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Introduction

Discontinuous Galerkin (DG) methods have received a lot of attention over the last decade at least, and are still a subject of interest. They present the advantage to be suited to elliptic and parabolic problems, while opening the possibility to closely approximate weakly regular functions on general meshes. Although the convergence of DG methods has been proved on a variety of problems (see [START_REF] Di Pietro | Mathematical aspects of discontinuous Galerkin methods[END_REF] and references therein), note that the stabilisation of DG schemes for elliptic or parabolic problems has to be specified with respect to the problem, and that there are numerous possible choices [START_REF] Arnold | Unified analysis of discontinuous Galerkin methods for elliptic problems[END_REF].

On the other hand, convergence and error estimate results for a wide variety of numerical methods applied to some elliptic, parabolic, coupled, linear and nonlinear problems are proved on the generic "gradient scheme" issued from the Gradient Discretisation Method framework (see [START_REF] Droniou | The gradient discretisation method[END_REF] and references therein). This framework is shown to include conforming Galerkin methods with or without mass lumping, nonconforming P 1 finite elements, mixed finite elements and a variety of schemes issued from extensions of the finite volume method. Convergence and error estimate results are then proved in [START_REF] Droniou | The gradient discretisation method[END_REF] for the following problems:

1. elliptic problem with constant or unknown dependent diffusion, 2. steady or transient p-Laplace problem and more generally Leray-Lions problem, [START_REF] Brenner | A weakly over-penalized non-symmetric interior penalty method[END_REF]. parabolic problem with constant or unknown dependent diffusion, 4. degenerate parabolic (Richards or Stefan-type) problems, provided that the Gradient Discretisation is coercive, GD-consistent, limit-conforming, compact and in some cases with piecewise constant reconstruction (the precise mathematical meaning of these core properties is recalled in Section 2 of this paper). The aim of this paper is to build Gradient Discretisations from the DG setting. Considering two ways of accounting for the jump terms (pointwise or by mean value), we define on one hand the Discontinuous Galerkin Gradient Discretisation (DGGD) and on the other hand the Average Discontinuous Galerkin Gradient Discretisation (ADGGD). In both cases, we show that all the core properties of GDM are satisfied on general polytopal meshes in any space dimension. This immediately extends the range of problems which 1 can be handled by Discontinuous Galerkin methods to all the above problems, as we show in this paper by considering the case of the p-Laplace problem. Indeed, we can immediately apply a convergence and error estimate result derived from the Gradient Discretisation Method framework. This approach is different from that of [START_REF] Burman | Discontinuous Galerkin approximation with discrete variational principle for the nonlinear Laplacian[END_REF] where a specific stabilisation term is introduced in the variational formulation, whereas the present work has significant common points with the stable DG method without penalty parameter proposed in [START_REF] John | Stable discontinuous Galerkin FEM without penalty parameters[END_REF] (where a scheme, which can enter into the GDM, is proposed, the main difference with the present paper being the lifting of the jumps for computing the discrete gradient).

It is then interesting to remark that the gradient scheme resulting from the DGGD is identical to the Symmetric Interior Penalty Galerkin scheme in the case of linear diffusion problems, as we detail in section 6. Note that the gradient scheme resulting from the ADGGD is not identical, in the case of the elasticity problem, to the scheme introduced in [START_REF] Hansbo | Discontinuous Galerkin and the Crouzeix-Raviart element: application to elasticity[END_REF], in which the volumetric part is handled with average jumps but the deviatoric part is handled with pointwise jumps. This paper is organised as follows. Section 2 includes the main definitions for the Gradient Discretisation Method in the case of homogeneous Dirichlet boundary conditions. In Section 3, we study a gradient discretisation version of Discontinuous Galerkin schemes suited to polytopal meshes in any space dimension using pointwise jumps, and we prove that this gradient discretisation satisfies the core properties which are sufficient for convergence and error estimates results. We turn in Section 4 to the case of average jumps, that is studied owing to a result of equivalence of norms between the DG norm build with pointwise jumps and that build with average jumps. We then take an example of application of the preceding results in Section 5, where the gradient schemes issued from the DGGD and ADGGD methods are shown to satisfy a convergence and error estimate in the case of the p-Laplace problem. We then handle in Section 6 the case of linear elliptic problems, and we show that the scheme issued from the DGGD is identical to the Symmetric Interior Penalty Galerkin method. A numerical example shows the role the numerical parameter used in the design of the scheme plays in its accuracy. A short conclusion is then proposed, before the adaptation of the Sobolev inequalities proved in [START_REF] Di Pietro | Discrete functional analysis tools for discontinuous Galerkin methods with application to the incompressible Navier-Stokes equations[END_REF][START_REF] Di Pietro | Mathematical aspects of discontinuous Galerkin methods[END_REF] to our setting and definition of the DG norm in Appendix A. Note that the assumption that the mesh cells are star-shaped with respect to some point (not made in [START_REF] Di Pietro | Discrete functional analysis tools for discontinuous Galerkin methods with application to the incompressible Navier-Stokes equations[END_REF][START_REF] Di Pietro | Mathematical aspects of discontinuous Galerkin methods[END_REF]) enables to prove that the constant involved in these inequalities do not depend on the regularity factor of the mesh.

Main definitions of Gradient Discretisations for homogeneous Dirichlet boundary conditions

In this paper, we make the following assumptions: p ∈ (1, +∞) is given and

Ω is an open bounded polytopal connected subset of R d (d ∈ N ), (1) 
where polytopal means that it is the union of a finite number of simplices.

The following definitions, first introduced in [START_REF] Eymard | Small-stencil 3d schemes for diffusive flows in porous media[END_REF], are given in [START_REF] Droniou | The gradient discretisation method[END_REF] for a larger variety of boundary conditions.

Definition 2.1 (GD, homogeneous Dirichlet BCs):

A gradient discretisation D for homogeneous Dirichlet conditions is defined by D = (XD,0, ΠD, ∇D), where:

The consistency properties indicate how accurately a regular function and its gradient are approximated by some discrete function and gradient which are reconstructed from the space XD,0.

Definition 2.3 (GD-consistency): If D is a gradient discretisation in the sense of Definition 2.1, define SD :

W 1,p 0 (Ω) → [0, +∞) by ∀ϕ ∈ W 1,p 0 (Ω), SD(ϕ) = min v∈X D,0 ΠDv -ϕ L p (Ω) + ∇Dv -∇ϕ L p (Ω) d . (3) 
A sequence (Dm) m∈N of gradient discretisations in the sense of Definition 2.1 is GD-consistent, or consistent for short, if

∀ϕ ∈ W 1,p 0 (Ω), lim m→∞ SD m (ϕ) = 0. ( 4 
)
The concept of limit-conformity which we now introduce states that the discrete gradient and divergence operator satisfy this property asymptotically. Since we shall be dealing with non linear problems, we introduce, or any q ∈ (1, +∞), the space W q div (Ω) of functions in (L q (Ω)) d with divergence in L q (Ω): and define WD:

W q div (Ω) = {ϕ ∈ L q (Ω) d : divϕ ∈ L q (Ω)}. ( 5 
W p div (Ω) → [0, +∞) by ∀ϕ ∈ W p div (Ω), WD(ϕ) = sup v∈X D,0 \{0} Ω (∇Dv(x) • ϕ(x) + ΠDv(x)divϕ(x)) dx ∇Dv L p (Ω) d . (6) 
A sequence (Dm) m∈N of gradient discretisations is limit-conforming if

∀ϕ ∈ W p div (Ω), lim m→∞ WD m (ϕ) = 0. ( 7 
)
Dealing with generic non-linearity often requires additional compactness properties on the scheme.

Definition 2.5 (Compactness):

A sequence (Dm) m∈N of gradient discretisations in the sense of Definition 2.1 is compact if, for any sequence um ∈ XD m ,0 such that ( ∇D m um L p (Ω) d ) m∈N is bounded, the sequence (ΠD m um) m∈N is relatively compact in L p (Ω).

Definition 2.6 (Piecewise constant reconstruction): Let D = (XD,0, ΠD, ∇D) be a gradient discretisation in the sense of Definition 2.1. The operator ΠD : XD,0 → L p (Ω) is a piecewise constant reconstruction if there exists a basis (ei)i∈B of XD,0 and a family of disjoint subsets (Ωi)i∈B of Ω such that ΠDei = 1Ω i for all i ∈ B, where 1Ω i is the characteristic function of Ωi.

It is shown in [START_REF] Droniou | The gradient discretisation method[END_REF] that all the considered examples of Gradient Discretisations (as listed in the introduction of this paper) meet four of the core properties (coercivity, GD-consistency, limit-conformity, compactness), and that mass-lumped versions satisfy the piece-wise constant reconstruction property. They therefore satisfy convergence and error estimates for the range of problems passed into review in the introduction of this paper. The next sections aim to build a Gradient Discretisation with the discontinuous Galerkin setting, and then to prove that it satisfies the core properties as well.

3 Discontinuous Galerkin Gradient Discretisation (DGGD)

Meshes and discrete operators

Let us provide a definition for a polytopal mesh of Ω, which is a slightly simplified version of that given in [START_REF] Droniou | The gradient discretisation method[END_REF].

Definition 3.1 (Polytopal mesh): A polytopal mesh of Ω is given by T = (M, F, P), where:

1. M is a finite family of non empty connected polytopal open disjoint subsets of Ω (the "cells") such that Ω = ∪K∈MK. For any K ∈ M, let ∂K = K \ K be the boundary of K, |K| > 0 is the measure of K and hK denotes the diameter of K, that is the maximum distance between two points of K.

