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Discontinuous Galerkin gradient discretisations for
the approximation of second-order differential
operators in divergence form

Robert Eymard∗and Cindy Guichard†

Abstract

We include in the Gradient Discretisation Method (GDM) framework two numerical schemes based on
Discontinuous Galerkin approximations: the Symmetric Interior Penalty Galerkin (SIPG) method, and
the scheme obtained by averaging the jumps in the SIPG method. We prove that these schemes meet the
main mathematical gradient discretisation properties on any kind of polytopal mesh, by adapting discrete
functional analysis properties to our precise geometrical hypotheses. Therefore, these schemes inherit the
general convergence properties of the GDM, which hold for instance in the cases of the p−Laplace problem
and of the anisotropic and heterogeneous diffusion problem. This is illustrated by simple 1D and 2D
numerical examples.
Keywords: Gradient Discretisation method, Discontinuous Galerkin method, Symmetric Interior Penalty
Galerkin scheme, discrete functional analysis, polytopal meshes

1 Introduction

Discontinuous Galerkin (DG) methods have received a lot of attention over the last decade at least, and
are still a subject of interest. They present the advantage to be suited to elliptic and parabolic problems,
while opening the possibility to closely approximate weakly regular functions on general meshes. Although
the convergence of DG methods has been proved on a variety of problems (see [8] and references therein),
note that the stabilisation of DG schemes for elliptic or parabolic problems has to be specified with respect
to the problem, and that there are numerous possible choices [2].

On the other hand, convergence and error estimate results for a wide variety of numerical methods applied
to some elliptic, parabolic, coupled, linear and nonlinear problems are proved on the generic “gradient
scheme” issued from the Gradient Discretisation Method framework (see [9] and references therein). This
framework is shown to include conforming Galerkin methods with or without mass lumping, nonconforming
P1 finite elements, mixed finite elements and a variety of schemes issued from extensions of the finite volume
method. Convergence and error estimate results are then proved in [9] for the following problems:

1. elliptic problem with constant or unknown dependent diffusion,

2. steady or transient p-Laplace problem and more generally Leray-Lions problem,

3. parabolic problem with constant or unknown dependent diffusion,

4. degenerate parabolic (Richards or Stefan-type) problems,

provided that the Gradient Discretisation is coercive, GD-consistent, limit-conforming, compact and in
some cases with piecewise constant reconstruction (the precise mathematical meaning of these core prop-
erties is recalled in Section 2 of this paper).
The aim of this paper is to build Gradient Discretisations from the DG setting. Considering two ways of
accounting for the jump terms (pointwise or by mean value), we define on one hand the Discontinuous
Galerkin Gradient Discretisation (DGGD) and on the other hand the Average Discontinuous Galerkin
Gradient Discretisation (ADGGD). In both cases, we show that all the core properties of GDM are satisfied
on general polytopal meshes in any space dimension. This immediately extends the range of problems which
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2 Main definitions of Gradient Discretisations for homogeneous Dirichlet boundary conditions 2

can be handled by Discontinuous Galerkin methods to all the above problems, as we show in this paper by
considering the case of the p−Laplace problem. Indeed, we can immediately apply a convergence and error
estimate result derived from the Gradient Discretisation Method framework. This approach is different
from that of [4] where a specific stabilisation term is introduced in the variational formulation, whereas
the present work has significant common points with the stable DG method without penalty parameter
proposed in [15] (where a scheme, which can enter into the GDM, is proposed, the main difference with
the present paper being the lifting of the jumps for computing the discrete gradient).

It is then interesting to remark that the gradient scheme resulting from the DGGD is identical to the
Symmetric Interior Penalty Galerkin scheme in the case of linear diffusion problems, as we detail in section
6. Note that the gradient scheme resulting from the ADGGD is not identical, in the case of the elasticity
problem, to the scheme introduced in [13], in which the volumetric part is handled with average jumps but
the deviatoric part is handled with pointwise jumps.

This paper is organised as follows. Section 2 includes the main definitions for the Gradient Discretisation
Method in the case of homogeneous Dirichlet boundary conditions. In Section 3, we study a gradient
discretisation version of Discontinuous Galerkin schemes suited to polytopal meshes in any space dimension
using pointwise jumps, and we prove that this gradient discretisation satisfies the core properties which are
sufficient for convergence and error estimates results. We turn in Section 4 to the case of average jumps,
that is studied owing to a result of equivalence of norms between the DG norm build with pointwise jumps
and that build with average jumps. We then take an example of application of the preceding results in
Section 5, where the gradient schemes issued from the DGGD and ADGGD methods are shown to satisfy
a convergence and error estimate in the case of the p−Laplace problem. We then handle in Section 6
the case of linear elliptic problems, and we show that the scheme issued from the DGGD is identical
to the Symmetric Interior Penalty Galerkin method. A numerical example shows the role the numerical
parameter used in the design of the scheme plays in its accuracy. A short conclusion is then proposed,
before the adaptation of the Sobolev inequalities proved in [7, 8] to our setting and definition of the DG
norm in Appendix A. Note that the assumption that the mesh cells are star-shaped with respect to some
point (not made in [7, 8]) enables to prove that the constant involved in these inequalities do not depend
on the regularity factor of the mesh.

2 Main definitions of Gradient Discretisations for homogeneous Dirichlet
boundary conditions

In this paper, we make the following assumptions: p ∈ (1,+∞) is given and

Ω is an open bounded polytopal connected subset of Rd (d ∈ N?), (1)

where polytopal means that it is the union of a finite number of simplices.
The following definitions, first introduced in [12], are given in [9] for a larger variety of boundary conditions.

Definition 2.1 (GD, homogeneous Dirichlet BCs):
A gradient discretisation D for homogeneous Dirichlet conditions is defined by D = (XD,0,ΠD,∇D), where:

1. the set of discrete unknowns XD,0 is a finite dimensional real vector space,

2. the function reconstruction ΠD : XD,0 → Lp(Ω) is a linear mapping that reconstructs, from an
element of XD,0, a function over Ω,

3. the gradient reconstruction ∇D : XD,0 → Lp(Ω)d is a linear mapping which reconstructs, from an
element of XD,0, a “gradient” (vector-valued function) over Ω. This gradient reconstruction must
be chosen such that ‖∇D · ‖Lp(Ω)d is a norm on XD,0.

Definition 2.2 (Coercivity): If D is a gradient discretisation in the sense of Definition 2.1, define CD as the
norm of the linear mapping ΠD:

CD = max
v∈XD,0\{0}

‖ΠDv‖Lp(Ω)

‖∇Dv‖Lp(Ω)d
. (2)

A sequence (Dm)m∈N of gradient discretisations in the sense of Definition 2.1 is coercive if there exists
CP ∈ R+ such that CDm ≤ CP for all m ∈ N.
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The consistency properties indicate how accurately a regular function and its gradient are approximated
by some discrete function and gradient which are reconstructed from the space XD,0.

Definition 2.3 (GD-consistency): If D is a gradient discretisation in the sense of Definition 2.1, define SD :
W 1,p

0 (Ω)→ [0,+∞) by

∀ϕ ∈W 1,p
0 (Ω), SD(ϕ) = min

v∈XD,0

(
‖ΠDv − ϕ‖Lp(Ω) + ‖∇Dv −∇ϕ‖Lp(Ω)d

)
. (3)

A sequence (Dm)m∈N of gradient discretisations in the sense of Definition 2.1 is GD-consistent, or consistent
for short, if

∀ϕ ∈W 1,p
0 (Ω), lim

m→∞
SDm(ϕ) = 0. (4)

The concept of limit-conformity which we now introduce states that the discrete gradient and divergence
operator satisfy this property asymptotically. Since we shall be dealing with non linear problems, we
introduce, or any q ∈ (1,+∞), the space W q

div(Ω) of functions in (Lq(Ω))d with divergence in Lq(Ω):

W q
div(Ω) = {ϕ ∈ Lq(Ω)d : divϕ ∈ Lq(Ω)}. (5)

Definition 2.4 (Limit-conformity): If D is a gradient discretisation in the sense of Definition 2.1, let p′ = p
p−1

and define WD: W p′

div(Ω)→ [0,+∞) by

∀ϕ ∈W p′

div(Ω), WD(ϕ) = sup
v∈XD,0\{0}

∣∣∣∣∫
Ω

(∇Dv(x) ·ϕ(x) + ΠDv(x)divϕ(x)) dx

∣∣∣∣
‖∇Dv‖Lp(Ω)d

.
(6)

A sequence (Dm)m∈N of gradient discretisations is limit-conforming if

∀ϕ ∈W p′

div(Ω), lim
m→∞

WDm(ϕ) = 0. (7)

Dealing with generic non-linearity often requires additional compactness properties on the scheme.

Definition 2.5 (Compactness): A sequence (Dm)m∈N of gradient discretisations in the sense of Definition
2.1 is compact if, for any sequence um ∈ XDm,0 such that (‖∇Dmum‖Lp(Ω)d)m∈N is bounded, the sequence
(ΠDmum)m∈N is relatively compact in Lp(Ω).

Definition 2.6 (Piecewise constant reconstruction): Let D = (XD,0,ΠD,∇D) be a gradient discretisation in
the sense of Definition 2.1. The operator ΠD : XD,0 → Lp(Ω) is a piecewise constant reconstruction if
there exists a basis (ei)i∈B of XD,0 and a family of disjoint subsets (Ωi)i∈B of Ω such that ΠDei = 1Ωi for
all i ∈ B, where 1Ωi is the characteristic function of Ωi.

It is shown in [9] that all the considered examples of Gradient Discretisations (as listed in the introduction
of this paper) meet four of the core properties (coercivity, GD-consistency, limit-conformity, compactness),
and that mass-lumped versions satisfy the piece-wise constant reconstruction property. They therefore
satisfy convergence and error estimates for the range of problems passed into review in the introduction
of this paper. The next sections aim to build a Gradient Discretisation with the discontinuous Galerkin
setting, and then to prove that it satisfies the core properties as well.

3 Discontinuous Galerkin Gradient Discretisation (DGGD)

3.1 Meshes and discrete operators

Let us provide a definition for a polytopal mesh of Ω, which is a slightly simplified version of that given
in [9].

Definition 3.1 (Polytopal mesh): A polytopal mesh of Ω is given by T = (M,F ,P), where:
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1. M is a finite family of non empty connected polytopal open disjoint subsets of Ω (the “cells”) such
that Ω = ∪K∈MK. For any K ∈M, let ∂K = K \K be the boundary of K, |K| > 0 is the measure
of K and hK denotes the diameter of K, that is the maximum distance between two points of K.

