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Abstract 21 

 22 

Microbial communities living on cheese surfaces are composed of various bacteria, yeasts and 23 

molds that interact together, thus generating the typical sensory properties of a cheese. 24 

Physiological and genomic investigations have revealed important functions involved in the 25 

ability of microorganisms to establish themselves at the cheese surface. These functions 26 

include the ability to use the cheese's main energy sources, to acquire iron, to tolerate low pH 27 

at the beginning of ripening, and to adapt to high salt concentrations and moisture levels. 28 

Horizontal gene transfer events involved in the adaptation to the cheese habitat have been 29 

described, both for bacteria and fungi. In the future, in situ microbial gene expression 30 

profiling and identification of genes that contribute to strain fitness by massive sequencing of 31 

transposon libraries will help us to better understand how cheese surface communities 32 

function. 33 

 34 
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Introduction 35 

 36 

Surface-ripened cheeses are characterized by a complex surface microflora composed of 37 

various types of bacteria, yeasts and molds. Until ten years ago, very few investigation 38 

strategies were available for studying typical microorganisms that live on cheese surfaces. 39 

Most studies concerned the monitoring of the growth of selected species in model cheeses and 40 

the assay of enzymatic activities or substrates and metabolic products. However, the rapid 41 

development of microbial genome sequencing has offered new investigation opportunities. 42 

Comparative genomic analyses help to identify genetic determinants specific to the cheese 43 

habitat and to understand the emergence of species adapted to the cheese surface. Cheese-44 

originating strains whose genome sequences are available or for which there is a genome 45 

sequencing project are listed in Table 1. Functional metagenomics provides avenues for a 46 

deeper understanding of microbial communities living on cheese surfaces (Wolfe et al., 47 

2014). In addition, over the last years, considerable progress has been achieved for the in situ 48 

quantification of mRNA transcripts by reverse transcription-quantitative PCR (Duquenne et 49 

al., 2010, Falentin et al., 2012, Monnet et al., 2013, Desfossés-Foucault et al., 2014) and even 50 

by high-throughput RNA sequencing (Lessard et al., 2014).  51 

 The manufacture of fresh cheese curd generally takes from about five to 24 hours. It 52 

involves the acidification of milk by lactic acid bacteria and the action of rennet, resulting in 53 

milk coagulation. The gel is then cut and the drained curds are transferred to moulds. Cheeses 54 

are then salted and transferred to ripening rooms. The ripening time for surface-ripened 55 

cheeses is typically 2-4 weeks. During that time, there is an intense growth and activity of 56 

aerobic microorganisms at the surface of the cheeses. Growth of the cheese surface 57 

microorganisms corresponds to a colonization of a nutrient-rich environment, followed by a 58 

stationary growth phase and sometimes by a decline in population. The ability of 59 

microorganisms to establish themselves on the surface of cheeses depends on several factors. 60 

One of them is the ability to use cheese as an efficient growth medium. The composition and 61 

structure of this medium change throughout ripening. In addition, the microorganisms have to 62 

adapt themselves to the presence of other microorganisms with which they may have positive 63 

or negative interactions. As an example, a scheme has been proposed for the dynamics of the 64 

principal Livarot yeasts (Larpin et al., 2006): Kluyveromyces lactis grows at the very 65 

beginning of ripening and contributes to lactose uptake. It is then inhibited by salting; 66 

Geotrichum candidum and Debaryomyces hansenii contribute to deacidification of the curd 67 

by preferentially consuming lactate and amino acids, favoring the growth of aerobic acido-68 
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sensitive ripening bacteria; Yarrowia lipolytica, a strongly lipolytic species, grows primarily 69 

during the latter half of ripening and limits the mycelium development of G. candidum. 70 

Abiotic conditions such as temperature and relative humidity also influence the growth of 71 

microorganisms at the surface of the cheese. The ability to survive in the cheese 72 

manufacturing environment is another important feature since it favors the subsequent 73 

recontamination of the cheese.  74 

 75 

Evolutionary processes in the cheese habitat 76 

 77 

The genomes of cheese surface microorganisms may contain signatures of "domestication" 78 

due to genetic events that contribute to a better adaptation to the cheese habitat. Several types 79 

of events may be distinguished. In bacteria, genes that have no beneficial function tend to be 80 

eliminated due to the energy required for their maintenance. They can be eliminated by 81 

recombination, which is favored by the presence of mobile elements such as insertion 82 

sequences. Numerous insertion sequences and pseudogenes are found in the genome strain 83 

Arthrobacter arilaitensis Re117 that originates in cheese, showing that there is process of 84 

reductive evolution in this species that is still going on (Monnet et al., 2010). Comparisons 85 

with Arthrobacter strains that originate in the soil showed that many genes involved in the 86 

transport and catabolism of substrates have been lost in the cheese strain, probably due to the 87 

lower diversity of substrates in cheeses.  88 

 In bacteria, horizontal gene transfers may occur via three main mechanisms: 89 

transformation, transduction and conjugation. Such transfers may confer a selective advantage 90 

to the recipient cell, as observed for A. arilaitensis Re117, whose genome contains a gene 91 

cluster involved in the catabolism of D-galactonate that probably originated from a 92 

