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Theory of Morphogenesis

A. Minarsky? N. Morozova®™, R. Penner®, C. Soulé'

Abstract
A model of morphogenesis is proposed based upon seven explicit postu-
lates. The mathematical import and biological significance of the postu-
lates are explored and discussed.
Théorie de la morphogenese

Résumé : Un modele de morphogeneése est proposé sur la base de sept
postulats explicites. L’importance mathématique et la signification bi-
ologique de ces postulats sont explorées et discutées.

Introduction/Background

Morphogenesis is the evolution of shape of an organism together with the dif-
ferentiation of its parts. The discovery of differential gene expression, that is,
the spatio-temporal distribution of gene expression patterns during morphogen-
esis together with its key regulators which are again given by gene expression
is one of the main recent achievements in developmental biology, cf. [2] and
references therein. Nevertheless, differential gene expression cannot explain the
development of the precise geometry of an organism and its parts, cf. [4, 6].

The popular theory of morphogen gradients governing morphogenesis and
accordingly differential gene expression, though correct for some special cases,
still leaves more questions than answers [10] . For example, the mechanism of
coordination of proper locations of specific morphogen production, the exact
molecular pathways leading to morphogen gradient formation, the dependence
of tissue formation and especially of their geometrical shapes on exact gradients,
along with many other key points, must still be elucidated in order to accept
this theory as the basis for pattern formation rather than a part of molecular
instruments implementing more general laws. It is these more general laws
which we shall postulate.

It is plausible to suggest the existence of a cell-surface molecular code which
bears information about the geometrical pattern of an organism and thus coor-
dinates the cascades of molecular events implementing pattern formation, e.g.,
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differential gene expression, directed protein traffic, growth of microtubules and
others. Whatever the precise nature, this coding is epigenetic-literally, beyond
genes—since diverse cell lineages with their diverse cell fates and morphogenetic
evolutions nevertheless share the common genome of the organism itself.

Though the concrete signal transduction pathways connecting the morpho-
genetic coding information and expression of given sets of genes are not yet
elucidated, we can suggest a set of postulates and possible approaches for dis-
covering the correspondence between this code and its realization in the given
geometry of an organism in space-time. This paper is a sequel to [5, 6] with
the main new innovations being the inclusion of cell-to-cell communication, the
emphasis on the role of cell potency, and the process of cell de-differentiation.

Our goal is to formalize the mechanisms and details of morphogenesis in
order to uncover its underlying general laws, two significant manifestations be-
ing embryonic development and physiological response to various crises such as
amputation, transplantation or biochemical intervention

1 Overview/Fundamental Hypotheses

Our proposed theory of morphogenesis is based on several fundamental hypothe-
ses as follows:

— For each cell in an organism there is a cell-surface distribution of chemical
substances called its (epigenetic) spectrum governing morphogenesis.

— There is transmission to a certain collection of neighbors from each cell of
its own epigenetic spectrum called cellular signaling.

— Each cell comprising an organism performs one of several possible cell
events at various times, namely, change of spectrum, change of position,
change of shape including growth, mitotic division, and apoptosis (that
is, programmed cell death).

— There is a collection of universal rules obeyed throughout Nature for a
specific cell event for each cell at each instant depending upon its own
epigenetic spectrum and the cellular signals it receives.

— For each zygote for each organism, there is an optimal sequence of cell
events following the universal rules which describes the normal evolution
of the embryo.

— If the optimal cell event is impossible due for instance to crisis or malfunc-
tion, then the cell response is to de-differentiate and return its spectrum
to that of its ancestor cell.

— The strength of the signal transmitted by a cell is inversely propotional
to its potency.



More explicitly and to fix ideas, we assume that the spectrum is comprised
of a collection of oligosacharide residues of glycoconjugates lying in the lipid
bilayer cell-surface membrane of each cell. The concentration of these residues
in different sectors of the cell can be described by a matrix with integer entries.
Note that the spectrum of each cell could as well consist of other cell-surface
molecules, in which case our general framework still applies mutatis mutandi.