2. F = Fint ∪ Fext is a finite family of disjoint subsets of Ω (the "faces" of the mesh -"edges" in 2D), such that, for all σ ∈ Fint, σ is a non empty open subset of a hyperplane of R d included in Ω and, for all σ ∈ Fext, σ is a non empty open subset of ∂Ω; furthermore, the (d -1)-dimensional measure |σ| of any σ ∈ F is strictly positive. We assume that, for all K ∈ M, there exists a subset FK of F such that ∂K = ∪σ∈F K σ. We then denote by Mσ = {K ∈ M, σ ∈ FK }. We then assume that, for all σ ∈ F , either Mσ has exactly one element and then σ ∈ Fext or Mσ has exactly two elements and then σ ∈ Fint. For all K ∈ M and for any σ ∈ FK , we denote by nK,σ the (constant) unit vector normal to σ outward to K.

3. P is a family of points of Ω indexed by M, denoted by P = (xK )K∈M, such that for all K ∈ M, xK ∈ K. We then denote by dK,σ the signed orthogonal distance between xK and σ ∈ FK (see Figure 1), that is:

dK,σ = (x -xK ) • nK,σ, for all x ∈ σ. (8) 
We then assume that each cell K ∈ M is strictly star-shaped with respect to xK , that is dK,σ > 0 for all σ ∈ FK . This implies that for all x ∈ K, the line segment [xK , x] is included in K. For all K ∈ M and σ ∈ FK , we denote by DK,σ the cone with vertex xK and basis σ, that is

DK,σ = {xK + s(y -xK ), s ∈ (0, 1), y ∈ σ}. (9) 
The size of the polytopal mesh is defined by:

hM = sup{hK , K ∈ M}. (10) 
Finally, for a given polytopal mesh T we define a number that measures the regularity properties of the mesh:

η T = max { hK hL + hL hK , σ ∈ Fint , Mσ = {K, L}} ∪ { hK dK,σ , K ∈ M, σ ∈ FK } ∪ {#FK , K ∈ M} , (11) 
where we denote by #FK the cardinal of the set FK . 1. For a given value k ∈ N , we consider the space W h , defined by

d K,σ d K,σ n K,σ K n K,σ σ σ σ x K K (β) x K D K,σ σ y x = x K + s(y -x K ) D (β) K,σ
W h = {u ∈ L p (Ω) : u|K ∈ P k (K) , ∀K ∈ M}. (12) 
Recall that the dimension of P k (R d ) is (k+d)! k!d! , and therefore the dimension of W h is equal to

(k+d)! k!d! #M.
Let (χi)i∈I be a family of piecewise polynomial basis functions of degree k on each cell, spanning W h . We set

XD,0 = {v = (vi)i∈I : vi ∈ R for all i ∈ I}. ( 13 
)
2. The operator ΠD is the reconstruction in L p (Ω) of the elements of XD,0:

∀v ∈ XD,0 , ΠDv = i∈I viχi. (14) 
In this paper, we denote, for all K ∈ M and v ∈ XD,0, by Π K v ∈ P k (K) the piecewise polynomial defined by ΠDv on K, extended on K, and we denote by

∇ K v = ∇Π K v.
3. For v ∈ XD,0, for K ∈ M and for any σ ∈ FK , we set, for a.e. x ∈ DK,σ,

∇Dv(x) = ∇ K v(x) + ψ(S(x)) [v]K,σ(Y (x)) dK,σ nK,σ, (15) 
where (see Figure 1):

• we denote by S, Y the functions S : DK,σ → (0, 1] and Y : DK,σ → σ such that x = xK + S(x)(Y (x) -xK ), which means

S(x) = (x -xK ) • nK,σ dK,σ and Y (x) = xK + x -xK S(x) ,
• for all K ∈ M and all σ ∈ FK , we denote by

∀y ∈ σ, if Mσ = {K, L}, [v]K,σ(y) = 1 2 (Π L v(y) -Π K v(y)) else if Mσ = {K}, [v]K,σ(y) = 0 -Π K v(y), (16) 
• Let β ∈ (0, 1) be given. Let ψ : (0, 1) → R be the function such that ψ(s) = 0 on (0, β),

ψ |[β,1] ∈ P k-1 ([β, 1]) and 1 β ψ(s)s d-1 ds = 1, ( 17 
) ∀i = 1, . . . , k -1, 1 β (1 -s) i ψ(s)s d-1 ds = 0. ( 18 
)
Remark 3.3: Assumption (17) is mandatory in the proof of the limit-conformity of the scheme (see (34) in Lemma 3.15), whereas (18) is used in the same equation for the high-order accuracy. The cut-off parameter β ∈ (0, 1) is necessary for getting the equivalence (20) between the norm of the discrete gradient and the Discontinuous Galerkin norm (defined by (21)). Note that β = 0 is considered in the numerical examples, but the present convergence analysis is no longer available in this case. Lower and upper bounds of ψ ∞ are provided by (57) in Lemma A.1.

In the case k = 1, the function ψ |[β,1] ∈ P0([β, 1]) has the constant value d 1-β d . For the general case k ∈ N , considering the basis (1, (1 -s), . . . , (1 -s) k-1 ) of P k-1 ([β, 1]), and writing the function ψ as ψ(s) = k i=1 αi(1 -s) i-1 , we see that the matrix A of the linear system issued from (17)-(18) (it is a Gram matrix), with unknowns (αi) i=1,...,k , is such that

Ai,j = 1 β (1 -s) i+j-2 s d-1 ds.
Considering a vector U such that U t = (ui) i=1,...,k , we note that

U t AU = 1 β k i=1 ui(1 -s) i-1 2 s d-1 ds,
which implies that A is symmetric definite positive, hence leading to the existence and uniqueness of ψ.

We split DK,σ into D

(β) K,σ and DK,σ \ D (β) K,σ with D (β) K,σ := {x ∈ DK,σ, x = xK + s(y -xK ), s ∈ (0, β], y ∈ σ} and K (β) = σ∈F K D (β) K,σ , (19) 
(note that we have |DK,σ \ D

(β) K,σ | = 1-β d d dK,σ|σ|).
Remark 3.4: The above definition for the discrete gradient ∇Dv can be seen as a regularisation of the gradient of v in the distribution sense, by replacing the Dirac mass on the faces of the mesh by a function with integral equal to 1.

Remark 3.5: It is possible to consider βK,σ instead of a constant β, without changing the mathematical analysis done in this paper.

Remark 3.6 (Piecewise constant reconstruction): One can for example replace ΠD by ΠD such that, for all K ∈ M, and a.e. x ∈ K, ΠDv(x) = 1 |K| K ΠK v(x)dx, which provides a piecewise constant reconstruction in the sense of Definition 2.6, choosing a basis (χi)i∈I such that, for each K ∈ M, there exists i ∈ I with vi = 1 |K| K ΠK v(x)dx for all v ∈ XD,0.

Remark 3.7 (Definition of the jump at the faces of the mesh): Note that, in Definition 3.2, the jump at the faces is divided by 2 at the interior faces. This allows to keep the same definition for ∇D on all DK,σ in the two cases, σ ∈ Fint and σ ∈ Fext.

Mathematical properties of the DGGD method

Let us first state and prove the following lemma, which provides a connection between the discrete gradient defined by ( 15) to a norm suited for the study of discontinuous Galerkin methods in the framework of elliptic problems.

Lemma 3.8: Let D be a DGGD in the sense of Definition 3.2. Then there exists A > 0, depending only on p, k and d, such that ∀v ∈ XD,0, β

d p +(k-1) A v DG,p ≤ ∇Dv L p (Ω) d ≤ A 1 -β v DG,p, (20) 
where

v p DG,p = K∈M K |∇ K v(x)| p dx + σ∈F K 1 d p-1 K,σ σ |[v]K,σ(y)| p dγ(y) . ( 21 
)
Remark 3.9 (DG norm): Note that Definition (21) for the DG norm is slightly different from [7, eqn. ( 5)] or [8, eqn. (5.1)], with the use of dK,σ instead that of diam(σ), and with notation (16) for the jump at the faces of the mesh, owing to the fact that we make the assumption that the grid cells are star-shaped with respect to a point (this assumption is not made in [START_REF] Di Pietro | Discrete functional analysis tools for discontinuous Galerkin methods with application to the incompressible Navier-Stokes equations[END_REF][START_REF] Di Pietro | Mathematical aspects of discontinuous Galerkin methods[END_REF]). This allows the application of discrete functional analysis results without regularity hypotheses on the polytopal mesh.

