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Adaptive reduced basis strategy dedicated to the
solution of nonstationary stochastic thermal problems

Benoit Magnain'*, Alain Batailly?, Eric Florentin®

Abstract

This contribution addresses the modelling and the stochastic analysis of transient thermal processes by means of the finite element method. It
focuses on the theoretical presentation as well as the application of an efficient reduced basis strategy that advantageously lowers the dimension
of the investigated system. The modal content of the reduced basis is driven by the goal oriented error assessment of a user-defined quantity
of interest. The first section of the article presents the stochastic system of interest: key aspects of a stochastic analysis are recalled along
with the employed spatial discretization. The newly developed adaptive reduced basis strategy is then detailed in the second section before
extensive numerical investigations are carried out in order to validate it in the last section of the article. A numerical benchmark allowing for the
confrontation of the proposed strategy with usual Monte-Carlo simulations highlights the benefits of the method that allows for a precise control
of the maximum admissible error on the quantity of interest.
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Bases réduites adaptatives pour la résolution de
problemes thermiques stochastiques instationnaires

Benoit Magnain'*, Alain Batailly?, Eric Florentin®

Résumé

Cet article porte sur la modélisation et 1’analyse stochastique de phénomenes thermiques transitoires par la méthode des éléments finis. Les
développements effectués portent sur la présentation théorique et 1’application d’une méthodologie efficace reposant sur 1’utilisation de bases
réduites et permettant ainsi une diminution de la dimension du systeme étudié. Le contenu modal de la base réduite est relié a 1’évaluation
d’erreur avec objectif d’une quantité d’intérét choisie par I’utilisateur. La premiere section de 1’article porte sur le systeme stochastique étudié, et
permet un rappel des notions fondamentales associées a une analyse stochastique ainsi que des bases de la procédure de discrétisation spatiale.
Par la suite, la deuxieme section présente en détail la méthodologie développée. Enfin, dans une derniere section, plusieurs calculs permettent de
valider cette méthodologie. Un point de comparaison numérique entre la méthodologie proposée et des simulations de Monte-Carlo mettent en
évidence les avantages de la méthode proposée notamment au niveau de la précision de 1’erreur maximale admissible sur la quantité d’intérét.
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1. Introduction

Ever-growing computational power allows to simulate physical phenomena of increasing complexity. In particular, the use of fine
spatial discretization for sophisticated multiphysics numerical simulations is now conceivable for deterministic systems. For stochastic
systems however, obtaining relevant results from numerical simulations is still a challenge since a very large number of simulations
must be carried out. The stochastic nature of a system may be related to uncertainties inherent to its manufacturing [1, 2] or to the fact
that its solicitations—such as potential thermal gradients or pressure loads—are unknown.

There are two ways to model a stochastic problem: (1) one may consider a nonparametric probabilistic approach where the link
between the values of the parameters and the mechanical model is not explicit as the one presented in [3] or (2) a parametric approach
where the variability of design parameters is accounted for by means of parametric uncertainties may be employed. The method
presented in this paper belongs to the second category. In any case, a stochastic system features a randomness that can only be
accounted for with a statistically relevant sample thus implying a very significant increase in terms of computational costs. A state of
the art of stochastic numerical methods can be found in [4, 5, 6] and references therein. These methods, most of which rely on the
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well-known finite element method (FEM), may be split in three categories :

intrusive stochastic techniques are a generalization of the FEM accounting for uncertainties associated with the parameters of
the problem. Both the variation of usual deterministic variables—space and time coordinates—and the random stochastic
variables are discretized using the standard approach in the FEM: the Galerkin formulation [7, 8, 9, 10]. The cornerstone of
these methods lies in a proper definition of the approximation space of the stochastic variables. As a downside, these methods
are computationally expensive and their implementation may be arduous. In order to overcome the high computational cost
of these techniques, specific developments are available in the literature such as (1) iterative methods well-matched to the
structure of resulting matrices [11, 12, 13] and (2) the use of reduced bases in order to represent the random space [9, 14, 15];

non-intrusive stochastic techniques are widely used as they rely on typical deterministic computations. Indeed, the randomness of
the system is accounted for by means of Monte Carlo simulations. A large number of deterministic problems are solved through
out the random space [16]. Such an approach is conceptually simple, robust and easy to implement but requires solving a large
number of finite element problems in order to generate an output sample that is statistically relevant. The increased computation
time inherent to such methods may be mitigated by the use of a reduced basis. In [17, 18, 19], the authors introduced a reduced
basis methodology to reduce the cost of Monte Carlo simulations, offering an attractive framework for solving stochastic
problems with a large number of parameters. The idea is simple and effective because the different Monte Carlo shots lead to
similar FE problems and therefore the reduced basis approach is highly performant.