The precise nature of signaling between cells likewise can remain unspeci-
fied. The detailed signal could be a direct mechanical interaction of cell-surface
compounds or structures, or it could be molecular, such as ion exchange, ligand-
receptor interactions or others. We assume that whatever its nature, the sent
signal is itself determined by the spectrum of the sender cell which we may there-
fore take to be the signal itself. It is in the interpretation of that sent signal by
the receiver cell that distinctions are made depending on precise details.

Each cell in fact receives a set of signals from a collection of its neighbors, and
from these various signals determines an appropriate single new target spectrum.
Under normal development after the cell event, the new spectrum agrees with
the target spectrum, thus explicating a basic universal rule of morphogenesis.
Other external attributes of the cell, such as its position within the embryo or
its shape may also alter as the result of a cell event. If the target spectrum
is unachievable by the cell in its current state, then the spectrum of the cell
reverts to that of the previous cell event, a kind of backtracking which assumes
a certain level of redundancy in the epigenetic spectrum.

The last postulate that signal strength varies inversely to the potency is the
most difficult to explain here precisely because the concept of “potency” requires
a number of further considerations. This final postulate is explained further in
§4. Roughly, the potency of a cell is its ability to produce a diversity of differ-
ent cell states during the optimal sequence of cell events, cf. §3. For instance,
a zygote has maximal potency (totipotency), and a fully differentiated cell that
admits no further mitotic divisions, such as a mammalian brain cell or eye lens
cell, has minimal or no potency. All cells at early stages of embryonic devel-
opment, which are called embryonic stem cells, enjoy so-called pluripotency, or
in some cases even the totipotency of the zygote, which allows them easily to
change their cell fates, while stem cells existing in tissues of adult organisms,
or adult stem cells, enjoy bipotency, meaning that they can produce only two
types of cells—themselves and the differentiated cells of the corresponding tissue.

We hope and expect that future laboratory experimental work will confirm
or refine aspects of the model presented here. Furthermore, the model itself is
currently being probed via computer implementation and experimentation.

2 Shapes

It is problematic to rigorously define the notion of shape or form in biology, cf.
[9, 9.1.1]. We shall do so at two scales: the microscopic shape of a cell and the
macroscopic shape of an organism.



To define the shape of a cell we proceed as follows, cf. [5, §2] for more details.
We assume that the cell ¢ contains a distinguished point O = O, with respect to
which it is star-convex, that is, the line segment OP lies in ¢ for any other point
P in c¢. Though the example of a neuron cell shows this is not strictly true for
all cells, we can accept that the few such counter-examples are not especially
critical in determining shapes of organisms. Specifically, we take O to be the
so-called microtubule organizing center or centrosome.

It follows that the shape in space of the cell membrane p(c) of ¢ can be
described by a positive real function o = o, : $2 — R~ on the unit-radius
two-dimensional sphere S? centered at O, namely, if Py € S2, then the point
P € u(c) in the direction of Py from O is uniquely defined by the equality

— —
OP = o (Py) OP, of vectors. Thus as a subset of Euclidean space R3, the cell

—
c in space is given by the convex set B,(0) = {P € R : ||OP|| < o(Py)} C R3
containing O. To fix ideas, let us assume that o. € L?(S?), i.e., 0. is square
integrable for each cell c.

Now turning to the shape of an organism () regarded as the union of its con-
stituent cells, one encounters the following difficulty (][9], loc. cit.): At an instant
in time the organism € is embedded as a closed subset in R?, and the coordinate
axes can be chosen to coincide with the three embryonic axes (anterior-posterior,
dorsal-ventral, left-right) of the organism determined already in the zygote. In-
sofar as the organism (2 can move in space, it admits multiple manifestations
as subsets, and it is not clear how to specify precisely when two such explicit
manifestations of € are equivalent.

