),

with a strict inequality when |x(k0+1)
i | ̸= |x(k0)

i |. Thus, if there exists i0 ∈ [[1, p]] such that |x(k0+1)
i0

| ̸= |x(k0)
i0

|,

uk0+1 < Lx(k0)(x(k0+1)) ≤ uk0 which provides a contradiction for the stationary of the sequence (uk)k∈N.

Consequently, we have

∀i ∈ [[1, p]], |x(k0+1)
i | = |x(k0)

i |.

This equality gives that supp(x(k0)) = supp(x(k0+1)). Because x(k0) and x(k0+1) are admissible points,

∑
i∈supp(x(k0))

x
(k0)
i di =

∑
i∈supp(x(k0))

x
(k0+1)
i di.

Finally, the lemma 3 implies that the family (di)i∈supp(x(k0)) is linearly independent. One deduces that x(k0) =

x(k0+1). A straightforward consequence is that the sequence (x(k))k∈N is stationary when k ≥ k0. �

Proof of proposition 1 : Remind that l is the limit of the sequence x(k) given in (2). Let us de�ned

r := min{|li|, i ∈ supp(l)}. One can check that ∀x ∈ B∞(l, r) we have xi ̸= 0 once li ̸= 0. Consequently,

supp(l) ⊂ supp(x). Assume supp(x) = supp(l). Since Dx = Dl, one deduces that

∑
i∈supp(l)

xidi =
∑

i∈supp(l)

lidi.

Since the family (di)i∈supp(l) is linearly independent, one deduces that x = l. Consequently, ∀x ∈ B∞(l, r) such

that x ̸= l, we have supp(l) ( supp(x) thus, ∥l∥0 < ∥x∥0. �

6.3 Proof of the theorem 3

By the lemma 1, for any x∗ in Sϵfα , the family (di)i∈x∗ is linearly independent. Moreover, x∗ is an admissible

point, thus ∥y −Dx∗∥2 ≤ ϵ. Consequently, x∗ ∈
∪
I∈I EI , where

I := {I ⊂ [[1, p]] | (di)i∈I is linearly independent } and EI := {x ∈ Rp | supp(x) ⊂ I and ∥y −Dx∥2 ≤ ϵ}.

Let us denotes E :=
∪
I∈I EI .

Lemma 4 The set E is compact.
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Proof : Let us denote x̄ ∈ Rp with supp(x̄) ⊂ I such that Dx̄ is the orthogonal projection of y onto the space

Vect(di)i∈I . If ∥y −Dx̄∥2 > ϵ then the set EI is empty. Otherwise,

EI = {x ∈ Rp | supp(x) ⊂ I and ∥D(x− x̄)∥2 ≤ ϵ′}, with ϵ′ = ϵ− ∥y −Dx̄∥2.

Since supp(x) ⊂ I and supp(x̄) ⊂ I, one shows that

∥D(x− x̄)∥2 = ∥DS(xI − x̄I)∥2,

with xI := (xi)i∈I , x̄I := (x̄i)i∈I and DI is matrix whose columns are (di)i∈S . Because the family (di)i∈I is

linearly independent, the Gram matrix DT
I DI is invertible thus, ∥DI(xI − x̄I)∥2 ≤ ϵ′ is an ellipsoid of RCard(I).

Therefore, EI is a compact. Consequently, the �nite union of compact set
∪
I∈I EI is a compact set. �

In the lemma 5 and the theorem 3, we denote s0 := min ∥x∥ subject to ∥y −Dx∥2 ≤ ϵ.

Lemma 5 For η > 0, let us denote Gη the open set Gη =
∪
x∈Sϵ

0
B(x, η). The function

Fα : x ∈ E \Gη 7→ min

{
s0 + 1,

p∑
i=1

fα(|xi|)

}

converges uniformly to the function F : x ∈ E \Gη 7→ s0 + 1 when α converges to 0.