Uncertainty quantification techniques may introduce further an estimation of the analysis. Different methods have been proposed
to control the approximations, see for example [20, 21, 22, 23].

The method presented in this article can be classified as a non-intrusive technique. Indeed, it does not require any modification of

the finite element formulation. However, and contrary to a classical Monte-Carlo approach, it does impose a very specific solution

algorithm. It builds up on the idea of using a reduced basis combined with a goal oriented error assessment criterion which controls

the content of the reduced basis in order to maximize its numerical efficacy. The present investigation is an extension of the work

initiated in [24, 25] to transient thermal processes [26, 27]. As a matter of fact, the time dependence of the investigated problem makes

it more arduous to solve. Indeed, the methodology introduced in [24] is specific to stationnary problems: assessing its applicability

and relevance in the case of nonstationnary problems is the focus of this article.

In the first section of this article, the investigated thermal problem is presented in details: transient thermal equations are given
before a brief description on how to tackle a stochastic problem with the usual Monte-Carlo strategy. In the second section, the
proposed numerical strategy based on adaptive reduced basis is exposed. Theoretical details are given with respect to the problem
formulation, the general algorithm and the error assessment procedure. In the last section of the article, numerical results are presented
for a benchmark test: both the accuracy and the efficacy of the proposed numerical strategy are thoroughly analyzed.

2. Stochastic problem

Governing equations
We consider a bounded domain €2, representing a 2D structure. The boundary 052 of €2, is divided in two parts 0p{2 and N2 such
that 0pQQ U OnQ = 00 and OpQ N ONQ = @.

The employed material model is assumed to be isotropic with no temperature dependence. Relevant material parameters mentioned
in the following include: the density p, the specific heat ¢ and the thermal conductivity A. The stochastic behavior of the model
is introduced assuming that A(x, ) is a random field, where x € Q stands for the position vector, and § € © characterizes the
randomness. The sample space © is the set of possible outcomes of 6. As a random field, A(x, 6) is a function mapping each point
vector x to a random variable, typically with all the same Probability Density Function (PDF) and with cross-correlation depending
on the distance between the locations. Assuming that the spatial correlation is regular enough, the Karhunen-Loeve decomposition
[28, 29] allows for a representation of a random field by a sum of independent scalar random variables multiplied by deterministic
functions of x.

A prescribed flux field f; is applied on Jy (2, a prescribed temperature field Ty is imposed on Op<? and a prescribed source field
r, is applied on 2. In a general context, the material properties characterized by p, ¢ and A as well as the loadings f;, T, and r4 may
be random fields. Without loss of generality, it is assumed in the following that the randomness is restricted to the material parameters
introduced in the thermal conductivity \. Thus, the problem reads: find the unknown temperature field 7'(x, ¢, ) such that

div [A(x,0)grad (T'(x,t,0))] + ra(x,0) = p(x,0) c(x, 0) %—f(x, t,0) in Q (la)
grad (T'(x,t,0)) .n = f4(x,t,0) on On {2 (1b)

T(x,t,0) = Ty(x,t,0) on Op2 (1)

T(x,t =0,0) =Th(x,0) on {2 (1d)

In the remainder, 7 refers to the set of admissible temperatures T'(x, t,6) € T, satisfying (I1c) and (1d).

Quantity of interest

The purpose of the stochastic analysis is to determine reliable statistical information of a response quantity of Interest /. Note that
since the solution 7T'(x, ¢, §) is a random field, any output computed from this solution is a random quantity, and therefore the statistics
of this output (expected value, variance...) are the relevant information to be estimated. In this article, the assumption is made
that the quantity of interest may be expressed as a scalar quantity linearly dependent on T'(x, ¢, 8): The purpose of the stochastic



analysis is to determine reliable statistical information of a response quantity of Interest I. Note that since the solution T'(x, ¢, 6) is a
random field, any output computed from this solution is a random quantity, and therefore the statistics of this output (expected value,
variance. . .) are the relevant information to be estimated. In this article, the assumption is made that the quantity of interest may be
expressed as a scalar quantity linearly dependent on T'(x, ¢, 6):

1(9) ={r (T(Xa t, 9))7 (2)
where ¢ () is a deterministic linear functional.