Proof. Let K ∈ M and σ ∈ FK . Using x = xK + s(y -xK ), and using, for some c > 0 to be chosen later, |a

+ b| p ≤ (1 + c p ) p-1 (|a| p + | b c | p ) with 1 p + 1 p = 1, a = ∇ K v(x) + [v] K,σ (Y (x)) d K,σ ψ(S(x))nK,σ and b = -∇ K v(x), we have K |∇Dv(x)| p dx = K (β) |∇ K v(x)| p dx + σ∈F K D K,σ \D (β) K,σ ∇ K v(x) + [v]K,σ(Y (x)) dK,σ ψ(S(x))nK,σ p dx ≥ K (β) |∇ K v(x)| p dx - 1 c p K\K (β) |∇ K v(x)| p dx + 1 (1 + c p ) p-1 σ∈F K D K,σ \D (β) K,σ [v]K,σ(Y (x)) dK,σ ψ(S(x))nK,σ p dx. Writing 1 d d i=1 |∂iΠ K v| p ≤ |∇ K v| p ≤ d p/2 d i=1 |∂iΠ K v| p (22) 
and applying Lemma A.3 to the polynomial ∂iΠ K v ∈ P k-1 (R d ) for i = 1, . . . , d, we can write

K (β) |∇ K v(x)| p dx ≥ β d+p(k-1) C p,k-1 dk p-1 d i=1 K |∂iΠ K v(x)| p dx ≥ 2β d+p(k-1) C p,k K |∇ K v(x)| p dx, denoting by C p,k = C p,k-1 2d 1+p/2 k p-1 .
We then define c by 1

c p = β d+p(k-1) C p,k . Remarking that 1 (1 + c p ) p-1 = β d+p(k-1) C p,k ((β d+p(k-1) C p,k ) p /p + 1) p-1 ≥ β d+p(k-1) C p,k ((C p,k ) p /p + 1) p-1 ,
and using |nK,σ| = 1, we get

K |∇Dv(x)| p dx ≥ β d+p(k-1) C p,k K |∇ K v(x)| p dx + C p,k ((C p,k ) p /p + 1) p-1 σ∈F K D K,σ \D (β) K,σ [v]K,σ(Y (x)) dK,σ ψ(S(x)) p dx .
We then apply the change of variable x ∈ DK,σ → (y = Y (x), s = S(x)) ∈ σ × (0, 1). We then have x = xK + s(y -xK ) and therefore dx = dK,σs d-1 dγ(y)ds, leading to

D K,σ \D (β) K,σ [v]K,σ(Y (x)) dK,σ ψ(S(x)) p dx = dK,σ σ |[v]K,σ(y)| p d p K,σ dγ(y) 1 β |ψ(s)| p s d-1 ds = 1 d p-1 K,σ σ |[v]K,σ(y)| p dγ(y) 1 β |ψ(s)| p s d-1 ds.
Using (17) and Hölder's inequality, we have

1 = 1 β ψ(s)s d-1 ds ≤ 1 β |ψ(s)| p s d-1 ds 1 p 1 β s d-1 ds 1 p = 1 β |ψ(s)| p s d-1 ds 1 p 1 -β d d 1 p , leading to 1 β |ψ(s)| p s d-1 ds ≥ d 1 -β d p-1 ≥ d p-1 .
This completes the proof of the left inequality in (20). Turning to the proof of the right inequality of (20), we have

D K,σ |∇Dv(x)| p dx ≤2 p-1 D K,σ |∇ K v(x)| p dx + 2 p-1 D K,σ \D (β) K,σ [v]K,σ(Y (x)) dK,σ ψ(S(x)) p dx =2 p-1 D K,σ |∇ K v(x)| p dx + 2 dK,σ p-1 σ |[v]K,σ(y)| p dγ(y) 1 β |ψ(s)| p s d-1 ds,
which completes the proof of the right inequality in (20), since, using (57),

1 β |ψ(s)| p s d-1 ds ≤ (1 -β d )C p d(1 -β) p ≤ C p d(1 -β) p .
We can now state and prove that ∇D • L p (Ω) d is a norm on XD,0.

Lemma 3.10: Let D be a DGGD in the sense of Definition 3.2. Then ∇D • L p (Ω) d is a norm on XD,0. Proof. It suffices to check that, if v ∈ XD,0 is such that ∇Dv L p (Ω) d = 0, then v = 0.
Indeed, owing to Lemma 3.8, we get that v DG,p = 0. We can apply Lemma A.7, since in the case d = 1 or d = 2, it applies without restriction to q = p, and in the case d ≥ 3, there holds p < p = pd/(d -p). Hence we deduce that ΠDv L p (Ω) = 0, which concludes the proof.

We now prove the core properties of the DGGD, as described in Section 2, gathered in the following theorem.

Theorem 3.11 (Properties of DGGDs): Let (Dm) m∈N be a sequence of DGGDs in the sense of Definition 3.2, defined from underlying polytopal meshes (Tm) m∈N . Assume that (η Tm ) m∈N is bounded (see [START_REF] Ern | A discontinuous Galerkin method with weighted averages for advection-diffusion equations with locally small and anisotropic diffusivity[END_REF]), and that hM m → 0 as m → ∞. Then the sequence (Dm) m∈N is coercive, GD-consistent, limit-conforming and compact in the sense of Definitions 2.2, 2.3, 2.4 and 2.5.

Proof.

The limit-conformity, coercivity, GD-consistency and compactness are obtained by applying Lemmas 3.15, 3.12, 3.14, 3.13.

Let us now prove each of the lemmas involved in the proof of the above theorem. Lemma 3.12 (Coercivity): Let D be a DGGD in the sense of Definition 3.2. Let CD ≥ 0 be defined by [START_REF] Arnold | Unified analysis of discontinuous Galerkin methods for elliptic problems[END_REF]. Then there exists CP depending only on |Ω|, β, p, k and d such that CP ≥ CD, which means that any sequence (D) m∈N is coercive in the sense of Definition 2.2.

Proof. We again apply Lemma A.7, since we noticed in the proof of Lemma 3.10 that it applies to the case q = p. Lemma 3.13 (Compactness): Let (D) m∈N be a sequence of DGGDs in the sense of Definition 3.2. Then, for all (vm) m∈N such that, for all m ∈ N, vm ∈ XD m,0 and such that the sequence ( ∇D m vm L p (Ω) ) m∈N is bounded, the sequence (ΠD m vm) m∈N is relatively compact in L p (Ω), which means that any sequence (Dm) m∈N is compact in the sense of Definition 2.5.

Proof. We first extend ΠD m vm by 0 in R d \ Ω. We then have, for all m ∈ N, applying Lemma A.6,

∀ξ ∈ R d , ΠD m vm(. + ξ) -ΠD m vm L 1 (R d ) ≤ ( d i=1 |ξi|) ΠD m vm BV ≤ ( d i=1 |ξi|)Cd((d + 1)|Ω|) p-1 p ΠD m vm DG,p.
This implies that the sequence (ΠD m vm) m∈N is relatively compact in L 1 (R d ). Thanks to Lemma A.7, the sequence (ΠD m vm) m∈N is bounded in L q (R d ) for some q > p. We thus deduce that the sequence (ΠD m vm) m∈N is relatively compact in L p (R d ), which concludes the proof of the lemma.

Lemma 3.14 (Estimate on SD for DGGD): Let D be a DGGD in the sense of Definition 3.2, with underlying polytopal mesh T. Take ≥ η T (see [START_REF] Ern | A discontinuous Galerkin method with weighted averages for advection-diffusion equations with locally small and anisotropic diffusivity[END_REF]) and let ∈ {1, . . . , k}. Then there exists C1 > 0, depending only on on Ω, β, p, k, , d and , such that

∀ϕ ∈ W +1,p (Ω) ∩ W 1,p 0 (Ω) , SD(ϕ) ≤ C1h M ϕ W +1,p (Ω) , ( 23 
)
where SD is defined by (3). As a consequence, any sequence (D) m∈N of DGGDs such that h Tm tends to 0 as m → ∞ while η Tm remains bounded is GD-consistent in the sense of Definition 2.3.

Proof. In this proof, C is a generic notation for various positive numbers depending only on Ω, β, p, k, , d and . Let ϕ ∈ W +1,p (Ω) ∩ W 1,p 0 (Ω) and, for K ∈ M, denote by π k K : L 1 (K) → P k (K) the L 2 (K)-projection on polynomials over K of degree at most k. By [6, Lemmata 3.4 and 3.6],

ϕ -π k K ϕ L p (K) ≤ Ch +1 K ϕ W +1,p (K) , (24) 
∇ϕ -∇(π k K ϕ) L p (K) d ≤ Ch K ϕ W +1,p (K) , ( 25 
) ∀σ ∈ FK , ϕ -π k K ϕ L p (σ) ≤ Ch +1-1 p K ϕ W +1,p (K) . (26) 
The functions (π k K ϕ)K∈M define an element of W h . Since ΠD : XD,0 → W h is an isomorphism (see its definition ( 14)), there exists v ∈ XD,0 such that (ΠDv

) |K = Π K v = π k K ϕ for all K ∈ M.
Then, raising (24) to the power p and summing over K ∈ M yields

ϕ -ΠDv L p (Ω) ≤ Ch +1 M ϕ W +1,p (Ω) . (27) 
Let us now analyse the jump terms in ∇Dv. Let σ ∈ Fint with Mσ = {K, L}, and y ∈ σ. Writing

[v]K,σ(y) = 1 2 (Π L v(y) -ϕ(y) + ϕ(y) -Π K v(y)) = 1 2 (π k L ϕ(y) -ϕ(y)) + 1 2 (ϕ(y) -π k K ϕ(y)),
and using (26) in cells K and L yields

[v]K,σ L p (σ) ≤ Ch +1-1 p L ϕ W +1,p (L) + Ch +1-1 p K ϕ W +1,p (K) ≤ Ch M h 1-1 p L ϕ W +1,p (L) + h 1-1 p K ϕ W +1,p (K) .
By definition of , dK,σ ≥ -1 hK and dK,σ

≥ -1 dL,σ ≥ -2 hL, so d 1 p -1 K,σ ≤ Ch 1 p -1 K and d 1 p -1 K,σ ≤ Ch 1 p -1 L . Hence, d 1 p -1 K,σ [v]K,σ L p (σ) ≤ Ch M ϕ W +1,p (L) + ϕ W +1,p (K) .
Using change of variable x → (y = Y (x), s = S(x)), we infer

D K,σ |∇Dv(x) -∇ K v(x)| p dx = D K,σ ψ(S(x)) [v]K,σ(Y (x)) dK,σ p dx = 1 β |ψ(s)| p s d-1 ds σ d 1-p K,σ |[v]K,σ(y)| p dγ(y) ≤ Ch p M ϕ p W +1,p (L) + ϕ p W +1,p (K) . (28) 
Since ϕ = 0 on ∂Ω, performing the same steps as above shows that (28) also holds if σ ∈ FK ∩ Fext, by removing the term involving L. By summing (28) over σ ∈ FK and K ∈ M, using the definition

∇ K v = ∇(Π K v) = ∇(π k K ϕ), ( 
25) and the triangle inequality, we infer

∇Dv -∇ϕ L p (Ω) d ≤ Ch M ϕ W +1,p (Ω) .
Combined with (27), this completes the proof of (23).