Proof : Let (αn)n∈N be a decreasing sequence converging toward 0. Because fα ≥ fα′ once α ≤ α′, (Fαn)n∈N is

a monotonic sequence of continuous functions. Furthermore, on the compact set E \Gη, this sequence converges

pointwise toward the continuous function F : x ∈ E \Gη 7→ s0 + 1. Consequently, the Dini's theorem gives the

uniform convergence of (Fαn)n∈N. Therefore, for all δ > 0, there exists n0 such that

∀n ≥ n0, sup
x∈E\Gη

{|Fαn(x)− s0 − 1|} ≤ δ.

Finally, if α ≤ αn0
, for all x ∈ E \Gη we have the following inequalities

−δ ≤ Fαn0
(x)− s0 − 1 ≤ Fα(x)− s0 − 1 ≤ 0.

Consequently, one obtains

sup
x∈E\Gη

{|Fα(x)− s0 − 1|} ≤ sup
x∈E\Gη

{
|Fαn0

(x)− s0 − 1|
}
≤ δ,

which shows the uniform convergence. �

Proof of theorem 3 : Let x∗ be an arbitrary element of Sϵ0, we are going to prove that for α > 0 small
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enough,

∀x ∈ E \Gη,

p∑
i=1

fα(|xi|) >
p∑
i=1

fα(|x∗
i |). (9)

If the inequality (9) holds then Sϵfα ⊂ Gη. Actually, by de�nition, Sϵfα ⊂ E and by the inequality (9), the

elements of E \Gη are not solution of Pϵfα . The convergence of
∑p
i=1 fα(|x∗

i |) toward s0 once α converges to 0

implies that

∃α1 > 0 such that ∀α ≤ α1,

p∑
i=1

fα(|x∗
i |) < s0 + 1/2.

The uniform convergence given in the previous lemma 5 implies that

∃α2, ∀α ≤ α2, ∀x ∈ E \Gηmin

{
s0 + 1,

p∑
i=1

fα(|xi|)

}
> s0 + 1/2.

Finally, if we set α0 = min{α1, α2}, we have

∀α ≤ α0, ∀x ∈ E \Gη,min

{
s0 + 1,

p∑
i=1

fα(|xi|)

}
−

p∑
i=1

fα(|x∗
i |) > 0,

which implies

∀α ≤ α0, ∀x ∈ E \Gη,

p∑
i=1

fα(|xi|) >
p∑
i=1

fα(|x∗
i |).

�

6.4 Proof of the theorem 4 and of the proposition 2

Let (x(ϕ(k)))k≥0 be a subsequence of x
(k) (de�ned in 3) that converges to x̃. The lemmas 6, 7 and 8 are used to

prove that the sequence (x(ϕ(k)+1))k≥0 has the same limit as (x(ϕ(k)))k≥0.

Lemma 6 Let f : R+ → R be an striclty increasing, strictly concave and two times di�erentiable function such

that f ′ is convex then,

∀η > 0, ∃ϵ > 0 such that ∀a ∈ [0, a0],∀b ∈ R+, |a− b| > η ⇒ f(a) + f ′(a)(b− a)− f(b) > ϵ. (10)

Proof : Let us de�ned the function ga0(h) as follows

∀h ≥ 0, ga0(h) := f(a0) + f ′(a0)h− f(a0 + h).

We are going to prove that (10) holds when ϵ = ga0(η). In a �rst step, let us prove that f(a)+f ′(a)(b−a)−f(b) ≥

ga0(|b− a|). We set t = b− a, the convexity of f ′ gives

∂

∂a
(f(a) + f ′(a)|t| − f(a+ |t|)) = f ′(a) + f ′′(a)|t| − f ′(a+ |t|) ≤ 0.
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The concavity of f gives

f(a) + f ′(a)t− f(a+ t) ≥ f(a) + f ′(a)|t| − f(a+ |t|).

Indeed, when t ≥ 0, the result is obvious otherwise, when t < 0, we have t = −|t|, the previous inequality is a

consequence of the next one

f(a)− f(a− |t|)
|t|

≥ f ′(a) ≥ f(a+ |t|)− f(a)

|t|

From these inequalities, one deduces that

f(a) + f ′(a)t− f(a+ t) ≥ f(a) + f ′(a)|t| − f(a+ |t|) ≥ f(a0) + f ′(a0)|t| − f(a0 + |t|) = ga0(|b− a|).