2. F = Fint ∪ Fext is a finite family of disjoint subsets of Ω (the “faces” of the mesh – “edges” in 2D),
such that, for all σ ∈ Fint, σ is a non empty open subset of a hyperplane of Rd included in Ω and,
for all σ ∈ Fext, σ is a non empty open subset of ∂Ω; furthermore, the (d− 1)-dimensional measure
|σ| of any σ ∈ F is strictly positive. We assume that, for all K ∈M, there exists a subset FK of F
such that ∂K = ∪σ∈FKσ. We then denote by Mσ = {K ∈ M, σ ∈ FK}. We then assume that, for
all σ ∈ F , either Mσ has exactly one element and then σ ∈ Fext or Mσ has exactly two elements
and then σ ∈ Fint. For all K ∈ M and for any σ ∈ FK , we denote by nK,σ the (constant) unit
vector normal to σ outward to K.

3. P is a family of points of Ω indexed by M, denoted by P = (xK)K∈M, such that for all K ∈ M,
xK ∈ K. We then denote by dK,σ the signed orthogonal distance between xK and σ ∈ FK (see
Figure 1), that is:

dK,σ = (x− xK) · nK,σ, for all x ∈ σ. (8)

We then assume that each cell K ∈ M is strictly star-shaped with respect to xK , that is dK,σ > 0
for all σ ∈ FK . This implies that for all x ∈ K, the line segment [xK ,x] is included in K.

For all K ∈M and σ ∈ FK , we denote by DK,σ the cone with vertex xK and basis σ, that is

DK,σ = {xK + s(y − xK), s ∈ (0, 1), y ∈ σ}. (9)

The size of the polytopal mesh is defined by:

hM = sup{hK ,K ∈M}. (10)

Finally, for a given polytopal mesh T we define a number that measures the regularity properties of the
mesh:

ηT = max

(
{hK
hL

+
hL
hK

, σ ∈ Fint , Mσ = {K,L}} ∪ { hK
dK,σ

,K ∈M, σ ∈ FK} ∪ {#FK ,K ∈M}
)
, (11)

where we denote by #FK the cardinal of the set FK .

dK,σ′

dK,σ′′

nK,σ′

K

nK,σ′′

σ′

σ′′

σ

xK

K(β)

xK

DK,σ

σ
y

x = xK + s(y − xK)

D
(β)
K,σ

Fig. 1: A cell K of a polytopal mesh and notation on DK,σ

Let us now define, using the discontinuous Galerkin framework, a gradient discretisation in the sense of
Definition 2.1.
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Definition 3.2: [Discontinuous Galerkin Gradient Discretisation
(DGGD)] Let T = (M,F ,P) be a polytopal mesh of Ω in the sense of Definition 3.1. Define the
Discontinuous Galerkin Gradient Discretisation D = (XD,0,ΠD,∇D) by the following.

1. For a given value k ∈ N?, we consider the space Wh, defined by

Wh = {u ∈ Lp(Ω) : u|K ∈ Pk(K) , ∀K ∈M}. (12)

Recall that the dimension of Pk(Rd) is (k+d)!
k!d!

, and therefore the dimension of Wh is equal to
(k+d)!
k!d!

#M. Let (χi)i∈I be a family of piecewise polynomial basis functions of degree k on each
cell, spanning Wh. We set

XD,0 = {v = (vi)i∈I : vi ∈ R for all i ∈ I}. (13)

2. The operator ΠD is the reconstruction in Lp(Ω) of the elements of XD,0:

∀v ∈ XD,0 , ΠDv =
∑
i∈I

viχi. (14)

In this paper, we denote, for all K ∈ M and v ∈ XD,0, by ΠKv ∈ Pk(K) the piecewise polynomial
defined by ΠDv on K, extended on K, and we denote by ∇Kv = ∇ΠKv.

3. For v ∈ XD,0, for K ∈M and for any σ ∈ FK , we set, for a.e. x ∈ DK,σ,

∇Dv(x) = ∇Kv(x) + ψ(S(x))
[v]K,σ(Y (x))

dK,σ
nK,σ, (15)

where (see Figure 1):

• we denote by S,Y the functions S : DK,σ → (0, 1] and Y : DK,σ → σ such that x =
xK + S(x)(Y (x)− xK), which means

S(x) =
(x− xK) · nK,σ

dK,σ
and Y (x) = xK +

x− xK
S(x)

,

• for all K ∈M and all σ ∈ FK , we denote by

∀y ∈ σ, if Mσ = {K,L}, [v]K,σ(y) =
1

2
(ΠLv(y)−ΠKv(y))

else if Mσ = {K}, [v]K,σ(y) = 0−ΠKv(y),
(16)

• Let β ∈ (0, 1) be given. Let ψ : (0, 1) → R be the function such that ψ(s) = 0 on (0, β),
ψ|[β,1] ∈ Pk−1([β, 1]) and∫ 1

β

ψ(s)sd−1ds = 1, (17)

∀i = 1, . . . , k − 1,

∫ 1

β

(1− s)iψ(s)sd−1ds = 0. (18)

Remark 3.3: Assumption (17) is mandatory in the proof of the limit-conformity of the scheme (see (34) in
Lemma 3.15), whereas (18) is used in the same equation for the high-order accuracy. The cut-off parameter
β ∈ (0, 1) is necessary for getting the equivalence (20) between the norm of the discrete gradient and the
Discontinuous Galerkin norm (defined by (21)). Note that β = 0 is considered in the numerical examples,
but the present convergence analysis is no longer available in this case. Lower and upper bounds of ‖ψ‖∞
are provided by (57) in Lemma A.1.
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In the case k = 1, the function ψ|[β,1] ∈ P0([β, 1]) has the constant value d
1−βd .

For the general case k ∈ N?, considering the basis (1, (1 − s), . . . , (1 − s)k−1) of Pk−1([β, 1]), and writing
the function ψ as ψ(s) =

∑k
i=1 αi(1 − s)

i−1, we see that the matrix A of the linear system issued from
(17)-(18) (it is a Gram matrix), with unknowns (αi)i=1,...,k, is such that

Ai,j =

∫ 1

β

(1− s)i+j−2sd−1ds.

Considering a vector U such that U t = (ui)i=1,...,k, we note that

U tAU =

∫ 1

β

( k∑
i=1

ui(1− s)i−1)2sd−1ds,

which implies that A is symmetric definite positive, hence leading to the existence and uniqueness of ψ.

We split DK,σ into D
(β)
K,σ and DK,σ \D(β)

K,σ with

D
(β)
K,σ := {x ∈ DK,σ,x = xK + s(y − xK), s ∈ (0, β], y ∈ σ}

and K(β) =
⋃

σ∈FK

D
(β)
K,σ,

(19)

(note that we have |DK,σ \D(β)
K,σ| =

1−βd
d

dK,σ|σ|).

Remark 3.4: The above definition for the discrete gradient ∇Dv can be seen as a regularisation of the
gradient of v in the distribution sense, by replacing the Dirac mass on the faces of the mesh by a function
with integral equal to 1.

Remark 3.5: It is possible to consider βK,σ instead of a constant β, without changing the mathematical
analysis done in this paper.

Remark 3.6 (Piecewise constant reconstruction): One can for example replace ΠD by Π̂D such that, for all

K ∈M, and a.e. x ∈ K, Π̂Dv(x) = 1
|K|

∫
K

ΠKv(x)dx, which provides a piecewise constant reconstruction

in the sense of Definition 2.6, choosing a basis (χi)i∈I such that, for each K ∈ M, there exists i ∈ I with
vi = 1

|K|

∫
K

ΠKv(x)dx for all v ∈ XD,0.

Remark 3.7 (Definition of the jump at the faces of the mesh): Note that, in Definition 3.2, the jump at the
faces is divided by 2 at the interior faces. This allows to keep the same definition for ∇D on all DK,σ in
the two cases, σ ∈ Fint and σ ∈ Fext.

3.2 Mathematical properties of the DGGD method

Let us first state and prove the following lemma, which provides a connection between the discrete gradient
defined by (15) to a norm suited for the study of discontinuous Galerkin methods in the framework of elliptic
problems.

Lemma 3.8: Let D be a DGGD in the sense of Definition 3.2. Then there exists A > 0, depending only on
p, k and d, such that

∀v ∈ XD,0,
β
d
p

+(k−1)

A
‖v‖DG,p ≤ ‖∇Dv‖Lp(Ω)d ≤

A

1− β ‖v‖DG,p, (20)

where

‖v‖pDG,p =
∑
K∈M

(∫
K

|∇Kv(x)|pdx +
∑
σ∈FK

1

dp−1
K,σ

∫
σ

|[v]K,σ(y)|pdγ(y)
)
. (21)
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Remark 3.9 (DG norm): Note that Definition (21) for the DG norm is slightly different from [7, eqn. (5)]
or [8, eqn. (5.1)], with the use of dK,σ instead that of diam(σ), and with notation (16) for the jump at the
faces of the mesh, owing to the fact that we make the assumption that the grid cells are star-shaped with
respect to a point (this assumption is not made in [7, 8]). This allows the application of discrete functional
analysis results without regularity hypotheses on the polytopal mesh.

