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The discontinuous Galerkin gradient discretisation

Robert Eymard∗and Cindy Guichard†

Abstract

The Symmetric Interior Penalty Galerkin (SIPG) method, based on Discontinuous Galerkin approxima-
tions, is shown to be included in the Gradient Discretisation Method (GDM) framework. Therefore, it can
take benefit from the general properties of the GDM, since we prove that it meets the main mathematical
gradient discretisation properties on any kind of polytopal mesh. For this proof, we adapt discrete func-
tional analysis properties to our precise geometrical hypotheses. We illustrate this inheritance property on
the case of the p−Laplace problem. A short numerical study shows the effect of the numerical parameter
included in the scheme.
Keywords: Gradient Discretisation method, Discontinuous Galerkin method, Symmetric Interior Penalty
Galerkin scheme, discrete functional analysis, polytopal meshes

1 Introduction

Discontinuous Galerkin (DG) methods are being more and more studied. They present the advantage to
be suited to elliptic and parabolic problems, while opening the possibility to closely approximate weakly
regular functions on general meshes. Although the convergence of DG methods has been proved on a
variety of problems (see [3] and references therein), note that the stabilisation of DG schemes for elliptic or
parabolic problems has to be specified with respect to the problem, and that there are numerous possible
choices [1].

On the other hand, convergence and error estimate results for a wide variety of numerical methods applied
to some elliptic, parabolic, coupled, linear and nonlinear problems are proved on the generic “gradient
scheme” issued from the Gradient Discretisation Method framework (see [4] and references therein). This
framework is shown to include conforming Galerkin methods with or without mass lumping, nonconforming
P1 finite elements, mixed finite elements and a variety of schemes issued from extensions of the finite volume
method. Convergence and error estimate results are then proved in [4] for the following problems:

1. elliptic problem with constant or unknown dependent diffusion,

2. steady or transient p-Laplace problem and more generally Leray-Lions problem,

3. parabolic problem with constant or unknown dependent diffusion,

4. degenerate parabolic (Richards or Stefan-type) problems,

provided that the Gradient Discretisation is coercive, GD-consistent, limit-conforming, compact and in
some cases with piecewise constant reconstruction (the precise mathematical meaning of these properties
is recalled in Section 2 of this paper). Our aim is to show that, from the DG setting, we can build a Gradient
Discretisation, that we call the Discontinuous Galerkin Gradient Discretisation (DGGD), which satisfies
all these properties on general polytopal meshes in any space dimension. This immediately extends the
range of problems which can be handled by Discontinuous Galerkin methods to all the above problems, as
we show in this paper by considering the case of the p−Laplace problem for which we prove a convergence
and error estimate result (derived from the Gradient Discretisation Method framework).

It is then interesting to remark that the gradient scheme resulting from the DGGD is identical to the
Symmetric Interior Penalty Galerkin scheme in the case of linear diffusion problems, as we detail in section
6.
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2 Main definitions of Gradient Discretisations for homogeneous Dirichlet boundary conditions 2

This paper is organised as follows. Section 2 includes the main definitions for the Gradient Discretisation
Method in the case of homogeneous Dirichlet boundary conditions. In Section 3, we give a gradient
discretisation version of Discontinuous Galerkin schemes suited to polytopal meshes in any space dimension.
We then prove in Section 4 that this gradient discretisation satisfies the core properties which are sufficient
for convergence and error estimates results. We then take an example of application of the preceding
results in Section 5, where the gradient scheme issued from the DGGD method is shown to satisfy a
convergence and error estimate in the case of the p−Laplace problem. We then handle in Section 6 the
case of linear elliptic problems, and we show that the scheme issued from the DGGD is identical to the
Symmetric Interior Penalty Galerkin method. Then a numerical example shows the role the numerical
parameter used in the design of the scheme plays in its accuracy. A short conclusion is then proposed,
before the adaptation of the Sobolev inequalities proved in [2, 3] to our setting and definition of the DG
norm in Appendix A. We then get that the constant involved in these inequalities do not depend on the
regularity factor of the mesh (we only use that the polytopal grid blocks are strictly star-shaped with
respect to some point).

2 Main definitions of Gradient Discretisations for homogeneous Dirichlet
boundary conditions

In this paper, we make the following assumptions: p ∈]1,+∞[ is given and

Ω is an open bounded polytopal connected subset of Rd (d ∈ N?), (1)

where polytopal means that it is the union of a finite number of simplices.
The following definitions, first introduced in [6], are given in [4] for a larger variety of boundary conditions.

Definition 2.1 (GD, homogeneous Dirichlet BCs):
A gradient discretisation D for homogeneous Dirichlet conditions is defined by D = (XD,0,ΠD,∇D), where:

1. the set of discrete unknowns XD,0 is a finite dimensional real vector space,

2. the function reconstruction ΠD : XD,0 → Lp(Ω) is a linear mapping that reconstructs, from an
element of XD,0, a function over Ω,

3. the gradient reconstruction ∇D : XD,0 → Lp(Ω)d is a linear mapping which reconstructs, from an
element of XD,0, a “gradient” (vector-valued function) over Ω. This gradient reconstruction must
be chosen such that ‖∇D · ‖Lp(Ω)d is a norm on XD,0.

Definition 2.2 (Coercivity): If D is a gradient discretisation in the sense of Definition 2.1, define CD as the
norm of the linear mapping ΠD:

CD = max
v∈XD,0\{0}

‖ΠDv‖Lp(Ω)

‖∇Dv‖Lp(Ω)d
. (2)

A sequence (Dm)m∈N of gradient discretisations in the sense of Definition 2.1 is coercive if there exists
CP ∈ R+ such that CDm ≤ CP for all m ∈ N.

The consistency properties indicate how accurately a regular function and its gradient are approximated
by some discrete function and gradient which are reconstructed from the space XD,0.

Definition 2.3 (GD-consistency): If D is a gradient discretisation in the sense of Definition 2.1, define SD :
W 1,p

0 (Ω)→ [0,+∞) by

∀ϕ ∈W 1,p
0 (Ω), SD(ϕ) = min

v∈XD,0

(
‖ΠDv − ϕ‖Lp(Ω) + ‖∇Dv −∇ϕ‖Lp(Ω)d

)
. (3)

A sequence (Dm)m∈N of gradient discretisations in the sense of Definition 2.1 is GD-consistent, or consistent
for short, if

∀ϕ ∈W 1,p
0 (Ω), lim

m→∞
SDm(ϕ) = 0. (4)
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The concept of limit-conformity which we now introduce states that the discrete gradient and divergence
operator satisfy this property asymptotically. Since we shall be dealing with non linear problems, we
introduce, or any q ∈ (1,+∞), the space W q

div(Ω) of functions in (Lq(Ω))d with divergence in Lq(Ω):

W q
div(Ω) = {ϕ ∈ Lq(Ω)d : divϕ ∈ Lq(Ω)}. (5)

Definition 2.4 (Limit-conformity): If D is a gradient discretisation in the sense of Definition 2.1, let p′ = p
p−1

and define WD: W p′

div(Ω)→ [0,+∞) by

∀ϕ ∈W p′

div(Ω), WD(ϕ) = sup
v∈XD,0\{0}

∣∣∣∣∫
Ω

(∇Dv(x) ·ϕ(x) + ΠDv(x)divϕ(x)) dx

∣∣∣∣
‖∇Dv‖Lp(Ω)d

.
(6)

A sequence (Dm)m∈N of gradient discretisations is limit-conforming if

∀ϕ ∈W p′

div(Ω), lim
m→∞

WDm(ϕ) = 0. (7)

Dealing with generic non-linearity often requires additional compactness properties on the scheme.

Definition 2.5 (Compactness): A sequence (Dm)m∈N of gradient discretisations in the sense of Definition
2.1 is compact if, for any sequence um ∈ XDm,0 such that (‖um‖Dm)m∈N is bounded, the sequence
(ΠDmum)m∈N is relatively compact in Lp(Ω).

Definition 2.6 (Piecewise constant reconstruction): Let D = (XD,0,ΠD,∇D) be a gradient discretisation in
the sense of Definition 2.1. The operator ΠD : XD,0 → Lp(Ω) is a piecewise constant reconstruction if there
exists a basis (ei)i∈B of XD,0 and a family of disjoint subsets (Ωi)i∈B of Ω such that ΠDu =

∑
i∈B ui1Ωi

for all u =
∑
i∈B uiei ∈ XD,0, where 1Ωi is the characteristic function of Ωi.

In other words, ΠDu is the piecewise constant function equal to ui on Ωi, for all i ∈ B.

It is shown in [4] that all the considered examples of Gradient Discretisations (as listed in the introduction
of this paper) meet four of the core properties (coercivity, GD-consistency, limit-conformity, compactness),
and that mass-lumped versions satisfy the piece-wise constant reconstruction property. They therefore
satisfy convergence and error estimates for the range of problems passed into review in the introduction
of this paper. The next sections aim to build a Gradient Discretisation with the discontinuous Galerkin
setting, and then to prove that it satisfies the core properties as well.

3 Discontinuous Galerkin Gradient Discretisation (DGGD)

Let us provide a definition for a polytopal mesh of Ω, which is a slightly simplified version of that given
in [4].

Definition 3.1 (Polytopal mesh): A polytopal mesh of Ω is given by T = (M,F ,P), where:

1. M is a finite family of non empty connected polytopal open disjoint subsets of Ω (the “cells”) such
that Ω = ∪K∈MK. For any K ∈M, let ∂K = K \K be the boundary of K, |K| > 0 is the measure
of K and hK denotes the diameter of K, that is the maximum distance between two points of K.