We propose to proceed as follows. The shape of €2 is determined by a finite
and connected graph I(Q), called the graph of adjacency whose vertices are
given by the cells of 2 with an edge between vertices ¢; and ¢ when the cells
¢1 and ¢y touch one another; in fact, I(2) is equipped with a natural metric
assigning to the edge between c¢; and ¢y the distance between O, and O, in R3,
in contrast to the simpler combinatorial length determined by the number of
edges traversed. This metrized graph I(Q) can be isometrically embedded in R3
in such a way that the vertex c¢ is mapped to the distinguished point of the cell
¢, and 0. determines the extent of the cell in space. Notice that the collection of
functions o, are not arbitrary, e.g., because two cells cannot overlap. A crucial
point is that we do not fiz the embedding of I(£2) into R3. Two different closed
subsets of R? have the same shape when they share the same data (I(Q), o).

We can now go further and give a notion of distance between two organisms
Oy and Q. Namely d(£21,82s) is the Gromov-Hausdorff (GH) distance (cf. [3])
between the metrized graphs I(€;) and I(€2). There is also the related no-
tion considered in [5] where one regards the organism Q = U.cqB,, (O.) C R3
as the union of its cells in space as a metric subspace of R3 and again mea-
sures distances between organisms using GH distance; the distance based on
the metrized graph of adjacency is more easily computable.



3 Cell State and Cell Event

As mentioned in §1 we postulate that the development of an organism is driven
by cell-surface molecular codes called (epigenetic) spectra of its constituent cells.
As a simplification to describe this code, we consider the set Mat of N-by-8
matrices A. = (a;;) with natural integer entries a;;, where N is the number of
species of glycoresidues we shall record for each cell, and the three coordinate
planes decompose each cell surface into eight orthants within which we record
the number a;; > 0 of each of the N species, fori =1,...,Nand j =1,...,8.
As in [5] a more sophisticated approach would be to record the actual densities
with further real-valued functions defined on sphere S2, one such function for
each species for each cell, rather than the discrete model with integral matrices
considered here.

There are several data intrinsically associated with each cell ¢, namely,
— the epigenetic spectrum A, € Mat,

— the shape function o, € L?(S?),

— the coordinates of the distinguished point O, € R3,

— the number ¢, of cell divisions directly leading to ¢ from the zygote called
the cell timer,

— the number s, of cell events occurring since the most recent cell division
called the cell stopwatch,

— the relative age of the most recently inherited centrosome, o, = m for the
older (mother) and a, = d for the younger (daughter) centrosome, called
the m/d invariant.

These data are intrinsic in the sense that the cell might be removed from its
organism yet preserving each of these attributes which could then be measured.
Together these data comprise the cell state S. = (Ac, ¢, O, te, Se, atc), and we
shall regard I. = (A, t., S¢, ac) as the internal state and E. = (0., 0,.) as the
external state of the cell c. We should note that the first three pieces of data can
be organized into a bundle over the configuration space of distinguished points
in space with fiber given by shapes and spectra, cf. [5].

The biological and mathematical significance of A., 0. and O, have already
been discussed. In order to elucidate the two timers, let us first construct the
tree T = Tq of cell events whose vertices are in correspondence with the cell
states S, with an edge connecting vertices when they are related by a cell event.
The zygote in its initial state forms the root of the tree T' and has valence 2
corresponding to the fact that it divides from its current state at the outset of
the construction; other 2-valent vertices arise from change of spectrum, position
or shape, while 3-valent vertices correspond to division and 1-valent vertices to
apoptosis. The tree T' is metrized where the length of an edge is given by the
temporal duration of the corresponding cell event.