We then show that any sequence (D) m∈N of DGGDs such that h Tm tends to 0 as m → ∞ while η Tm remain bounded is GD-consistent in the sense of Definition 2.3, by applying [12, Lemma 2.4] since W +1,p (Ω) ∩ W 1,p 0 (Ω) is dense in W 1,p 0 (Ω).

Lemma 3.15 (Estimate on WD(ϕ) for DGGD): Let D be a DGGD in the sense of Definition 3.2, with underlying polytopal mesh T. Take ≥ η T (see [START_REF] Ern | A discontinuous Galerkin method with weighted averages for advection-diffusion equations with locally small and anisotropic diffusivity[END_REF]) and let ∈ {1, . . . , k}. Then there exists C2, depending only on Ω, β, p, k, , d and , such that

∀ϕ ∈ W ,p (Ω) d , WD(ϕ) ≤ C2h M ϕ W ,p (Ω) d , ( 29 
)
where WD is defined by [START_REF] Di Pietro | A Hybrid High-Order method for Leray-Lions elliptic equations on general meshes[END_REF]. As a consequence, any sequence (D) m∈N of DGGDs in the sense of Definition 3.2 such that h Tm tends to 0 as m → ∞ is limit-conforming in the sense of Definition 2.4.

Proof. In this proof, C denotes various constants having the same dependencies as C2 in the lemma. Let ϕ ∈ W ,p (Ω) d . Using the definition of ∇Dv and ΠDv yields

Ω (∇Dv(x) • ϕ(x) + ΠDv(x)divϕ(x)) dx = T1 + T2, (30) 
with

T1 = K∈M K (∇(Π K v)(x) • ϕ(x) + Π K v(x)divϕ(x)) dx, and T2 = K∈M σ∈F K D K,σ ψ(S(x)) [v]K,σ(Y (x)) dK,σ nK,σ • ϕ(x)dx.
Stokes formula in each cell K yields

T1 = K∈M σ∈F K σ Π K v(y)ϕ(y) • nK,σdγ(y). ( 31 
) Let π k-1 K : L p (K) d → P k-1 (K) d be the component-wise L 2 (K)
-projection over polynomial vectors on K of degree at most k -1, and write

T2 = T2,1 + T2,2, (32) 
with

T2,1 = K∈M σ∈F K D K,σ ψ(S(x)) [v]K,σ(Y (x)) dK,σ nK,σ • (ϕ(x) -π k-1 K ϕ(x))dx, and 
T2,2 = K∈M σ∈F K D K,σ ψ(S(x)) [v]K,σ(Y (x)) dK,σ nK,σ • π k-1 K ϕ(x)dx.
Similarly to (24) we have ϕ -

π k-1 K ϕ L p (K) d ≤ Ch K ϕ W ,p (K) d .
Hence, owing to Hölder's inequalities and the change of variable x → (y = Y (x), s = S(x)) and Lemma 3.8 , we get

|T2,1| ≤ Ch M ϕ W ,p (Ω) d   K∈M σ∈F K D K,σ |ψ(s)| p s d-1 ds σ d 1-p K,σ |[v]K,σ(y)| p dγ(y)   1/p ≤ Ch M ϕ W ,p (Ω) d v DG,p ≤ CAβ -( d p +(k-1)) h M ϕ W ,p (Ω) d ∇Dv L p (Ω) d . (33) 
We now turn to T2,2. Since π k-1 K ϕ is a polynomial of degree k -1 or less, using the change of variable x → (y = Y (x), s = S(x)) and a Taylor expansion in s about s = 1, we have

π k-1 K ϕ(x) • nK,σ = π k-1 K ϕ(y) • nK,σ + k-1 m=1 pm(y)(1 -s) m
where pm is a polynomial in y. Hence, reporting this expression into that of T2,2, the second term of the right hand side vanishes owing to (18), and the first term is equal, owing to (17), to

T2,2 = K∈M σ∈F K σ [v]K,σ(y)π k-1 K ϕ(y) • nK,σdy. (34) 
Therefore, with (31),

T1 + T2,2 = K∈M σ∈F K σ Π K v(y)ϕ(y) + [v]K,σ(y)π k-1 K ϕ(y) • nK,σdγ(y) = T3 + T4, with T3 = K∈M σ∈F K σ (Π K v(y) + [v]K,σ(y)) ϕ(y) • nK,σdγ(y), T4 = K∈M σ∈F K σ [v]K,σ(y)(π k-1 K ϕ(y) -ϕ(y)) • nK,σdγ(y). If σ ∈ Fint with Mσ = {K, L}, Π K v(y)+[v]K,σ(y) = 1 2 (Π K v(y)+Π L v(y)
) and thus, since nK,σ +nL,σ = 0,

σ (Π K v(y) + [v]K,σ(y)) ϕ(y) • nK,σdγ(y) + σ (Π L v(y) + [v]L,σ(y)) ϕ(y) • nL,σdγ(y) = 0. If σ ∈ Fext with Mσ = {K}, then Π K v(y) + [v]K,σ (y) 
= 0. These arguments show that T3 = 0, and thus that T1 + T2,2 = T4. Similarly to (26), we have ϕ -

π k-1 K ϕ L p (σ) d ≤ Ch -1/p K ϕ W ,p (K) d ≤ Ch M d -1/p K,σ ϕ W ,p (K) d (use dK,σ ≤ hK )
. The Hölder's inequalities thus give

|T4| ≤ C   K∈M σ∈F K σ d 1-p K,σ |[v]K,σ(y)| p dγ(y)   1/p h M ϕ W ,p (Ω) d ≤ C v DG,p h M ϕ W ,p (Ω) d ≤ CAβ -( d p +(k-1)) h M ∇Dv L p (Ω) d ϕ W ,p (Ω) d .
Combined with (33) and plugged alongside (32) into (30), this concludes the proof of (29).

Then, considering a sequence (D) m∈N of DGGDs in the sense of Definition 3.2 such that h Tm tends to 0 as m → ∞, we get that it is limit-conforming in the sense of Definition 2.4 by density and applying [START_REF] Eymard | Small-stencil 3d schemes for diffusive flows in porous media[END_REF]Lemma 2.4] (this is possible owing to Lemma 3.12 which states that (D) m∈N is coercive).

Remark 3.16: Note that the application of Lemmas 3.14 and 3.15 to the error estimate [12, Lemma 2.2, eqns. ( 6) and ( 7)] provides an error in hM in the case of the linear elliptic problem (52) under Hypotheses (53) in one, two or three space dimensions, when the exact solution belongs to H 2 (Ω).

Average discontinuous Galerkin gradient discretisation (ADGGD)

This section presents a second gradient discretisation associated with discontinuous Galerkin methods.

In this GD, called the Average Discontinuous Galerkin Gradient Discretisation (ADGGD), the discrete gradients are defined from average jumps instead of pointwise jumps. This idea can be found in [START_REF] Hansbo | Discontinuous Galerkin and the Crouzeix-Raviart element: application to elasticity[END_REF] in the case of the elasticity operator (see Introduction), and in [START_REF] Brenner | A weakly over-penalized non-symmetric interior penalty method[END_REF] with a non-symmetric scheme.

Let XD,0, ΠD, ψ and S be defined as in Definition 3.2 in Section 3. We substitute to ( 15)-( 16) the following definition: for v ∈ XD,0, K ∈ M, σ ∈ FK and a.e. x ∈ DK,σ, set

∇Dv(x) = ∇ K v(x) + ψ(S(x)) [v] a K,σ dK,σ nK,σ, (35) 
where the average jump [v] a K,σ , which replaces the pointwise jump in [START_REF] John | Stable discontinuous Galerkin FEM without penalty parameters[END_REF], is defined by

if σ ∈ Fint and Mσ = {K, L}, [v] a K,σ = 1 2 (v a L,σ -v a K,σ ), if σ ∈ Fext and Mσ = {K}, [v] a K,σ = 0 -v a K,σ , defining ∀K ∈ M, ∀σ ∈ FK , v a K,σ = 1 |σ| σ Π K v(y)dγ(y). (36) 
We remark that ∇Dv, as defined by ( 35)-( 36) is piecewise constant in the case k = 1. It is identical to that defined by ( 15)-( 16) in the 1D case, letting k = 1, but it leads to much simpler computations in the 2D or 3D cases (see Remark 5.2 in Section 5).

In order to prove that the GD such defined satisfies the properties listed in Section 2, we assume in the next lemmas that all the faces of the mesh are convex, which can easily be satisfied in the case of polytopal meshes: the faces being polytopes as well, they can be split into convex sub-faces if needed, without increasing the cost of the method (it does not enlarge the stencil). Let us first show the following result of comparison between pointwise and average values at the faces of the mesh.