Reference solution

A reference solution is obtained using a non-intrusive approach that decouples the discretization of the physical space and the
stochastic space, represented here by €2 and ©. This can be described in two steps:
1. First, a few simplifications are introduced in order to solve the problem (1) and to obtain a numerical approximation of 7'(x, ¢, §)
for a realization of § (freezing the randomness):
— Karhunen-Loeve truncation (section 2.3.1): the Karhunen-Loeve infinite expansion is approximated by limiting the sum
to a finite number of terms, Nk,
— spatial discretization (section 2.3.2): the problem (1) is approximated as the application of the FEM yields a spatially
discrete system,
— time discretization (section 2.3.3) is operated by means of the Crank-Nicholson time integration scheme.
2. Then, Ny Monte Carlo simulations {6 }r=1,.. are used to obtain an approximation of the probability density function
of the quantity of interest I(6).
Details of each of the aforementioned steps are given hereafter.

- Nuvc

Karhunen-Loéve truncation

The conductivity A(x, #) of the system is a scalar function defined at each point of the continuous domain, and thus consists of an
infinite number of usually correlated random variables. For computational purposes, A\(x, 0) is discretized: it is expressed as a finite
number of uncorrelated random variables by means of the truncated Karhunen-Log¢ve decomposition [28, 29].

The definition of A(x, 6) is related to the value of the mean field \o(x) and its covariance operator C(x, x'):

C(x,x") = cov(\(x,0),\(x',0)) 3

Assuming that the covariance operator C(x,x’) is regular enough, the Karhunen-Lo&ve decomposition yields a representation of
A(x, 0) as a sum of mutually uncorrelated random variables multiplied by deterministic functions of x:

+oo
A%, 0) = o) + 3 VEA ()6 (0) 4
i=1
where \;(x) and v;, 7 = 1,2, ..., are respectively the eigenfunctions and eigenvalues of the covariance operator C(x,x’). The sum in
Eq. (4) is then truncated after the first Ny, uncorrelated random variables &;(6),7 = 1,... Nk :
NkrL
A%, 0) = Do(x) + 3 VIA)E (), 5)
i=1
In the end, the investigated problem (1) becomes a stochastic problem of finite dimension.

Spatial discretization

The well-known finite element method is employed in order spatially discretize the temperature field 7'(x, ¢, 8). The shape functions
N;(x),i=1,... Ngoy span the solution space T, C T:

’ﬁl:span{Nl,Ng,...,NNdof}. (6)

Accordingly, the numerical approximation of T'(x, ¢, 8y) in Tj, is:

Ngoy
Th(x,t,6k) = > Tilt, ) Ni(x), (7
i=1
where T;(t,0y),7 = 1,..., Ngos are the nodal values of the discrete temperature field. Introducing the global vector of unknowns:
T(ta ak) = [Tl (t7 ek)a TQ(ta ek)a SRR TNdof (t7 ek)p- ®)

the corresponding discretized form of problem (1) may be written in a matrix form :

C(61) T(t,0;) + MT(t,6;) = F(t), ©



where C is the conductivity matrix, M is the capacity matrix, F is the nodal flux vector.

For a given realization, the discretization error T'(x,¢t,0x) — T (X, t, 6) is intimately related to the definition of the spatial
discretization 7, and its dimension Ny, see Eq. (6). If attention is paid to refining the spatial discretization in appropriate areas,
this error may be significantly decreased. Many techniques may be used in order to estimate the discretization error [30, 31, 32] but
such estimation goes beyond the scope of this study. In the following, the assumption is made that the discretization error is small
enough thus the presented numerical strategy is not influenced by it. That is the reason why the finite element approximation of the
temperature field T}, (x, ¢, 0%) is now used indifferently instead of its continuous counterpart 7'(x, ¢, 0y,).

Time integration scheme
The numerical solution of Eq. (9) calls for a discretization of the time interval [0, ¢ s]. To this end, the sequence of discrete time steps
tn,n =0,...N is introduced, with:

ty
t, =nAt and N = L 10
n an As (10)

the notation of related nodal temperature vectors is then simplified:

T(t,01) = To(61) (11)
In the end, the numerical problem (9) to be solved sums up to:

C(0) Tp(6) + MT,(0x) =F,, nel0,N], (12)

A direct time integration scheme is used for the solution of Eq. (12). It is based on the following approximation, which depend on
a parameter 7 :

: . T, 1(0k) — T, (6
B (00 + (1= )00 T OI T O) cp y 13)

The introduction of Eq. (13) within Eq. (12) yields the linear system of equations:

(51 +9C(00) T (6~ (31+ (= DCO)) Tul6) = 1Fnss + (3 - F, 14

that may be written in a contracted form:

X(0k)Trt1(0k) — Y(0r) T (0r) = Zipyr (15)
where:
1
X(0)) = (NMHC(@)) (16)
1
w00 = 54+ (- V(o) ) (1)
Zn+1 = 7F71,+1 + ('Y - I)Fn, (18)

Initial conditions (1d) give T(0) while boundary conditions and external loads definition (1b) allow for obtaining F',, and F, 1.
The time evolution of the nodal temperature field may then be achieved through the sequential solution of linear systems:

Toi1(0) = X1 0k) (Zrr + Y(0r)Tn(0k)), n€l[l,N] (19)

The nature of the time integration scheme depends on the value of parameter v :
e v = 0.0: explicit Euler method
e v = 0.5: Crank-Nicholson method
e v = 1.0: implicit Euler method
In the following, the Crank-Nicholson method is used: v = 0.5, it is a second-order unconditionally stable time integration scheme.