Proof. Let K ∈ M and σ ∈ FK . Using x = xK + s(y − xK), and using, for some c > 0 to be chosen

later, |a + b|p ≤ (1 + cp
′
)p−1(|a|p + | b

c
|p) with 1

p
+ 1

p′ = 1, a = ∇Kv(x) +
[v]K,σ(Y (x))

dK,σ
ψ(S(x))nK,σ and

b = −∇Kv(x), we have∫
K

|∇Dv(x)|pdx =

∫
K(β)

|∇Kv(x)|pdx +
∑
σ∈FK

∫
DK,σ\D

(β)
K,σ

∣∣∣∇Kv(x) +
[v]K,σ(Y (x))

dK,σ
ψ(S(x))nK,σ

∣∣∣pdx
≥
∫
K(β)

|∇Kv(x)|pdx− 1

cp

∫
K\K(β)

|∇Kv(x)|pdx

+
1

(1 + cp′)p−1

∑
σ∈FK

∫
DK,σ\D

(β)
K,σ

∣∣∣ [v]K,σ(Y (x))

dK,σ
ψ(S(x))nK,σ

∣∣∣pdx.
Writing

1

d

d∑
i=1

|∂iΠKv|
p ≤ |∇Kv|

p ≤ dp/2
d∑
i=1

|∂iΠKv|
p (22)

and applying Lemma A.3 to the polynomial ∂iΠKv ∈ Pk−1(Rd) for i = 1, . . . , d, we can write∫
K(β)

|∇Kv(x)|pdx ≥ βd+p(k−1)Cp,k−1

dkp−1

d∑
i=1

∫
K

|∂iΠKv(x)|pdx ≥ 2βd+p(k−1)C′p,k

∫
K

|∇Kv(x)|pdx,

denoting by C′p,k =
Cp,k−1

2d1+p/2kp−1 . We then define c by 1
cp

= βd+p(k−1)C′p,k. Remarking that

1

(1 + cp′)p−1
=

βd+p(k−1)C′p,k
((βd+p(k−1)C′p,k)p′/p + 1)p−1

≥ βd+p(k−1) C′p,k
((C′p,k)p′/p + 1)p−1

,

and using |nK,σ| = 1, we get∫
K

|∇Dv(x)|pdx ≥ βd+p(k−1)

(
C′p,k

∫
K

|∇Kv(x)|pdx

+
C′p,k

((C′p,k)p′/p + 1)p−1

∑
σ∈FK

∫
DK,σ\D

(β)
K,σ

∣∣∣ [v]K,σ(Y (x))

dK,σ
ψ(S(x))

∣∣∣pdx).
We then apply the change of variable x ∈ DK,σ 7→ (y = Y (x), s = S(x)) ∈ σ × (0, 1). We then have
x = xK + s(y − xK) and therefore dx = dK,σs

d−1dγ(y)ds, leading to∫
DK,σ\D

(β)
K,σ

∣∣∣ [v]K,σ(Y (x))

dK,σ
ψ(S(x))

∣∣∣pdx = dK,σ

∫
σ

|[v]K,σ(y)|p

dpK,σ
dγ(y)

∫ 1

β

|ψ(s)|psd−1ds

=
1

dp−1
K,σ

∫
σ

|[v]K,σ(y)|pdγ(y)

∫ 1

β

|ψ(s)|psd−1ds.

Using (17) and Hölder’s inequality, we have

1 =

∫ 1

β

ψ(s)sd−1ds ≤
(∫ 1

β

|ψ(s)|psd−1ds

) 1
p
(∫ 1

β

sd−1ds

) 1
p′

=

(∫ 1

β

|ψ(s)|psd−1ds

) 1
p
(

1− βd

d

) 1
p′

,
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leading to ∫ 1

β

|ψ(s)|psd−1ds ≥
(

d

1− βd

)p−1

≥ dp−1.

This completes the proof of the left inequality in (20). Turning to the proof of the right inequality of (20),
we have∫

DK,σ

|∇Dv(x)|pdx ≤2p−1

∫
DK,σ

|∇Kv(x)|pdx + 2p−1

∫
DK,σ\D

(β)
K,σ

∣∣∣ [v]K,σ(Y (x))

dK,σ
ψ(S(x))

∣∣∣pdx
=2p−1

∫
DK,σ

|∇Kv(x)|pdx +

(
2

dK,σ

)p−1 ∫
σ

|[v]K,σ(y)|pdγ(y)

∫ 1

β

|ψ(s)|psd−1ds,

which completes the proof of the right inequality in (20), since, using (57),∫ 1

β

|ψ(s)|psd−1ds ≤ (1− βd)Cp

d(1− β)p
≤ Cp

d(1− β)p
.

We can now state and prove that ‖∇D · ‖Lp(Ω)d is a norm on XD,0.

Lemma 3.10: Let D be a DGGD in the sense of Definition 3.2. Then ‖∇D · ‖Lp(Ω)d is a norm on XD,0.

Proof. It suffices to check that, if v ∈ XD,0 is such that ‖∇Dv‖Lp(Ω)d = 0, then v = 0. Indeed, owing
to Lemma 3.8, we get that ‖v‖DG,p = 0. We can apply Lemma A.7, since in the case d = 1 or d = 2, it
applies without restriction to q = p, and in the case d ≥ 3, there holds p < p? = pd/(d − p). Hence we
deduce that ‖ΠDv‖Lp(Ω) = 0, which concludes the proof.

We now prove the core properties of the DGGD, as described in Section 2, gathered in the following
theorem.

Theorem 3.11 (Properties of DGGDs): Let (Dm)m∈N be a sequence of DGGDs in the sense of Definition 3.2,
defined from underlying polytopal meshes (Tm)m∈N. Assume that (ηTm)m∈N is bounded (see (11)), and
that hMm → 0 as m→∞.
Then the sequence (Dm)m∈N is coercive, GD-consistent, limit-conforming and compact in the sense of
Definitions 2.2, 2.3, 2.4 and 2.5.

Proof. The limit-conformity, coercivity, GD-consistency and compactness are obtained by applying
Lemmas 3.15, 3.12, 3.14, 3.13.

Let us now prove each of the lemmas involved in the proof of the above theorem.

Lemma 3.12 (Coercivity): Let D be a DGGD in the sense of Definition 3.2. Let CD ≥ 0 be defined by (2).
Then there exists CP depending only on |Ω|, β, p, k and d such that CP ≥ CD, which means that any
sequence (D)m∈N is coercive in the sense of Definition 2.2.

Proof. We again apply Lemma A.7, since we noticed in the proof of Lemma 3.10 that it applies to the
case q = p.

Lemma 3.13 (Compactness): Let (D)m∈N be a sequence of DGGDs in the sense of Definition 3.2. Then,
for all (vm)m∈N such that, for all m ∈ N, vm ∈ XDm,0 and such that the sequence (‖∇Dmvm‖Lp(Ω))m∈N
is bounded, the sequence (ΠDmvm)m∈N is relatively compact in Lp(Ω), which means that any sequence
(Dm)m∈N is compact in the sense of Definition 2.5.

Proof. We first extend ΠDmvm by 0 in Rd \ Ω. We then have, for all m ∈ N, applying Lemma A.6,

∀ξ ∈ Rd, ‖ΠDmvm(.+ ξ)−ΠDmvm‖L1(Rd) ≤ (

d∑
i=1

|ξi|)‖ΠDmvm‖BV

≤ (

d∑
i=1

|ξi|)Cd((d+ 1)|Ω|)
p−1
p ‖ΠDmvm‖DG,p.
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This implies that the sequence (ΠDmvm)m∈N is relatively compact in L1(Rd). Thanks to Lemma A.7,
the sequence (ΠDmvm)m∈N is bounded in Lq(Rd) for some q > p. We thus deduce that the sequence
(ΠDmvm)m∈N is relatively compact in Lp(Rd), which concludes the proof of the lemma.

Lemma 3.14 (Estimate on SD for DGGD): Let D be a DGGD in the sense of Definition 3.2, with underlying
polytopal mesh T. Take % ≥ ηT (see (11)) and let ` ∈ {1, . . . , k}. Then there exists C1 > 0, depending
only on on Ω, β, p, k, `, d and %, such that

∀ϕ ∈W `+1,p(Ω) ∩W 1,p
0 (Ω) , SD(ϕ) ≤ C1h

`
M ‖ϕ‖W `+1,p(Ω) , (23)

where SD is defined by (3).
As a consequence, any sequence (D)m∈N of DGGDs such that hTm tends to 0 as m→∞ while ηTm remains
bounded is GD-consistent in the sense of Definition 2.3.

Proof. In this proof, C is a generic notation for various positive numbers depending only on Ω, β, p,
k, `, d and %. Let ϕ ∈ W `+1,p(Ω) ∩ W 1,p

0 (Ω) and, for K ∈ M, denote by πkK : L1(K) → Pk(K) the
L2(K)-projection on polynomials over K of degree at most k. By [6, Lemmata 3.4 and 3.6],∥∥∥ϕ− πkKϕ∥∥∥

Lp(K)
≤ Ch`+1

K ‖ϕ‖W `+1,p(K) , (24)∥∥∥∇ϕ−∇(πkKϕ)
∥∥∥
Lp(K)d

≤ Ch`K ‖ϕ‖W `+1,p(K) , (25)

∀σ ∈ FK ,
∥∥∥ϕ− πkKϕ∥∥∥

Lp(σ)
≤ Ch

`+1− 1
p

K ‖ϕ‖W `+1,p(K) . (26)

The functions (πkKϕ)K∈M define an element of Wh. Since ΠD : XD,0 → Wh is an isomorphism (see its
definition (14)), there exists v ∈ XD,0 such that (ΠDv)|K = ΠKv = πkKϕ for all K ∈ M. Then, raising
(24) to the power p and summing over K ∈M yields

‖ϕ−ΠDv‖Lp(Ω) ≤ Ch
`+1
M ‖ϕ‖W `+1,p(Ω) . (27)

Let us now analyse the jump terms in ∇Dv. Let σ ∈ Fint with Mσ = {K,L}, and y ∈ σ. Writing

[v]K,σ(y) =
1

2
(ΠLv(y)− ϕ(y) + ϕ(y)−ΠKv(y)) =

1

2
(πkLϕ(y)− ϕ(y)) +

1

2
(ϕ(y)− πkKϕ(y)),

and using (26) in cells K and L yields

‖[v]K,σ‖Lp(σ) ≤ Ch
`+1− 1

p

L ‖ϕ‖W `+1,p(L) + Ch
`+1− 1

p

K ‖ϕ‖W `+1,p(K)

≤ Ch`M
(
h

1− 1
p

L ‖ϕ‖W `+1,p(L) + h
1− 1

p

K ‖ϕ‖W `+1,p(K)

)
.

By definition of %, dK,σ ≥ %−1hK and dK,σ ≥ %−1dL,σ ≥ %−2hL, so d
1
p
−1

K,σ ≤ Ch
1
p
−1

K and d
1
p
−1

K,σ ≤ Ch
1
p
−1

L .
Hence,

d
1
p
−1

K,σ ‖[v]K,σ‖Lp(σ) ≤ Ch
`
M

(
‖ϕ‖W `+1,p(L) + ‖ϕ‖W `+1,p(K)

)
.

Using change of variable x 7→ (y = Y (x), s = S(x)), we infer∫
DK,σ

|∇Dv(x)−∇Kv(x)|pdx =

∫
DK,σ

∣∣∣∣ψ(S(x))
[v]K,σ(Y (x))

dK,σ

∣∣∣∣p dx

=

∫ 1

β

|ψ(s)|psd−1ds

∫
σ

d1−p
K,σ |[v]K,σ(y)|pdγ(y) ≤ Chp`M

(
‖ϕ‖p

W `+1,p(L)
+ ‖ϕ‖p

W `+1,p(K)

)
. (28)

Since ϕ = 0 on ∂Ω, performing the same steps as above shows that (28) also holds if σ ∈ FK ∩ Fext,
by removing the term involving L. By summing (28) over σ ∈ FK and K ∈ M, using the definition
∇Kv = ∇(ΠKv) = ∇(πkKϕ), (25) and the triangle inequality, we infer

‖∇Dv −∇ϕ‖Lp(Ω)d ≤ Ch
`
M ‖ϕ‖W `+1,p(Ω) .
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Combined with (27), this completes the proof of (23).