Pseudomonas strain. The importance of horizontal transfers in the eukaryotic kingdom is 93 

thought by many to be anecdotal. However, the recent sequencing of the genome of a 94 

Penicillium roqueforti and a Penicillium camemberti strain showed the presence of a large 95 

region (~500 kb) known as Wallaby, which resulted from horizontal transfers (Cheeseman et 96 

al., 2014). Wallaby was found almost exclusively in species from the food environment. It has 97 

been independently acquired in some Penicillium species, and the perfect identity of the 98 

sequences implies recent transfer events. Such transfers may be facilitated by the ability of 99 

fungi such as Penicillium to form somatic fusions between mycelia. The function of Wallaby 100 

has not yet been well established, but the presence of genes predicted to be involved in the 101 

regulation of conidiation or in antimicrobial activities suggests a functional advantage 102 
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associated with competition with other cheese microorganisms. Horizontal gene transfer 103 

events also occur in yeasts such as Y. lipolytica, D. hansenii and K. lactis (Dujon et al., 2004), 104 

but this has not yet been investigated for cheese isolates.  105 

 Multilocus sequence typing (MLST) analyses have shown that G. candidum strains 106 

can be separated into two populations: the cheese and the environment isolates, suggesting an 107 

adaptation to the cheese habitat (Morel, 2012). The even distribution of mating types suggests 108 

that mating events occur in cheese and may contribute to gene exchanges. Diploid strains 109 

have been isolated from cheeses, revealing that mating also occurs for D. hansenii (Jacques et 110 

al., 2010). Yeast diploids and hybrids display robust characteristics such as tolerance to 111 

environmental stress, which could be beneficial in the cheese surface habitat.  112 

 The rate at which microorganisms evolve to adapt to the cheese habitat is not known. 113 

However, the propagation of a Lactococcus lactis strain isolated from fermented plant 114 

material for only 1000 generations in milk resulted in several genetic modifications that 115 

consisted of point mutations and gene deletions (Bachmann et al., 2012). There is evidence 116 

that herders in Europe were producing cheese between 6,800 and 7,400 years ago (Salque et 117 

al., 2013) and it may thus be assumed that some cheese microorganisms result from extensive 118 

genetic adaptations that could even result in new species. Even if there is evidence of the 119 

evolution of cheese-specific strains, other habitats such as skin or soil also lead to selective 120 

pressure similar to that found on the cheese surface (e.g., osmotic stress, desiccation, iron-121 

restriction), and some important properties of cheese strains may thus have arisen from 122 

evolutionary selection on the skin and in the soil (Monnet et al., in press). Ropars et al. (2012) 123 

distinguished two types of cheese molds. The first corresponds to ubiquitous fungi such as 124 

P. roqueforti, Scopulariopsis candida and Scopulariopsis fusca. Penicillium roqueforti has 125 

been frequently isolated from silage, from food products and from forest soil or wood. 126 

Scopulariopsis candida and S. fusca have diverse origins, from soil as well as plant and 127 

human pathogens. These molds seem to have only recently adapted to cheese. The second 128 

type corresponds to species such as P. camemberti, Fusarium domesticum, Scopulariopsis 129 

flava and Sporendonema casei, which are only found in cheese and are well adapted to this 130 

habitat. Penicillium camemberti is related to P. cavernicola, which can be isolated from the 131 

walls of natural caves and is also able to develop on fat-rich products. Cheeses were originally 132 

made in natural caves and cellars and it is conceivable that the capacity to live in fat-rich 133 

products has been conserved from a common ancestor. Adaptation of F. domesticum to the 134 

cheese surface may be related to the ability of a common ancestor of Fusarium dimerium to 135 

establish itself in biofilms.  136 
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 137 

Factors and functions involved in the growth of microorganisms on the cheese surface  138 

 139 

pH, temperature and moisture 140 

Several factors important for the growth of cheese surface microorganisms are listed in 141 

Table 2. At the beginning of ripening, the pH value is typically around 5. On the surface, this 142 

low pH favors the growth of aerobic yeasts and molds that are more tolerant to acidity than 143 

bacteria. For example, growth of Penicillium camemberti can take place in the pH range of 144 

3.5-6.5 (Abbas & Dobson, 2011).  The ability of yeasts to tolerate acid pH values seems to be 145 

related to the activity of plasma membrane ATPase that regulates intracellular pH by 146 

exporting protons (Praphailong & Fleet, 1997). Presumably, yeasts that tolerate low pH values 147 

have a more efficient or stable plasma membrane ATPase system. Cheese yeasts and molds 148 

contribute to the increase in the pH of the cheese surface by transforming lactate to CO2 and 149 

also by producing ammonia from amino acids. Coagulase-negative staphylococci such as 150 

Staphylococcus equorum, Staphylococcus sciuri and Staphylococcus xylosus can grow at pH 151 

5.5 and even below (Bockelmann et al., 1997), which may explain their ability to grow early 152 

during ripening. Other surface bacteria such as Arthrobacter sp., Brevibacterium sp. and 153 

Corynebacterium sp. are more acido-sensitive and begin to grow when the pH is around 5.5 to 154 