Monte-Carlo simulations
,,,,, Nmo- Then, the
aggregation of each solution {T},(x, ¢, 0x) }x=1,.... Nyc Yields the approximation of the statistics of the quantity of interest 1(8).

In the context of the considered thermal problem, N, realizations of C(f) are generated using independent realizations of the
random variables {&;(6)}i=1.... ny.» see (5). Subsequently, temperature fields {7}, (x, ¢, 8x) }x=1,.... Ny are obtained by solving Ny
linear systems (9). The probability density function (PDF) of I(#) is then characterized by its expectation E and variance V as:

1
Nuc

B0 ~ S 1(60) . V()] = E [1(6) — EIO)?] 0)
k=1

Algorithm 1 sums up the procedure used for carrying out the Monte-Carlo simulations.



Data: the realizations {0k }r=1,... Nuc, 7V, At, tr, C;, M, F(t), Ty
Result: A number of N, realizations of the quantity of interest, [ Mc(Gk)kzL__, Nuio
fori:=1,..., Ny do
Compute C(0),) = Co + 18" /b Ci&i(01);
1
Compute X(0;) = (AtM + ’yC(Hk)) ;
1
C te Y(0r) = [ —
-
forn=0,...,N do
Compute Z = vF,, 11 + (v — 1)F,,;
Compute T, 1 solving T, 1(0) = X71(0k) (Z + Y(0r) T (01));
end

Mt (1 —w)C(ek));

end

Algorithm 1: Monte-Carlo simulations algorithm

3. Proposed adaptive reduced basis strategy

The proposed adaptive reduced basis strategy aims at obtaining the Ny realisations of the quantity of interest {Irp (k) }r=1,... Nuc
through the solution of Egs. (2.3.1), (2.3.2) and (2.3.3) without time-consuming Monte-Carlo simulations. The system to be solved is
projected onto a space of lower dimension by means of a dedicated reduced basis. The dimension of the basis is adjusted automatically
in order to satisfy a user-defined criterion on the accuracy of each solution. The solution of each realization is thus approximated by a
linear combination of the vectors contained in the reduced basis which are the solutions of Ny carefully selected other realizations.
The specificity of the proposed strategy lies in the adjustment of the reduced basis content. It is based on an error assessment criterion
over the quantity of interest /.

New time formulation of the discretized problem
The solution of Eq. (15) over N time steps sums up to:

X(00)T1(05) — Y(0:)To(0r) = Z1
X(03)T2(0x) — Y(0,)T1(0r) = Zo

. (21)
X(Ok)Tn(Ok) = Y(0r)Tn-1(0x) =Zn
which may be written using a matrix form:
=Y(0r) X(0g) 0 e e To(0k) Z,
. . . . =1 . (22)

0 Yy X)) |Tn6n)] |2zn

Accounting for the initial conditions (1d) in this N x (N + 1) matrix block system yields the non-symmetric N x N matrix block
system:

X(ek) 0 s s T4 (Ok) 7, + Y(Qk)TO

Y0 XO) 0 | [ 1o Z,
: : : : - : (23)
0 —Y(0) X(6x)) |Tn(6r) Zn

For a given realization 6y, ’i‘(@k) and Z respectively represent the nodal temperature vector for each time step and the external
loadings vector for each time step:

{@9;@) = [T1(6k)7, .. T (05)7] (24)
Z(0p) =[Z] + [Y(0r)To], ..., Z5]"

Using these notations, Eq. (23) may be simply written as:

K(0,)T(01) = Z(6) (25)
where:
X(6) 0 .
K(6,) = Y (k) X(:9/<o) 9 (26)
0 =Y(0r) X(6k)



Equation. (25) is then left multiplied by K(Hk)T in order to yield a symmetric matrix so that the system may be solved :

(R(0:)TR (k) ) T(0) = R(6)TZ(0k) e
or:
K(05)T(6%) = Z(60) (28)

where  T(0)) = T(6)) and Z(6;,) = K(#x)TZ(6},). One may note that K(6;,) = K(#;)TK(6) is symmetric. On the base of
Eq. (28), the following sections define the procedure for estimating the error associated with the use of a reduced basis.