2. F = Fint ∪ Fext is a finite family of disjoint subsets of Ω (the “faces” of the mesh – “edges” in 2D),
such that, for all σ ∈ Fint, σ is a non empty open subset of a hyperplane of Rd included in Ω and,
for all σ ∈ Fext, σ is a non empty open subset of ∂Ω; furthermore, the (d− 1)-dimensional measure
|σ| of any σ ∈ F is stricly positive. We assume that, for all K ∈ M, there exists a subset FK of F
such that ∂K = ∪σ∈FKσ. We then denote by Mσ = {K ∈ M, σ ∈ FK}. We then assume that, for
all σ ∈ F , either Mσ has exactly one element and then σ ∈ Fext or Mσ has exactly two elements
and then σ ∈ Fint. For all K ∈ M and for any σ ∈ FK , we denote by nK,σ the (constant) unit
vector normal to σ outward to K.
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3. P is a family of points of Ω indexed by M, denoted by P = (xK)K∈M, such that for all K ∈ M,
xK ∈ K. We then denote by dK,σ the signed orthogonal distance between xK and σ ∈ FK (see
Figure 1), that is:

dK,σ = (x− xK) · nK,σ, for all x ∈ σ. (8)

We then assume that each cell K ∈ M is strictly star-shaped with respect to xK , that is dK,σ > 0
for all σ ∈ FK . This implies that for all x ∈ K, the line segment [xK ,x] is included in K.

For all K ∈M and σ ∈ FK , we denote by DK,σ the cone with vertex xK and basis σ, that is

DK,σ = {xK + s(y − xK), s ∈]0, 1[, y ∈ σ}. (9)

The size of the polytopal mesh is defined by:

hM = sup{hK ,K ∈M}. (10)

Finally, for a given polytopal mesh T we define a number that measures the regularity properties of the
mesh:

ηT = max

(
{hK
hL

+
hL
hK

, σ ∈ Fint , Mσ = {K,L}} ∪ { hK
dK,σ

,K ∈M, σ ∈ FK}
)
. (11)

dK,σ′

dK,σ′′

nK,σ′

K

nK,σ′′

σ′

σ′′

σ

xK

K(β)

xK

DK,σ

σ
y

x = xK + s(y − xK)

D
(β)
K,σ

Fig. 1: A cell K of a polytopal mesh and notation on DK,σ

Let us now define, using the discontinuous Galerkin framework, a gradient discretisation in the sense of
Definition 2.1.

Definition 3.2: [Discontinuous Galerkin Gradient Discretisation
(DGGD)] Let T = (M,F ,P,V) be a polytopal mesh of Ω in the sense of Definition 3.1. Define the
Discontinuous Galerkin Gradient Discretisation D = (XD,0,ΠD,∇D) by the following.

1. For a given value k ∈ N?, we consider the space Wh, defined by

Wh = {u ∈ Lp(Ω) : u|K ∈ Pk(K) , ∀K ∈M}. (12)

Recall that the dimension of Pk(Rd) is (k+d)!
k!d!

, and therefore the dimension of Wh is equal to
(k+d)!
k!d!

#M. Let (χi)i∈I be a family of piecewise polynomial basis functions of degree k on each
cell, spanning Wh. We set

XD,0 = {v = (vi)i∈I : vi ∈ R for all i ∈ I}. (13)
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2. The operator ΠD is the reconstruction in Lp(Ω) of the elements of XD,0:

∀v ∈ XD,0 , ΠDv =
∑
i∈I

viχi. (14)

In this paper, we denote, for all K ∈ M and v ∈ XD,0, by ΠKv ∈ Pk(K) the piecewise polynomial
defined by ΠDv on K, extended on K, and we denote by ∇Kv = ∇ΠKv.

3. For v ∈ XD,0, for K ∈M and for any σ ∈ FK , we set, for a.e. x ∈ DK,σ,

∇Dv(x) = ∇Kv(x) + ψ(s)
[v]K,σ(y)

dK,σ
nK,σ

letting x = xK + s(y − xK) with s ∈]0, 1], y ∈ σ,
(15)

where (see Figure 1):

• for all K ∈M and all σ ∈ FK , we denote by

∀y ∈ σ, if Mσ = {K,L}, [v]K,σ(y) =
1

2
(ΠLv(y)−ΠKv(y))

else if Mσ = {K}, [v]K,σ(y) = 0−ΠKv(y),
(16)

• Let β ∈]0, 1[ be given. Let ψ : ]0, 1[→ R be the function such that ψ(s) = 0 on ]0, β[,
ψ|[β,1] ∈ Pk−1([β, 1]) and∫ 1

β

ψ(s)sd−1ds = 1, (17a)

∀i = 1, . . . , k − 1,

∫ 1

β

(1− s)iψ(s)sd−1ds = 0. (17b)

In the case k = 1, the function ψ|[β,1] ∈ P0([β, 1]) has the constant value d
1−βd .

For the general case k ∈ N?, considering the basis (1, (1 − s), . . . , (1 − s)k−1) of Pk−1([β, 1]), and writing
the function ψ as ψ(s) =

∑k
i=1 αi(1 − s)

i−1, we see that the matrix A of the linear system issued from
(17), with unknowns (αi)i=1,...,k, is such that

Ai,j =

∫ 1

β

(1− s)i+j−2sd−1ds.

Considering a vector U such that U t = (ui)i=1,...,k, we note that

U tAU =

∫ 1

β

( k∑
i=1

ui(1− s)i−1)2sd−1ds,

which implies that A is symmetric definite positive, hence leading to the existence and uniqueness of ψ
such that (17) holds.

We split DK,σ into D
(β)
K,σ and DK,σ \D(β)

K,σ with

D
(β)
K,σ := {x ∈ DK,σ,x = xK + s(y − xK), s ∈]0, β], y ∈ σ}

and K(β) =
⋃

σ∈FK

D
(β)
K,σ,

(18)

(note that we have |DK,σ \D(β)
K,σ| =

1−βd
d

dK,σ|σ|). Throughout this paper, we denote by s,y the functions
s : DK,σ →]0, 1] and y : DK,σ → σ such that x = xK + s(x)(y(x)− xK), which means

s(x) =
(x− xK) · nK,σ

dK,σ
,

and

y(x) = xK +
x− xK
s(x)

.
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Remark 3.3: The above definition for the discrete gradient ∇Dv can be seen as a regularisation of the
gradient of v in the distribution sense, by replacing the Dirac mass on the faces of the mesh by a function
with integral equal to 1.

Remark 3.4: It is possible to consider βK,σ instead of a constant β, without changing the mathematical
analysis done in this paper.

Remark 3.5 (Piecewise constant reconstruction): One can for example replace ΠD by Π̂D such that, for all

K ∈M, and a.e. x ∈ K, Π̂Dv(x) = 1
|K|

∫
K

ΠKv(x)dx, which provides a piecewise constant reconstruction

in the sense of Definition 2.6, choosing a basis (χi)i∈I such that, for each K ∈ M, there exists i ∈ I with
vi = 1

|K|

∫
K

ΠKv(x)dx for all v ∈ XD,0.

Remark 3.6 (Definition of the jump at the faces of the mesh): Note that, in Definition 3.2, the jump at the
faces is divided by 2 at the interior faces. This allows to keep the same definition for ∇D on all DK,σ in
the two cases, σ ∈ Fint and σ ∈ Fext.

4 Mathematical properties of the DGGD method

We can now state and prove that ‖∇D · ‖Lp(Ω)d is a norm on XD,0.

Lemma 4.1: Let D be a DGGD in the sense of Definition 3.2. Then ‖∇D · ‖Lp(Ω)d is a norm on XD,0.

Proof. It suffices to check that, if v ∈ XD,0 is such that ‖∇Dv‖Lp(Ω)d = 0, then v = 0. Indeed, thanks
to Lemma A.3, we get that ‖v‖DG,p = 0. We can apply Lemma A.7, since in the case d = 1 or d = 2, it
applies without restriction to q = p, and in the case d ≥ 3, there holds p < p? = pd/(d − p). Hence we
deduce that ‖ΠDv‖Lp(Ω) = 0, which concludes the proof.

We now prove the core properties of the DGGD, as described in Section 2, gathered in the following
theorem.

Theorem 4.2 (Properties of DGGDs): Let (Dm)m∈N be a sequence of DGGDs in the sense of Definition 3.2,
defined from underlying polytopal meshes (Tm)m∈N. Assume that (ηTm)m∈N is bounded (see (11)), and
that hMm → 0 as m→∞.
Then the sequence (Dm)m∈N is coercive, GD-consistent, limit-conforming and compact in the sense of
Definitions 2.2, 2.3, 2.4 and 2.5.

Proof. The limit-conformity, coercivity, GD-consistency and compactness are obtained by applying
Lemmas 4.7, 4.3, 4.5, 4.4.

Let us now prove each of the lemmas involved in the proof of the above theorem.

Lemma 4.3 (Coercivity): Let D be a DGGD in the sense of Definition 3.2. Let CD ≥ 0 be defined by (2).
Then there exists CP depending only on |Ω|, β, p, k and d such that CP ≥ CD, which means that any
sequence (D)m∈N is coercive in the sense of Definition 2.2.

Proof. We again apply Lemma A.7, since we noticed in the proof of Lemma 4.1 that it applies to the
case q = p.