The function f ′ is strictly decreasing (because f is strictly concave) consequently ∀h > 0, g′a0(h) = f ′(a0) −

f ′(a0 + h) > 0 thus, g is strictly increasing. Since ga0(0) = 0, we have ϵ := ga0(η) > 0. Finally, if |b− a| > η we

have

f(a) + f ′(a)(b− a)− f(b) ≥ ga0(|b− a|) > ga0(η) = ϵ.

�

In the following, we denote |x| := (|xi|)1≤i≤p with x ∈ Rp.

Lemma 7 The sequence (x(k))k∈N described in (3) satis�es

lim
k→+∞

d∞(|x(k+1)|, |x(k)|) = 0

Proof : Let us de�ne the sequence (uk)k∈N with uk :=
∑

1≤i≤p fα(|x
(k)
i |+∆). The convergence of this sequence

is given in the proof of the theorem 2.

Assume that d∞(|x(k+1)|, |x(k)|) does not converge to 0, we have

∃η > 0, ∀K ≥ 0, ∃k0 ≥ K such that d∞(|x(k0+1)|, |x(k0)|) ≥ η.

If d∞(|x(k0+1)|, |x(k0)|) ≥ η then, there exists i0 ∈ [[1, p]] such that
∣∣∣|x(k0+1)

i0
| − |x(k0)

i0
|
∣∣∣ ≥ η. Because the sequence

(x(k))k∈N is bounded (proof 1 of the theorem 4), there exists a0 ≥ 0 such that ∀k ∈ N, ∥x(k)∥∞ ≤ a0. By the

lemma 6 we have

∃ϵ > 0 such that fα(|x(k0)
i0

|+∆) + f ′
α(|x

(k0)
i0

|+∆)(|x(k0+1)
i0

| − |x(k0)
i0

|)− fα(|x(k0+1)
i0

|+∆) ≥ ϵ.
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Furthermore the concavity of fα implies that

∀i ̸= i0, fα(|x(k0)
i |+∆) + f ′

α(|x
(k0)
i |+∆)(|x(k0+1)

i | − |x(k0)
i |)− fα(|x(k0+1)

i |+∆) ≥ 0.

These two inequalities imply that

uk0+1 + ϵ =

p∑
i=1

fα(|x(k0+1)
i |+∆) + ϵ ≤

p∑
i=1

fα(|x(k0)
i |+∆) + f ′

α(|x
(k0)
i |+∆)(|x(k0+1)

i | − |x(k0)
i |)

Furthermore, by de�nition of x(k0+1), we have

p∑
i=1

fα(|x(k0)
i |+∆) + f ′

α(|x
(k0)
i |+∆)(|x(k0+1)

i | − |x(k0)
i |) ≤

p∑
i=1

fα(|x(k0)
i |+∆) = uk0 .

The previous inequality implies that

∀K, ∃k0 ≥ K such that |uk0+1 − uk0 | ≥ ϵ.

The last inequality provides a contradiction for the convergence of the sequence (uk)k∈N. �

Lemma 8 Let x(ϕ(k)) be a subsequence of (x(k))k∈N that converges toward x̃ then, the sequence (x(ϕ(k)+1))k∈N

converges toward x̃.

Proof : The proof 1) in the theorem 4 shows that the sequence (x(k))k∈N is bounded. Consequently, (x(ϕ(k)+1))k∈N

is bounded too. To prove that the bounded sequence (x(ϕ(k)+1))k∈N converges to x̃, it is su�cient to show that

x̃ is the only limit point of this sequence. Let (x(ϕ(ψ(k))+1))k∈N be a converging subsequence such that

lim
k→+∞

x(ϕ(ψ(k))+1) = x̃1, with x̃1 ̸= x̃.