6.0. At the end of ripening, the pH at the cheese surface can reach a value higher than 7.5. It 155 

can be considered that the general trend towards yeast domination during the early stages of 156 

ripening in smear-ripened cheeses (i.e., when the pH is low), followed by bacterial 157 

domination at the end of ripening, is due to the fact that the yeasts are more adapted to acidic 158 

pH than the bacteria. 159 

 Cheese ripening typically occurs at a temperature of 10-15°C. Microorganisms that 160 

grow under these conditions include mesophiles that have a large tolerance of temperature 161 

range, psychrophiles and psychrotrophes. Optimal growth temperature for yeasts is between 162 

20 and 30°C, but their ability to grow and have proteolytic and lipolytic activities at low 163 

temperatures favors their colonization of the cheese surface, as observed for Candida spp. and 164 

Y. lipolytica (Corbo et al., 2001). The growth of D. hansenii is greater at 20°C than at 10 or 165 

15°C, but the effect of NaCl is less pronounced at low temperatures (Masoud & Jakobsen, 166 

2005). For some cheese varieties, the temperature is set to ~20°C at the beginning of ripening 167 

to promote the growth and deacidifying activity of the yeasts. 168 

 The relative humidity of the ripening room also has an influence on the growth of 169 

microorganisms at the cheese surface. For example, P. camemberti grows less well at a 170 
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relative humidity greater than 95% (Leclercq-Perlat et al., 2013), and in smear-ripened 171 

cheeses, high humidity in ripening rooms, combined with repeated brushing of the cheeses 172 

with salt water, prevents the growth of molds. Correlations have been found between cheese 173 

rind moisture and community composition of 137 different rinds (Wolfe et al., 2014). In this 174 

study, the fungus Galactomyces and four genera of Proteobacteria (Psychrobacter, Vibrio, 175 

Pseudomonas and Pseudoalteromonas) were positively correlated with rind moisture, 176 

whereas Scopulariopsis, Aspergillus, Actinobacteria and Staphylococcus were negatively 177 

associated with moisture. The impact of moisture on the growth of cheese rind genera was 178 

also observed in reconstituted in vitro microbial communities, where dry environments were 179 

enriched with Debaryomyces, Staphylococcus and Penicillium.  180 

 181 

Salt tolerance  182 

Cheeses are salted by applying salt to their surface or by submerging them in a saturated salt 183 

brine. Debaryomyces hansenii strains are able to grow at 16% NaCl (Masoud & Jakobsen, 184 

2005). This species is frequently isolated in salty environments such as seawater, brines and 185 

salted food products, and is one of the most salt-tolerant yeast species. It has mechanisms for 186 

extrusion of sodium ions, accumulates glycerol as a compatible solute when exposed to high 187 

NaCl concentrations (Prista et al., 2005), and has a high intrinsic resistance to the toxic effects 188 

of sodium and potassium ions. Geotrichum candidum is considered to be less tolerant to salt 189 

than D. hansenii (Boutrou & Gueguen, 2005). In mould-ripened cheeses, if the salt content is 190 

too low, G. candidum can outcompete Penicillium camemberti and form a surface defect 191 

known as "toad skin". On the other hand, when the salt concentration is too high, the growth 192 

of G. candidum will be suppressed and excessive growth of P. camemberti may then lead to 193 

excessive proteolysis and bitterness defects (Spinnler  & Gripon, 2004). 194 

 Brevibacterium linens and Corynebacterium spp. are stimulated by 4% NaCl, are able 195 

to grow in the presence of 12% NaCl, and some strains even tolerate 16% NaCl (Masoud & 196 

Jakobsen, 2005). The Brevibacterium, Corynebacterium and Arthrobacter strains originating 197 

from cheese whose genomes have been sequenced are well equipped with genes that offer 198 

protection from high salt concentrations. One protection mechanism is the accumulation of 199 

osmoprotectants such as ectoine, proline and glycine betaine in the cytoplasm. Fifteen genes 200 

involved in the transport of glycine betaine and related osmolytes were identified in A. 201 

arilaitensis Re117, whereas a lower number - from six to nine genes - are present in 202 

Arthrobacter strains from soil, which are less tolerant to high salt concentrations (Monnet et 203 

al., 2010). One particularity of the Brevibacterium aurantiacum ATCC 9174 genome is the 204 
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large number of osmoprotectant transporters. Indeed, nine different betaine/carnitine/choline 205 

family transporters have been identified in this strain, whereas the mean number in other 206 

Actinomycetales is 1.5 (analysis performed with the Integrated Microbial Database, 207 

http://img.jgi.doe.gov/). The Corynebacterium variabile DSM 44702 genome contains the 208 

ectP gene encoding an ectoine transporter, proP, which encodes an osmoregulated proline 209 

transporter, and six genes encoding proteins of the betaine/carnitine/choline transporter family 210 

(Schröder et al., 2011). High salt concentrations on the surface of smear-ripened cheeses may 211 

also explain the presence of bacteria usually found in marine environments, e.g., 212 

Halomonas sp., Marinilactibacillus psychrotolerans, Pseudoalteromonas sp. and Vibrio sp. 213 

(Feurer et al., 2004, Ishikawa et al., 2007, Roth et al., 2011, Wolfe et al., 2014). 214 