Lemma 4.4 (Compactness): Let (D)m∈N be a sequence of DGGDs in the sense of Definition 3.2. Then,
for all (vm)m∈N such that, for all m ∈ N, vm ∈ XDm,0 and such that the sequence (‖∇Dmvm‖Lp(Ω))m∈N
is bounded, the sequence (ΠDmvm)m∈N is relatively compact in Lp(Ω), which means that any sequence
(Dm)m∈N is compact in the sense of Definition 2.5.
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Proof. We first extend ΠDmvm by 0 in Rd \ Ω. We then have, for all m ∈ N, applying Lemma A.6,

∀ξ ∈ Rd, ‖ΠDmvm(.+ ξ)−ΠDmvm‖L1(Rd) ≤ (

d∑
i=1

|ξi|)‖ΠDmvm‖BV

≤ (

d∑
i=1

|ξi|)Cd((d+ 1)|Ω|)
p−1
p ‖ΠDmvm‖DG,p.

This implies that the sequence (ΠDmvm)m∈N is relatively compact in L1(Rd). Thanks to Lemma A.7,
the sequence (ΠDmvm)m∈N is bounded in Lq(Rd) for some q > p. We thus deduce that the sequence
(ΠDmvm)m∈N is relatively compact in Lp(Rd), which concludes the proof of the lemma.

Lemma 4.5 (GD-consistency): Let D be a DGGD in the sense of Definition 3.2. Take % ≥ ηT (see (11)).
Then there exists C1 > 0, depending only on on |Ω|, β, p, k, d and %, such that

∀ϕ ∈ Ck+1(Ω) ∩W 1,p
0 (Ω) , SD(ϕ) ≤ C1h

k
M ‖ϕ‖k+1,∞ , (19)

where SD is defined by (3).
As a consequence, any sequence (D)m∈N of DGGDs such that hTm tends to 0 as m→∞ while θTm + ηTm
remains bounded is GD-consistent in the sense of Definition 2.3.

Proof.
In this proof, we denote by Ci various values depending only on |Ω|, β, p, k, d and %. Let ϕ ∈ Ck+1(Ω) ∩
W 1,p

0 (Ω). For any x ∈ Ω, y ∈ Rd and m = 1 . . . , k, we denote by

Dmϕ(x) · ym =
∑

1≤i1,...,im≤d

yi1 . . . yim∂
m
i1...imϕ(x).

We consider v ∈ XD,0 defined by

∀K ∈M, ∀x ∈ K, ΠKv(x) = ϕ(xK) +

k∑
m=1

1

m!
Dmϕ(xK) · (x− xK)m.

Thanks to results on Taylor expansions, for any x ∈ K, there holds

|ϕ(x)−ΠKv(x)| ≤ hk+1
K ‖ϕ‖k+1,∞ .

which provides ‖ϕ− ΠDv‖Lp(Ω) ≤ hk+1
K ‖ϕ‖k+1,∞ (|Ω|)1/p. Let σ ∈ F with Mσ = {K,L}, and let y ∈ σ.

Since y ∈ K, we get
|ϕ(y)−ΠKv(y)| ≤ hk+1

K ‖ϕ‖k+1,∞ .

This leads to the existence of C2 ≥ 1 depending only on % such that

|[v]K,σ(y)| ≤ (hk+1
K + hk+1

L ) ‖ϕ‖k+1,∞ ≤ C2h
k+1
K ‖ϕ‖k+1,∞ .

In the case Mσ = {K}, we get

|[v]K,σ(y)| ≤ hk+1
K ‖ϕ‖k+1,∞ ≤ C2h

k+1
K ‖ϕ‖k+1,∞ .

Morever, we have
|∇ϕ(x)−∇Kv(x)| ≤ hkK ‖ϕ‖k+1,∞ .

This provides, considering x ∈ DK,σ, the existence of C3 depending only on %, β, d and k such that

|∇ϕ(x)−∇Dv(x)| ≤ hkK ‖ϕ‖k+1,∞ +
C2h

k+1
K ‖ϕ‖k+1,∞

dK,σ
|ψ(s(x))| ≤ C3h

k
K ‖ϕ‖k+1,∞ .
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Gathering the above inequalities shows that

‖∇ϕ−∇Dv‖Lp(Ω)d ≤ C3 ‖ϕ‖k+1,∞ h
k
M(|Ω|)1/p,

which proves (19).

We then show that any sequence (D)m∈N of DGGDs such that hTm tends to 0 as m→∞ while θTm , ηTm
remain bounded is GD-consistent in the sense of Definition 2.3, by applying [6, Lemma 2.4] since Ck+1(Ω)∩
W 1,p

0 (Ω) is dense in W 1,p
0 (Ω).

We now provide an improved estimate on SD.

Lemma 4.6 (Estimate on SD in the W 2,p case): Let D be a DGGD in the sense of Definition 3.2. Assume
p > d/2 and take % ≥ ηT (see (11)). Then there exists C4 > 0, depending only on on |Ω|, β, p, k, d and %,
such that

∀ϕ ∈W 2,p(Ω) ∩W 1,p
0 (Ω) , SD(ϕ) ≤ C4hM ‖ϕ‖W2,p(Ω) ,

where SD is defined by (3).

Proof. In this proof, we again denote by Ci various increasing functions with respect to θT and ηT, and
also depending on |Ω|, β, p, k and d. For a given ϕ ∈W 2,p(Ω) ∩W 1,p

0 (Ω) and for any K ∈M, we denote
by ΠKv ∈ Pk(Rd) (since k ≥ 1) the function Aϕ : K → R provided by Lemma A.10 letting V = K, such
that (56) and (57) hold. From (56), raising to the power p and summing on K ∈M, we get the existence
of C5 such that

‖ϕ−ΠDv‖Lp(Ω) ≤ C5h
2
M
∥∥ |D2ϕ|

∥∥
Lp(Ω)

.

Owing to Hölder’s inequality, we have, for K ∈M and σ ∈ FK , thanks to x = xK + s(y − xK),∫
DK,σ

|∇ϕ(x)−∇Dv(x)|pdx ≤

2p−1
(∫

DK,σ

|∇ϕ(x)−∇Kv(x)|pdx +

∫
DK,σ\D

(β)
K,σ

| [v]K,σ(y(x))

dK,σ
ψ(s(x))|pdx

)
,

which gives, by summing on σ ∈ FK ,∫
K

|∇ϕ(x)−∇Dv(x)|pdx ≤ 2p−1

∫
K

|∇ϕ(x)−∇Kv(x)|pdx

+
∑
σ∈FK

(
2

dK,σ

)p−1 ∫
σ

|[v]K,σ(y)|pdγ(y)

∫ 1

β

|ψ(s)|psd−1ds. (20)

Let σ ∈ F with Mσ = {K,L}, and let y ∈ σ. Since y ∈ K, we get from (56)

|ϕ(y)−ΠKv(y)| ≤ C15h
2− d

p

K

∥∥ |D2ϕ|
∥∥
Lp(K)

,

and therefore

|[v]K,σ(y)| ≤ C15(h
2− d

p

K

∥∥ |D2ϕ|
∥∥
Lp(K)

+ h
2− d

p

L

∥∥ |D2ϕ|
∥∥
Lp(L)

).

In the case Mσ = {K}, we get

|[v]K,σ(y)| ≤ C15h
2− d

p

K

∥∥ |D2ϕ|
∥∥
Lp(K)

.

This leads to the existence of C6 such that

∑
σ∈FK

(
2

dK,σ

)p−1 ∫
σ

|[v]K,σ(y)|pdγ(y)

∫ 1

β

|ψ(s)|psd−1ds ≤

C6h
p
M

(∥∥ |D2ϕ|
∥∥p
Lp(K)

+
∑

σ∈FK ,Mσ={K,L}

∥∥ |D2ϕ|
∥∥p
Lp(L)

)
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Remarking that θT includes a bound on the number of neighbors of any K ∈M, we obtain that

∑
K∈M

∑
σ∈FK

(
2

dK,σ

)p−1 ∫
σ

|[v]K,σ(y)|pdγ(y)

∫ 1

β

|ψ(s)|psd−1ds ≤

C6h
p
M(θT + 1)

∥∥ |D2ϕ|
∥∥p
Lp(Ω)

.

Reporting the above inequality in (20) and using (57), we get the existence of C7 such that∫
Ω

|∇ϕ(x)−∇Dv(x)|pdx ≤ C7h
p
M
∥∥ |D2ϕ|

∥∥p
Lp(Ω)

(21)

which concludes the proof of the lemma.

Lemma 4.7 (Limit conformity): Let D be a DGGD in the sense of Definition 3.2. Then, denoting by p′ =
p
p−1

, there exists C8, depending only on |Ω|, β, p, k and d, such that

∀ϕ ∈W 1,p′(Ω)d, |WD(ϕ)| ≤ C8 ‖ϕ‖W1,p′ (Ω)dhM, (22)

where WD is defined by (6).
As a consequence, any sequence (D)m∈N of DGGDs in the sense of Definition 3.2 such that hTm tends to
0 as m→∞ is limit-conforming in the sense of Definition 2.4.

Proof. Let ϕ ∈ C∞(Rd)d be given. We compute, for v ∈ XD,0,∫
Ω

(∇Dv(x) ·ϕ(x) + ΠDv(x)divϕ(x)) dx =
∑
K∈M

∫
K

(∇Kv(x) ·ϕ(x) + ΠKv(x)divϕ(x)) dx

+
∑
K∈M

∑
σ∈FK

∫
DK,σ\D

(β)
K,σ

[v]K,σ(y(x))

dK,σ
ψ(s(x))nK,σ ·ϕ(x)dx

=
∑
K∈M

∑
σ∈FK

(∫
σ

ΠKv(y)nK,σ ·ϕ(y)dγ(y) +

∫
DK,σ\D

(β)
K,σ

[v]K,σ(y(x))

dK,σ
ψ(s(x))nK,σ ·ϕ(x)dx

)
.