By the lemma 7, we have limk→+∞ d∞(|x(ϕ(ψ(k))+1)|, |x(ϕ(ψ(k)))|) = 0. Since limk→+∞ x(ϕ(ψ(k))) = x̃, one

deduces that |x̃| = |x̃1|. Let us de�ne x̃2 as x̃2 := (x̃1 + x̃)/2. Because

x(ϕ(ψ(k))+1) := argmin
∑

16i6p
f ′
α(|x

(ϕ(ψ(k)))
i |+∆)|xi| subject to ∥y −Dx∥2 ≤ ϵ,

we have
p∑
i=1

f ′
α(|x

(ϕ(ψ(k)))
i |+∆)|x(ϕ(ψ(k))+1)

i | ≤
p∑
i=1

f ′
α(|x

(ϕ(ψ(k)))
i |+∆)(|x̃2

i |).

Taking the limit in the previous expression, one obtains

∑
1≤i≤p

f ′
α(|x̃i|+∆)|x̃1

i | ≤
∑

1≤i≤p

f ′
α(|x̃i|+∆)|x̃2

i |. (11)
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On the other hand, supp(x̃2) = {i ∈ supp(x̃1) | x̃i = x̃1
i }, which implies that supp(x̃2) ( supp(x̃1) and

∀i ∈ supp(x̃2), x̃2
i = x̃1

i . Consequently, we have

∑
1≤i≤p

f ′
α(|x̃i|+∆)|x̃1

i | >
∑

i∈supp(x̃2)

f ′
α(|x̃i|+∆)|x̃1

i | =
∑

i∈supp(x̃2)

f ′
α(|x̃i|+∆)|x̃2

i | =
∑

1≤i≤p

f ′
α(|x̃i|+∆)|x̃2

i |. (12)

The inequality (12) provides a contradiction with the inequality (11). Therefore, the only limit point of the

bounded sequence (x(ϕ(k)+1))k∈N is x̃. �

Lemma 9 Let xω be a solution of the weighted lasso problem

argmin

p∑
i=1

wi|xi| subject to ∥y −Dx∥2 6 ϵ,with ∀i ∈ [[1, p]], ωi > 0. (13)

Furthermore, let us assume that ∥y∥2 > ϵ then, ∥y −Dxω∥2 = ϵ.

Proof : Let us assume that ∥y −Dxω∥2 < ϵ. Consider the points x(t) de�ned by

∀i ∈ [[1, p]], xi(t) = sign(xωi )(|xωi | − t)+, where (a)+ = max{a, 0}.

One can check that ∥x(t) − xω∥∞ ≤ t. Because the set
{
x ∈ Rp | ∥y −Dx∥2 < ϵ

}
is an open set, there exists

t0 > 0 small enough such that ∥y −Dx(t0)∥2 < ϵ. Finally, we have

∀i /∈ supp(xω), |xi(t0)| = |xωi | = 0 and ∀i ∈ supp(xω), |xi(t0)| < |xωi |.

Because 0⃗ is not an admissible point, one has xω ̸= 0⃗. Consequently, we have the following inequality.

p∑
i=1

wi|xi(t0)| <
p∑
i=1

wi|xωi |.

Such a result provides a contradiction for the minimality of
∑p
i=1 ωi|xωi |. �

Proof of theorem 4 :

1) For any k ≥ 1, x(k) is the solution of a weighted lasso. By lemma 3, the family (di)i∈supp(x(k)) is linearly

independent. Consequently, ∀k ≥ 1, x(k) ∈ E, where E is the set given in the lemma 4. Because E is a compact

set of Rp, one deduces that (x(k))k∈N is bounded.

2-i) Because limk→+∞ x(ϕ(k)) = x̃, there exists k0 such that

∀k ≥ k0, supp(x̃) ⊂ supp(x(ϕ(k))).

Since by lemma 3 (di)i∈supp(x(k0)) is linearly independent, one deduces that (di)i∈supp(x̃) is linearly independent.
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2-ii) For any k ≥ 1, x(k) is the solution of a weighted lasso with positive weights and ∥y∥2 > ϵ. Consequently

from the lemma 9, for all k ≥ 1, ∥y −Dx(k)∥2 = ϵ. Because the set
{
x ∈ Rp | ∥y −Dx∥2 = ϵ

}
is a closed set,

one deduces that the limit point x̃ satis�es ∥y −Dx̃∥2 = ϵ.