 215 

Iron acquisition 216 

Cheese is a highly iron-restricted habitat because milk is poor in iron (0.2-0.4 mg/l) and 217 

contains lactoferrin, a protein that has an antibacterial effect due to its ability to chelate iron. 218 

In model cheeses involving a lactic acid bacterium (L. lactis), a yeast (D. hansenii) and 219 

different ripening bacteria (Arthobacter, Corynebacterium or Brevibacterium), the addition of 220 

iron or siderophore enhanced the growth of ripening bacteria (Monnet et al., 2012). The 221 

genomes of the four bacteria originating in cheese, C. variabile DSM 44702, 222 

Corynebacterium casei UCMA 3821, A. arilaitensis Re117 and B. aurantiacum ATCC 9174, 223 

are well equipped with genes involved in iron acquisition. In A. arilaitensis Re117, two 224 

siderophore biosynthesis gene clusters have been identified, one of which has no counterpart 225 

in the Arthrobacter strains from soil (Monnet et al., 2010). In C. variabile DSM 44702, genes 226 

involved in the production of a catechol siderophore are present, some of which are located on 227 

a genomic island (Schröder et al., 2011). In the taxonomic sub-line in which C. variabile is 228 

located (cluster 3), similar siderophore biosynthesis genes are only present in the genome of 229 

the pathogen Corynebacterium jeikeium. Examination of the draft genome sequence of 230 

B. aurantiacum ATCC 9174 also revealed the presence of a gene cluster involved in the 231 

synthesis of a catechol-type siderophore (locus BlinB01002486 to BlinB01002493). Three of 232 

these genes (BlinB01002490 to BlinB01002492) result from a horizontal gene transfer since 233 

the closest orthologs are found in Gram-negative species. Furthermore, most of the 234 

Brevibacterium strains of dairy origin investigated by Noordman et al. (Noordman et al., 235 

2006) were able to produce siderophores. In Staphylococcus aureus, the sbnABCDEFGHI 236 

operon encodes proteins involved in the biosynthesis of the siderophore staphylobactin, which 237 

enhances virulence. This operon is also present in the genome of S. equorum Mu2, where it 238 

http://img.jgi.doe.gov/
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probably contributes to the supply of iron during growth at the cheese surface (Irlinger et al., 239 

2012). The number of ABC-type iron-siderophore transport components is higher in 240 

Actinomycetales from cheeses (from 20 to 56 genes) than the mean number (13 genes) found 241 

in Actinomycetales from other environments (Monnet et al., 2012). In addition, cheese 242 

Actinomycetales have fewer proteins with iron-sulfur cluster domains, and it has been 243 

hypothesized that these strains decreased their need for iron by eliminating proteins that 244 

require iron.  245 

 Pezizomycotina fungi such as Penicillium spp. are able to produce siderophores (Ong 246 

& Neilands, 1979, Winkelmann, 2007), whereas Saccharomycotina such as K. lactis, 247 

D. hansenii, G. candidum and Y. lipolytica cannot produce them but are able to import 248 

siderophores produced by other microorganisms (Haas et al., 2008, Blaiseau et al., 2010). It is 249 

possible that iron acquisition is at the origin of some interactions between the microorganisms 250 

that grow on the surface of cheese, as suggested for microorganisms from marine sediments 251 

(D'Onofrio et al., 2010). 252 

 253 

Energy substrates 254 

Even if lactic acid bacteria are found at the cheese surface, they do not represent a large 255 

fraction of the bacterial population in many cases. This is due to the competition with the 256 

aerobic microorganisms that catabolize important energy sources such as lipids, lactic acid 257 

and amino acids, which are rarely used by the fermentative lactic acid bacteria. Surface-258 

ripened cheeses have a high surface area/volume ratio, which favors the growth and activity 259 

of the aerobic microflora. The main substrates catabolized by cheese surface microorganisms 260 

to produce energy are lactose, galactose, lactate, amino acids, proteins and lipids. The extent 261 

and chronology of substrate utilization depends on the cheese variety and microorganisms. 262 

 In general, only limited amounts of lactose are available at the beginning of ripening. 263 

It is catabolized by yeasts such as K. lactis and Kluyveromyces marxianus, which have a 264 

fermentative lactose catabolism, by D. hansenii that performs a complete oxidation to CO2, 265 

but not by G. candidum (Boutrou & Gueguen, 2005). In Camembert-type cheeses, it was 266 

suggested that lactose is a major energy source for the mycelial growth of P. camemberti at 267 

the beginning of ripening. Its depletion might provoke stress, resulting in slower growth and 268 

spore production (Leclercq-Perlat et al., 2013). Most aerobic ripening bacteria do not 269 

catabolize lactose (Mounier et al., 2007), which may be due to the fact that they mostly grow 270 

during the second part of ripening, after lactose exhaustion. In cheeses manufactured with 271 



 9 

thermophilic lactic acid bacteria, such as Reblochon, galactose is frequently present at the 272 

beginning of ripening, and is then catabolized by G. candidum and D. hansenii.  273 

 Lactate is another important energy substrate for yeasts and molds present at the 274 

surface of cheeses, and also for most aerobic ripening bacteria (Mounier et al., 2007). 275 