Approximated solution using a reduced basis
Definition of the reduced basis

As in any other reduction technique, the construction of the reduced basis, namely T rp, is the cornerstone of the proposed numerical
strategy since its dimension and its modal content respectively act upon the numerical efficacy and stability of the method. There is a
wide variety of model reduced techniques that may be employed to build the reduced basis. One may mention the Proper Orthogonal
Decomposition (POD) [33, 34] and the Reduced Basis method (RB) [35, 36]. These methods rely on a reduced basis computed
once and for all. To the contrary, the particularity of the proposed reduced basis is that its modal content is not known a priori: it is
enriched as soon as it is found inadequate to obtain an accurate solution for a given realization k.

For the first realization 6 of the system, the solution ’i‘(@l) is computed from Eq. (28). It is used as a starting point for the
definition of the reduced basis :

Trp = T(61) (29)

The basis Trp is then progressively enriched for subsequent realizations 6y, every time the error criterion is not satisfied, see
algorithm 2.

Reduced system

The definition of the reduced basis Trp allows for the projection of the system to be solved (28) onto a reduced subspace by
considering the following change of variables:

NRrB
Trp (k) = Z ai(0x)T; = Trp a(fx) (30)
i=1

Indeed, the combination of Egs. (30) and (28) yields:
K(Qk)TRB a(@k) = Z (31)

which, after left-multiplication by TT, ; leads to:

Krp(0k) a(0k) = Zrp (32)
where:
KRB(ek) = TTRBK(Gk)TRB and ZRB(ek) = T}-{BZ(Qk) (33)

is the reduced system to be solved.

Adaptive strategy using error assessment
As mentioned above, the quantity of interest [ is linearly dependent on the temperature, see Eq. (2). It may thus be written as:

I(0x) = (1(T(x,t,0,)) = GTT(0x) (34)

where G is the discrete operator (extractor) associated to the linear function ¢;. For instance, assuming the quantity of interest is the
temperature of a given point at a certain time, the vector G only contains one non-zero value (set to 1) located where the quantity of
interest is in T(Gk) If the quantity of interest is not localized on a single point and must be estimated over a specific domain, two
strategies may be employed. (1) A local approach that ensures a great accuracy consists in running the same number of simulations as
the number of quantities of interest. Since simulations may be carried out independently one from another, the whole process may be
parallelized and thus yield practically no extra computational cost. (2) A global approach consists in running a single simulation
considering a ponderated average of all the quantities of interest.
Similarly to Eq. (34), the temperature computed from the reduced space may be written:

Irp(0x) = l1(Trp(x,t,01)) = GTTrp(0k) (35



Consequently, the error e(fy) on the quantity of the interest for the realization 6y is:
() = 1(6) — Inp(0;) = GT (T(ek) - TRB(ek)) (36)

In pratice, one can also define the relative error e(6y)/I(6). The introduction of the dual problem [37] related to the quantity of
interest I for the reference problem (28) gives:

K(6x)V(6x) = G (37)

where V(Gk) is the solution of the dual problem. The combination of Egs. (36) and (37) yields:

e(0n) = (KOIV(©r) (T — Tro(61))
V(0,7 (K(ek)TT(ek) - K(ek)TRB(ek))

— V(0))T (Z(ak) - K(ak)TTRB(ak)) (38)

For each realization 6}, the only unknown in Eq. (38) is V(6}). While the calculation of V/(6;,) is possible using Eq. (37), it must be
avoided since the dimension of this equation is identical to the initial system in Eq. (28). In order to minimize computation times,
V(0y,) is approximated as follows:

V() = Vo =K, 'G (39)
where KK is obtained with A\(6;) = Ao. In the end, the computation of the error e(6},) is approximated by:

e(0x) ~ erp () = VI (Z(ek) _ K(ek)TTRB(ek)) (40)

In the following, such approximation is numerically validated in the context of small-amplitude randomness. The impact of the
approximation presented in Eq. (39) has previously been assessed [25] and compared with a finer, but more costly, approximation. It
was found that for small variations of the variability, the obtained results are identical.

Proposed algorithm

In the proposed approach, the only user-defined parameter is the precision criterion ¢y on the quantity of interest. This parameter
controls the enrichment of the reduced basis in order to ensure that: egp(0x) < €o. The smaller €y, the higher the required precision
and thus the larger becomes the reduced basis, automatically following algorithm 2. Previous sections are summarized in algorithm 2.