Using Definition (16) of [v]K,σ(y) which includes a factor 1
2

on interior faces and nK,σ +nL,σ = 0 ifMσ =
{K,L}, we get ΠKv(y)nK,σ + ΠLv(y)nL,σ = −[v]K,σ(y)nK,σ − [v]L,σ(y)nL,σ, as well as ΠKv(y)nK,σ =
−[v]K,σ(y)nK,σ in the case of exterior faces with Mσ = {K}. Therefore we can write∫

Ω

(∇Dv(x) ·ϕ(x) + ΠDv(x)divϕ(x)) dx

=
∑
K∈M

∑
σ∈FK

(
−
∫
σ

[v]K,σ(y)nK,σ ·ϕ(y)dγ(y) +

∫
DK,σ\D

(β)
K,σ

[v]K,σ(y(x))

dK,σ
ψ(s(x))nK,σ ·ϕ(x)dx

)
.

Owing to the change of variable x = xK + s(y − xK), we obtain∫
Ω

(∇Dv(x) ·ϕ(x) + ΠDv(x)divϕ(x)) dx

=
∑
K∈M

∑
σ∈FK

∫
σ

[v]K,σ(y)

dK,σ

∫ 1

β

(ϕ(xK + s(y − xK))−ϕ(y)) · nK,σdK,σψ(s)sd−1dsdγ(y).
(23)

This provides, thanks to Young’s inequality, the existence of C9 depending only on β, d and k, such that

|
∫

Ω

(∇Dv(x) ·ϕ(x) + ΠDv(x)divϕ(x)) dx| ≤ C9(
∑
K∈M

∑
σ∈FK

AK,σ)1/p(
∑
K∈M

∑
σ∈FK

BK,σ)1/p′ ,

with
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AK,σ =
1

dp−1
K,σ

∫
σ

(
[v]K,σ(y)

)p
dγ(y), (24)

BK,σ =

∫
σ

∫ 1

β

|(ϕ(xK + s(y − xK))−ϕ(y))|p
′
dK,σs

d−1dsdγ(y).

Let us denote by ϕi, for i = 1, . . . , d the components of ϕ. We have BK,σ ≤ d1/(p−1)∑d
i=1 BK,σ,i with

BK,σ,i =

∫
σ

∫ 1

β

|ϕi(xK + s(y − xK))− ϕi(y)|p
′
dK,σs

d−1dsdγ(y).

We have

BK,σ,i =

∫
σ

∫ 1

β

∣∣∣ ∫ 1

s

∇ϕi(xK + t(y − xK)) · (y − xK)dt
∣∣∣p′dK,σsd−1dsdγ(y),

which leads to

BK,σ,i ≤
∫
σ

∫ 1

β

∣∣∣ ∫ 1

s

∇ϕi(xK + t(y − xK)) · (y − xK)dt
∣∣∣p′dK,σsd−1dsdγ(y).

Since we have, for any s ∈ [β, 1],∣∣∣ ∫ 1

s

∇ϕi(xK + t(y − xK)) · (y − xK)dt
∣∣∣p′ ≤ hp′K ∫ 1

β

|∇ϕi(xK + t(y − xK))|p
′
dt,

we get

BK,σ,i ≤ hp
′

K

∫
σ

∫ 1

β

|∇ϕi(xK + t(y − xK))|p
′

dt dK,σdγ(y),

which provides

BK,σ,i ≤
hp
′

K

βd−1

∫
σ

∫ 1

β

|∇ϕi(xK + t(y − xK))|p
′
td−1 dt dK,σdγ(y),

and the change of variable x = xK + t(y − xK) gives

BK,σ,i ≤
hp
′

K

βd−1

∫
DK,σ\D

(β)
K,σ

|∇ϕi(x)|p
′
dx.

Since Definition (42) of the discontinuous Galerkin norm implies∑
K∈M

∑
σ∈FK

AK,σ ≤ ‖v‖pDG,p, (25)

this concludes the proof of (22) for ϕ ∈ C∞(Rd)d. We then conclude (22) by density of C∞(Rd)d in

W 1,p′(Ω)d since Ω is locally star-shaped.

Then, considering a sequence (D)m∈N of DGGDs in the sense of Definition 3.2 such that hTm tends to 0
as m → ∞, we get that it is limit-conforming in the sense of Definition 2.4 by density and applying [6,
Lemma 2.4] (this is possible thanks to Lemma 4.3 which states that (D)m∈N is coercive).

Lemma 4.8 (Higher order estimate for WD(ϕ)): Let D be a DGGD in the sense of Definition 3.2. Then
there exists C10, depending only on |Ω|, β, p, k and d, such that

∀ϕ ∈ Ck(Ω)d, |WD(ϕ)| ≤ C10 h
k
D ‖ϕ‖k,∞ , (26)

where WD is defined by (6).
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Proof. Let ϕ ∈ Ck(Ω)d. For any K ∈ M, σ ∈ FK , x ∈ DK,σ with x = xK + s(y − xK) with s ∈]0, 1]
and y ∈ σ, let us denote by ϕ(s) = (ϕ(xK + s(y − xK)) − ϕ(y)) · nK,σ. Thanks to a Taylor expansion,
we get that there exists θs ∈ [s, 1] such that

ϕ(s) = ϕ(1) +

k−1∑
m=1

1

m!
ϕ(m)(1)(s− 1)m +

1

k!
ϕ(k)(θs)(s− 1)k.

We then remark that ϕ(1) = 0. Owing to (17), we have
∫ 1

β
(s − 1)mψ(s)sd−1ds = 0 for m = 1, . . . , k − 1.

Using
|ϕ(k)(θs)(s− 1)k| ≤ hkK ‖ϕ‖k,∞ ,

we get from (23) that

|
∫

Ω

(∇Dv(x) ·ϕ(x) + ΠDv(x)divϕ(x)) dx|

≤
∑
K∈M

∑
σ∈FK

∫
σ

|[v]K,σ(y)|
dK,σ

hkK ‖ϕ‖k,∞ dK,σ
∫ 1

β

|ψ(s)|sd−1dsdγ(y).

As in the proof of Lemma 4.7, we get, thanks to Young’s inequality, the existence of C11 depending only
on β, d and k, such that

|
∫

Ω

(∇Dv(x) ·ϕ(x) + ΠDv(x)divϕ(x)) dx|

≤ hkM ‖ϕ‖k,∞ C11(
∑
K∈M

∑
σ∈FK

AK,σ)1/p(
∑
K∈M

∑
σ∈FK

dK,σ|σ|)1/p′ ,

withAK,σ defined by (24) as in the proof of Lemma 4.7. The conclusion follows from
∑
K∈M

∑
σ∈FK

dK,σ|σ| =
d|Ω| and from (25), which holds as well.

Note that the application of Lemmas 4.6 and 4.7 to the error estimate [6, Lemma 2.2, eqns. (6) and (7)]
provides an error in hM in the case of the linear elliptic problem (37) under Hypotheses (38) in one, two
or three space dimensions, when the exact solution belongs to H2(Ω).

5 Convergence and error estimate, p−Laplace problem

This section shows, on the example of the p-Laplace equation, the interest of plugging the DG method in
the GDM framework. We consider the following problem.

−div(|∇u|p−2∇u) = f + div(F ) in Ω, (27a)

with boundary conditions
u = 0 on ∂Ω, (27b)

under the following assumption, in addition to p ∈]1,+∞[ and (1):

f ∈ Lp
′
(Ω) , F ∈ Lp

′
(Ω)d. (28)

Under these hypotheses, the weak solution of (27) is the unique function u satisfying:

u ∈W 1,p
0 (Ω) and, for all v ∈W 1,p

0 (Ω),∫
Ω

|∇u|p−2∇u(x) · ∇v(x)dx =

∫
Ω

f(x)v(x)dx−
∫

Ω

F (x) · ∇v(x)dx.
(29)
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Definition 5.1 (Gradient scheme for the p-Laplace problem): Let D = (XD,0,ΠD,∇D) be a Gradient Dis-
cretisation in the sense of Definition 2.1. The corresponding gradient scheme for Problem (29) is defined
by

Find u ∈ XD,0 such that, for any v ∈ XD,0,∫
Ω

|∇Du(x)|p−2∇Du(x) · ∇Dv(x)dx =

∫
Ω

f(x)ΠDv(x)dx−
∫

Ω

F (x) · ∇Dv(x)dx.
(30)

The following lemma, which is a consequence of the underlying minimisation problems and is proved in
[4], establishes the existence and uniqueness of the solutions to (29) and (30), as well as estimates on these
solutions.

Lemma 5.2: Under Hypotheses (28), there exists one and only one solution to each of the problems (29)
and (30). These solutions moreover satisfy

‖∇u‖Lp(Ω)d ≤ (CP,p‖f‖Lp′ (Ω) + ‖F ‖Lp′ (Ω)d)
1
p−1 (31)

and
‖∇DuD‖Lp(Ω)d ≤ (CD‖f‖Lp′ (Ω) + ‖F ‖Lp′ (Ω)d)

1
p−1 , (32)

where CP,p is the continuous Poincaré’s constant in W 1,p
0 (Ω), and CD is defined by (2).