We then show that any sequence (D)m∈N of DGGDs such that hTm tends to 0 as m→∞ while ηTm remain
bounded is GD-consistent in the sense of Definition 2.3, by applying [12, Lemma 2.4] since W `+1,p(Ω) ∩
W 1,p

0 (Ω) is dense in W 1,p
0 (Ω).

Lemma 3.15 (Estimate on WD(ϕ) for DGGD): Let D be a DGGD in the sense of Definition 3.2, with un-
derlying polytopal mesh T. Take % ≥ ηT (see (11)) and let ` ∈ {1, . . . , k}. Then there exists C2, depending
only on Ω, β, p, k, `, d and %, such that

∀ϕ ∈W `,p′(Ω)d , WD(ϕ) ≤ C2h
`
M ‖ϕ‖W `,p′ (Ω)d , (29)

where WD is defined by (6).
As a consequence, any sequence (D)m∈N of DGGDs in the sense of Definition 3.2 such that hTm tends to
0 as m→∞ is limit-conforming in the sense of Definition 2.4.

Proof. In this proof, C denotes various constants having the same dependencies as C2 in the lemma.
Let ϕ ∈W `,p′(Ω)d. Using the definition of ∇Dv and ΠDv yields∫

Ω

(∇Dv(x) ·ϕ(x) + ΠDv(x)divϕ(x)) dx = T1 + T2, (30)

with T1 =
∑
K∈M

∫
K

(∇(ΠKv)(x) ·ϕ(x) + ΠKv(x)divϕ(x)) dx,

and T2 =
∑
K∈M

∑
σ∈FK

∫
DK,σ

ψ(S(x))
[v]K,σ(Y (x))

dK,σ
nK,σ ·ϕ(x)dx.

Stokes formula in each cell K yields

T1 =
∑
K∈M

∑
σ∈FK

∫
σ

ΠKv(y)ϕ(y) · nK,σdγ(y). (31)

Let πk−1
K : Lp(K)d → Pk−1(K)d be the component-wise L2(K)-projection over polynomial vectors on K

of degree at most k − 1, and write

T2 = T2,1 + T2,2, (32)

with T2,1 =
∑
K∈M

∑
σ∈FK

∫
DK,σ

ψ(S(x))
[v]K,σ(Y (x))

dK,σ
nK,σ · (ϕ(x)− πk−1

K ϕ(x))dx,

and T2,2 =
∑
K∈M

∑
σ∈FK

∫
DK,σ

ψ(S(x))
[v]K,σ(Y (x))

dK,σ
nK,σ · πk−1

K ϕ(x)dx.

Similarly to (24) we have
∥∥ϕ− πk−1

K ϕ
∥∥
Lp
′
(K)d

≤ Ch`K ‖ϕ‖W `,p′ (K)d . Hence, owing to Hölder’s inequalities

and the change of variable x 7→ (y = Y (x), s = S(x)) and Lemma 3.8 , we get

|T2,1| ≤ Ch`M ‖ϕ‖W `,p′ (Ω)d

 ∑
K∈M

∑
σ∈FK

∫
DK,σ

|ψ(s)|psd−1ds

∫
σ

d1−p
K,σ |[v]K,σ(y)|pdγ(y)

1/p

≤ Ch`M ‖ϕ‖W `,p′ (Ω)d ‖v‖DG,p ≤ CAβ
−( d

p
+(k−1))

h`M ‖ϕ‖W `,p′ (Ω)d ‖∇Dv‖Lp(Ω)d . (33)

We now turn to T2,2. Since πk−1
K ϕ is a polynomial of degree k − 1 or less, using the change of variable

x 7→ (y = Y (x), s = S(x)) and a Taylor expansion in s about s = 1, we have

πk−1
K ϕ(x) · nK,σ = πk−1

K ϕ(y) · nK,σ +

k−1∑
m=1

pm(y)(1− s)m
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where pm is a polynomial in y. Hence, reporting this expression into that of T2,2, the second term of the
right hand side vanishes owing to (18), and the first term is equal, owing to (17), to

T2,2 =
∑
K∈M

∑
σ∈FK

∫
σ

[v]K,σ(y)πk−1
K ϕ(y) · nK,σdy. (34)

Therefore, with (31),

T1 + T2,2 =
∑
K∈M

∑
σ∈FK

∫
σ

(
ΠKv(y)ϕ(y) + [v]K,σ(y)πk−1

K ϕ(y)
)
· nK,σdγ(y) = T3 + T4,

with

T3 =
∑
K∈M

∑
σ∈FK

∫
σ

(ΠKv(y) + [v]K,σ(y))ϕ(y) · nK,σdγ(y),

T4 =
∑
K∈M

∑
σ∈FK

∫
σ

[v]K,σ(y)(πk−1
K ϕ(y)−ϕ(y)) · nK,σdγ(y).

If σ ∈ Fint withMσ = {K,L}, ΠKv(y)+[v]K,σ(y) = 1
2
(ΠKv(y)+ΠLv(y)) and thus, since nK,σ+nL,σ = 0,∫

σ

(ΠKv(y) + [v]K,σ(y))ϕ(y) · nK,σdγ(y) +

∫
σ

(ΠLv(y) + [v]L,σ(y))ϕ(y) · nL,σdγ(y) = 0.

If σ ∈ Fext with Mσ = {K}, then ΠKv(y) + [v]K,σ(y) = 0. These arguments show that T3 = 0, and

thus that T1 + T2,2 = T4. Similarly to (26), we have ‖ϕ − πk−1
K ϕ‖Lp′ (σ)d ≤ Ch

`−1/p′

K ‖ϕ‖W `,p′ (K)d ≤
Ch`Md

−1/p′

K,σ ‖ϕ‖W `,p′ (K)d (use dK,σ ≤ hK). The Hölder’s inequalities thus give

|T4| ≤ C

 ∑
K∈M

∑
σ∈FK

∫
σ

d1−p
K,σ |[v]K,σ(y)|pdγ(y)

1/p

h`M ‖ϕ‖W `,p′ (Ω)d

≤ C ‖v‖DG,p h
`
M ‖ϕ‖W `,p′ (Ω)d

≤ CAβ−( d
p

+(k−1))
h`M ‖∇Dv‖Lp(Ω)d ‖ϕ‖W `,p′ (Ω)d .

Combined with (33) and plugged alongside (32) into (30), this concludes the proof of (29).

Then, considering a sequence (D)m∈N of DGGDs in the sense of Definition 3.2 such that hTm tends to 0
as m → ∞, we get that it is limit-conforming in the sense of Definition 2.4 by density and applying [12,
Lemma 2.4] (this is possible owing to Lemma 3.12 which states that (D)m∈N is coercive).

Remark 3.16: Note that the application of Lemmas 3.14 and 3.15 to the error estimate [12, Lemma 2.2,
eqns. (6) and (7)] provides an error in hM in the case of the linear elliptic problem (52) under Hypotheses
(53) in one, two or three space dimensions, when the exact solution belongs to H2(Ω).

4 Average discontinuous Galerkin gradient discretisation (ADGGD)

This section presents a second gradient discretisation associated with discontinuous Galerkin methods.
In this GD, called the Average Discontinuous Galerkin Gradient Discretisation (ADGGD), the discrete
gradients are defined from average jumps instead of pointwise jumps. This idea can be found in [13] in the
case of the elasticity operator (see Introduction), and in [3] with a non-symmetric scheme.
Let XD,0, ΠD, ψ and S be defined as in Definition 3.2 in Section 3. We substitute to (15)-(16) the following
definition: for v ∈ XD,0, K ∈M, σ ∈ FK and a.e. x ∈ DK,σ, set

∇Dv(x) = ∇Kv(x) + ψ(S(x))
[v]aK,σ
dK,σ

nK,σ, (35)
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where the average jump [v]aK,σ, which replaces the pointwise jump in (15), is defined by

if σ ∈ Fint and Mσ = {K,L}, [v]aK,σ =
1

2
(vaL,σ − vaK,σ),

if σ ∈ Fext and Mσ = {K}, [v]aK,σ = 0− vaK,σ,
defining

∀K ∈M, ∀σ ∈ FK , vaK,σ =
1

|σ|

∫
σ

ΠKv(y)dγ(y).

(36)

We remark that ∇Dv, as defined by (35)-(36) is piecewise constant in the case k = 1. It is identical to
that defined by (15)-(16) in the 1D case, letting k = 1, but it leads to much simpler computations in the
2D or 3D cases (see Remark 5.2 in Section 5).
In order to prove that the GD such defined satisfies the properties listed in Section 2, we assume in the
next lemmas that all the faces of the mesh are convex, which can easily be satisfied in the case of polytopal
meshes: the faces being polytopes as well, they can be split into convex sub-faces if needed, without
increasing the cost of the method (it does not enlarge the stencil). Let us first show the following result of
comparison between pointwise and average values at the faces of the mesh.

Lemma 4.1: Let D be a DGGD in the sense of Definition 3.2, with underlying polytopal mesh T such that
all the faces σ ∈ F are convex. Let % ≥ ηT (see (11)). Then there exists C3 > 0, depending only on p, k,
% and d, such that

∀v ∈ XD,0, ∀K ∈M, ∀σ ∈ FK ,
1

dp−1
K,σ

∫
σ

|ΠKv(y)− vaK,σ|pdγ(y) ≤ C3

∫
DK,σ

|∇Kv(x)|pdx. (37)

Proof. Let us prove (37). Applying Jensen’s inequality and to Fubini’s theorem, we get∫
σ

|ΠKv(y)− vaK,σ|pdγ(y) =

∫
σ

∣∣∣∣ 1

|σ|

∫
σ

(ΠKv(y)−ΠKv(x))dγ(x)

∣∣∣∣p dγ(y)

≤
∫
σ

1

|σ|

∫
σ

|ΠKv(y)−ΠKv(x)|p dγ(x)dγ(y).

Thanks again to Jensen’s inequality, we have∫
σ

1

|σ|

∫
σ

|ΠKv(y)−ΠKv(x)|p dγ(x)dγ(y) =
1

|σ|

∫
σ

∫
σ

∣∣∣∣∫ 1

0

∇Kv(x + s(y − x)) · (y − x)ds

∣∣∣∣p dγ(x)dγ(y)

≤ diam(σ)p

|σ|

∫
σ

∫
σ

∫ 1

0

|∇Kv(x + s(y − x))|p dsdγ(x)dγ(y)

=
diam(σ)p

|σ|

(∫ 1/2

0

T1(s)ds+

∫ 1

1/2

T1(s)ds

)
,

with

T1(s) =

∫
σ

∫
σ

|∇Kv((1− s)x + sy)|p dγ(x)dγ(y).