Data: the realizations {0y }r=1,... Nye, @, At,t5, C;, M, F(t), Ty, G, e
Result: A number of Ny realizations of the quantity of interest, I (0)r=1,.
Ngp =1 and compute C(61), X(61) and Y(61);
forn=0,...,N do
Compute Z = aF 1 + (o — 1)F,,;
Compute T, solving Ty, 41(01) = X71(01) (Z + Y(01) T, (61));
Store T(Gl) in Tpp;
end
Compute and store Ip(61) = GTT(6;);
Compute \70 = Kg 1@;
for k =2,..., Ng do
Compute K () and Zgp and solve Krp(0x)a(0r) = Zrp;
Compute s (6) = V3 (Z(0k) — (6T (61)) I lenn (64| > o then
inadmissible solution;
forn=0,...,Ndo
Compute Z = oF ;11 + (a — 1)Fy,;
Compute T, 11 solving T, +1(0) = X7 (0k) (Z + Y(0r) T (0k));
end
Compute and store Irp(0;) = GTT(6;);
Store T(Gk) in Trp and Npp < Ngg + 1;

- Nymc

else

admissible solution;

compute Trp(0k) = Trp a(0;);

Compute and store Ipg(0;) = GTTrp(0k):
T rp remains unchanged

end
end

Algorithm 2: Proposed adaptive reduced basis algorithm

It should be underlined that Vy is not computed based the first draw. Instead, it stems from the average value of the parameters.
This is critical in order to ensure a proper estimation of the error. In addition, the sequence of draws is fully arbitrary. In previous
work [25], several sequences are assessed and provide similar results. In its current implementation, the proposed methodology
retains all admissible solutions within the reduced basis without any mathematical modification or optimization.

4. Numerical investigations

The numerical investigations carried out on a case study are twofold. In the first subsection, a reference solution using Monte-Carlo
simulations is obtained. Then, in the following subsections, the proposed numerical strategy is applied and key points of the strategy
such as the error assessment procedure is analyzed.

Description of the considered case study: deterministic problem

The following 2D case study is considered: a square domain of length Ly = 0.1 m receives a constant heat flow ¢ = 300 kW.m~2 on
part of its edges, see Fig. 1, with L; = 0.03 m and Ly = 0.01 m. There is no heat flow in any other part of the domain boundary:
other edges are assumed perfectly adiabatic. The initial temperature 7 is uniform across the domain: 7 = 0°C. The system is
investigated over ¢ = 120 s, the time step of the Crank-Nicholson time integration scheme is At = 1 s. The domain is discretized by
means of 2D four-node linear finite elements, the mesh is intentionally coarse (only 400 elements are used in total: 20 along each
edge of the domain) in order to minimize computation times. The quantity of interest is the temperature in the middle of the domain
after 120 s, thatis [ = T'(O,t;) = T'(x = (0;0),t = 120). The extractor (34) associated to I is a vector G with a unique non null
component (equals to one) corresponding to the node located on O and last time step.

The final temperature gradient in the domain for this deterministic system is depicted in Fig. 1 and the history of the temperature
in the center of the domain 7'(O, t) is shown in Fig. 2.

Reference solution of the stochastic problem

The material is assumed to be isotropic with the following properties: its density is p = 7800 kg:m~3 and its specific heat is
¢ = 700 J')kg=1-K~!. The randomness of the system is introduced through its conductivity \(x, @) defined by its mean value

’
9 _lx=x'|

Ao = 50 W-m~1-K~! and its covariance operator C(x,x’) = a?e¢~ @ . The random field \(x, #) undergoes a Karhunen-Logéve
decomposition with 20 modes (Ng; = 20) and 10° realizations are considered (Nyc = 10°). The severity of the problem, which
is related to the amplitude of the randomness, is controlled by the two parameters a and « with a € {0.25L¢;0.5Lg; Lo} and
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Figure 2. Temperature in the middle of the square domain: 7°(O, t) for uniform mean conductivity value Ao

a € {2%;5%;7%}. In order to better apprehend the impact of the randomness on the quantity of interest, Tab. 1 features its
expectation and standard deviation for different sets of parameters.

a 0.25Lg 0.5Lg Lo

o 2% | 5% | "% 2% | 5% | % 2% | 5% | %
E[I(0)] || 41.3123 | 41.2877 | 41.2368 || 41.3114 | 41.2852 | 41.2518 |[ 41.3109 | 41.2273 | 41.2358
V[I(6) 0.2772 | 0.6958 | 0.9766 || 0.3466 | 0.8692 1.22 0.3984 | 09976 | 1.4044

Table 1. Mean value and variance for different values of ¢ and «

Contrary to the mean value E[I(#)], it is noticeable that variance V[I(6)] of the quantity of interest is hardly sensitive the
randomness. In addition, the values given in Tab. 1 underline that the parameter « has a strong impact on the severity of the problem:
for all the considered values of a, the larger «, the larger the standard deviation. The same observation stands for parameter a: for all
the values of «, the standard deviation increases as a increases.