Lemma 4.1: Let D be a DGGD in the sense of Definition 3.2, with underlying polytopal mesh T such that all the faces σ ∈ F are convex. Let ≥ η T (see [START_REF] Ern | A discontinuous Galerkin method with weighted averages for advection-diffusion equations with locally small and anisotropic diffusivity[END_REF]). Then there exists C3 > 0, depending only on p, k, and d, such that

∀v ∈ XD,0, ∀K ∈ M, ∀σ ∈ FK , 1 d p-1 K,σ σ |Π K v(y) -v a K,σ | p dγ(y) ≤ C3 D K,σ |∇ K v(x)| p dx. (37) 
Proof. Let us prove (37). Applying Jensen's inequality and to Fubini's theorem, we get

σ |Π K v(y) -v a K,σ | p dγ(y) = σ 1 |σ| σ (Π K v(y) -Π K v(x))dγ(x) p dγ(y) ≤ σ 1 |σ| σ |Π K v(y) -Π K v(x)| p dγ(x)dγ(y).
Thanks again to Jensen's inequality, we have

σ 1 |σ| σ |Π K v(y) -Π K v(x)| p dγ(x)dγ(y) = 1 |σ| σ σ 1 0 ∇ K v(x + s(y -x)) • (y -x)ds p dγ(x)dγ(y) ≤ diam(σ) p |σ| σ σ 1 0 |∇ K v(x + s(y -x))| p dsdγ(x)dγ(y) = diam(σ) p |σ| 1/2 0 T1(s)ds + 1 1/2 T1(s)ds , with T1(s) = σ σ |∇ K v((1 -s)x + sy)| p dγ(x)dγ(y).
We remark that, thanks the change of variable s eqref eqintintadgainLemma4.1to(1 -s) and exchanging x and y, we can write For a given s ∈ (0, 1 2 ), we make the change of variable x → z = (1 -s)x + sy ∈ σ (recall that we assume that σ is convex), and we denote by σy = {z ∈ σ, such that (z -sy)/(1 -s) ∈ σ}.

We then have

T1(s) = 1 (1 -s) d-1 σ σy |∇ K v(z)| p dγ(z)dγ(y) ≤ 2 d-1 σ σ |∇ K v(z)| p dγ(z)dγ(y) = |σ|2 d-1 σ |∇ K v(z)| p dγ(z).
Gathering the above results leads to

σ |Π K v(y) -v a K,σ | p dγ(y) ≤ diam(σ) p 2 d σ |∇ K v(z)| p dγ(z).
For any i = 1, . . . , d, we then apply Lemma A.4 to ∂iΠ K v, which is a polynomial with degree lower or equal to k -1 with respect to x ∈ R d . From (59), we then get

dK,σ ∂iΠ K v p L p (σ) ≤ k p-1 C p,k-1 ∂iΠ K v p L p (D K,σ ) ≤ k p-1 C p,k-1 |∇ K v| p L p (D K,σ ) .
Since diam(σ) ≤ hK ≤ dK,σ by ( 11), the two previous inequalities and the inequality

|∇ K v| L p (σ) ≤ d i=1 ∂iΠ K v L p (σ)
lead to (37).

Let us now show the following result of equivalence of norms, which enables the application of the Discrete Functional Analysis developed in the appendix.

Lemma 4.2: Let D be a DGGD in the sense of Definition 3.2, with underlying polytopal mesh T such that all the faces σ ∈ F are convex. Let ≥ η T (see [START_REF] Ern | A discontinuous Galerkin method with weighted averages for advection-diffusion equations with locally small and anisotropic diffusivity[END_REF]). For any v ∈ XD,0, let us define v ADG,p by

v p ADG,p = K∈M   K |∇ K v(x)| p dx + σ∈F K |σ| d p-1 K,σ [v] a K,σ p   , (38) 
(see (36) for the definition of [v] a K,σ ). Then there exists B > 0, depending only on p, k, and d, such that

∀v ∈ XD,0, v ADG,p ≤ v DG,p ≤ B v ADG,p, (39) 
where v DG,p is defined by (21).

Proof. We first remark on one hand that Jensen's inequality implies, for any K ∈ M and σ ∈ FK ,

|σ||[v] a K,σ | p ≤ σ |[v]K,σ(y)| p dγ(y),
which leads to the left inequality in (39), and on the other hand that, if σ ∈ Fint and Mσ = {K, L}, we have

σ |[v]K,σ(y)| p dγ(y) ≤ 3 p-1 σ | 1 2 (Π K v(y) -v a K,σ )| p dγ(y) + |σ||[v] a K,σ | p + σ | 1 2 (Π L v(y) -v a L,σ )| p dγ(y)| p ,
and if σ ∈ Fext and Mσ = {K}, there holds

σ |[v]K,σ(y)| p dγ(y) ≤ 2 p-1 σ |Π K v(y) -v a K,σ | p dγ(y) + |σ||[v] a K,σ | p ,
We then deduce the right inequality in (39), using (37) in Lemma 4.1.

We can now state and prove that ∇D • L p (Ω) d is a norm on XD,0. Proof. We first remark that, following the proof of Lemma 3.8 with replacing the pointwise jump by the average jump, we obtain the equivalence between ∇D • L p (Ω) d and • ADG,p. The conclusion follows from Lemma 4.2.

We now state the core properties of the ADGGD, as described in Section 2, gathered in the following theorem.

Theorem 4.4 (Properties of ADGGDs): Let (Dm) m∈N be a sequence of ADGGDs in the sense of Definition 3.2, where ( 15)-( 16) is replaced by ( 35)-(36), defined from underlying polytopal meshes (Tm) m∈N such that all the faces σ ∈ Fm are convex. Assume that (η Tm ) m∈N is bounded (see [START_REF] Ern | A discontinuous Galerkin method with weighted averages for advection-diffusion equations with locally small and anisotropic diffusivity[END_REF]), and that hM m → 0 as m → ∞.

Then the sequence (Dm) m∈N is coercive, GD-consistent, limit-conforming and compact in the sense of Definitions 2.2, 2.3, 2.4 and 2.5.

Proof.

• The coercivity property results from Lemma A.7 and from the equivalence of norms stated in Lemma 4.2.

• The compactness property uses in addition Lemma A.6, as in the proof of Lemmas 3.12 and 3.13.

• Lemma 3.14 holds, by replacing the pointwise jump by the average jump.

• Replacing the pointwise jump by the average jump in Lemma 3.15, the whole proof holds except that, instead of T3 = 0, we find

T3 = K∈M σ∈F K σ (Π K v(y) -v a K,σ )ϕ(y) • nK,σdγ(y) = K∈M σ∈F K σ (Π K v(y) -v a K,σ )(ϕ(y) -π 0 K ϕ(y)) • nK,σdγ(y).
We then write, owing to Young's inequality,

|T3| ≤   K∈M σ∈F K 1 d p-1 K,σ σ |Π K v(y) -v a K,σ | p dγ(y)   1 p   K∈M σ∈F K dK,σ ϕ -π 0 K ϕ p L p (σ) d   1 p
.

Similarly again to (26), using dK,σ ≤ hK , we can write

ϕ -π 0 K ϕ L p (σ) d ≤ Ch 1-1/p K ϕ W 1,p (K) d ≤ ChMd -1/p K,σ ϕ W 1,p (K) d ,
where C only depends on Ω, p, d and . The two preceding inequalities, in addition with inequality (37) in Lemma 4.1, allow to conclude (29) with = 1, which is sufficient for the limit conformity of the method. Note that we can nevertheless let k ≥ 1 in the definition of the ADGGD, but this does not increase the order in the conclusion of Lemma 3.15 which remains equal to = 1.

Application to the p-Laplace problem

This section shows, on the example of the p-Laplace equation, the interest of plugging DG methods in the GDM framework.

Convergence and error estimate

We consider the following problem.

-div

(|∇u| p-2 ∇u) = f + div(F ) in Ω, ( 40a 
)
with boundary conditions u = 0 on ∂Ω,

under the following assumption, in addition to p ∈ (1, +∞) and ( 1):

f ∈ L p (Ω) , F ∈ L p (Ω) d . ( 41 
)
Under these hypotheses, the weak solution of ( 40) is the unique function u satisfying:

u ∈ W 1,p 0 (Ω) and, for all v ∈ W 1,p 0 (Ω), Ω |∇u| p-2 ∇u(x) • ∇v(x)dx = Ω f (x)v(x)dx - Ω F (x) • ∇v(x)dx. ( 42 
)
Definition 5.1 (Gradient scheme for the p-Laplace problem): Let D = (XD,0, ΠD, ∇D) be a Gradient Discretisation in the sense of Definition 2.1. The corresponding gradient scheme for Problem (42) is defined by Find u ∈ XD,0 such that, for any v ∈ XD,0,

Ω |∇Du(x)| p-2 ∇Du(x) • ∇Dv(x)dx = Ω f (x)ΠDv(x)dx - Ω F (x) • ∇Dv(x)dx. ( 43 
)
Remark 5.2: Either the DGGD scheme or the ADGGD scheme can be selected for defining the discrete operators used in (43). Note that, for any v ∈ XD,0, the discrete gradient ∇Dv defined by the DGGD scheme ( 15)-( 16) is piecewise polynomial, even for k = 1 in the case d > 1. In this case, the computation of the left hand side of (43) implies the use of quadrature methods, which can be exact if p = 2 or approximate in the general case. On the contrary, using the ADGGD scheme with k = 1, the discrete gradient ∇Dv defined by ( 35)-( 36) is piecewise constant, and the computations are much easier (see the numerical examples in Section 5.3).