Theorem 5.3 (Control of the approximation error): Under Hypotheses (28), let u ∈W 1,p
0 (Ω) be the solution

of Problem (29), let D be a GD in the sense of Definition 2.1, and let uD ∈ XD,0 be the solution to the
gradient scheme (30). Then there exists C12 > 0, depending only on p such that:

1. If p ∈ (1, 2],

‖∇u−∇DuD‖Lp(Ω)d ≤ SD(u) + C12

[
WD(|∇u|p−2∇u+ F ) + SD(u)p−1]

×
[
SD(u)p +

[
(CD + CP,p)‖f‖Lp′ (Ω) + ‖F ‖Lp′ (Ω)d

] p
p−1

] 2−p
2
. (33)

2. If p ∈ (2,+∞),

‖∇u−∇DuD‖Lp(Ω)d ≤ SD(u) + C12

[
WD(|∇u|p−2∇u+ F )

+ SD(u)
[
(CP,p‖f‖Lp′ (Ω) + ‖F ‖Lp′ (Ω)d)

1
p−1 + SD(u)

]p−2
] 1
p−1

. (34)

As a consequence of (33)–(34), we have the following error estimate:

‖u−ΠDuD‖Lp(Ω) ≤ SD(u) + CD(SD(u) + ‖∇u−∇DuD‖Lp(Ω)d). (35)

The application of the previous theorem and of Lemmas proved in Section 4 allows to state and prove the
following corollaries.

Corollary 5.4 (Convergence of the discontinuous Galerkin method for the p−Laplace problem):
Under Hypotheses (28), let (D)m∈N be a sequence of DGGDs such that hTm tends to 0 as m → ∞ while
ηTm remains bounded. Let u and uDm be the respective solution to Problems (29) and (30) for all m ∈ N.
Then ΠDmuDm (resp. ∇DmuDm ) converge to u in Lp(Ω) (resp. to ∇u in Lp(Ω)p) as m→∞.

Proof. Owing to Lemma 4.3, CDm remains bounded, whereas Lemmas 4.5 and 4.7 prove that SDm(u)
and WDm(|∇u|p−2∇u+ F ) tend to 0 as m→∞. Hence (33) or (34) on one hand, and (35) on the other
hand, show the conclusion of the corollary.

Corollary 5.5 (Error estimate of the discontinuous Galerkin method for the p−Laplace problem):
Under Hypotheses (28), let us assume that p ∈]1, 2], Ω =]0, 1[, f ∈ L∞(Ω) and F (x) = 0 for all x ∈ Ω. Let
D be a DGGD in the sense of Definition 3.2 where the polytopal mesh of Ω is uniform. Let u and uD be
the respective solution to Problems (29) and (30). Then there holds

‖u−ΠDuD‖Lp(Ω) + ‖∇u−∇DuD‖Lp(Ω) ≤ Chp−1
M , (36)

where C only depends on f , β, p and k.
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Proof. In this particular case, the continuous solution u satisfies that there exists C ∈ R with

∀x ∈ [0, 1], |u′(x)|p−2u′(x) = C −
∫ x

0

f(s)ds,

and therefore

∀x ∈ [0, 1], u′(x) =
∣∣C − ∫ x

0

f(s)ds
∣∣ 1
p−1 sign(C −

∫ x

0

f(s)ds).

Then, since 1
p−1

> 1, we get that u ∈ W 1,p
0 (Ω) ∩W 2,∞(Ω) and |u′|p−2u′ ∈ W 1,∞(R) (extending f by 0

outside Ω). Therefore we apply Lemmas 4.3, 4.6 and 4.7, which, in addition to (33), complete the proof of
(36).

Note that this error estimate provides, in the case p = 2, the order 1 for the error estimate of the derivative
of the solution, which is confirmed by the numerical results below. But it does not provide the order 2
observed on the error estimate of the solution.

6 The case of a linear elliptic problem

6.1 Link with the SIPG scheme

Let us prove that the gradient scheme issued from the DGGD defined in Section 3 is identical to the
Symmetric Interior Penalty Galerkin (SIPG) method [5] for the following elliptic problem:

u ∈ H1
0 (Ω), ∀v ∈ H1

0 (Ω),

∫
Ω

Λ(x)∇u(x) · ∇v(x)dx =

∫
Ω

f(x)v(x)dx, (37)

where the assumptions are:

• Λ is a measurable function from Ω to the set of d× d

symmetric matrices and there exists λ, λ > 0 such that,

for a.e. x ∈ Ω, Λ(x) has eigenvalues in [λ, λ], (38a)

• f ∈ L2(Ω). (38b)

Using the DGGD D = (XD,0,ΠD,∇D) in the sense of Definition 3.2, the gradient scheme for the discreti-
sation of (37) is given by:

u ∈ XD,0, ∀v ∈ XD,0,
∫

Ω

Λ(x)∇Du(x) · ∇Dv(x)dx =

∫
Ω

f(x)ΠDv(x)dx. (39)

Let us assume that Λ restricted toK ∈M is constant inK. Then the left hand side of (39) can be computed
in this particular case, changing the variable x ∈ DK,σ in (y, s) ∈ σ×]0, 1[ using x = xK + s(y − xK) (we
then have dx = dK,σs

d−1dγ(y)ds). Indeed, we can first write∫
DK,σ

Λ(x)ψ(s(x))
[u]K,σ(y(x))

dK,σ
nK,σ · ∇Kv(x)dx

=

∫
σ

ΛK
[u]K,σ(y)

dK,σ
nK,σ ·

∫ 1

β

∇Kv(x(y, s))ψ(s)sd−1dsdγ(y)dK,σ.

Let us now remark that the function ϕ(s) = ∇Kv(xK + s(y − xK)) · nK,σ is such that

ϕ(s) = ∇Kv(y) · nK,σ +

k−1∑
m=1

pm(y)(1− s)m,
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where, for m = 1, . . . , k − 1, pm(y) is a polynomial with degree less or equal to k − 1 with respect to the
coordinates of y. Therefore, (17) implies that

∫ 1

β
∇Kv(x(y, s)) ·nK,σψ(s)sd−1ds = ∇Kv(y) ·nK,σ. Hence

we get ∫
DK,σ

Λ(x)ψ(s(x))
[u]K,σ(y(x))

dK,σ
nK,σ · ∇Kv(x)dx

=

∫
σ

ΛK [u]K,σ(y)nK,σ · ∇Kv(y)dγ(y),

We also have ∫
DK,σ

Λ(x)
[u]K,σ(y(x))

dK,σ
nK,σ ·

[v]K,σ(x)

dK,σ
nK,σψ(s(x))2dx

=
ΛKnK,σ · nK,σ

dK,σ

∫ 1

β

ψ(s)2sd−1ds

∫
σ

[u]K,σ(y)[v]K,σ(y)dγ(y).

Then the bilinear form involved in Gradient Scheme (39) satisfies∫
Ω

Λ(x)∇Du(x) · ∇Dv(x)dx

=
∑
K∈M

(∫
K

ΛK∇Ku(x) · ∇Kv(x)dx

+
∑
σ∈FK

(∫
σ

ΛK
(
[u]K,σ(y)∇Kv(y) + [v]K,σ(y)∇Ku(y)

)
· nK,σdγ(y)

+
ΛKnK,σ · nK,σ

dK,σ

∫ 1

β

ψ(s)2sd−1ds

∫
σ

[u]K,σ(y)[v]K,σ(y)dγ(y)

))
.

We then recover the SIPG scheme as presented in [5] or [3], the penalty coefficient τσ (term σe
|e|β0 of [5,

eqn. (11)], term η
hF

of [3, eqn. (4.12)]) being equal, in the preceding relation, to

τσ =
1

4

∫ 1

β

ψ(s)2sd−1ds
(ΛKnK,σ · nK,σ

dK,σ
+

ΛLnL,σ · nL,σ
dL,σ

)
if Mσ = {K,L},

and

τσ =

∫ 1

β

ψ(s)2sd−1ds
ΛKnK,σ · nK,σ

dK,σ
if Mσ = {K}.

Note that, since the Cauchy-Schwarz inequality implies

( ∫ 1

β

ψ(s)sd−1ds
)2 ≤ ∫ 1

β

ψ(s)2sd−1ds

∫ 1

β

sd−1ds,

we get that ∫ 1

β

ψ(s)2sd−1ds ≥ d

1− βd ≥ d,

which provides a minimum value for τσ letting β → 0 (such minimum values are given, for example, by
[3, Lemma 4.12]. In our setting, it does not depend on the regularity of the mesh nor on the maximum
cardinal of FK (in the DGGD scheme, we don’t handle separately the case d = 1 and the cases d > 1).

6.2 Numerical results

The aim of this section is to assess the influence of the parameter β ∈]0, 1[ on the accuracy of the gradient
scheme (39) issued from the DGGD for the discretisation of (37). We consider the 1D case Ω =]0, 1[,
and the polytopal mesh T defined, for N ∈ N? and h = 1

N
, by M = {](i − 1)h, ih[, i = 1, . . . , N},

F = {{ih}, i = 0, . . . , N}, P = {(i− 1
2
)h, i = 1, . . . , N}. We consider one of the test cases studied in [5],

that is Problem (37) with Λ = Id and u(x) = cos(8πx) − 1 (hence f(x) = (8π)2 cos(8πx)). Considering
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first degree polynomials, the set XD,0 is a vector space with dimension 2N . In the following tables (where
“order” is the convergence order with respect to the size of the mesh), the columns “FE” correspond to
the conforming P1 Finite Element solution, and we check that the results provided by “[5]” with σn = 4.5,
which corresponds to β = 1− 1/σn for the interior faces, and β = 1− 2/σn for the exterior faces, are close
to ours:

N\β 0 0.5 0.9 0.99 FE [5]

10 0.496 0.241 0.347 0.394 0.399 0.247

order 1.438 1.529 1.734 1.843 1.855

20 0.183 0.083 0.104 0.110 0.110 0.083

order 1.092 1.706 1.909 1.959 1.964

40 0.086 0.026 0.028 0.028 0.028 0.024

order 1.013 1.894 1.973 1.989 1.991

80 0.043 0.007 0.007 0.007 0.007

order 0.999 1.967 1.992 1.997 1.998

160 0.021 0.002 0.002 0.002 0.002

N\β 0 0.5 0.9 0.99 FE [5]

10 13.233 11.533 11.360 11.349 11.348 11.777

order 0.172 0.781 0.862 0.863 0.863

20 11.743 6.714 6.251 6.240 6.240 6.421

order 0.010 1.004 0.966 0.965 0.965

40 11.666 3.348 3.199 3.197 3.197 3.253

order -0.008 1.034 0.992 0.991 0.991

80 11.728 1.635 1.609 1.608 1.608

order -0.007 1.014 0.998 0.998 0.998

160 11.781 0.810 0.805 0.805 0.805

L2 error of the solution L2 error of the broken gradient

Although we did not prove that the linear systems are invertible when β = 0, we note that in practice a
solution is obtained but that the broken gradient does not seem to converge. In this very regular case, the
L2 error is the lowest for β = 0.5 but the convergence seems slightly better for β closer to 1, and it tends
to the results of the finite element method as β → 1.