Catabolism of lactate involves the activity of lactate transporters and lactate dehydrogenases, 276 

which results in the production of pyruvate that is later catabolized through the TCA cycle. 277 

The genomes of the strains S. equorum Mu2, B. aurantiacum ATCC 9174, A. arilaitensis 278 

Re117, C. casei UCMA 3821 and C. variabile DSM 44702 originating from cheese encode 279 

lactate transporters and lactate dehydrogenases. Metatranscriptome analyses of Camembert-280 

type cheeses revealed an early expression of fungal genes involved in the catabolism of 281 

lactate (Lessard et al., 2014).  282 

 Many bacteria and fungi that live on the cheese surface are proteolytic, which results 283 

in the production of amino acids from caseins. Amino acids are frequently used as an energy 284 

substrate after lactate exhaustion (Mounier et al., 2007). There is a wide diversity in 285 

proteolytic and peptidolytic activity between species and strains of the same species. 286 

However, it is generally recognized that Y. lipolytica and K. marxianus are more proteolytic 287 

than D. hansenii. Production of extracellular proteases has been shown in typical cheese 288 

surface bacteria such as B. linens, M. gubbeenense and Arthrobacter nicotianae (Ghosh et al., 289 

2009). Glutamate is among the most abundant amino acids in caseins and is frequently the 290 

most abundant free amino acid in cheeses (Rosenberg & Altemueller, 2001). It is mainly 291 

catabolized by cheese surface microorganisms through glutamate dehydrogenase, yielding 292 

NADH, ammonia and alpha-ketoglutarate, which can enter into the TCA cycle. Alpha-293 

ketoglutarate is also a substrate for transamination reactions and favors the catabolism of 294 

other amino acids. A bifunctional proline, dehydrogenase/pyrroline-5-carboxylate 295 

dehydrogenase [PutA], which catalyzes the oxidation of proline to glutamate using a 296 

membrane-bound quinone and NAD as an electron acceptor, is present in the genome of the 297 

strains A. arilaitensis Re117 and C. variabile DSM 44702 originating in cheeses (Monnet et 298 

al., 2010, Schröder et al., 2011).  299 

 Cow's milk contains an average of 35 g/l of lipids, mainly triglycerides. Lipolysis 300 

results in the production of free fatty acids that constitute energy substrates for many cheese 301 

microorganisms. High levels of lipolysis are observed in mold-ripened cheeses. This is due to 302 

the high lipolytic activity of Penicillium strains. Yarrowia lipolytica is considered to be the 303 

most lipolytic cheese yeast (Lanciotti et al., 2005). In some cheese varieties, intense lipolysis 304 

is the result of the activity of G. candidum strains (Boutrou & Gueguen, 2005). Staphylococci 305 
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have higher lipolytic activity than other surface bacteria (Curtin et al., 2002). The genome of 306 

the cheese bacterium A. arilaitensis Re117 encodes a secretory triacylglycerol lipase and has 307 

several acyl-CoA dehydrogenases and fatty acid-CoA ligases with no counterpart in 308 

environmental Arthrobacter strains, which may be the result of the adaptation of this strain to 309 

the fatty acids present in cheeses (Monnet et al., 2010). Interestingly, in C. variabile DSM 310 

44702, there is also a wide diversity of fatty acid-CoA ligases, which would enable the strain 311 

to utilize a broader range of fatty acid substrates in its natural cheese environment (Schröder 312 

et al., 2011). Free fatty acids are known to have inhibitory effects on a wide range of 313 

microorganisms (Altieri et al., 2005), but their impact on the growth of microorganisms on 314 

the cheese surface has not yet been evaluated.  315 

 Apart from interactions linked to the supply of energy sources, it is likely that many 316 

other nutritional interactions occur between cheese surface microorganisms. However, except 317 

for evidence of the stimulation of smear bacteria by vitamins (pantothenic acid, niacin and 318 

riboflavin) produced by yeasts (Purko et al., 1951), there is a lack of knowledge concerning 319 

this topic.   320 

  321 

Bacteriocins and phages 322 

Some cheese surface bacteria produce bacteriocins such as linocin M18, linecin A, linenscin 323 

OC2 and micrococcin P1 (Kato et al., 1991, Valdés-Stauber & Scherer, 1994, Maisnier-Patin 324 

& Richard, 1995, Carnio et al., 2000). Bacteriocin production by these bacteria has mainly 325 

been investigated in order to select strains able to prevent the growth of Listeria. However, 326 

bacteriocins may inhibit other microbial groups found on the cheese surface and, therefore, 327 

confer a selective advantage to producers. 328 

 In contrast to lactic acid bacteria, very little is known about the importance of phages 329 

on cheese surface bacteria. To our knowledge, no cases of growth inhibition during cheese 330 

manufacturing have been reported in the literature. The C. variabile DSM 44702 genome 331 

contains a putative prophage that comprises 60 genes (Schröder et al., 2011). In the C. casei 332 

UCMA 3821 genome, 85 genes have been annotated as phage proteins and four CRISPR 333 

(clustered regularly interspaced short palindromic repeats) loci were identified (Monnet et al., 334 