The following lemma, which is a consequence of the underlying minimisation problems and is proved in [START_REF] Droniou | The gradient discretisation method[END_REF], establishes the existence and uniqueness of the solutions to (42) and (43), as well as estimates on these solutions.

Lemma 5.3: Under Hypotheses (41), there exists one and only one solution to each of the problems (42) and (43). These solutions moreover satisfy

∇u L p (Ω) d ≤ (CP,p f L p (Ω) + F L p (Ω) d ) 1 p-1 (44) and ∇DuD L p (Ω) d ≤ (CD f L p (Ω) + F L p (Ω) d ) 1 p-1 , (45) 
where CP,p is the continuous Poincaré's constant in W 1,p 0 (Ω), and CD is defined by (2).

Theorem 5.4 (Control of the approximation error): Under Hypotheses (41), let u ∈ W 1,p 0 (Ω) be the solution of Problem (42), let D be a GD in the sense of Definition 2.1, and let uD ∈ XD,0 be the solution to the gradient scheme (43). Then there exists C4 > 0, depending only on p such that:

1. If p ∈ (1, 2], ∇u -∇DuD L p (Ω) d ≤ SD(u) + C4 WD(|∇u| p-2 ∇u + F ) + SD(u) p-1 × SD(u) p + (CD + CP,p) f L p (Ω) + F L p (Ω) d p p-1 2-p 2 . (46) 2. If p ∈ (2, +∞), ∇u -∇DuD L p (Ω) d ≤ SD(u) + C4 WD(|∇u| p-2 ∇u + F ) + SD(u) (CP,p f L p (Ω) + F L p (Ω) d ) 1 p-1 + SD(u) p-2 1 p-1 . (47)
As a consequence of ( 46)-(47), we have the following error estimate:

u -ΠDuD L p (Ω) ≤ SD(u) + CD(SD(u) + ∇u -∇DuD L p (Ω) d ). ( 48 
)
The application of the previous theorem and of Lemmas proved in Section 3.2 allows to state and prove the following corollaries. 

where C only depends on f , β, p and k.

Proof. In this particular case, the continuous solution u satisfies that there exists

C ∈ R with ∀x ∈ [0, 1], |u (x)| p-2 u (x) = C - x 0 f (s)ds, and therefore ∀x ∈ [0, 1], u (x) = C - x 0 f (s)ds 1 p-1 sign(C - x 0 f (s)ds). Then, since 1 p-1 > 1, we get that u ∈ W 1,p 0 (Ω) ∩ W 2,∞ (Ω) and |u | p-2 u ∈ W 1,∞ ( 
R) (extending f by 0 outside Ω). Therefore we apply Lemmas 3.12, 3.14 and 3.15, which, in addition to (46), complete the proof of (49).

Note that this error estimate provides, in the case p = 2, the order 1 for the error estimate of the derivative of the solution, which is confirmed by the numerical results below. But it does not provide the order 2 observed on the error estimate of the solution.

Numerical results in the one-dimensional case

We consider Problem (40a) where d = 1, Ω = (0, 1), f (x) = 1 and F (x) = 0. The analytical solution is then given by

u(x) = p -1 p 1 2 p/(p-1) -x - 1 2 p/(p-1)
.

We consider a mesh with constant space step h = 1/N (with N ∈ N ) and we use Scheme (43) together with the Discontinuous Galerkin gradient discretisation given by Definition 3.2, with k = 1 and β = 1/2 (note that in the one-dimensional case, the two definitions ( 15) and (35) for the discrete gradient are identical, so the DGGD is identical to the ADGGD). We see in Figure 2 that the approximate solution matches quite well the analytical solution for N = 6, considering the three cases p = 1.5, p = 2 and p = 4. The convergence orders which are given in Table 1, are higher than that which could be expected from Corollary 5.6 in the case p ≤ 2. Tab. 1: Errors and rates of convergences, on the functions and the gradient, for the ADGGD scheme applied to the p-Laplace equation in dimension 1. "Order" represents the rate of convergence from the line above to the line below.

(a) p = 1.5 (b) p = 2 (c) p = 4
p = 1.5 p = 2 p = 4 u ∇u u ∇u u ∇u N = 10

Numerical results in the two-dimensional case

We consider Problem (40a) with d = 2, Ω = (0, 1) × (0, 1), f (x) = 2 and F (x) = 0 for all x ∈ Ω. We define xΩ = (1/2, 1/2) and we prescribe non-homogeneous Dirichlet boundary conditions in agreement with the analytical solution

u(x) = p -1 p 1 √ 2 p/(p-1)
-|x -xΩ| p/(p-1) .

We apply Scheme (43) together with the Average Discontinuous Galerkin Gradient Discretisation given by Definition 3.2 and definition (35) for the discrete gradient, letting k = 1 and β = 4/5. The triangular meshes from the family mesh1 of [START_REF] Herbin | Benchmark on discretization schemes for anisotropic diffusion problems on general grids[END_REF] are used for the numerical tests. Fig. 3: Mesh mesh1 1 and exact and ADGGD approximate profiles along the line x 2 = x 1 + 0.01 for the p-Laplace equation (k = 1, β = 0.8, using mesh1 1).

Figure 3 presents the profile of the approximate solution along the line x2 = x1 + 0.01, for the three cases p = 1.5, p = 2 and p = 4, on the coarsest triangular mesh. We notice a rather good match of approximate solution on this line. Table 2 shows that the practical rates of convergence are better than the theoretical ones from Theorem 5.4; however, the rates for the gradient are degraded with respect to the similar test case in dimension d = 1.

6 Application to the heterogeneous Dirichlet problem

Link with the SIPG scheme

Let us prove that the gradient scheme issued from the DGGD defined in Section 3 is identical to the Symmetric Interior Penalty Galerkin (SIPG) method [START_REF] Arnold | An interior penalty finite element method with discontinuous elements[END_REF][START_REF] Arnold | Unified analysis of discontinuous Galerkin methods for elliptic problems[END_REF][START_REF] Epshteyn | Estimation of penalty parameters for symmetric interior penalty Galerkin methods[END_REF] for the following elliptic problem: Tab. 2: Errors and rates of convergences, on the functions and the gradient, for the ADGGD scheme applied to the p-Laplace equation in dimension 2. "Order" represents the rate of convergence from the line above to the line below.

u ∈ H 1 0 (Ω), ∀v ∈ H 1 0 (Ω), Ω Λ(x)∇u(x) • ∇v(x)dx = Ω f (x)v(x)dx, (52) p 
where the assumptions are:

• Λ is a measurable function from Ω to the set of d × d symmetric matrices and there exists λ, λ > 0 such that, for a.e.

x ∈ Ω, Λ(x) has eigenvalues in [λ, λ], (53a) 
• f ∈ L 2 (Ω). (53b) 
Using the DGGD D = (XD,0, ΠD, ∇D) in the sense of Definition 3.2, the gradient scheme for the discretisation of (52) is given by: u ∈ XD,0, ∀v ∈ XD,0,

Ω Λ(x)∇Du(x) • ∇Dv(x)dx = Ω f (x)ΠDv(x)dx. ( 54 
)
It is proved in [START_REF] Eymard | Small-stencil 3d schemes for diffusive flows in porous media[END_REF]Lemma 2.2] that the solution u to (54) satisfies

∇u -∇Du L 2 (Ω) d ≤ 1 λ WD(Λ∇u) + (λ + λ)SD(u) , (55) 
u -ΠDu L 2 (Ω) ≤ 1 λ CDWD(Λ∇u) + (CDλ + λ)SD(u) , (56) 
where CD, SD and WD are defined in Section 2. The error estimate (55)-(56) together with Lemma 3.12 for a bound on CD, estimates (23) on SD(u) and (29) on WD(Λ∇u) yield the high order error estimate of the method.

Let us assume that Λ restricted to K ∈ M is constant in K (this is not needed for the DGGD scheme, but it is necessary for defining the SIPG scheme in a heterogeneous case (see [START_REF] Di Pietro | Mathematical aspects of discontinuous Galerkin methods[END_REF]Assumption 4.43]).

Then the left hand side of (54) can be developed in this particular case, using the change the variable x → (y = Y (x), s = S(x)). Indeed, we first write

D K,σ Λ(x)ψ(S(x)) [u]K,σ(Y (x)) dK,σ nK,σ • ∇ K v(x)dx = σ ΛK [u]K,σ(y) dK,σ nK,σ • 1 β ∇ K v(x(y, s))ψ(s)s d-1 dsdγ(y)dK,σ.
Let us now remark that the function ϕ(s

) = ∇ K v(xK + s(y -xK )) • nK,σ is such that ϕ(s) = ∇ K v(y) • nK,σ + k-1 m=1 pm(y)(1 -s) m ,
where, for m = 1, . . . , k -1, pm(y) is a polynomial with degree less or equal to k -1 with respect to the coordinates of y. Therefore, (17)-(18) imply that

1 β ∇ K v(x(y, s)) • nK,σψ(s)s d-1 ds = ∇ K v(y) • nK,σ. Hence we get D K,σ Λ(x)ψ(S(x)) [u]K,σ(Y (x)) dK,σ nK,σ • ∇ K v(x)dx = σ ΛK [u]K,σ(y)nK,σ • ∇ K v(y)dγ(y),
We also have

D K,σ Λ(x) [u]K,σ(Y (x)) dK,σ nK,σ • [v]K,σ(x) dK,σ nK,σψ(S(x)) 2 dx = ΛK nK,σ • nK,σ dK,σ 1 β ψ(s) 2 s d-1 ds σ [u]K,σ(y)[v]K,σ(y)dγ(y).
Then the bilinear form involved in Gradient Scheme (54) satisfies

Ω Λ(x)∇Du(x) • ∇Dv(x)dx = K∈M K ΛK ∇ K u(x) • ∇ K v(x)dx + σ∈F K σ ΛK [u]K,σ(y)∇ K v(y) + [v]K,σ(y)∇ K u(y) • nK,σdγ (y) 
+ ΛK nK,σ • nK,σ dK,σ 1 β ψ(s) 2 s d-1 ds σ [u]K,σ(y)[v]K,σ (y)dγ(y) 
.