7 Conclusion

The version of the DG method included in the GDM framework has the advantages to be samely defined
for d = 1 and d > 1, to hold on any polytopal mesh provided that the grid block are strictly star-shaped,
to involve Discrete Functional Analysis results which do not depend on the regularity of the mesh, and
to apply on any problem on which the GDM is shown to converge (like the example of the p−Laplace
problem taken in this paper). Since it is identical to the SIPG method, it enlarges the application domain
of this method to all problems for which the GDM is proved to be applicable.

A Discrete functional analysis

Since our geometric hypotheses are different from those done in [2, 3], we now provide the Sobolev in-
equalities suited to Definition 3.1 of polytopal meshes. The techniques of proof are identical to that of [3,
Theorem 5.3]. In this section, we denote, for ξ ∈ Rd by |ξ| = (

∑d
i=1 ξ

2
i )1/2 the Euclidean norm of ξ.

The constant Cq,n > 0, introduced by the following definition, is used in the course of this mathematical
study for (q, n) = (p, k − 1), and (q, n) = ( pd

d−p , k) when p ∈]1, d[.

Definition A.1 (Comparison of norms on Rn+1): Let d ∈ N?, n ∈ N and q > 0 be given. We denote by
Cq,n > 0 the greatest constant, depending only on n, q and d, such that

∀(a0, . . . , an) ∈ Rn+1,

∫ 1

0

|
n∑
i=0

ais
i|qsd−1ds ≥ Cq,n

n∑
i=0

|ai|q. (40)

The following lemma plays an essential role in the study of ‖∇D · ‖Lp(Ω)d .

Lemma A.2: Let n ∈ N and β ∈]0, 1[ be given. Let T be a polytopal mesh in the sense of Definition 3.1.
Then there holds

∀v ∈ Pn(Rd), ∀K ∈M, ∀σ ∈ FK ,∫
DK,σ

|v(x)|pdx ≤ (n+ 1)p−1

βd+pnCp,n

∫
D

(β)
K,σ

|v(x)|pdx,

where Cp,n is defined in Definition A.1 with q = p, and where D
(β)
K,σ is defined by (18).
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Proof. For K ∈ M and σ ∈ FK , we compute
∫
D

(β)
K,σ

|v(x)|pdx with making the change of variable

x = xK + s(y − xK), where y ∈ σ and s ∈]0, β[. We then have dx = dK,σs
d−1dγ(y)ds, which leads to∫

D
(β)
K,σ

|v(x)|pdx =

∫
σ

∫ β

0

|v(xK + s(y − xK))|pdK,σsd−1dsdγ(y).

For a given y ∈ σ, s 7→ v(xK + s(y−xK)) is a polynomial with respect to s with degree lower or equal to
n, that we write under the form v(xK + s(y−xK)) =

∑n
i=0 ai(y)si. We then use the notation introduced

in Definition A.1, which provides∫ β

0

|
n∑
i=0

ai(y)si|psd−1ds = βd
∫ 1

0

|
n∑
i=0

ai(y)βiti|ptd−1dt

≥ βdCp,n
n∑
i=0

|ai(y)βi|p ≥ βd+pnCp,n
n∑
i=0

|ai(y)|p.

This leads to ∫
D

(β)
K,σ

|v(x)|pdx ≥ βd+pnCp,n
∫
σ

dK,σ(

n∑
i=0

|ai(y)|p)dγ(y).

On the other hand, we have∫
DK,σ

|v(x)|pdx =

∫
σ

∫ 1

0

|v(xK + s(y − xK))|pdK,σsd−1dsdγ(y)

=

∫
σ

∫ 1

0

|
n∑
i=0

ai(y)si|pdK,σsd−1dsdγ(y)

≤ (n+ 1)p−1

∫
σ

(

n∑
i=0

|ai(y)|p)dK,σdγ(y).

Hence, gathering the above relations, the lemma is proved.

We can now state and prove the following lemma, which provides a connection between the discrete gradient
defined by (15) to a norm suited for the study of discontinuous Galerkin methods in the framework of elliptic
problems.

Lemma A.3: Let D be a DGGD in the sense of Definition 3.2. Then there exists A > 0, depending only
on β, p, k and d, such that

∀v ∈ XD,0,
1

A
‖v‖DG,p ≤ ‖∇Dv‖Lp(Ω)d ≤ A‖v‖DG,p, (41)

where

‖v‖pDG,p =
∑
K∈M

(∫
K

|∇Kv(x)|pdx +
∑
σ∈FK

1

dp−1
K,σ

∫
σ

|[v]K,σ(y)|pdγ(y)
)
. (42)

Remark A.4 (DG norm): Note that Definition (42) for the DG norm is slightly different from [2, eqn. (5)]
or [3, eqn. (5.1)], with the use of dK,σ instead that of diam(σ), and with notation (16) for the jump at
the faces of the mesh. This allows the application of discrete functional analysis results without regularity
hypotheses on the polytopal mesh.

Proof. Let K ∈ M and σ ∈ FK . Using x = xK + s(y − xK), and using, for some c > 0 to be chosen

later, |a + b|p ≤ (1 + cp
′
)p−1(|a|p + | b

c
|p) with 1

p
+ 1

p′ = 1, a = ∇Kv(x) +
[v]K,σ(y(x))

dK,σ
ψ(s(x))nK,σ and
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b = −∇Kv(x), we have∫
K

|∇Dv(x)|pdx =

∫
K(β)

|∇Kv(x)|pdx +
∑
σ∈FK

∫
DK,σ\D

(β)
K,σ

∣∣∣∇Kv(x) +
[v]K,σ(y(x))

dK,σ
ψ(s(x))nK,σ

∣∣∣pdx
≥

∫
K(β)

|∇Kv(x)|pdx− 1

cp

∫
K\K(β)

|∇Kv(x)|pdx

+
1

(1 + cp′)p−1

∑
σ∈FK

∫
DK,σ\D

(β)
K,σ

∣∣∣ [v]K,σ(y(x))

dK,σ
ψ(s(x))nK,σ

∣∣∣pdx.
Writing

1

d

d∑
i=1

|∂iΠKv|
p ≤ |∇Kv|

p ≤ dp/2
d∑
i=1

|∂iΠKv|
p (43)

and applying Lemma A.2 to the polynomial ∂iΠKv ∈ Pk−1(Rd) for i = 1, . . . , d, we can write∫
K(β)

|∇Kv(x)|pdx ≥ βd+p(k−1)Cp,k−1

dkp−1

d∑
i=1

∫
K

|∂iΠKv(x)|pdx ≥ C′β,q
∫
K

|∇Kv(x)|pdx,

denoting by C′β,k =
βd+p(k−1)Cp,k−1

d1+p/2kp−1 . We then define c by 1
cp

= 1
2
C′β,k. Using |nK,σ| = 1, we get∫

K

|∇Dv(x)|pdx ≥ 1

2
C′β,k

∫
K

|∇Kv(x)|pdx +
1

(1 + cp′)p−1

∑
σ∈FK

∫
DK,σ\D

(β)
K,σ

∣∣∣ [v]K,σ(y(x))

dK,σ
ψ(s(x))

∣∣∣pdx.
We again make the change of variable x = xK + s(y − xK). It yields∫

DK,σ\D
(β)
K,σ

∣∣∣ [v]K,σ(y(x))

dK,σ
ψ(s(x))

∣∣∣pdx = dK,σ

∫
σ

|[v]K,σ(y)|p

dpK,σ
dγ(y)

∫ 1

β

|ψ(s)|psd−1ds

=
1

dp−1
K,σ

∫
σ

|[v]K,σ(y)|pdγ(y)

∫ 1

β

|ψ(s)|psd−1ds.

This completes the proof of the left inequality in (41). On the other hand, we get∫
DK,σ

|∇Dv(x)|pdx ≤ 2p−1

∫
DK,σ

|∇Kv(x)|pdx + 2p−1

∫
DK,σ\D

(β)
K,σ

∣∣∣ [v]K,σ(y(x))

dK,σ
ψ(s(x))

∣∣∣pdx
= 2p−1

∫
DK,σ

|∇Kv(x)|pdx +

(
2

dK,σ

)p−1 ∫
σ

|[v]K,σ(y)|pdγ(y)

∫ 1

β

|ψ(s)|psd−1ds,

which completes the proof of the right inequality in (41).

Since our geometric hypotheses are different from those done in [2, 3], we now provide the Sobolev in-
equalities suited to Definition 3.1 of polytopal meshes. The techniques of proof are identical to that of [3,
Theorem 5.3].