We remark that, thanks the change of variable s
eqrefeqintintadgainLemma4.1to(1− s) and exchanging x and y, we can write∫ 1

1/2

T1(s)ds =

∫ 1/2

0

T1(s)ds.

For a given s ∈ (0, 1
2
), we make the change of variable x→ z = (1− s)x + sy ∈ σ (recall that we assume

that σ is convex), and we denote by

σy = {z ∈ σ, such that (z − sy)/(1− s) ∈ σ}.
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We then have

T1(s) =
1

(1− s)d−1

∫
σ

∫
σy

|∇Kv(z)|p dγ(z)dγ(y)

≤ 2d−1

∫
σ

∫
σ

|∇Kv(z)|p dγ(z)dγ(y) = |σ|2d−1

∫
σ

|∇Kv(z)|p dγ(z).

Gathering the above results leads to∫
σ

|ΠKv(y)− vaK,σ|pdγ(y) ≤ diam(σ)p2d
∫
σ

|∇Kv(z)|p dγ(z).

For any i = 1, . . . , d, we then apply Lemma A.4 to ∂iΠKv, which is a polynomial with degree lower or
equal to k − 1 with respect to x ∈ Rd. From (59), we then get

dK,σ ‖∂iΠKv‖
p
Lp(σ) ≤

kp−1

Cp,k−1
‖∂iΠKv‖

p
Lp(DK,σ) ≤

kp−1

Cp,k−1
‖ |∇Kv| ‖

p
Lp(DK,σ) .

Since diam(σ) ≤ hK ≤ dK,σ% by (11), the two previous inequalities and the inequality

‖ |∇Kv| ‖Lp(σ) ≤
d∑
i=1

‖∂iΠKv‖Lp(σ)

lead to (37).

Let us now show the following result of equivalence of norms, which enables the application of the Discrete
Functional Analysis developed in the appendix.

Lemma 4.2: Let D be a DGGD in the sense of Definition 3.2, with underlying polytopal mesh T such that
all the faces σ ∈ F are convex. Let % ≥ ηT (see (11)). For any v ∈ XD,0, let us define ‖v‖ADG,p by

‖v‖pADG,p =
∑
K∈M

∫
K

|∇Kv(x)|pdx +
∑
σ∈FK

|σ|
dp−1
K,σ

∣∣[v]aK,σ
∣∣p , (38)

(see (36) for the definition of [v]aK,σ). Then there exists B > 0, depending only on p, k, % and d, such that

∀v ∈ XD,0, ‖v‖ADG,p ≤ ‖v‖DG,p ≤ B‖v‖ADG,p, (39)

where ‖v‖DG,p is defined by (21).

Proof. We first remark on one hand that Jensen’s inequality implies, for any K ∈M and σ ∈ FK ,

|σ||[v]aK,σ|p ≤
∫
σ

|[v]K,σ(y)|pdγ(y),

which leads to the left inequality in (39), and on the other hand that, if σ ∈ Fint and Mσ = {K,L}, we
have∫

σ

|[v]K,σ(y)|pdγ(y)

≤ 3p−1

(∫
σ

|1
2

(ΠKv(y)− vaK,σ)|pdγ(y) + |σ||[v]aK,σ|p +

∫
σ

|1
2

(ΠLv(y)− vaL,σ)|pdγ(y)|p
)
,

and if σ ∈ Fext and Mσ = {K}, there holds∫
σ

|[v]K,σ(y)|pdγ(y) ≤ 2p−1

(∫
σ

|ΠKv(y)− vaK,σ|pdγ(y) + |σ||[v]aK,σ|p
)
,

We then deduce the right inequality in (39), using (37) in Lemma 4.1.

We can now state and prove that ‖∇D · ‖Lp(Ω)d is a norm on XD,0.
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Lemma 4.3: Let D be a ADGGD in the sense of Definition 3.2, where (15)-(16) is replaced by (35)-(36),
with underlying polytopal mesh T such that all the faces σ ∈ F are convex. Then ‖∇D · ‖Lp(Ω)d is a norm
on XD,0 equivalent to ‖ · ‖DG,p.

Proof. We first remark that, following the proof of Lemma 3.8 with replacing the pointwise jump by
the average jump, we obtain the equivalence between ‖∇D · ‖Lp(Ω)d and ‖ · ‖ADG,p. The conclusion follows
from Lemma 4.2.

We now state the core properties of the ADGGD, as described in Section 2, gathered in the following
theorem.

Theorem 4.4 (Properties of ADGGDs): Let (Dm)m∈N be a sequence of ADGGDs in the sense of Definition
3.2, where (15)-(16) is replaced by (35)-(36), defined from underlying polytopal meshes (Tm)m∈N such that
all the faces σ ∈ Fm are convex. Assume that (ηTm)m∈N is bounded (see (11)), and that hMm → 0 as
m→∞.
Then the sequence (Dm)m∈N is coercive, GD-consistent, limit-conforming and compact in the sense of
Definitions 2.2, 2.3, 2.4 and 2.5.

Proof.

• The coercivity property results from Lemma A.7 and from the equivalence of norms stated in Lemma
4.2.

• The compactness property uses in addition Lemma A.6, as in the proof of Lemmas 3.12 and 3.13.

• Lemma 3.14 holds, by replacing the pointwise jump by the average jump.

• Replacing the pointwise jump by the average jump in Lemma 3.15, the whole proof holds except
that, instead of T3 = 0, we find

T3 =
∑
K∈M

∑
σ∈FK

∫
σ

(ΠKv(y)− vaK,σ)ϕ(y) · nK,σdγ(y)

=
∑
K∈M

∑
σ∈FK

∫
σ

(ΠKv(y)− vaK,σ)(ϕ(y)− π0
Kϕ(y)) · nK,σdγ(y).

We then write, owing to Young’s inequality,

|T3| ≤

 ∑
K∈M

∑
σ∈FK

1

dp−1
K,σ

∫
σ

|ΠKv(y)− vaK,σ|pdγ(y)

 1
p
 ∑
K∈M

∑
σ∈FK

dK,σ
∥∥ϕ− π0

Kϕ
∥∥p′
Lp
′
(σ)d

 1
p′

.

Similarly again to (26), using dK,σ ≤ hK , we can write

‖ϕ− π0
Kϕ‖Lp′ (σ)d ≤ Ch

1−1/p′

K ‖ϕ‖W1,p′ (K)d ≤ ChMd
−1/p′

K,σ ‖ϕ‖W1,p′ (K)d ,

where C only depends on Ω, p, d and %. The two preceding inequalities, in addition with inequality
(37) in Lemma 4.1, allow to conclude (29) with ` = 1, which is sufficient for the limit conformity of
the method. Note that we can nevertheless let k ≥ 1 in the definition of the ADGGD, but this does
not increase the order in the conclusion of Lemma 3.15 which remains equal to ` = 1.

5 Application to the p−Laplace problem

This section shows, on the example of the p-Laplace equation, the interest of plugging DG methods in the
GDM framework.
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5.1 Convergence and error estimate

We consider the following problem.

−div(|∇u|p−2∇u) = f + div(F ) in Ω, (40a)

with boundary conditions
u = 0 on ∂Ω, (40b)

under the following assumption, in addition to p ∈ (1,+∞) and (1):

f ∈ Lp
′
(Ω) , F ∈ Lp

′
(Ω)d. (41)

Under these hypotheses, the weak solution of (40) is the unique function u satisfying:

u ∈W 1,p
0 (Ω) and, for all v ∈W 1,p

0 (Ω),∫
Ω

|∇u|p−2∇u(x) · ∇v(x)dx =

∫
Ω

f(x)v(x)dx−
∫

Ω

F (x) · ∇v(x)dx.
(42)

Definition 5.1 (Gradient scheme for the p-Laplace problem): Let D = (XD,0,ΠD,∇D) be a Gradient Dis-
cretisation in the sense of Definition 2.1. The corresponding gradient scheme for Problem (42) is defined
by

Find u ∈ XD,0 such that, for any v ∈ XD,0,∫
Ω

|∇Du(x)|p−2∇Du(x) · ∇Dv(x)dx =

∫
Ω

f(x)ΠDv(x)dx−
∫

Ω

F (x) · ∇Dv(x)dx.
(43)

Remark 5.2: Either the DGGD scheme or the ADGGD scheme can be selected for defining the discrete
operators used in (43). Note that, for any v ∈ XD,0, the discrete gradient ∇Dv defined by the DGGD
scheme (15)-(16) is piecewise polynomial, even for k = 1 in the case d > 1. In this case, the computation
of the left hand side of (43) implies the use of quadrature methods, which can be exact if p = 2 or
approximate in the general case. On the contrary, using the ADGGD scheme with k = 1, the discrete
gradient ∇Dv defined by (35)-(36) is piecewise constant, and the computations are much easier (see the
numerical examples in Section 5.3).

The following lemma, which is a consequence of the underlying minimisation problems and is proved in
[9], establishes the existence and uniqueness of the solutions to (42) and (43), as well as estimates on these
solutions.

Lemma 5.3: Under Hypotheses (41), there exists one and only one solution to each of the problems (42)
and (43). These solutions moreover satisfy

‖∇u‖Lp(Ω)d ≤ (CP,p‖f‖Lp′ (Ω) + ‖F ‖Lp′ (Ω)d)
1
p−1 (44)

and
‖∇DuD‖Lp(Ω)d ≤ (CD‖f‖Lp′ (Ω) + ‖F ‖Lp′ (Ω)d)

1
p−1 , (45)

where CP,p is the continuous Poincaré’s constant in W 1,p
0 (Ω), and CD is defined by (2).

Theorem 5.4 (Control of the approximation error): Under Hypotheses (41), let u ∈W 1,p
0 (Ω) be the solution

of Problem (42), let D be a GD in the sense of Definition 2.1, and let uD ∈ XD,0 be the solution to the
gradient scheme (43). Then there exists C4 > 0, depending only on p such that:

1. If p ∈ (1, 2],

‖∇u−∇DuD‖Lp(Ω)d ≤ SD(u) + C4

[
WD(|∇u|p−2∇u+ F ) + SD(u)p−1]

×
[
SD(u)p +

[
(CD + CP,p)‖f‖Lp′ (Ω) + ‖F ‖Lp′ (Ω)d

] p
p−1

] 2−p
2
. (46)
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2. If p ∈ (2,+∞),

‖∇u−∇DuD‖Lp(Ω)d ≤ SD(u) + C4

[
WD(|∇u|p−2∇u+ F )

+ SD(u)
[
(CP,p‖f‖Lp′ (Ω) + ‖F ‖Lp′ (Ω)d)

1
p−1 + SD(u)

]p−2
] 1
p−1

. (47)

As a consequence of (46)–(47), we have the following error estimate:

‖u−ΠDuD‖Lp(Ω) ≤ SD(u) + CD(SD(u) + ‖∇u−∇DuD‖Lp(Ω)d). (48)

The application of the previous theorem and of Lemmas proved in Section 3.2 allows to state and prove
the following corollaries.