We then recover the SIPG scheme as presented in [START_REF] Epshteyn | Estimation of penalty parameters for symmetric interior penalty Galerkin methods[END_REF] or [START_REF] Di Pietro | Mathematical aspects of discontinuous Galerkin methods[END_REF], the penalty coefficient τσ (term Note that, since the Cauchy-Schwarz inequality implies

1 β ψ(s)s d-1 ds 2 ≤ 1 β ψ(s) 2 s d-1 ds 1 β s d-1 ds,
we get that

1 β ψ(s) 2 s d-1 ds ≥ d 1 -β d ≥ d,
which provides a minimum value for τσ letting β → 0 (such minimum values are given, for example, by [START_REF] Di Pietro | Mathematical aspects of discontinuous Galerkin methods[END_REF]Lemma 4.12]. In our setting, it does not depend on the regularity of the mesh nor on the maximum cardinal of FK (in the DGGD scheme, we don't handle separately the case d = 1 and the cases d > 1). Remark 6.1: The above expressions prescribed for τσ involve the arithmetic averaging of the diffusion tensors in the cells K and L. An interesting point to be studied is the numerical comparison on heterogeneous cases with [START_REF] Ern | A discontinuous Galerkin method with weighted averages for advection-diffusion equations with locally small and anisotropic diffusivity[END_REF][START_REF] Burman | A domain decomposition method for partial differential equations with non-negative form based on interior penalties[END_REF], where the authors introduce an expression involving the harmonic averaging of these diffusion tensors.

Numerical results

The aim of this section is to assess the influence of the parameter β ∈ (0, 1) on the accuracy of the gradient scheme (54) issued from the DGGD for the discretisation of (52). We consider the 1D case Ω = (0, 1), and the polytopal mesh T defined, for N ∈ N and h = 1 N , by M = {](i -1)h, ih[, i = 1, . . . , N }, F = {{ih}, i = 0, . . . , N }, P = {(i - 1 2 )h, i = 1, . . . , N }. We consider one of the test cases studied in [START_REF] Epshteyn | Estimation of penalty parameters for symmetric interior penalty Galerkin methods[END_REF], that is Problem (52) with Λ = Id and u(x) = cos(8πx) -1 (hence f (x) = (8π) 2 cos(8πx)). Considering first degree polynomials, the set XD,0 is a vector space with dimension 2N . In Table 3, the columns "FE" correspond to the conforming P 1 Finite Element solution, we check that the results provided by " [START_REF] Epshteyn | Estimation of penalty parameters for symmetric interior penalty Galerkin methods[END_REF]" with σn = 4.5, which corresponds to β = 1 -1/σn for the interior faces, and β = 1 -2/σn for the exterior faces, are close to ours: Although we did not prove that the linear systems are invertible when β = 0, we Tab. 3: Errors and rates of convergences, on the functions and the gradient, for the DGGD scheme applied to Problem (52). "Order" represents the rate of convergence from the line above to the line below.

note that in practice a solution is obtained but that the broken gradient does not seem to converge. In this very regular case, the L 2 error is the lowest for β = 0.5 but the convergence seems slightly better for β closer to 1, and it tends to the results of the finite element method as β → 1.

Conclusion

The two versions of the DG method included in the GDM framework have the advantages to hold on any polytopal mesh provided that the grid cells are strictly star-shaped, to involve Discrete Functional Analysis results which do not depend on the regularity of the mesh, and to apply on any problem on which the GDM is shown to converge (like the example of the p-Laplace problem taken in this paper). The DGGD scheme, identical to the SIPG method in the case of linear diffusion problems with constant diffusion in the cells, applies to the case of any measurable diffusion field. In the first order case, the ADGGD scheme presents the advantage of yielding simple computations owing to piecewise constant discrete gradients.

A Discrete functional analysis

Since our geometric hypotheses are different from those done in [START_REF] Di Pietro | Discrete functional analysis tools for discontinuous Galerkin methods with application to the incompressible Navier-Stokes equations[END_REF][START_REF] Di Pietro | Mathematical aspects of discontinuous Galerkin methods[END_REF], we now provide the Sobolev inequalities suited to Definition 3.1 of polytopal meshes. The techniques of proof are identical to that of [START_REF] Di Pietro | Mathematical aspects of discontinuous Galerkin methods[END_REF]Theorem 5.3]. In this section, we denote, for ξ ∈ R d by |ξ| = ( d i=1 ξ 2 i ) 1/2 the Euclidean norm of ξ. 

, such that d 1 -β d ≤ ψ ∞ ≤ C 1 -β , (57) 
denoting for short by ψ ∞ the L ∞ ((0, 1)) norm of ψ.

Proof. Thanks to (17), there holds

1 = 1 β ψ(s)s d-1 ds ≤ ψ ∞ 1 β s d-1 ds = ψ ∞ 1 -β d d ,
which proves the left inequality of (57). Writing, for s ∈ (β, 1), ψ(s) = k-1 i=0 ui(1 -s) i , multiplying (17) by u0 and (18) by ui, summing all these equations for i = 1, . . . , k -1, we get

1 β k-1 i=0 ui(1 -s) i ) 2 s d-1 ds = u0.
Making the change of variable t = (1 -s)/(1 -β), we get

1 0 k-1 i=0 ui(1 -β) i t i ) 2 (1 -t(1 -β)) d-1 (1 -β)dt = u0. Owing to 1 -t(1 -β) ≥ 1 -t, we can write (1 -β) 1 0 k-1 i=0 ui(1 -β) i t i 2 (1 -t) d-1 dt ≤ u0. Let α k,d > 0 be the lowest eigenvalue of the Gram matrix M defined by Mij = 1 0 t i+j-2 (1 -t) d-1 dt, i, j = 1, . . . , k. This value is such that ∀(v0, . . . , v k-1 ) ∈ R k , α k,d k-1 i=0 v 2 i ≤ 1 0 k-1 i=0 vit i ) 2 (1 -t) d-1 dt.
We then have, letting vi = ui(1 -β) i for i = 0, . . . , k -1,

(1 -β)α k,d u 2 0 + k-1 i=1 (ui(1 -β) i ) 2 ≤ u0,
yielding on one hand u0 ≤ 1 (1-β)α k,d and therefore on the other hand

k-1 i=0 (ui(1 -β) i ) 2 1/2 ≤ 1 (1 -β)α k,d . 
We then get, using the Cauchy-Schwarz inequality, that

∀s ∈ (β, 1), |ψ(s)| ≤ k-1 i=0 |ui|(1 -β) i ≤ √ k k-1 i=0 (ui(1 -β) i ) 2 1/2 ≤ √ k (1 -β)α k,d ,
hence leading to the right inequality of (57).

The constant Cq,n > 0, introduced by the following definition, is used in the course of this mathematical study for (q, n) = (p, k -1), and (q, n) = ( pd d-p , k) when p ∈]1, d[.

Definition A.2 (Comparison of norms on R n+1 ): Let d ∈ N , n ∈ N and q > 0 be given. We denote by Cq,n > 0 the greatest constant, depending only on n, q and d, such that ∀(a0, . . . , an) ∈ R n+1 ,

1 0 | n i=0 ais i | q s d-1 ds ≥ Cq,n n i=0 |ai| q . ( 58 
)
The following lemma plays an essential role in the study of ∇D • L p (Ω) d .

Lemma A.3: Let n ∈ N and β ∈ (0, 1) be given. Let T be a polytopal mesh in the sense of Definition 3.1. Then there holds ∀v ∈ Pn(R d ), ∀K ∈ M, ∀σ ∈ FK ,

D K,σ |v(x)| p dx ≤ (n + 1) p-1 β d+pn Cp,n D (β) K,σ |v(x)| p dx,
where Cp,n is defined in Definition A.2 with q = p, and where D

K,σ is defined by (19).

Proof.

For K ∈ M and σ ∈ FK , we compute D (β) K,σ |v(x)| p dx with making the change of variable

x → (y = Y (x), s = S(x)), where y ∈ σ and s ∈ (0, β). We then have dx = dK,σs d-1 dγ(y)ds, which leads to

D (β) K,σ |v(x)| p dx = σ β 0 |v(xK + s(y -xK ))| p dK,σs d-1 dsdγ(y).
For a given y ∈ σ, s → v(xK + s(y -xK )) is a polynomial with respect to s with degree lower or equal to n, that we write under the form v(xK + s(y -xK )) = n i=0 ai(y)s i . We then use the notation introduced in Definition A.2, which provides Hence, gathering the above relations, the lemma is proved.

β 0 | n i=0 ai(y)s i | p s d-1 ds = β d 1 0 | n i=0 ai(y)β i t i | p t d-1 dt ≥ β d Cp,n n i=0 |ai(y)β i | p ≥ β d+pn Cp,n n i=0 |ai(y)| p .