Probability density functions (PDF) obtained with Monte-Carlo simulations are depicted in Figs. 3(a), 3(b) and 3(c). In fact, PDF
are evaluated numerically and then we only obtain histograms corresponding to the PDF which are continuous. These histograms or
discrete PDF are referred to as the reference solutions in the following sections.

Application of the proposed strategy

In this section, the numerical behavior of the proposed numerical strategy is assessed for different values of maximum admissible
errors g9 € {10°107%;1072;1073; 10~*}°C. This admissible error is the error between reduced basis and reference solution
(discrete). As long as the same mesh is used, the discretization error due to the mesh does not influence the analysis. First of all,
the discrete PDF of the quantity of interest are computed for three couples of parameters (a, «): (0.25L¢, 2%), (0.5Lo, 5%) and
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(Lo, 7%). These discrete PDF are respectively pictured in Figs. 4, 5 and 6. For each of these discrete PDF, their sensitivity to the
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Figure 4. discrete PDF obtained with the proposed strategy ( ) superimposed with those obtained with Monte-Carlo simulations (——) for
a = 0.25L¢p and o = 2 %. Corresponding errors are pictured in (=—).

maximum admissible error is highlighted: the discrete PDF are shown for ey = 10°°C, ¢y = 1072°C and £g = 10~4°C. For the sake
of comparison, these discrete PDF are superimposed with the reference solution. For the sake of readability, differences between
distributions obtained with the proposed strategy and Monte-Carlo simulations are also plotted. As the maximum admissible error is
decreased, it is evidenced that the discrete PDF obtained with the proposed numerical strategy are perfectly superimposed with the
reference solutions for any couple of parameters (a, «). In addition to these discrete PDF, the error between the reference solution
and the proposed numerical strategy is computed for each realization. The maximal error e,y reported for each set of parameters ¢, @
and « is then reported in Tab. 2. The values given in Tab. 2 underline the quality of the proposed numerical strategy: the maximal error
is comparable to the maximum admissible error £ for almost all the couples of parameters (a, «) thus validating the error assessment
procedure presented in this article. A more thorough analysis of the error committed with the proposed numerical strategy is carried
out by plotting the discrete PDF of the error associated with the discrete PDF depicted above for the three couples of parameters
(a, «): (0.25Lg, 2%), (0.5Lg, 5%) and (Lo, 7%). These discrete PDF are respectively pictured in Figs. 7, 8 and 9. These discrete
PDF show that for almost all the realizations, the error is below the maximum admissible error. Though, in a few rare cases, the error
assessment procedure fails to give an accurate result which is evidenced in Fig. 8(c) where one out of 10° realizations leads to an
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a 0.25L¢ 0.5L¢ Lo
- Y 2% 5% % 2% 5% % 2% 5% %
100 0.98 0.95 0.94 0.9 1.03 0.86 0.82 0.84 091
101 0.088 0.086 0.104 0.095 0.10 0.10 0.09 0.096 0.0114
10-2 0.0099 0.0098 0.011 0.0095 0.0098 0.0107 0.0095 0.0103 0.0103
103 0.00098 0.001 0.001 0.001 0.001 0.0013 0.001 0.001 0.001
104 0.00018 0.00019 0.00017 0.00009 0.00069 0.00011 0.0000097 0.00012 0.00011

Table 2. Maximum error e,,q. for all the carried out simulations

error more than six times larger than the maximum admissible error (and thus explains the maximum error ey,x = 0.00069 > 0.0001
mentioned in Tab. 2 for ¢ = 0.5L¢y, @ = 5 % and ey = 1074°C where €0z = maxye[1.. Nye) e(0x)). One can avoid these rare (less
than 10 over 10°) points (greater than €) to define a more reasonable maximum error’” using probability bounds as in [38].

In order to be satisfying, the error assessment procedure must lead to a maximum error ey, that is as close as possible from the
maximum admissible error £y5. On the one hand, if the maximum error is too small, the algorithm is potentially too strict meaning
that its numerical efficacy is not optimal. On the other hand, if the maximum error is too big, the approximation on the error
assessment (39) is too permissive, see Fig. 10. In the end, the results presented in this section show that the proposed numerical
strategy provides satisfying results: it does indeed allow for an accurate control of the maximum error when the parameters of the
initial problem are perturbed.