2012). CRISPR loci provide acquired resistance to bacteriophages (Sorek et al., 2008). This 335 

indicates that phages may exert an influence on the development of cheese surface bacteria 336 

during ripening.  337 

 338 

Conclusion 339 
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 340 

During the last ten years, the characterization of the microbial composition of these 341 

communities has been facilitated by the development of culture-independent methods based 342 

on molecular fingerprints or on high-throughput sequencing of amplicons. In addition, the 343 

sequencing of the genome of typical species found on the cheese surface and comparative 344 

genomic analyses revealed signatures of "domestication" and other interesting features related 345 

to their ability to grow and to survive in their habitat. Such investigations should expand in 346 

the future due to the rapid growth of the number of sequenced microbial genomes. However, 347 

these studies have to be complemented by in situ analyses in cheeses, especially by gene 348 

expression profiling. Considerable progress has been made for the quantification of mRNA 349 

targets in cheeses by reverse transcription real-time PCR. Metatranscriptomic analyses will 350 

provide a more global picture of the functioning of cheese surface communities. These 351 

analyses are beginning to be applied to cheeses or model cheeses, but some limitations still 352 

have to be overcome, such as the elimination of ribosomal RNA and the need for a higher 353 

throughput for taking the majority of the population into account. In addition, it is important 354 

to more effectively link physiological traits of microorganisms to their genes within their 355 

natural environment. The massive sequencing of transposon libraries offers very interesting 356 

perspectives for investigating cheese surface microorganisms. This technique involves the 357 

inoculation of pools of mutants in a representative medium, followed by the monitoring of the 358 

frequency of mutations by massive sequencing (van Opijnen & Camilli, 2013), making it 359 

possible to evaluate the impact of each gene on strain fitness. This will require the 360 

development of efficient mutagenesis systems that are currently lacking for the typical cheese 361 

surface microorganisms.  362 

 363 

 364 

 365 

 366 

 367 

 368 

 369 

  370 
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Table 1. List of strains isolated from cheeses with the available genome sequence or with a 371 

genome sequencing project* 372 

    
 

    NCBI    

Strain Bioproject ID. Genome status Source 

    
 

FUNGI 
  

 

Ascomycota 
  

 

 

Penicillium camemberti FM013 PRJEB4962 In progress Cheese 

Penicillium roqueforti FM164 PRJNA239656 Permanent draft Cheese 

Geotrichum candidum CILB 918 PRJEB5752 In progress Milk from Pont l'Evêque cheese 

    
 

BACTERIA 
  

 

Actinobacteria 
  

 

 

Agrococcus casei LMG_22410 PRJEB311 Permanent draft Soft smear-ripened cheese 

Arthrobacter arilaitensis Re117 PRJNA53509 Complete Smeared slightly pressed cheese (Reblochon) 

Arthrobacter arilaitensis 3M03 PRJEB261 Permanent draft Soft smear-ripened cheese  

Arthrobacter arilaitensis GMPA29 PRJEB354 Permanent draft Soft smear-ripened cheese 

Arthrobacter bergerei Ca106 PRJEB277 Permanent draft Mould-ripened soft cheese 

Brachybacterium alimentarium CNRZ925 PRJEB293 Permanent draft Cooked hard cheese 

Brevibacterium antiquum CNRZ918 PRJEB292 Permanent draft Hard cheese 

Brevibacterium aurantiacum ATCC 9174† PRJNA54109 Permanent draft Smear-ripened cheese (Romadur) 

Brevibacterium casei CIP 102111 PRJEB281 Permanent draft Cheddar Cheese 

Brevibacterium linens ATCC 9172 PRJEB273 Permanent draft Cheese (Harzerkase) 

Corynebacterium ammoniagenes ws_2211 PRJEB360 Permanent draft Cheese surface 

Corynebacterium casei LMG S-19264 PRJNA186910 Complete Surface of a smear-ripened cheese 

Corynebacterium casei UCMA 3821 PRJNA78139 Permanent draft Soft smear-ripened cheese (Livarot) 

Corynebacterium flavescens Mu128 PRJEB324 Permanent draft Soft smear-ripened cheese with raw milk 

Corynebacterium flavescens OJ8 PRJNA242338 In progress Cheese 

Corynebacterium variabile DSM 44702 PRJNA62003 Complete Soft smear-ripened cheese 

Kocuria varians Mu208 PRJEB326 Permanent draft Soft smear-ripened cheese 

Leucobacter komagatae 1L36 PRJEB246 Permanent draft Soft smear-ripened cheese 

Leucobacter sp. ER15_166_BHI15 PRJEB301 Permanent draft Uncooked semi-hard cheese with cow milk 

Luteococcus japonicus LSP_Lj1 PRJEB313 Permanent draft Cheese 

Microbacterium foliorum C45 PRJEB276 Permanent draft Soft smear-ripened cheese  

Microbacterium gubbeenense DSM 15944 PRJNA185602  Permanent draft Surface of a smear-ripened cheese 

Microbacterium gubbeenense Mu132 PRJEB325 Permanent draft Soft smear-ripened cheese  

Micrococcus luteus Mu201 PRJEB237 Permanent draft Soft smear-ripened cheese with raw milk 

Propionibacterium acidipropinici ATCC 4875 PRJNA158149 Permanent draft Emmental cheese 