2-iii) By de�nition of x(k) we have

x(ϕ(k)+1) := argmin

p∑
i=1

f ′
α(|x

(ϕ(k))
i |+∆)|xi| subject to ∥y −Dx∥22 6 ϵ.

According to [1] (chapter 5.3), there exists λ ≥ 0 such that

x(ϕ(k)+1) := argmin f ′
α(|x

(ϕ(k))
i |+∆)|xi|+ λ∥y −Dx∥22.

Consequently, the subdi�erential of the previous expression evaluated in x(ϕ(n)+1) contains the null vector

0⃗ ∈ ∂pen(x(ϕ(k)+1))− λDT (y −Dx(ϕ(k)+1)), (14)

with ∂pen(x(ϕ(k)+1)) = C1 × · · · × Cp, where

Ci :=


[
−f ′

α(|x
(ϕ(k))
i |+∆), f ′

α(|x
(ϕ(k))
i |+∆)

]
if x

(ϕ(k)+1)
i = 0

sign(x
ϕ(k)+1
i )f ′

α(|x
(ϕ(k))
i |) otherwise

.

Since limn→+∞ x(ϕ(k)) = limk→+∞ x(ϕ(k)+1) = x̃, the vectors (x(ϕ(k)+1))i∈supp(x̃) and (x̃)i∈supp(x̃) have the

same sign for k large enough. Moreover, since f ′
α is continuous, by taking the limit in (14), we see that the

vectors (dTi (y −Dx̃))i∈supp(x̃) and (sign(x̃i)f
′
α(x̃i))i∈supp(x̃) are collinear.

Proof of proposition 2:

i) The proof of this part is exactly the same as the one provided in lemma 9.

ii) The proof of this part is exactly the same as the one provided in lemma 2.

iii) The vector xα
supp(xα) := (xαi )i∈supp(xα) is a solution of the problem

argmin
∑

i∈supp(xα)

fα(|xi|+∆) subject to ∥y− D̃x∥22 6 ϵ, with D̃ the matrix with columns (di)i∈supp(xα). (15)

Indeed, assume that xα
supp(xα) is not a solution of the previous problem, then there exists x̄ ∈ RCard(supp(xα))

such that

∥y − D̃x̄∥22 6 ϵ and
∑

i∈supp(xα)

fα(|x̄i|+∆) <
∑

i∈supp(xα)

fα(|xαi |+∆).

Let us set x′ ∈ Rp such that x′
i := x̄i if i ∈ supp(xα) and x′

i := 0 otherwise. By de�nition of x′ we have

∥x′∥0 ≤ ∥xα∥0. On the other hand, since D̃x̄ = Dx′ we have ∥y − Dx′∥2 ≤ ϵ therefore x′ ∈ Sϵ0. Let us show
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that
∑p
i=1 fα(|x′

i|+∆) <
∑p
i=1 fα(|xαi |+∆)

p∑
i=1

fα(|x′
i|+∆) =

∑
i/∈supp(xα)

fα(∆) +
∑

i∈supp(xα)

fα(|x̄i|+∆),

<
∑

i/∈supp(xα)

fα(∆) +
∑

i∈supp(xα)

fα(|xαi |+∆) =

p∑
i=1

fα(|xαi |+∆).

The previous inequality contradicts that xα ∈ Lα. According to [1] (chapter 5.3), there exists λ ≥ 0 such that

xα
supp(xα), the solution of (15), is also the solution of the problem

argmin
∑

i∈supp(xα)

fα(|xi|+∆) + λ∥y − D̃x∥2, where λ ≥ 0.

Because the partial derivatives of
∑
i∈supp(xα) fα(|xi|+∆) + λ∥y − D̃x∥2 at xα

supp(xα) are null we have

∀i ∈ supp(xα), sign(xαi )f
′
α(|xαi |+∆)− λdTi (y − D̃xαsupp(xα)) = 0.

Since D̃xα
supp(xα) = Dxα, one obtains that the vectors (sign(xαi )f

′
α(|xαi |+∆))i∈supp(xα) and(

dTi (y −Dxα)
)
i∈supp(xα)

are colinear. �
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