Reduced basis evolution

This section focuses on the evolution of the reduced basis dimension during a simulation. In order to be computationally efficient, the
final dimension of the reduced basis must remain small with respect to the dimension of the initial problem. It was evidenced in
previous work [25] that the proposed methodology may yield a very significant decrease of computation times. Table 3 sums up the
dimension of the reduced basis at the end of the simulations carried out for each set of parameters a, o and (. It seems natural to
witness an increase of the reduced basis dimension as the problem becomes more severe with increasing values of «.. Similarly, it is
observed that the smaller the maximum admissible error £, the larger the dimension of the reduced basis. The dimensions listed in
Tab. 3 should be compared with the dimension of the initial finite element problem which contains Ng,; = 441 degrees of freedom
solved on N = 120 time steps.

Before the reduced basis reaches its final dimension, a very large number of realizations are computed with even smaller bases. In
order to better apprehend the way the reduced basis is enriched through out the computation of all the realizations, the dimension of

11



w 2,000 |- - =
4
2
=
N
3
g
8 1,000 |- = =
g
e}
g
=
=
0 cort] h uiil h uiil h
36.7 384 40.0 41.7 433 449 36.7 384 40.0 41.7 433 449 36.7 384 400 41.7 433 449
temperature (°C) temperature (°C) temperature (°C)
(a) g0 = 10° (b) 5o = 1072 (c) g0 = 1074
2
g 150 |- I -
3
=
g 100 B B
hS
g
e 50| - -
E
g
0 Ll ! 11N mestthioll oy ”I hd .||||II.||..||| ||.. B : : : :
36.7 384 40.0 41.7 43.3 449 36.7 384 400 41.7 433 449 36.7 384 40.0 41.7 43.3 449

temperature (°C)

(d) e = 10°

temperature (°C)

(e) eg = 1072

temperature (°C)

(f) eo =104

Figure 6. discrete PDF obtained with the proposed strategy (=) superimposed with those obtained with Monte-Carlo simulations (——) for

a = Lo and a = 7 %. Corresponding errors are pictured in (=—).

| | |
1 1 1
1] 1 | I
4
£ 6,000 - error = 0 - : = :
= 1 1 1
.5 1 1 1
E | | |
€ 4,000 | . - . - .
Sy 1 ! [
o 1 [} 1
5 | | :
1
"2 2,000 | . - | - .
= 1 [} 1
S| 1 ! 1
1 [} 1
1 1 1
0 I I . I T 1 I . I I I . I I T
-1 -0.6 -0.2 0.2 0.6 1 -1 -0.6 -0.2 0.2 0.6 1 -1 -045 0.1 065 1.1
error on the temperature (°C) error on the temperature (x1072°C) error on the temperature (x10~*°C)
(a) g0 = 10° (b) g0 =102 (¢) g =1074
Figure 7. discrete PDF of the error for a = 0.25Lp and o = 2 %
a 0.25L¢g 0.5Lg Lo
o 2% | 5% | ™% || 2% | 5% | ™% || 2% | 5% | %
10° 7 11 14 6 9 10 5 9 10
10— 1 15 21 32 16 21 23 15 19 20
10—2 23 64 81 24 56 73 23 45 63
10=3 72 131 | 167 63 120 | 151 56 108 | 130
10—4 141 | 247 | 354 129 | 219 | 296 113 | 188 | 244

Table 3. Dimension of the reduced basis at the end of each simulation

the reduced basis is plotted with respect to the realization number in Figs. 11. For any set of parameters, the graphs drawn in Fig. 11
show that the reduced basis dimension is practically constant after the first 10 000 realizations. In other words, about 90 % of the
realizations are computed with the final reduced basis which is constituted of a low number of selected vectors. Only the suitable
vectors are kept in the basis, this small amount of vectors are sufficient to represent the variability of the problem. This illustrates the
interest of the proposed method.
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5. Conclusion

An original adaptive reduced basis technique is presented in this article. It is dedicated to the solution of nonstationary stochastic
thermal problems. The cornerstone of the proposed strategy lies in an error assessment procedure that drives the modal content
of the reduced basis. This strategy conveniently allows for the definition of a maximum admissible error and thus does not limit
the dimension of the reduced basis. Following an extensive presentation of the theoretical background of the method, the adaptive
reduced basis technique is applied on a test case which allows for a direct confrontation with usual Monte-Carlo simulations. Both the
quality of the obtained results and the numerical efficacy of the proposed method are underlined through this example.

The proposed method shows great potential for the numerical analysis of stochastic problems and work is in progress for its
application to the vibration analysis of structures undergoing random excitations. Future potential applications also include the
analysis of large nonlinear frictional contact problems and the impact of manufacturing uncertainties over industrial structures free
vibration modes. In such cases, defining such Adaptive Reduced Basis strategy is a challenge. Another challenging problem is to
introduce variability on the geometry.
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