The path in T from the zygote to the vertex of T labeled by cell state S,
passes through a certain number of 3-valent vertices, and this number is the
value of the timer ¢.. The biological determination of ¢, can be approximated in
terms of the length deficit of the so-called telomeric tail of the DNA contained
in the cell ¢, which loses one telomere for each division, cf. [1], cf. [2]; strictly
speaking, a single cell division might remove several telomeres from the tail due
to oxidative effects, and indeed there are proteins called TERT's which serve to
lengthen the telomeric tail, cf. [8]; let us nevertheless regard ¢. as an intrinsic
datum roughly determined by the telomeric tail length and given precisely by
this and some other intrinsic cell data which can remain unspecified for now.

Analogously, the path in T from zygote to the vertex v has a last passage
through a 3-valent vertex before arrival at v, and the number of 2-valent ver-
tices it meets after visiting this 3-valent vertex, or in other words the number
of changes of spectrum, shape or position that occur from the most recent di-
vision, gives the cell stopwatch s, in terms of 7. The biological determination
of the stopwatch requires a short digression. All cells contain microtubules in
particular supporting the cell surface, and as we have mentioned, have a spe-
cific microtubule organizing center which gives a distinguished point within each
cell. In fact, microtubules are not static and cycle through a process of adding
to the base (proximal) and removing from the tip (distal), and this cycle time
in fact correlates with the cell cycle controlling mitosis. Thus, a notch on the
microtubule moves up and away from the base towards the tip, and the distance
of this notch from the base again gives an approximate biological interpretation
to the intrinsic stopwatch s..

To explain the m/d invariant o« = a let us note that the centrosome is du-
plicated during mitotic as well as meiotic cell division , cf. [1, 2]. The daughter
cell inheriting the older centrosome has a = m, and the other daughter cell has
its a = d. For diplosomes whose centrosome is comprised of two centrioles and
which includes all animal cells, one centriole is older than the other and each
duplicates to produce another pair of complete centrosomes each comprised of
two centrioles; the daughter cell inheriting the oldest of the four constituent cen-
trioles has e = m the other having o = d. The m/d invariant is indeed intrinsic
in particular for diplosomes insofar as asymmetries between m and d centrioles
go beyond simply age presenting notable differences in molecular composition,
function and ultrastructure. The ovum and sperm in the diplosomic case each
contain just one centriole, and the former is m in the zygote. Numerous exper-
iments for diplosomes have shown that cell fate is tied to the m/d invariant cf.
[7]. We again assume this m/d invariant is likewise intrinsic in general by these
or other unspecified attributes.

Keeping track of the m/d invariant starting from the zygote, each cell ¢ in
an organism has a well-defined word of length ¢, in the letters {m, d} called the
m/d code which uniquely determines the phylogeny of its centrosome starting
from the zygote. It is an interesting question whether the full m/d code is
intrinsic or perhaps just a terminal segment of it of some fixed length definitely
greater than or equal to one. It seems unlikely that cell events could depend
upon more that the last few letters since otherwise presumably inevitable errors



in m/d code would be catastrophic for embryogenesis.

Fix some organism {2 with zygote z and consider a cell state S, labelling a
vertex on the tree T of optimal cell events with its well-defined subtree T'(S.) C
T = T(S,) with this vertex as its root. Define the collection X (S.) of all pairs
(Ag, ag) occurring as data among vertices of T'(S.). The ratio of the measure
of X(S.) to that of X(S,) for some appropriate measure of the set of all pairs
comprised of spectrum and m/d invariant is the (normalized) potency of the cell
state S..

Potency is not an intrinsic attribute of the cell state in the sense discussed
previously, and its definition requires a priori knowledge of the tree of optimal
cell events. Despite much attention, we do not know a reasonable definition of
intrinsic potency since one must specify under exactly which conditions a cell in
its state is allowed to evolve: under all possible conditions being too broad and
unmeasurable and under specific laboratory conditions being too specialized.
Notice however that if the full m/d code were intrinsic, then potency for counting
measure on Mat x {m, d} could actually be determined in laboratory experiment
without killing the organism: sample each type of internal cell state (A4, «) in
the complete mature organism and compare with the histogram initial segments
of m/d code.