Corollary 5.5 (Convergence of schemes issued from DGGD or ADGGD for the p−Laplace problem):
Under Hypotheses (41), let (D)m∈N be a sequence of DGGDs (or ADGGDs) such that hTm tends to 0 as
m→∞ while ηTm remains bounded (the faces of the meshes being convex in the case of ADGGDs). Let
u and uDm be the respective solution to Problems (42) and (43) for all m ∈ N. Then ΠDmuDm (resp.
∇DmuDm ) converge to u in Lp(Ω) (resp. to ∇u in Lp(Ω)p) as m→∞.

Proof. Owing to Theorem 3.11 (for DGGDs) or 4.4 (for ADGGDs), CDm remains bounded, whereas
SDm(u) and WDm(|∇u|p−2∇u + F ) tend to 0 as m → ∞. Hence (46) or (47) on one hand, and (48) on
the other hand, show the conclusion of the corollary.

Corollary 5.6 (Error estimate of the discontinuous Galerkin methods for the p−Laplace problem):
Under Hypotheses (41), let us assume that p ∈ (1, 2], Ω = (0, 1), f ∈ L∞(Ω) and F (x) = 0 for all x ∈ Ω.
Let D be a DGGD (in this case identical to ADGGD) in the sense of Definition 3.2 where the polytopal
mesh of Ω is uniform. Let u and uD be the respective solution to Problems (42) and (43). Then there
holds

‖u−ΠDuD‖Lp(Ω) + ‖∇u−∇DuD‖Lp(Ω) ≤ Chp−1
M , (49)

where C only depends on f , β, p and k.

Proof. In this particular case, the continuous solution u satisfies that there exists C ∈ R with

∀x ∈ [0, 1], |u′(x)|p−2u′(x) = C −
∫ x

0

f(s)ds,

and therefore

∀x ∈ [0, 1], u′(x) =
∣∣C − ∫ x

0

f(s)ds
∣∣ 1
p−1 sign(C −

∫ x

0

f(s)ds).

Then, since 1
p−1

> 1, we get that u ∈ W 1,p
0 (Ω) ∩W 2,∞(Ω) and |u′|p−2u′ ∈ W 1,∞(R) (extending f by 0

outside Ω). Therefore we apply Lemmas 3.12, 3.14 and 3.15, which, in addition to (46), complete the proof
of (49).

Note that this error estimate provides, in the case p = 2, the order 1 for the error estimate of the derivative
of the solution, which is confirmed by the numerical results below. But it does not provide the order 2
observed on the error estimate of the solution.

5.2 Numerical results in the one-dimensional case

We consider Problem (40a) where d = 1, Ω = (0, 1), f(x) = 1 and F (x) = 0. The analytical solution is
then given by

u(x) =
p− 1

p

[(
1

2

)p/(p−1)

−
∣∣∣∣x− 1

2

∣∣∣∣p/(p−1)
]
. (50)

We consider a mesh with constant space step h = 1/N (with N ∈ N?) and we use Scheme (43) together
with the Discontinuous Galerkin gradient discretisation given by Definition 3.2, with k = 1 and β = 1/2
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(a) p = 1.5 (b) p = 2

(c) p = 4

Fig. 2: Exact and DGGD approximate solutions for the p-Laplace equation (k = 1, β = 0.5,
N = 6).

(note that in the one-dimensional case, the two definitions (15) and (35) for the discrete gradient are
identical, so the DGGD is identical to the ADGGD).
We see in Figure 2 that the approximate solution matches quite well the analytical solution for N = 6,
considering the three cases p = 1.5, p = 2 and p = 4. The convergence orders which are given in Table 1,
are higher than that which could be expected from Corollary 5.6 in the case p ≤ 2.

p = 1.5 p = 2 p = 4
u ∇u u ∇u u ∇u

N = 10 5.51E-04 6.34E-03 9.65E-04 9.40E-03 1.48E-03 8.11E-03
order 1.85 1.55 1.96 1.50 1.62 1.33
N = 20 1.53E-04 2.17E-03 2.48E-04 3.32E-03 4.80E-04 3.23E-03
order 1.92 1.61 1.98 1.50 1.60 1.29
N = 40 4.02E-05 7.11E-04 6.29E-05 1.18E-03 1.58E-04 1.33E-03
order 1.96 1.64 1.99 1.50 1.59 1.59
N = 80 1.03E-05 2.28E-04 1.58E-05 4.15E-04 5.24E-05 5.51E-04
order 1.98 1.65 2.00 1.50 1.59 1.26

N = 160 2.62E-06 7.26E-05 3.97E-06 3.97E-06 1.74E-05 2.30E-04

Tab. 1: Errors and rates of convergences, on the functions and the gradient, for the ADGGD
scheme applied to the p-Laplace equation in dimension 1. “Order” represents the rate of
convergence from the line above to the line below.
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5.3 Numerical results in the two-dimensional case

We consider Problem (40a) with d = 2, Ω = (0, 1)× (0, 1), f(x) = 2 and F (x) = 0 for all x ∈ Ω. We define
xΩ = (1/2, 1/2) and we prescribe non-homogeneous Dirichlet boundary conditions in agreement with the
analytical solution

u(x) =
p− 1

p

[(
1√
2

)p/(p−1)

− |x− xΩ|p/(p−1)

]
. (51)

We apply Scheme (43) together with the Average Discontinuous Galerkin Gradient Discretisation given
by Definition 3.2 and definition (35) for the discrete gradient, letting k = 1 and β = 4/5. The triangular
meshes from the family mesh1 of [14] are used for the numerical tests.

(a) mesh1 1 (b) p = 1.5

(c) p = 2 (d) p = 4

Fig. 3: Mesh mesh1 1 and exact and ADGGD approximate profiles along the line x2 = x1 + 0.01
for the p-Laplace equation (k = 1, β = 0.8, using mesh1 1).

Figure 3 presents the profile of the approximate solution along the line x2 = x1 + 0.01, for the three cases
p = 1.5, p = 2 and p = 4, on the coarsest triangular mesh. We notice a rather good match of approximate
solution on this line.
Table 2 shows that the practical rates of convergence are better than the theoretical ones from Theorem
5.4; however, the rates for the gradient are degraded with respect to the similar test case in dimension
d = 1.

6 Application to the heterogeneous Dirichlet problem

6.1 Link with the SIPG scheme

Let us prove that the gradient scheme issued from the DGGD defined in Section 3 is identical to the
Symmetric Interior Penalty Galerkin (SIPG) method [1, 2, 10] for the following elliptic problem:

u ∈ H1
0 (Ω), ∀v ∈ H1

0 (Ω),

∫
Ω

Λ(x)∇u(x) · ∇v(x)dx =

∫
Ω

f(x)v(x)dx, (52)
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p = 1.5 p = 2 p = 4
u ∇u u ∇u u ∇u

mesh1 1 0.944E-03 0.314E-02 0.120E-02 0.423E-02 0.138E-02 0.432E-02
order 1.96 1.48 1.95 1.42 1.32 1.41

mesh1 2 0.243E-03 0.113E-02 0.308E-03 0.158E-02 0.555E-03 0.162E-02
order 1.97 1.48 1.98 1.38 1.57 1.16

mesh1 3 0.621E-04 0.405E-03 0.783E-04 0.608E-03 0.187E-03 0.727E-03
order 1.98 1.40 1.99 1.31 1.67 0.93

mesh1 4 0.157E-04 0.154E-03 0.197E-04 0.245E-03 0.587E-04 0.381E-03
order 1.99 1.29 1.99 1.23 1.73 0.85

mesh1 5 0.396E-05 0.630E-04 0.495E-05 0.105E-03 0.177E-04 0.211E-03

Tab. 2: Errors and rates of convergences, on the functions and the gradient, for the ADGGD
scheme applied to the p-Laplace equation in dimension 2. “Order” represents the rate of
convergence from the line above to the line below.

where the assumptions are:

• Λ is a measurable function from Ω to the set of d× d

symmetric matrices and there exists λ, λ > 0 such that,

for a.e. x ∈ Ω, Λ(x) has eigenvalues in [λ, λ], (53a)

• f ∈ L2(Ω). (53b)

Using the DGGD D = (XD,0,ΠD,∇D) in the sense of Definition 3.2, the gradient scheme for the discreti-
sation of (52) is given by:

u ∈ XD,0, ∀v ∈ XD,0,
∫

Ω

Λ(x)∇Du(x) · ∇Dv(x)dx =

∫
Ω

f(x)ΠDv(x)dx. (54)

It is proved in [12, Lemma 2.2] that the solution u to (54) satisfies

‖∇u−∇Du‖L2(Ω)d ≤
1

λ

[
WD(Λ∇u) + (λ+ λ)SD(u)

]
, (55)

‖u−ΠDu‖L2(Ω) ≤
1

λ

[
CDWD(Λ∇u) + (CDλ+ λ)SD(u)

]
, (56)

where CD, SD and WD are defined in Section 2. The error estimate (55)-(56) together with Lemma 3.12
for a bound on CD, estimates (23) on SD(u) and (29) on WD(Λ∇u) yield the high order error estimate of
the method.

Let us assume that Λ restricted to K ∈ M is constant in K (this is not needed for the DGGD scheme,
but it is necessary for defining the SIPG scheme in a heterogeneous case (see [8, Assumption 4.43]).
Then the left hand side of (54) can be developed in this particular case, using the change the variable
x 7→ (y = Y (x), s = S(x)). Indeed, we first write∫

DK,σ

Λ(x)ψ(S(x))
[u]K,σ(Y (x))

dK,σ
nK,σ · ∇Kv(x)dx

=

∫
σ

ΛK
[u]K,σ(y)

dK,σ
nK,σ ·

∫ 1

β

∇Kv(x(y, s))ψ(s)sd−1dsdγ(y)dK,σ.