Propionibacterium freudenreichii CIRM-BA1 PRJNA49535 Complete isolated from Swiss cheese 

Propionibacterium freudenreichii ITG P20 PRJEB4826 In progress Cheese 

Propionibacterium thoenii DSM 20276 PRJNA185646 Permanent draft Emmental cheese 

    
 

Bacteroidetes 
  

 

 

Chryseobacterium bovis Pi_18 PRJEB34 Permanent draft Uncooked semi-hard cheese with cow milk 

Chryseobacterium ginsengisoli M17 PRJEB316 Permanent draft Uncooked semi-hard cheese with cow milk 

    
 

Firmicutes 
  

 

 
Alkalibacterium kapii FAM208_38 PRJEB304 Permanent draft Surface of pressed cheese 

 
Bacillus altitudinis 263 PRJEB231 Permanent draft Mould-ripened soft cheese 

 
Bacillus altitudinis ATCC 10987 PRJNA241431 Permanent draft Cheese 

 
Bacillus altitudinis m1293 (BPS-2) PRJNA55163 Permanent draft Cream cheese 

 
Bavariicoccus seileri DSM 19936 PRJNA188834 Permanent draft Surface of smear-ripened cheese 

 
Bavariicoccus seileri WCC_4188 PRJEB359 Permanent draft Soft smear-ripened cheese 

 
Brevibacillus parabrevis CIP 110335 PRJEB288 Permanent draft Hard cheese 

 
Brochothrix thermosphacta cH814 PRJEB279 Permanent draft Uncooked semi-hard cheese with cow milk 

 
Carnobacterium maltaromaticum 38b PRJEB254 Permanent draft Soft smear-ripened cheese  

 
Carnobacterium maltaromaticum LMA28 PRJNA179370 Complete Mould-ripened soft cheese (Brie) 

 
Clostridium tyrobutyricum UC7086 PRJNA170963 Permanent draft Hard cheese (Gran Padano) 

 
Enterococcus durans IPLA_655 PRJNA188163 Permanent draft Cheese 

 
Enterococcus faecium CRL1879 PRJNA191091 Permanent draft Artisanal cheese 

 
Enterococcus italicus DSM 15952 PRJNA53039 Permanent draft Cheese, Italian Toma, from bovine milk 

 
Enterococcus malodoratus ATCC 43197 PRJNA191903 Permanent draft Gouda cheese 

 
Enterococcus malodoratus FAM208_55 PRJEB305 Permanent draft Surface of pressed cheese (Gouda) 

 
Exiguobacterium acetylicum 180 PRJEB230 Permanent draft Cheese 

 
Facklamia tabacinasalis FAM208_56 PRJEB306 Permanent draft Surface of pressed cheese 

 
Jeotgalicoccus psychrophilus CRBM_D21 PRJEB298 Permanent draft Uncooked semi-hard cheese with cow milk 

 
Leuconostoc lactis 1283 PRJEB235 Permanent draft Cheese 
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Leuconostoc mesenteroides TIFN8 PRJNA175676 Permanent draft Natural cheese starter culture 

 
Listeria innocua Clip11262 PRJNA86 Complete Cheese, Morocco 

 
Marinilactibacillus psychrotolerans 42ea PRJEB266 Permanent draft Soft smear-ripened cheese with raw milk 

 
Marinilactibacillus psychrotolerans FAM208_59 PRJEB307 Permanent draft Soft smear-ripened cheese  

 
Ornithinibacillus bavariensis CIP 109287 PRJEB287 Permanent draft Cheese 

 
Paenibacillus sp. 3M17 PRJEB363 Permanent draft Soft smear-ripened cheese 

 
Staphylococcus equorum Mu2 PRJEA8889 Permanent draft French smear-ripened cheese (Munster) 

 
Staphylococcus fleuretti CIP 106114 PRJEB283 Permanent draft Cheese made with goat milk 

 
Staphylococcus lentus Ca2 PRJEB278 Permanent draft Mould-ripened soft cheese 

 
Staphylococcus vitulinus Ma1 PRJEB320 Permanent draft Soft smear-ripened cheese with raw milk 

 
Staphylococcus warnerii 1445 PRJEB241 Permanent draft Uncooked semi-hard cheese with cow milk 

 
Vagococcus fluvialis bH819 PRJEB275  Permanent draft Uncooked semi-hard cheese with cow milk 

 
Vagococcus lutrae FAM208 PRJEB303 Permanent draft Surface of pressed cheese 

    
 

Proteobacteria 
  

 

 
Acinetobacter johnsonii 3M05 PRJEB262 Permanent draft Soft smear-ripened cheese 

 
Alcaligenes faecalis 2L10 PRJEB250 Permanent draft Soft smear-ripened cheese 

 
Alcaligenes sp. 2L29 PRJEB251 Permanent draft Soft smear-ripened cheese 

 
Brevundimonas diminuta 3F5N PRJEB260 Permanent draft soft smear-ripened cheese with raw milk 

 
Citrobacter freundii Pi_15 PRJEB346 Permanent draft Uncooked semi-hard cheese with cow milk 