4 Signaling and Cell Response

We have already in §1 explained that each cell ¢ of an organism 2 provides its
signal to a collection of its neighbors, and the signal is given by its own spectrum.
The set of cells of €2 that receives this signal can be defined in various ways.
For example, the signal might propagate uniformly in all directions or may have
vectorial characteristic, it might decay with spatial distance from ¢ or with
combinatorial distance in the graph of adjacency from the vertex corresponding
to ¢, the simplest possibility, or it might depend on the subsets of epigenetic
spectra through which it is transmitted.

Each cell ¢ of €2 thus also receives a certain collection of signals from its
neighbors, and these must be combined in some manner to produce the target
spectrum also discussed in §1. There are again various possibilities ranging from
a simple average over signals received possibly weighted by distance or other
attributes again including perhaps the spectra through which it is transmitted,
also possibly allowing for stochastic effects and depending inversely upon the
potency of the sender according to our final postulate.

In the optimal situation, the spectrum of the cell after the cell event coincides
with the target spectrum. In particular if the cell ¢ in its state with spectrum
A is provided with a target spectrum that agrees with A, this means that the
optimal (coded) cell event for the cell ¢ is confirmed by the signal. It is this
“harmony” between cell current spectrum and the target spectrum determined
by the received signal that communicates to the cell that it should “move” along
the optimal tree of cell events. In this way, the shape of the organism through
signaling can communicate stasis to its constituent cells at the conclusion of



morphogenetic processes.

More generally though, the target spectrum differs from the current spec-
trum and the cell state evolves. This evolution normally follows a pattern of
differentiation, by which we mean that the cell states becomes more and more
specialized, less capable of diverse evolution, thus with diminished potency.

Note that cell events depend on parameters. For instance the division of
a cell requires the specification of a plane of division. Another aspect of cell
events requires determining the rules for the resulting distribution of coding
species (epigenetic spectrum) on a cell surface after a cell event. For example
for the cell event of division, it is quite reasonable to postulate that half of the
daughter cell-surface spectra are directly inherited unchanged from the mother
spectrum while the remaining daughter spectra adjacent to the division plane
are filled in by certain rules as yet to be determined.

We have thus far concentrated primarily on normal evolution of an embryo
and finally briefly consider cell response under unusual circumstances. For ex-
ample an amputated limb in the frog species Xenopus is capable of regeneration,
and even small body fragments of the Planaria worm can generate an entire
and complete organism, cf. [4]. Even human babies are capable of regenerat-
ing amputated fingertips during the first months following birth it turns out.
The removal of the cell membrane from a plant cell produces a so-called cal-
lus of many undifferentiated cells capable of generating an entire and complete
plant organism. Transplantation of limb fragments in non-standard orienta-
tions in Drosophilia, Azolotl and other species can result in supernumerary limb
regeneration as well as other bizarre outcomes. The literature abounds with
experiments illustrating these remarkable phenomena, cf. [2, 4] and references
therein.

In our model, the cell in its cell state is provided by signaling with a target
spectrum and then responds with its optimal cell event under normal conditions,
but if the conditions are not normal so the target spectrum is for some reason
unachievable, then we posit that the cell has the only possible responses of
stagnation (that is, no cell event), cell death (a form of apoptosis under these
unusual conditions), or a de-differentiation (that is, the return to its previous
epigenetic spectrum). In particular, the cell epigenetic spectrum can return
to that of its mother in the case of cell division and may then de-differentiate
further perhaps to its grandmother and beyond, or it may perhaps again divide.
This cycle of devolution to ancestor and division accurately reflects the kind
of de-differentiation and cell proliferation that typically precedes regeneration
in experiments. It is the final postulate that signal strength varies inversely to
potency that finally drives regeneration via the harmony discussed above.

We have articulated and discussed in this short paper seven explicit laws of
morphogenesis which when taken together explain a plethora of phenomena in
many hundreds of experiments in the literature.
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