Lemma A.5 (Comparison of DG norms): Let D be a DGGD in the sense of Definition 3.2. Then, for 1 ≤
p ≤ q < +∞, there holds

∀v ∈ XD,0, ‖v‖DG,p ≤ ((d+ 1)|Ω|)
q−p
pq ‖v‖DG,q. (44)

Proof. We have

‖v‖pDG,p =
∑
K∈M

(∫
K

|∇Kv(x)|pdx +
∑
σ∈FK

1

dp−1
K,σ

∫
σ

|[v]K,σ(y)|pdγ(y)
)
.
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Thanks to Young’s inequality, we have

‖v‖pDG,p ≤

 ∑
K∈M

(∫
K

|∇Kv(x)|qdx +
∑
σ∈FK

1

dq−1
K,σ

∫
σ

|[v]K,σ(y)|qdγ(y)
)p/q

×

 ∑
K∈M

(
|K|+

∑
σ∈FK

dK,σ|σ|
)(q−p)/q

,

which leads, since
∑
σ∈FK

dK,σ|σ| = d|K|, to the result.

Lemma A.6 (Comparison of DG norm and BV norm): For v ∈ L1(Rd), let us define

‖v‖BV =

d∑
i=1

sup{
∫
Rd
v(x)∂iϕ(x)dx, ϕ ∈ C1

c (Rd), ‖ϕ‖∞ ≤ 1} ∈ (R+ ∪ {+∞}).

Then, extending ΠDv for all v ∈ XD,0 by 0 outside Ω, we have

∀p ∈ [1,+∞[, ∀v ∈ XD,0, ‖ΠDv‖BV ≤ d((d+ 1)|Ω|)
p−1
p ‖v‖DG,p (45)

Proof. We have, for all v ∈ XD,0, thanks again to (16),

‖ΠDv‖BV ≤ d
∑
K∈M

(∫
K

|∇Kv(x)|dx +
∑
σ∈FK

∫
σ

|[v]K,σ(y)|dγ(y)
)
.

Thanks to Young’s inequality, we have

‖ΠDv‖BV ≤d

 ∑
K∈M

(∫
K

|∇Kv(x)|pdx +
∑
σ∈FK

1

dp−1
K,σ

∫
σ

|[v]K,σ(y)|pdγ(y)
)1/p

×

 ∑
K∈M

(
|K|+

∑
σ∈FK

dK,σ|σ|
)(p−1)/p

.

The results follows.

We now state the discrete Sobolev inequalities result.

Lemma A.7 (Discrete Sobolev inequalities): Let D be a DGGD in the sense of Definition 3.2. Then, for all
q ∈ [1, pd

d−p ] if 1 ≤ p < d and q ∈ [1,+∞[ otherwise, there exists C, depending only on |Ω|, k, p, q and d,
such that

∀v ∈ XD,0, ‖ΠDv‖Lq(Ω) ≤ C‖v‖DG,p. (46)

Proof. Let us first assume that d = 1. Then we have

∀v ∈ Lq(R), ‖v‖L∞(R) ≤ ‖v‖BV,

which provides (46) thanks to Lemma A.6.

We now assume that d ≥ 2.

As in [2], we follow Nirenberg’s technique. First remark that, for all q ∈ [1, d/(d− 1)],

∀v ∈ Lq(Rd), ‖v‖Lq(Rd) ≤
1

2d
‖v‖BV. (47)
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This inequality implies, thanks to Lemma A.6,

∀v ∈ XD,0, ‖ΠDv‖Lq(Rd) ≤
1

2d
‖ΠDv‖BV ≤

1

2
‖v‖DG,1. (48)

We now handle the case 1 < p < d. We define α = p(d−1)
d−p > 1 and p? = pd

d−p . For v ∈ XD,0, we apply (47)
to |ΠDv|α and q = d/(d− 1). It yields(∫

Ω

|ΠDv(x)|p
?

dx

) d−1
d

≤ 1

2d

d∑
i=1

( ∑
K∈M

∫
K

|∂i|ΠKv(x)|α|dx +
∑
σ∈F

∫
σ

|[|v|α]σ(y)|dγ(y)

)
,

denoting by |[w]σ(y)| the absolute value of the jump of w at y ∈ σ. We observe that, for a.e. x ∈ K, we
have |∂i|ΠKv(x)|α| = α|ΠKv(x)|α−1|∂iΠKv(x)| ≤ α|ΠKv(x)|α−1|∇Kv(x)|. On the other hand, we have,

for Mσ = {K,L}, |[|v|α]σ(y)| ≤ 2α(|ΠKv(y)|α−1 + |ΠLv(y)|α−1)
|Π
K
v(y)−Π

L
v(y)|

2
, and, for Mσ = {K},

|[|v|α]σ(y)| ≤ α|ΠKv(y)|α−1|ΠKv(y)− 0|. We then have, using notation (16),(∫
Ω

|ΠDv(x)|p
?

dx

) d−1
d

≤ α
∑
K∈M

(∫
K

|ΠKv(x)|α−1|∇Kv(x)|dx +
∑
σ∈FK

∫
σ

|ΠKv(y)|α−1|[v]K,σ(y)|dγ(y)
)
.

Hence we get, from Young’s inequality, since (α− 1)p′ = p? with p′ = p/(p− 1),(∫
Ω

|ΠDv(x)|p
?

dx

) d−1
d

≤ α(T1)1/p(T2)(p−1)/p,

with

T1 =
∑
K∈M

(∫
K

|∇Kv(x)|pdx +
∑
σ∈FK

∫
σ

|[v]K,σ(y)|p

dp−1
K,σ

dγ(y)
)

= ‖v‖pDG,p,

and

T2 =
∑
K∈M

(∫
K

|ΠKv(x)|p
?

dx +
∑
σ∈FK

dK,σ

∫
σ

|ΠKv(y)|p
?

dγ(y)
)
.

Let us now observe that ∫
K

|ΠKv(x)|p
?

dx =
∑
σ∈FK

∫
DK,σ

|ΠKv(x)|p
?

dx.

We write, as in the proof of Lemma A.2,∫
DK,σ

|ΠKv(x)|p
?

dx = dK,σ

∫
σ

∫ 1

0

|ΠKv(xK + s(y − xK))|p
?

sd−1dsdγ(y).

For a given y ∈ σ, s 7→ ΠKv(xK + s(y − xK)) is a polynomial with respect to s with degree lower or
equal to k, that we write under the form ΠKv(xK + s(y−xK)) =

∑k
i=0 ai(y)si. We then use the constant

introduced in Definition A.1, which provides∫ 1

0

|
k∑
i=0

ai(y)si|p
?

sd−1ds ≥ Cp?,k
k∑
i=0

|ai(y)|p
?

,

and therefore ∫
DK,σ

|ΠKv(x)|p
?

dx ≥ Cp?,kdK,σ
∫
σ

(

k∑
i=0

|ai(y)|p
?

)dγ(y).

Remarking that y = xK + s(y − xK) for s = 1, we have∫
σ

|ΠKv(y)|p
?

dγ(y) =

∫
σ

|
k∑
i=0

ai(y)|p
?

dγ(y) ≤ (k + 1)p
?−1

∫
σ

(

k∑
i=0

|ai(y)|p
?

)dγ(y).
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This gives

dK,σ

∫
σ

|ΠKv(y)|p
?

dγ(y) ≤ (k + 1)p
?−1

Cp?,k

∫
DK,σ

|ΠKv(x)|p
?

dx,

and concludes the proof that

T2 ≤ (1 +
(k + 1)p

?−1

Cp?,k
)

∫
Ω

|ΠDv(x)|p
?

dx.

Hence we conclude (46) for 1 < p < d.

Let us finally consider the case d ≤ p. We select any real value q1 > p, and we set p1 = dq1/(d+ q1). Then
we have 1 < p1 < d ≤ p and p?1 = q1. We apply the result proved for 1 < p < d above, which yields (46),
replacing p by p1 and p?1 by q1. We then apply Lemma A.5, which allows to bound ‖v‖DG,p1 by ‖v‖DG,p.

Lemma A.8: Let V ⊂ Rd be an open bounded set that is star-shaped with respect to all points in a ball
B ⊂ V . Let p ∈ [1,+∞). There exists C13 depending only on d and p such that, for any ϕ ∈W 1,p(V ),∥∥∥∥ϕ− 1

|B|

∫
B

ϕ(x)dx

∥∥∥∥
Lp(V )

≤ C13
diam(V )

d
p

+1

diam(B)
d
p

‖ |∇ϕ| ‖Lp(V ) . (49)

Proof. Since C∞(V ) ∩W 1,p(V ) is dense in W 1,p(V ), we only need to prove the result for ϕ ∈ C∞(V ) ∩
W 1,p(V ), and the conclusion follows by density. To simplify the notations we let hV = diam(V ). For all
(x,y) ∈ V ×B, since V is star-shaped with respect to y the segment [x,y] belongs to V and we can write

ϕ(x)− ϕ(y) =

∫ 1

0

∇ϕ(tx + (1− t)y) · (x− y)dt.

Taking the average value with respect to y ∈ B and writing |x− y| ≤ hV gives∣∣∣∣ϕ(x)− 1

|B|

∫
B

ϕ(y)dy

∣∣∣∣ =

∣∣∣∣ 1

|B|

∫
B

∫ 1

0

∇ϕ(tx + (1− t)y) · (x− y)dtdy

∣∣∣∣
≤ hV
|B|

∫
B

∫ 1

0

|∇ϕ(tx + (1− t)y)|dtdy.