 
Hafnia alvei GB001 PRJEB6257 Permanent draft Cheese 

 
Halomonas alkaliphila 3A7M PRJEB256 Permanent draft Soft smear-ripened cheese 

 
Halomonas sp. 1M45 PRJEB249 Permanent draft Soft smear-ripened cheese 

 
Halomonas sp. 3F2F PRJEB259 Permanent draft Soft smear-ripened cheese 

 
Halomonas venusta 3D7M PRJEB258 Permanent draft Soft smear-ripened cheese 

 
Klebsiella oxytoca Pi_20 PRJEB348 Permanent draft Uncooked semi-hard cheese  with cow milk 

 
Kluyvera intermedia TL336_A PRJEB358  Permanent draft Uncooked semi-hard cheese with cow milk 

 
Morganella morganii 3A5A PRJEB255 Permanent draft Soft smear-ripened cheese with raw milk 

 
Morganella psychrotolerans 925 PRJEB233 Permanent draft Soft smear-ripened cheese 

 
Proteus hauseri 1M10 PRJEB247 Permanent draft Soft smear-ripened cheese 

 
Proteus vulgaris 1M25 PRJEB248 Permanent draft Soft smear-ripened cheese 

 
Providencia alcalifaciens GM3 PRJEB309 Permanent draft Soft smear-ripened cheese 

 
Providencia heimbachae GR4 PRJEB310 Permanent draft Soft smear-ripened cheese 

 
Providencia rettgeri 947 PRJEB234 Permanent draft Soft smear-ripened cheese 

 
Pseudomonas fragi 1E26 PRJEB244 Permanent draft Soft smear-ripened cheese 

 
Pseudomonas sp. 1E44 PRJEB245 Permanent draft Soft smear-ripened cheese 

 
Psychrobacter aquimaris ER15_174_BHI7 PRJEB302 Permanent draft Uncooked semi-hard cheese with cow milk 

 
Psychrobacter celer 91 PRJEB270 Permanent draft Mould-ripened soft cheese with raw milk 

 
Psychrobacter faecalis H5 PRJEB280 Permanent draft Soft smear-ripened cheese  

 
Psychrobacter immobilis PG1 PRJEB345 Permanent draft Soft smear-ripened cheese  

 
Psychrobacter namhaensis 1439 PRJEB240  Permanent draft Mould-ripened soft cheese with raw milk 

 
Raoultella ornithinolytica TL332 PRJEB357 Permanent draft Uncooked semi-hard cheese with cow milk 

 
Raoultella planticola 3M45 PRJEB264  Permanent draft Soft smear-ripened cheese 

 
Serratia marcescens 448 PRJEB267 Permanent draft Soft smear-ripened cheese 

 
Serratia proteamaculans 1C2F PRJEB243 Permanent draft Soft smear-ripened cheese with raw milk 

 
Serratia rubidaea TA_26 PRJEB355 Permanent draft Uncooked semi-hard cheese with cow milk 

 
Stenotrophomonas maltophilia Pi1 PRJEB349 Permanent draft Uncooked semi-hard cheese with cow milk 

 
Stenotrophomonas rhizophila PCA13 PRJEB334 Permanent draft Uncooked semi-hard cheese with cow milk 

 
Vibrio litoralis B4 PRJEB274 Permanent draft Soft smear-ripened cheese 

         

    
 

* Lactic acid bacteria belonging to the genera Lactobacillus, Lactococcus and Streptococcus 373 

were not included in this table 374 

† formerly Brevibacterium linens BL2 375 

 376 

  377 
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Table 2. Factors acting on the growth of microorganisms at the cheese surface  378 

   379 

Factor  Significance for the cheese surface 

microorganisms 

Comments 

pH Acido-tolerant strains grow at the early 

stages of ripening; acido-sensitive bacteria 

are more abundant at the end of ripening 

pH changes are due to the activity of the 

microbial community 

Oxygen Aerobic strains grow under the surface of 

the curd (~ 2-5 mm) or form a mycelium 

cover over the curd 

Regular turning of the cheese ensures that 

oxygen is supplied to all cheese surfaces 

Salt concentration Selective pressure for salt-tolerant strains Salt concentration depends on 

manufacturing practices (amount and type 

of salt supply) 

Temperature Selective pressure for strains growing at 10-

15°C 

Temperature profile depends on 

manufacturing practices 

Moisture Selective pressure for strains able to grow in 

conditions of high or low moisture of rind 

Moisture mainly depends on manufacturing 

practices (type of curd, washing, relative 

humidity of ripening cellar) 

Energy substrates Selective pressure for strains able to use the 

main energy sources from cheese (lactose, 

galactose, lactate, amino acids, lipids) 

Changes in energy substrates present in the 

curd are due to the activity of the microbial 

community 

Inhibitors Selective pressure for strains able to tolerate 

inhibitors produced by the surface 

microflora, such as ammonia, free fatty 

acids and bacteriocins 

These inhibitors are produced by the cheese 

microflora 

Iron Selective pressure for strains with efficient 

iron acquisition systems 

Iron availability depends on several factors 

such as pH, proteolysis, diffusion in the 

solid cheese matrix and the presence of 

microbial iron chelators 

Phages Possible density-dependent predation of 

bacteria by phages 

No information available about the presence 

of phages of cheese surface bacteria 
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