This leads to

Lemma A.4: Let n ∈ N be given. Let T be a polytopal mesh in the sense of Definition 3.1. Then, for all q ∈ [1, +∞), there holds ∀v ∈ Pn(R d ), ∀K ∈ M, ∀σ ∈ FK , dK,σ σ |v(y)| q dγ(y) ≤ (n + 1) q-1 Cq,n

D K,σ |v(x)| q dx, (59) 
where Cq,n is defined in Definition A.2 with p = q.

Proof. Let K ∈ M, σ ∈ FK and v ∈ Pn(R d ) be given. For a given y ∈ σ, s → v(xK + s(y -xK )) is a polynomial with respect to s with degree lower or equal to n, that we write under the form v(xK + s(y -xK )) = n i=0 ai(y)s i . We then use the constant introduced in Definition A.2, which provides Gathering the two previous inequalities gives (59).

Since our geometric hypotheses are different from those done in [START_REF] Di Pietro | Discrete functional analysis tools for discontinuous Galerkin methods with application to the incompressible Navier-Stokes equations[END_REF][START_REF] Di Pietro | Mathematical aspects of discontinuous Galerkin methods[END_REF], we now provide the Sobolev inequalities suited to Definition 3.1 of polytopal meshes. The techniques of proof are identical to that of [START_REF] Di Pietro | Mathematical aspects of discontinuous Galerkin methods[END_REF]Theorem 5.3]. 

Proof. We have, for all v ∈ XD,0, thanks again to (16), We now state the discrete Sobolev inequalities result.

ΠDv BV ≤ d K∈M K |∇ K v(x)|dx + σ∈F K σ |[v]K,σ ( 
Lemma A.7 (Discrete Sobolev inequalities): Let D be a DGGD in the sense of Definition 3.2. Then, for all q ∈ [1, pd d-p ] if 1 ≤ p < d and q ∈ [1, +∞[ otherwise, there exists C, depending only on |Ω|, k, p, q and d, such that ∀v ∈ XD,0, ΠDv L q (Ω) ≤ C v DG,p.

Proof. Let us first assume that d = 1. Then we have

∀v ∈ L q (R), v L ∞ (R) ≤ v BV,
which provides (62) owing to Lemma A.6.

We now assume that d ≥ 2.

As in [START_REF] Di Pietro | Discrete functional analysis tools for discontinuous Galerkin methods with application to the incompressible Navier-Stokes equations[END_REF], we follow Nirenberg's technique. First remark that, for all q ∈ [1, d/(d -1)],

∀v ∈ L q (R d ), v L q (R d ) ≤ 1 2d v BV. ( 63 
)
This inequality implies, owing to Lemma A.6, ∀v ∈ XD,0,

ΠDv L q (R d ) ≤ 1 2d ΠDv BV ≤ 1 2 v DG,1. (64) 
We now handle the case 1 < p < d. We define α = p(d-1) d-p > 1 and p = pd d-p . For v ∈ XD,0, we apply (63) to |ΠDv| α and q = d/(d -1). It yields Let us now observe that

K |Π K v(x)| p dx = σ∈F K D K,σ |Π K v(x)| p dx.
We write, as in the proof of Lemma A. Hence we conclude (62) for 1 < p < d.

Let us finally consider the case d ≤ p. We select any real value q1 > p, and we set p1 = dq1/(d + q1). Then we have 1 < p1 < d ≤ p and p 1 = q1. We apply the result proved for 1 < p < d above, which yields (62), replacing p by p1 and p 1 by q1. We then apply Lemma A.5, which allows to bound v DG,p 1 by v DG,p.

)

  Definition 2.4 (Limit-conformity): If D is a gradient discretisation in the sense of Definition 2.1, let p = p p-1
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 1132 Fig. 1: A cell K of a polytopal mesh and notation on D K,σ

Lemma 4 . 3 :

 43 Let D be a ADGGD in the sense of Definition 3.2, where (15)-(16) is replaced by (35)-(36), with underlying polytopal mesh T such that all the faces σ ∈ F are convex. Then ∇D • L p (Ω) d is a norm on XD,0 equivalent to • DG,p.

Corollary 5 . 5 (Corollary 5 . 6 (

 5556 Convergence of schemes issued from DGGD or ADGGD for the p-Laplace problem): Under Hypotheses (41), let (D) m∈N be a sequence of DGGDs (or ADGGDs) such that h Tm tends to 0 as m → ∞ while η Tm remains bounded (the faces of the meshes being convex in the case of ADGGDs). Let u and uD m be the respective solution to Problems (42) and (43) for all m ∈ N. Then ΠD m uD m (resp.∇D m uD m ) converge to u in L p (Ω) (resp. to ∇u in L p (Ω) p ) as m → ∞.Proof. Owing to Theorem 3.11 (for DGGDs) or 4.4 (for ADGGDs), CD m remains bounded, whereas SD m (u) and WD m (|∇u| p-2 ∇u + F ) tend to 0 as m → ∞. Hence (46) or (47) on one hand, and (48) on the other hand, show the conclusion of the corollary. Error estimate of the discontinuous Galerkin methods for the p-Laplace problem): Under Hypotheses (41), let us assume that p ∈ (1, 2], Ω = (0, 1), f ∈ L ∞ (Ω) and F (x) = 0 for all x ∈ Ω. Let D be a DGGD (in this case identical to ADGGD) in the sense of Definition 3.2 where the polytopal mesh of Ω is uniform. Let u and uD be the respective solution to Problems (42) and (43). Then there holds u -ΠDuD L p (Ω) + ∇u -∇DuD L p (Ω) ≤ Ch p-1 M ,

Fig. 2 :

 2 Fig. 2: Exact and DGGD approximate solutions for the p-Laplace equation (k = 1, β = 0.5, N = 6).
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Lemma A. 1 :

 1 Let k, d ∈ N , β ∈ (0, 1) and let ψ : (0, 1) → R be the function such that ψ(s) = 0 on (0, β), ψ |[β,1] ∈ P k-1 ([β, 1]) and that (17)-(18) hold. Then there exists C > 0, only depending on d and k

1 0

 1 |v(x)| p dx ≥ β d+pn Cp,n σ dK,σ( n i=0 |ai(y)| p )dγ(y). On the other hand, we have D K,σ |v(x)| p dx = σ |v(xK + s(y -xK ))| p dK,σs d-1 dsdγ(y) )s i | p dK,σs d-1 dsdγ(y) ≤ (n + 1) p-1 σ ( n i=0 |ai(y)| p )dK,σdγ(y).

  )s i | q s d-1 ds ≥ Cq,n n i=0 |ai(y)| q ,and thereforeD K,σ |v(x)| q dx = dK,σ )s i | q s d-1 dsdγ(y) ≥ Cq,ndK,σ σ ( n i=0 |ai(y)| q )dγ(y).Remarking that y = xK + s(y -xK ) for s = 1, we haveσ |v(y)| q dγ(y) = σ | n i=0ai(y)| q dγ(y) ≤ (n + 1) )| q )dγ(y).

Lemma A. 5 (,

 5 Comparison of DG norms): Let D be a DGGD in the sense of Definition 3.2. Then, for 1 ≤ p ≤ q < +∞, there holds∀v ∈ XD,0, v DG,p ≤ ((d + 1)|Ω|) ]K,σ(y)| p dγ(y) .Thanks to Young's inequality, we have which leads, since σ∈F K dK,σ|σ| = d|K|, to the result.Lemma A.6 (Comparison of DG norm and BV norm):For v ∈ L 1 (R d ), let us define v BV = d i=1 sup{ R d v(x)∂iϕ(x)dx, ϕ ∈ C 1 c (R d ), ϕ ∞ ≤ 1} ∈ (R + ∪ {+∞}).Then, extending ΠDv for all v ∈ XD,0 by 0 outside Ω, we have ∀p ∈ [1, +∞[, ∀v ∈ XD,0, ΠDv BV ≤ d((d + 1)|Ω|)

2 ,σ

 2 K v(x)| α |dx + σ∈F σ |[|v| α ]σ(y)|dγ(y) , denoting by |[w]σ(y)| the absolute value of the jump of w at y ∈ σ. We observe that, for a.e. x ∈ K, we have |∂i|ΠK v(x)| α | = α|Π K v(x)| α-1 |∂iΠ K v(x)| ≤ α|Π K v(x)| α-1 |∇ K v(x)|. On the other hand, we have, for Mσ = {K, L}, |[|v| α ]σ(y)| ≤ 2α(|Π K v(y)| α-1 + |Π L v(y)| α-1 ) |Π K v(y)-Π L v(y)| and, for Mσ = {K}, |[|v| α ]σ(y)| ≤ α|Π K v(y)| α-1 |Π K v(y) -0|.We then have, using notation (16),Ω |ΠDv(x)| p dx d-1 d ≤ α K∈M K |Π K v(x)| α-1 |∇ K v(x)|dx + σ∈F K σ |Π K v(y)| α-1 |[v]K,σ(y)|dγ(y) . Hence we get, from Young's inequality, since (α -1)p = p with p = p/(p -1), Ω |ΠDv(x)| p dx d-1 d ≤ α(T1) 1/p (T2) (p-1)/p , |Π K v(y)| p dγ(y) .

3 ,D 1 0

 31 K,σ |Π K v(x)| p dx = dK,σ σ |Π K v(xK + s(y -xK ))| p s d-1 dsdγ(y).We then apply Lemma A.4, letting n = k and replacing v by Π K v. From (59), we getdK,σ σ |Π K v(y)| p dγ(y) ≤ (k + 1) p -1 C p ,k D K,σ |Π K v(x)| p dx,and concludes the proof thatT2 ≤ (1 + (k + 1) p -1 C p ,k ) Ω |ΠDv(x)| p dx.