Taking the power p, using the Jensen inequality with the convex function, and integrating with respect to
x ∈ V , we get∫

V

∣∣∣∣ϕ(x)− 1

|B|

∫
B

ϕ(y)dy

∣∣∣∣p dx ≤ hpV
|B|

∫
V

∫
B

∫ 1

0

|∇ϕ(tx + (1− t)y)|pdtdydx. (50)

We then apply the change of variable x ∈ V → z = tx + (1 − t)y, which has values in V since V is
star-shaped with respect to all points in B. This gives∫

V

∫
B

∫ 1

0

|∇ϕ(tx + (1− t)y)|pdtdydx ≤
∫
V

|∇ϕ(z)|p
∫
B

∫
I(z,y)

t−ddtdydz, (51)

where I(z,y) = {t ∈ (0, 1) : ∃x ∈ V , tx + (1 − t)y = z}. For t ∈ I(z,y) we have t(x − y) = z − y for

some x ∈ V and therefore hV t ≥ |z − y|. Hence I(z,y) ⊂ [ |z−y|
hV

, 1] and we deduce that (for d > 1)∫
I(z,y)

t−ddt ≤
∫ 1

|z−y|
hV

t−ddt ≤ 1

d− 1

hd−1
V

|z − y|d−1
. (52)

Thus, denoting by ωd the area of the unit sphere in Rd, since B ⊂ V ⊂ B(z, hV ) for all z ∈ V ,∫
B

∫
I(z,y)

t−ddtdy ≤ hd−1
V

d− 1

∫
B

1

|z − y|d−1
dy
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≤ hd−1
V

d− 1

∫
B(z,hV )

|z − y|1−ddy

≤ hd−1
V

d− 1
ωd

∫ hV

0

ρ1−dρd−1dρ ≤ hdV
d− 1

ωd. (53)

The proof is complete by plugging this estimate into (51), by using the resulting inequality in (50), and
by recalling that

|B| = |B(0, 1)|
(

diam(B)

2

)d
.

Note that in the case d = 1, (52) is modified and involves ln( h
|z−y| ) but the final estimate (53) is still in

O(hd).

The following lemma is a simple technical result used in Lemma A.10 below.

Lemma A.9: Let h > 0, d ∈ N?, x ∈ Rd and let us define the function Fx,h : B(x, h)→ R by

∀z ∈ B(x, h), Fx,h(z) =

∫ 1

|x−z|
h

s1−dds. (54)

Let q ∈ [1,+∞] if d = 1, q ∈ [1,+∞) if d = 2, and q ∈ [1, d
d−2

) if d ≥ 3. Then, there exists C14 > 0
depending only on d and q such that

‖Fx,h‖Lq(B(x,h)) ≤ C14h
d/q. (55)

Proof.
Case d = 1.
We have |Fx,h(z)| ≤ 1 and therefore (55) is satisfied with C14 = 21/q.

Case d = 2.
We have Fx,h(z) = ln

(
h

|x−z|

)
and therefore, since q < +∞, using a polar change of coordinates,

‖Fx,h‖qLq(B(x,h)) = 2π

∫ h

0

ρ ln

(
h

ρ

)q
dρ.

The function ρ 7→ ρ ln
(
h
ρ

)q
reaches its maximum over [0, h] at ρ = e−qh and thus

‖Fx,h‖qLq(B(x,h)) ≤ 2π

∫ h

0

e−qhqqdρ = qqe−qh2.

This proves (55) with C14 = (2π)1/qqe−1.

Case d ≥ 3.
We write

Fx,h(z) =
1

d− 2

[(
h

|x− z|

)d−2

− 1

]
≤ 1

d− 2

(
h

|x− z|

)d−2

and, using again polar coordinates,

‖Fx,h‖qLq(B(x,h)) ≤
ωd

(d− 2)q
h(d−2)q

∫ h

0

ρ(2−d)q+d−1dρ

where ωd is the area of the unit sphere in Rd. The assumption q < d
d−2

ensures that (2− d)q+ d− 1 > −1
and therefore

‖Fx,h‖qLq(B(x,h)) ≤
ωd

(d− 2)q((2− d)q + d)
hd.

The proof is complete by choosing C14 =
ω
1/q
d

(d−2)[(2−d)q+d]1/q .
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Lemma A.10 (First order polynomial approximation of elements of W 2,p): Assume that p > d
2
, and let B ⊂

V be bounded subsets of Rd, such that B is a ball and V is star-shaped with respect to all points of B.
Let θ ≥ diam(V )/diam(B).
Take ϕ ∈W 2,p(V )∩C(V ). Then there exists C15 > 0, depending only on d, p and θ, and an affine function
Aϕ : V → R such that

sup
x∈V
|ϕ(x)−Aϕ(x)| ≤ C15diam(V )

2− d
p
∥∥ |D2ϕ|

∥∥
Lp(V )

, (56)

‖∇Aϕ −∇ϕ‖Lp(V )d ≤ C15diam(V )
∥∥ |D2ϕ|

∥∥
Lp(V )

. (57)

Remark A.11: If V is sufficiently regular, W 2,p(V ) ⊂ C(V ) and we only need to assume that ϕ ∈W 2,p(V ).

Proof. To simplify the notations, set hB = diam(B) and hV = diam(V ). Let us first assume that
ϕ ∈ C2

c (Rd). For a given x ∈ V and any y ∈ B, write the Taylor expansion

ϕ(x) = ϕ(y) +∇ϕ(y) · (x− y) +

∫ 1

0

sD2ϕ(x + s(y − x))(x− y) · (x− y)ds. (58)

Denote by y the centre of B, and set ϕ = 1
|B|

∫
B
ϕ(y)dy and ∇ϕ = 1

|B|

∫
B
∇ϕ(y)dy. Taking the average

of (58) over y ∈ B gives ϕ(x) = Aϕ(x) +R1(x) +R2(x) with

Aϕ(x) = ϕ+∇ϕ · (x− y),

R1(x) =
1

|B|

∫
B

∫ 1

0

sD2ϕ(x + s(y − x))(x− y) · (x− y)dsdy,

and

R2(x) =
1

|B|

∫
B

(∇ϕ(y)−∇ϕ) · (x− y)dy.

Hence,
|ϕ(x)−Aϕ(x)| ≤ |R1(x)|+ |R2(x)|. (59)

It remains to bound R1 and R2.

Bound on R1.
The change of variable y ∈ B → z = x + s(y − x) has values in V , since V is star-shaped with respect to
all points in B. This gives

|R1(x)| ≤ h2
V

|B|

∫
V

∫
I(x,z)

s1−d|D2ϕ(z)|dsdz,

where I(x,z) = {s ∈ (0, 1) : ∃y ∈ B , z = x+ s(y−x)}. If s ∈ I(x,z) then |z−x| = s|y−x| ≤ shV for

some y ∈ B, and thus s ≥ |z−x|
hV

. Hence,

|R1(x)| ≤ h2
V

|B|

∫
V

|D2ϕ(z)|
∫ 1

|x−z|
hV

s1−ddsdz =
h2
V

|B|

∫
V

|D2ϕ(z)|Fx,hV (z)dz

where Fx,hV is defined by (54). Using Hölder’s inequality, the inclusion V ⊂ B(x, hV ) and Lemma A.9 we
infer

|R1(x)| ≤ h2
V

|B|
∥∥ |D2ϕ|

∥∥
Lp(V )

‖Fx,hV ‖Lp′ (B(x,hV )) ≤ C16
h

2+ d
p′

V

|B|
∥∥ |D2ϕ|

∥∥
Lp(V )

where C16 depends only on d and p (notice that p > d/2 implies p′ < d
d−2

if d ≥ 2). Since d
p′ = d− d

p
and

|B| = |B(0, 1)|hdB ≥ |B(0, 1)|θ−dhdV , this gives the existence of C17 depending only on θ, p and d such that

|R1(x)| ≤ C17h
2− d

p

V

∥∥ |D2ϕ|
∥∥
Lp(V )

. (60)

Bound on R2.
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By Hölder’s inequality and |B| = |B(0, 1)|hdB ,

|R2(x)| ≤ hB |B|
1
p′−1 ∥∥∇ϕ−∇ϕ∥∥

Lp(B)d
≤ |B(0, 1)|−

1
p h

1− d
p

B

∥∥∇ϕ−∇ϕ∥∥
Lp(B)d

.

Apply Lemma A.8 with V = B and ϕ replaced by ∂iϕ (for i = 1, . . . , d). This gives C18 depending only
on d and p such that

|R2(x)| ≤ C18h
2− d

p

B

∥∥ |D2ϕ|
∥∥
Lp(B)

. (61)

Conclusion.
Combining (59), (60) and (61) gives (56). To prove (57), notice that

∇Aϕ = ∇ϕ =
1

|B|

∫
B

∇ϕ(y)dy

and apply Lemma A.8 with ϕ replaced by ∂iϕ, for all i = 1, . . . , d. This gives C19 depending only on d an
p such that

‖∇Aϕ −∇ϕ‖Lp(V )d ≤ C19
h
d/p+1
V

h
d/p
B

∥∥ |D2ϕ|
∥∥
Lp(V )

.

Since hB ≥ θ−1hV , this completes the proof of (57) if ϕ ∈ C2
c (Rd).

All quantities and norms involved in (56) and (57) are continuous with respect to ϕ for the norm of
W 2,p(V ) ∩ C(V ) (sum of the norms in both spaces). Since V is star-shaped, a classical dilatation and
regularisation argument shows that the restrictions of C2

c (Rd) functions to V are dense in W 2,p(V )∩C(V ).
This density ensures that (56) and (57) are still valid for ϕ ∈W 2,p(V ) ∩ C(V ).
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