Let us now remark that the function ϕ(s) = ∇Kv(xK + s(y − xK)) · nK,σ is such that

ϕ(s) = ∇Kv(y) · nK,σ +

k−1∑
m=1

pm(y)(1− s)m,
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where, for m = 1, . . . , k − 1, pm(y) is a polynomial with degree less or equal to k − 1 with respect to the
coordinates of y. Therefore, (17)-(18) imply that

∫ 1

β
∇Kv(x(y, s)) · nK,σψ(s)sd−1ds = ∇Kv(y) · nK,σ.

Hence we get ∫
DK,σ

Λ(x)ψ(S(x))
[u]K,σ(Y (x))

dK,σ
nK,σ · ∇Kv(x)dx

=

∫
σ

ΛK [u]K,σ(y)nK,σ · ∇Kv(y)dγ(y),

We also have ∫
DK,σ

Λ(x)
[u]K,σ(Y (x))

dK,σ
nK,σ ·

[v]K,σ(x)

dK,σ
nK,σψ(S(x))2dx

=
ΛKnK,σ · nK,σ

dK,σ

∫ 1

β

ψ(s)2sd−1ds

∫
σ

[u]K,σ(y)[v]K,σ(y)dγ(y).

Then the bilinear form involved in Gradient Scheme (54) satisfies∫
Ω

Λ(x)∇Du(x) · ∇Dv(x)dx

=
∑
K∈M

(∫
K

ΛK∇Ku(x) · ∇Kv(x)dx

+
∑
σ∈FK

(∫
σ

ΛK
(
[u]K,σ(y)∇Kv(y) + [v]K,σ(y)∇Ku(y)

)
· nK,σdγ(y)

+
ΛKnK,σ · nK,σ

dK,σ

∫ 1

β

ψ(s)2sd−1ds

∫
σ

[u]K,σ(y)[v]K,σ(y)dγ(y)

))
.

We then recover the SIPG scheme as presented in [10] or [8], the penalty coefficient τσ (term σe
|e|β0 of [10,

eqn. (11)], term η
hF

of [8, eqn. (4.12)]) being equal, in the preceding relation, to

τσ =
1

4

∫ 1

β

ψ(s)2sd−1ds
(ΛKnK,σ · nK,σ

dK,σ
+

ΛLnL,σ · nL,σ
dL,σ

)
if Mσ = {K,L},

and

τσ =

∫ 1

β

ψ(s)2sd−1ds
ΛKnK,σ · nK,σ

dK,σ
if Mσ = {K}.

Note that, since the Cauchy-Schwarz inequality implies

( ∫ 1

β

ψ(s)sd−1ds
)2 ≤ ∫ 1

β

ψ(s)2sd−1ds

∫ 1

β

sd−1ds,

we get that ∫ 1

β

ψ(s)2sd−1ds ≥ d

1− βd ≥ d,

which provides a minimum value for τσ letting β → 0 (such minimum values are given, for example, by
[8, Lemma 4.12]. In our setting, it does not depend on the regularity of the mesh nor on the maximum
cardinal of FK (in the DGGD scheme, we don’t handle separately the case d = 1 and the cases d > 1).

Remark 6.1: The above expressions prescribed for τσ involve the arithmetic averaging of the diffusion ten-
sors in the cells K and L. An interesting point to be studied is the numerical comparison on heterogeneous
cases with [11, 5], where the authors introduce an expression involving the harmonic averaging of these
diffusion tensors.
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6.2 Numerical results

The aim of this section is to assess the influence of the parameter β ∈ (0, 1) on the accuracy of the gradient
scheme (54) issued from the DGGD for the discretisation of (52). We consider the 1D case Ω = (0, 1),
and the polytopal mesh T defined, for N ∈ N? and h = 1

N
, by M = {](i − 1)h, ih[, i = 1, . . . , N},

F = {{ih}, i = 0, . . . , N}, P = {(i− 1
2
)h, i = 1, . . . , N}. We consider one of the test cases studied in [10],

that is Problem (52) with Λ = Id and u(x) = cos(8πx) − 1 (hence f(x) = (8π)2 cos(8πx)). Considering
first degree polynomials, the set XD,0 is a vector space with dimension 2N . In Table 3, the columns “FE”
correspond to the conforming P1 Finite Element solution, we check that the results provided by “[10]”
with σn = 4.5, which corresponds to β = 1− 1/σn for the interior faces, and β = 1− 2/σn for the exterior
faces, are close to ours: Although we did not prove that the linear systems are invertible when β = 0, we

N\β 0 0.5 0.9 0.99 FE [10]
10 0.496 0.241 0.347 0.394 0.399 0.247

order 1.438 1.529 1.734 1.843 1.855
20 0.183 0.083 0.104 0.110 0.110 0.083

order 1.092 1.706 1.909 1.959 1.964
40 0.086 0.026 0.028 0.028 0.028 0.024

order 1.013 1.894 1.973 1.989 1.991
80 0.043 0.007 0.007 0.007 0.007

order 0.999 1.967 1.992 1.997 1.998
160 0.021 0.002 0.002 0.002 0.002

N\β 0 0.5 0.9 0.99 FE [10]
10 13.233 11.533 11.360 11.349 11.348 11.777

order 0.172 0.781 0.862 0.863 0.863
20 11.743 6.714 6.251 6.240 6.240 6.421

order 0.010 1.004 0.966 0.965 0.965
40 11.666 3.348 3.199 3.197 3.197 3.253

order -0.008 1.034 0.992 0.991 0.991
80 11.728 1.635 1.609 1.608 1.608

order -0.007 1.014 0.998 0.998 0.998
160 11.781 0.810 0.805 0.805 0.805

L2 error of the solution L2 error of the broken gradient

Tab. 3: Errors and rates of convergences, on the functions and the gradient, for the DGGD scheme
applied to Problem (52). “Order” represents the rate of convergence from the line above
to the line below.

note that in practice a solution is obtained but that the broken gradient does not seem to converge. In
this very regular case, the L2 error is the lowest for β = 0.5 but the convergence seems slightly better for
β closer to 1, and it tends to the results of the finite element method as β → 1.

7 Conclusion

The two versions of the DG method included in the GDM framework have the advantages to hold on any
polytopal mesh provided that the grid cells are strictly star-shaped, to involve Discrete Functional Analysis
results which do not depend on the regularity of the mesh, and to apply on any problem on which the
GDM is shown to converge (like the example of the p−Laplace problem taken in this paper). The DGGD
scheme, identical to the SIPG method in the case of linear diffusion problems with constant diffusion in
the cells, applies to the case of any measurable diffusion field. In the first order case, the ADGGD scheme
presents the advantage of yielding simple computations owing to piecewise constant discrete gradients.

A Discrete functional analysis

Since our geometric hypotheses are different from those done in [7, 8], we now provide the Sobolev in-
equalities suited to Definition 3.1 of polytopal meshes. The techniques of proof are identical to that of [8,
Theorem 5.3]. In this section, we denote, for ξ ∈ Rd by |ξ| = (

∑d
i=1 ξ

2
i )1/2 the Euclidean norm of ξ.

Lemma A.1: Let k, d ∈ N?, β ∈ (0, 1) and let ψ : (0, 1)→ R be the function such that ψ(s) = 0 on (0, β),
ψ|[β,1] ∈ Pk−1([β, 1]) and that (17)-(18) hold. Then there exists C > 0, only depending on d and k, such
that

d

1− βd ≤ ‖ψ‖∞ ≤
C

1− β , (57)

denoting for short by ‖ψ‖∞ the L∞((0, 1)) norm of ψ.
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Proof. Thanks to (17), there holds

1 =

∫ 1

β

ψ(s)sd−1ds ≤ ‖ψ‖∞
∫ 1

β

sd−1ds = ‖ψ‖∞
1− βd

d
,

which proves the left inequality of (57). Writing, for s ∈ (β, 1), ψ(s) =
∑k−1
i=0 ui(1− s)

i, multiplying (17)
by u0 and (18) by ui, summing all these equations for i = 1, . . . , k − 1, we get∫ 1

β

( k−1∑
i=0

ui(1− s)i)2sd−1ds = u0.

Making the change of variable t = (1− s)/(1− β), we get∫ 1

0

( k−1∑
i=0

ui(1− β)iti)2(1− t(1− β))d−1(1− β)dt = u0.

Owing to 1− t(1− β) ≥ 1− t, we can write

(1− β)

∫ 1

0

( k−1∑
i=0

ui(1− β)iti
)2

(1− t)d−1dt ≤ u0.

Let αk,d > 0 be the lowest eigenvalue of the Gram matrix M defined by Mij =
∫ 1

0
ti+j−2(1 − t)d−1dt,

i, j = 1, . . . , k. This value is such that

∀(v0, . . . , vk−1) ∈ Rk, αk,d
k−1∑
i=0

v2
i ≤

∫ 1

0

( k−1∑
i=0

vit
i)2(1− t)d−1dt.

We then have, letting vi = ui(1− β)i for i = 0, . . . , k − 1,

(1− β)αk,d

(
u2

0 +

k−1∑
i=1

(ui(1− β)i)2

)
≤ u0,

yielding on one hand u0 ≤ 1
(1−β)αk,d

and therefore on the other hand

( k−1∑
i=0

(ui(1− β)i)2

)1/2

≤ 1

(1− β)αk,d
.

We then get, using the Cauchy-Schwarz inequality, that

∀s ∈ (β, 1), |ψ(s)| ≤
k−1∑
i=0

|ui|(1− β)i ≤
√
k

( k−1∑
i=0

(ui(1− β)i)2

)1/2

≤
√
k

(1− β)αk,d
,

hence leading to the right inequality of (57).

The constant Cq,n > 0, introduced by the following definition, is used in the course of this mathematical
study for (q, n) = (p, k − 1), and (q, n) = ( pd

d−p , k) when p ∈]1, d[.

Definition A.2 (Comparison of norms on Rn+1): Let d ∈ N?, n ∈ N and q > 0 be given. We denote by
Cq,n > 0 the greatest constant, depending only on n, q and d, such that

∀(a0, . . . , an) ∈ Rn+1,

∫ 1

0

|
n∑
i=0

ais
i|qsd−1ds ≥ Cq,n

n∑
i=0

|ai|q. (58)

The following lemma plays an essential role in the study of ‖∇D · ‖Lp(Ω)d .
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Lemma A.3: Let n ∈ N and β ∈ (0, 1) be given. Let T be a polytopal mesh in the sense of Definition 3.1.
Then there holds

∀v ∈ Pn(Rd), ∀K ∈M, ∀σ ∈ FK ,∫
DK,σ

|v(x)|pdx ≤ (n+ 1)p−1

βd+pnCp,n

∫
D

(β)
K,σ

|v(x)|pdx,

where Cp,n is defined in Definition A.2 with q = p, and where D
(β)
K,σ is defined by (19).

Proof. For K ∈ M and σ ∈ FK , we compute
∫
D

(β)
K,σ

|v(x)|pdx with making the change of variable

x 7→ (y = Y (x), s = S(x)), where y ∈ σ and s ∈ (0, β). We then have dx = dK,σs
d−1dγ(y)ds, which

leads to ∫
D

(β)
K,σ

|v(x)|pdx =

∫
σ

∫ β

0

|v(xK + s(y − xK))|pdK,σsd−1dsdγ(y).

For a given y ∈ σ, s 7→ v(xK + s(y−xK)) is a polynomial with respect to s with degree lower or equal to
n, that we write under the form v(xK + s(y−xK)) =

∑n
i=0 ai(y)si. We then use the notation introduced

in Definition A.2, which provides∫ β

0

|
n∑
i=0

ai(y)si|psd−1ds = βd
∫ 1

0

|
n∑
i=0

ai(y)βiti|ptd−1dt

≥ βdCp,n
n∑
i=0

|ai(y)βi|p ≥ βd+pnCp,n
n∑
i=0

|ai(y)|p.

This leads to ∫
D

(β)
K,σ

|v(x)|pdx ≥ βd+pnCp,n
∫
σ

dK,σ(

n∑
i=0

|ai(y)|p)dγ(y).

On the other hand, we have∫
DK,σ

|v(x)|pdx =

∫
σ

∫ 1

0

|v(xK + s(y − xK))|pdK,σsd−1dsdγ(y)

=

∫
σ

∫ 1

0

|
n∑
i=0

ai(y)si|pdK,σsd−1dsdγ(y)

≤ (n+ 1)p−1

∫
σ

(

n∑
i=0

|ai(y)|p)dK,σdγ(y).

Hence, gathering the above relations, the lemma is proved.

Lemma A.4: Let n ∈ N be given. Let T be a polytopal mesh in the sense of Definition 3.1. Then, for all
q ∈ [1,+∞), there holds

∀v ∈ Pn(Rd), ∀K ∈M, ∀σ ∈ FK , dK,σ
∫
σ

|v(y)|qdγ(y) ≤ (n+ 1)q−1

Cq,n

∫
DK,σ

|v(x)|qdx, (59)

where Cq,n is defined in Definition A.2 with p = q.

Proof. Let K ∈ M, σ ∈ FK and v ∈ Pn(Rd) be given. For a given y ∈ σ, s 7→ v(xK + s(y − xK)) is a
polynomial with respect to s with degree lower or equal to n, that we write under the form v(xK + s(y −
xK)) =

∑n
i=0 ai(y)si. We then use the constant introduced in Definition A.2, which provides∫ 1

0

|
n∑
i=0

ai(y)si|qsd−1ds ≥ Cq,n
n∑
i=0

|ai(y)|q,
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and therefore∫
DK,σ

|v(x)|qdx = dK,σ

∫
σ

∫ 1

0

|
n∑
i=0

ai(y)si|qsd−1dsdγ(y) ≥ Cq,ndK,σ
∫
σ

(

n∑
i=0

|ai(y)|q)dγ(y).

Remarking that y = xK + s(y − xK) for s = 1, we have∫
σ

|v(y)|qdγ(y) =

∫
σ

|
n∑
i=0

ai(y)|qdγ(y) ≤ (n+ 1)q−1

∫
σ

(

n∑
i=0

|ai(y)|q)dγ(y).

Gathering the two previous inequalities gives (59).

Since our geometric hypotheses are different from those done in [7, 8], we now provide the Sobolev in-
equalities suited to Definition 3.1 of polytopal meshes. The techniques of proof are identical to that of [8,
Theorem 5.3].

Lemma A.5 (Comparison of DG norms): Let D be a DGGD in the sense of Definition 3.2. Then, for 1 ≤
p ≤ q < +∞, there holds

∀v ∈ XD,0, ‖v‖DG,p ≤ ((d+ 1)|Ω|)
q−p
pq ‖v‖DG,q. (60)

Proof. We have

‖v‖pDG,p =
∑
K∈M

(∫
K

|∇Kv(x)|pdx +
∑
σ∈FK

1

dp−1
K,σ

∫
σ

|[v]K,σ(y)|pdγ(y)
)
.

Thanks to Young’s inequality, we have

‖v‖pDG,p ≤

 ∑
K∈M

(∫
K

|∇Kv(x)|qdx +
∑
σ∈FK

1

dq−1
K,σ

∫
σ

|[v]K,σ(y)|qdγ(y)
)p/q

×

 ∑
K∈M

(
|K|+

∑
σ∈FK

dK,σ|σ|
)(q−p)/q

,

which leads, since
∑
σ∈FK

dK,σ|σ| = d|K|, to the result.

Lemma A.6 (Comparison of DG norm and BV norm): For v ∈ L1(Rd), let us define

‖v‖BV =

d∑
i=1

sup{
∫
Rd
v(x)∂iϕ(x)dx, ϕ ∈ C1

c (Rd), ‖ϕ‖∞ ≤ 1} ∈ (R+ ∪ {+∞}).

Then, extending ΠDv for all v ∈ XD,0 by 0 outside Ω, we have

∀p ∈ [1,+∞[, ∀v ∈ XD,0, ‖ΠDv‖BV ≤ d((d+ 1)|Ω|)
p−1
p ‖v‖DG,p (61)

Proof. We have, for all v ∈ XD,0, thanks again to (16),

‖ΠDv‖BV ≤ d
∑
K∈M

(∫
K

|∇Kv(x)|dx +
∑
σ∈FK

∫
σ

|[v]K,σ(y)|dγ(y)
)
.

Thanks to Young’s inequality, we have

‖ΠDv‖BV ≤d

 ∑
K∈M

(∫
K

|∇Kv(x)|pdx +
∑
σ∈FK

1

dp−1
K,σ

∫
σ

|[v]K,σ(y)|pdγ(y)
)1/p

×

 ∑
K∈M

(
|K|+

∑
σ∈FK

dK,σ|σ|
)(p−1)/p

.
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The results follows.

We now state the discrete Sobolev inequalities result.

Lemma A.7 (Discrete Sobolev inequalities): Let D be a DGGD in the sense of Definition 3.2. Then, for all
q ∈ [1, pd

d−p ] if 1 ≤ p < d and q ∈ [1,+∞[ otherwise, there exists C, depending only on |Ω|, k, p, q and d,
such that

∀v ∈ XD,0, ‖ΠDv‖Lq(Ω) ≤ C‖v‖DG,p. (62)

Proof. Let us first assume that d = 1. Then we have

∀v ∈ Lq(R), ‖v‖L∞(R) ≤ ‖v‖BV,

which provides (62) owing to Lemma A.6.

We now assume that d ≥ 2.

As in [7], we follow Nirenberg’s technique. First remark that, for all q ∈ [1, d/(d− 1)],

∀v ∈ Lq(Rd), ‖v‖Lq(Rd) ≤
1

2d
‖v‖BV. (63)

This inequality implies, owing to Lemma A.6,

∀v ∈ XD,0, ‖ΠDv‖Lq(Rd) ≤
1

2d
‖ΠDv‖BV ≤

1

2
‖v‖DG,1. (64)

We now handle the case 1 < p < d. We define α = p(d−1)
d−p > 1 and p? = pd

d−p . For v ∈ XD,0, we apply (63)
to |ΠDv|α and q = d/(d− 1). It yields(∫

Ω

|ΠDv(x)|p
?

dx

) d−1
d

≤ 1

2d

d∑
i=1

( ∑
K∈M

∫
K

|∂i|ΠKv(x)|α|dx +
∑
σ∈F

∫
σ

|[|v|α]σ(y)|dγ(y)

)
,

denoting by |[w]σ(y)| the absolute value of the jump of w at y ∈ σ. We observe that, for a.e. x ∈ K, we
have |∂i|ΠKv(x)|α| = α|ΠKv(x)|α−1|∂iΠKv(x)| ≤ α|ΠKv(x)|α−1|∇Kv(x)|. On the other hand, we have,

for Mσ = {K,L}, |[|v|α]σ(y)| ≤ 2α(|ΠKv(y)|α−1 + |ΠLv(y)|α−1)
|Π
K
v(y)−Π

L
v(y)|

2
, and, for Mσ = {K},

|[|v|α]σ(y)| ≤ α|ΠKv(y)|α−1|ΠKv(y)− 0|. We then have, using notation (16),(∫
Ω

|ΠDv(x)|p
?

dx

) d−1
d

≤ α
∑
K∈M

(∫
K

|ΠKv(x)|α−1|∇Kv(x)|dx +
∑
σ∈FK

∫
σ

|ΠKv(y)|α−1|[v]K,σ(y)|dγ(y)
)
.

Hence we get, from Young’s inequality, since (α− 1)p′ = p? with p′ = p/(p− 1),(∫
Ω

|ΠDv(x)|p
?

dx

) d−1
d

≤ α(T1)1/p(T2)(p−1)/p,

with

T1 =
∑
K∈M

(∫
K

|∇Kv(x)|pdx +
∑
σ∈FK

∫
σ

|[v]K,σ(y)|p

dp−1
K,σ

dγ(y)
)

= ‖v‖pDG,p,

and

T2 =
∑
K∈M

(∫
K

|ΠKv(x)|p
?

dx +
∑
σ∈FK

dK,σ

∫
σ

|ΠKv(y)|p
?

dγ(y)
)
.

Let us now observe that ∫
K

|ΠKv(x)|p
?

dx =
∑
σ∈FK

∫
DK,σ

|ΠKv(x)|p
?

dx.
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We write, as in the proof of Lemma A.3,∫
DK,σ

|ΠKv(x)|p
?

dx = dK,σ

∫
σ

∫ 1

0

|ΠKv(xK + s(y − xK))|p
?

sd−1dsdγ(y).

We then apply Lemma A.4, letting n = k and replacing v by ΠKv. From (59), we get

dK,σ

∫
σ

|ΠKv(y)|p
?

dγ(y) ≤ (k + 1)p
?−1

Cp?,k

∫
DK,σ

|ΠKv(x)|p
?

dx,

and concludes the proof that

T2 ≤ (1 +
(k + 1)p

?−1

Cp?,k
)

∫
Ω

|ΠDv(x)|p
?

dx.

Hence we conclude (62) for 1 < p < d.

Let us finally consider the case d ≤ p. We select any real value q1 > p, and we set p1 = dq1/(d+ q1). Then
we have 1 < p1 < d ≤ p and p?1 = q1. We apply the result proved for 1 < p < d above, which yields (62),
replacing p by p1 and p?1 by q1. We then apply Lemma A.5, which allows to bound ‖v‖DG,p1 by ‖v‖DG,p.
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